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ABSTRACT. The guided wave field excited in a plate-like structure from any weakly coupled 
transducer can be calculated from the superposition of the guided wave fields due to a number of 
suitable point or line excitation sources. In this paper, the fields from various point and line excitation 
sources are reviewed and relationships between them are demonstrated. The performance of pancake 
coil EMATs is modeled using the superposition of the fields from point sources and the results 
compared with experiment. 

INTRODUCTION 

Guided acoustic waves are widely used in many non-destructive evaluation (NDE) 
applications [1]. A key aspect of any guided wave testing system is the design of the 
transducers that excite and detect guided waves in the structure under test, which is referred 
to here as the waveguide. Various transducer configurations have been used including point 
contacts [2], liquid and solid wedge transducers [3], inter-digital transducers [4], comb 
transducers [5], electromagnetic acoustic transducers (EMATs) [6] and more recently 
arrays of either piezoelectric [7] or EMAT transducer elements [8]. 

The ability to model the performance of such transducers is therefore of great 
interest. A common assumption in many models is that the transducer is weakly coupled to 
the waveguide. This is a justifiable assumption for devices such as EMATs or liquid wedge 
coupled transducers. Even though the assumption is less justifiable in, for example, the 
case of inter-digital transducers (IDTs) bonded to thin sheets [9], it still enables an initial 
estimation of the radiated field to be obtained. The assumption of weak coupling means 
that the excitation from a transmitting transducer can be represented by a spatial 
distribution of time-dependent surface tractions applied to the surface of the waveguide. 
For numerical modeling, the continuous surface traction distribution can be decomposed 
into an array of discrete excitation sources, the fields from which are then integrated.  

In 2D models a plane-strain cross section through the waveguide and transducer is 
considered and only the field directly in front of (or behind) the transducer is computed. In 
a 2D model the length of a transducer perpendicular to the direction of propagation is 
treated as infinite and the continuous surface traction distribution in the plane of the cross 
section is discretised into an array of sources. Each source in a 2D model therefore 
represents a infinitely long, straight line force applied perpendicular to plane of the cross 
section. Such models are used for rapidly predicting the modal selectivity of, for example, 
comb [5] and liquid wedge [3] devices. To predict the radiated field in all directions around 
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a transducer of finite dimensions requires a 3D model, where the area of surface tractions is 
discretised into an array of point sources. The radiated guided wave fields from either point 
or line excitation sources therefore provide the fundamental building blocks for all weakly 
coupled guided wave transducer models.  

The tools for computing the fields from point and line sources in an isotropic plate 
waveguide are available in a variety of forms in literature.  However, there is a lack of a 
general, unified presentation of the results in a manner appropriate to the designers of 
transducers for NDE applications, which is the motivation for the work described in this 
paper. In the following section, the concept of excitability is introduced and the results for 
the three possible polarizations of line force in the 2D case are expressed as excitability 
functions. A simple relationship is suggested between 2D excitability functions for line 
sources and 3D excitability functions for point sources. The validity of the hypothesis is 
demonstrated using a finite element (FE) model. Finally, the application of the 3D 
excitability functions for modeling real transducers is demonstrated. 

2D EXCITABILITY OF GUIDED WAVES BY LINE EXCITATION SOURCES 

Definition 

When guided wave modes are excited in a waveguide by a harmonic point or line 
excitation force, the amplitude of each guided wave mode is proportional to the amplitude 
of the excitation force. The constant of proportionality for each mode can be loosely 
described as the excitability of that mode. The precise definition requires further 
information on how the amplitude of the mode is measured. The excitability of straight 
crested guided waves by a harmonic force acting along an infinite straight line on the 
surface of a flat isotropic plate is considered first. This is referred to as 2D excitability. In 
this case the amplitude of a mode is defined as the amplitude of particle displacement 
measured on the surface of the waveguide in the same direction as the applied force. Since, 
the amplitude of all particle displacements and stresses in a mode are related by the mode 
shape, the amplitude of any one of them provides sufficient information from which to 
compute the amplitudes of the others if so desired.  

Cartesian coordinate axes, x, y, and z are defined where z is the plate normal and x is 
the direction of wave propagation. The 2D model is therefore a cross section in the x-z 
plane. The line excitation source is in the y direction and will be assumed to be applied at 
x = 0. Three possible orientations of excitation force are considered: Fz normal to the plane 
of the plate (out-of-plane), and Fx and Fy, parallel to the plane of the plate (in-plane). These 
are shown schematically in Fig. 1. It should be noted that the excitation forces in the x and 
z directions generate Lamb waves while the excitation force in the y direction generates SH 
waves.  
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FIGURE 1. Schematic diagrams showing force and the particle displacement component used to define 
modal amplitude for the three cases of 2D excitability: (a) generation of Lamb waves by an out-of-plane line 
excitation force, (b) generation of Lamb waves by an in-plane line excitation force and (c) generation of SH 
waves by an in-plane line excitation force. 
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For any particular mode, the particle displacement, uκ, at a point on the surface of the 
plate is: 

 ( ) ( ) ( )[ ]tkxiFEtxu D ωκκκ −= exp, 2  (1) 

where ( )DE 2
κ  is the 2D excitability of the mode, 1−=i , k is the angular wavenumber of the 

mode, ω is the angular frequency of the excitation, t is time and κ is one of x, y or z. 

Methods of Calculation 

There are a variety of methods for predicting the excitation of guided wave modes, 
including generalized rays [10], integral transforms [11] and reciprocity [12]. Any of these 
could be used to obtain excitability expressions in the desired form, but here attention will 
be directed to the methods of integral transforms and reciprocity. The former is of interest 
because it can be readily applied to 3D excitability, leading to excitability functions that are 
directly comparable for the two cases. The latter is of interest, as it provides a 
straightforward way of computing the 2D excitability in practice. 

The integral transform approach to guided wave excitation involves applying one or 
more spatial integral transforms to the waveguide and loading, so that the forced excitation 
problem can be solved in the transform domain. The solutions in the transform domain are 
then transformed to spatial solutions by inverting the transform. In the 2D case, a spatial 
Fourier transform is used, and the problem is solved in the wavenumber domain. For later 
reference the example of the explicit expression for out-of-plane 2D excitability for a 
symmetric Lamb wave mode derived from the work of Viktorov [11] is given below: 

 ( ) ( ) ( ) ( )[ ]
k

dqdqkqqiE LTTLD
z ∂∆∂

−⋅= 2sinh2sinh
2

22
2

µ
 (2) 

where µ is a Lamé material constant, 2
,

22
, TLTL kkq −=  (kL and kT are respectively the bulk 

longitudinal and transverse wavenumbers at the excitation frequency), d is the plate 
thickness and ( ) dkdkkkkdkdkkk TLTLTLT coshsinh4sinhcosh 222 −+=∆ . 

The reciprocity approach described in [12] leads to an alternative expression for the 
excitability of a mode that is useful because it can be computed directly from the mode 
shape. The expression is: 

 ( )
2

2

4







=
P

vE D κ
κ

ω  (3) 

where vκ is the surface displacement (in the appropriate direction) in the mode shape and P 
is the power flow represented by the mode shape, which is also straightforward to obtain 
[12]. 

2D Excitability Functions 

Graphs of the excitability functions for the three orientations of line excitation force 
are shown in Fig. 2 for the case of a 1 mm steel plate. These were calculated using the 
reciprocity method described above. 2D excitability is the ratio of particle displacement to 
excitation force per unit length, hence it has units of distance squared per unit force (i.e. 
m2N-1). 
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FIGURE 2. Graphs of 2D excitability for: (a) generation of Lamb waves by an out-of-plane line excitation 
force, (b) generation of Lamb waves by an in-plane line excitation force and (c) generation of SH waves by 
an in-plane line excitation force. 

3D EXCITABILITY OF GUIDED WAVES BY POINT EXCITATION SOURCES 

3D excitability is concerned with the generation of circularly crested waves by point 
excitation forces. Here it is more useful to work in a cylindrical coordinate system using 
the axes r, θ and z shown in Fig. 3, where r = 0 is at the source. There are two possible 
orientations of excitation forces to be considered, Fz (out-of-plane) and Fq (in-plane), and 
these two cases need somewhat different treatment. The out-of-plane case is axi-symmetric 
and only Lamb wave modes are excited with no dependence on θ. The in-plane case is not 
axi-symmetric and the resulting wave field contains both Lamb and SH wave modes. In 
this case, the θ = 0 direction is defined as being in the direction of the excitation force, Fq. 

3D Excitability Function due to Out-of-plane Excitation 

In the out-of-plane case shown in Fig. 3(a), the waves are circularly crested and their 
spatial variation is described by Hankel functions rather than the complex exponential 
function used in the straight crested 2D case. The Hankel function encapsulates the decay 
in amplitude with distance necessary for energy conservation. Except in a region very close 
to the source, it can be approximated with high accuracy by a complex exponential function 
multiplied by a factor that is inversely proportional to the square root of the propagation 
distance. For any particular mode, the out-of-plane particle displacement, uz, at a point on 
the surface of the plate is: 

 ( ) ( ) ( ) ( ) ( )tikrHFEtru z
D

zz ω−= exp, 1
0

3  (4) 

where ( )D
zE 3  is defined as the 3D out-of-plane excitability of the mode and ( )1

0H  is a first 
Hankel function of order zero. This axi-symmetric problem can be solved by the integral 
transform approach using a spatial Hankel transform. For comparison with the equivalent 
result for out-of-plane line excitation in the 2D case, the resulting expression for the out-of-
plane excitability of symmetric Lamb waves derived from the work of [13] is given below: 

 ( ) ( ) ( ) ( )[ ]
k

dqdqkqqkE LTTLD
z ∂∆∂

−⋅= 2sinh2sinh
4

22
3

µ
. (5) 

It can be seen that there is a very close similarity between Equations (2) and (5) and 
3D out-of-plane excitability is therefore simply related to 2D out-of-plane excitability by: 

 ( ) ( )D
z

D
z EikE 23

2
= . (6) 
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FIGURE 3. Schematic diagrams showing force and reference displacements for the two cases of 3D 
excitability: (a) generation of Lamb waves by an out-of-plane point excitation force, (b) generation of Lamb 
waves and SH waves by an in-plane point excitation force. 

Of course it is no great surprise that the two cases are intimately related, since the 
out-of-plane line source could be represented as a line of out-of-plane point sources. 
Conversely the out-of-plane point source could be represented by an infinite number of out-
of-plane line sources intersecting the same point on the surface of the waveguide at 
different angles. 

3D Excitability Function due to In-plane Excitation 

For the case of guided wave excitation by an in-plane force, different measures of 
modal amplitude are introduced for Lamb and SH waves. For Lamb waves, the mode 
amplitude is measured by the amplitude of in-plane surface displacement in the radial 
direction, ur. For SH waves, the mode amplitude is measured by the amplitude of in-plane 
surface displacement in the tangential direction, uθ. These are illustrated in Fig. 3(b). The 
use of these definitions is vindicated by the elegant relationship between the 2D and 3D in-
plane excitability cases that can then be demonstrated. The in-plane surface displacement 
of a Lamb wave mode due to a harmonic in-plane point force is given by: 

 ( ) ( ) ( ) ( ) ( ) ( )tikrHFEtru q
D

rr ωθθ −= exp,, 1
0

3  (7) 

where ( )D
rE 3  is defined as the 3D in-plane Lamb wave excitability. Similarly the in-plane 

displacement of an SH wave mode excited by a harmonic in-plane point force is: 

 ( ) ( ) ( ) ( ) ( ) ( )tikrHFEtru q
D ωθθ θθ −= exp,, 1

0
3  (8) 

where ( )DE 3
θ  is defined as the 3D in-plane SH wave excitability. Note that the excitabilities, 

( )D
rE 3  and ( )DE 3

θ , both have angular dependence. 
Strictly speaking, these expressions for in-plane excitability are not valid close to the 

source where there are additional ( ) ( )krH 1
1  terms and cross coupling between the Lamb and 

SH wave displacements. However, these effects all decay with 1/r [14], hence the 
expressions given above are of sufficient accuracy for most transducer modeling.  

Recently, various methods have been used to calculate these excitability functions, 
including reciprocity [14] and integral transforms [15]. A simple alternative approach is 
demonstrated here that is based on two hypotheses. The first is that the angular 
dependences of the two excitability functions are given by simple sinusoidal factors: a 

( )θcos  dependence for Lamb waves and a ( )θsin  dependence for SH waves. The second 
hypothesis is that the remaining parts of the in-plane excitability functions in the 3D cases 
bear the same relationship to their 2D counterparts as was observed for the out-of-plane 
excitability functions. This therefore suggests that: 
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 ( ) ( ) θcos
2

23 D
x

D
r EikE =  (9) 

for Lamb waves and 

 ( ) ( ) θθ sin
2

23 D
y

D EikE =  (10) 

for SH waves. In the next section the validity of these proposed solutions is demonstrated 
numerically. They have not yet been rigorously compared to the analytic solutions in [14] 
and [15]. 

VALIDATION OF RELATIONSHIP BETWEEN 2D AND 3D IN-PLANE 
EXCITABILITY 

Finite Element Model 

In order to test the proposed relationship between 2D and 3D in-plane excitability, a 
time-marching finite element (FE) model was created in ABAQUS software (HKS Inc., 
Pawtucket, RI). This is shown schematically in Fig. 4(a). A 60 by 30 mm steel plate, 1 mm 
thick was modeled using a mesh of 0.2 mm eight noded cubic elements, with a plane of 
symmetry specified along one long side in the x-z plane. Halfway along the edge of the 
plate on the plane of symmetry a time-dependent excitation force was applied at one 
surface node in the x direction. The force was a 5 cycle Hanning windowed toneburst with 
a center frequency of 1 MHz and a peak amplitude of 1 N. Displacements, ux, uy and uz at 
all nodes on the upper and lower surfaces on one half of the plate were recorded 60 µs after 
the start of the excitation signal. The recorded displacements were imported into Matlab 
software (The Mathworks Inc., Natick, MA) for processing. The measured displacements 
(ux, uy and uz) were first transformed to displacements (ur, uθ and uz) in cylindrical 
coordinates and then decomposed into the surface displacements associated with each of 
the possible guided wave modes (A0, S0 and SH0). The uθ component was assumed to be 
due to the SH0 mode alone and the ur and uz components due to the Lamb wave modes. The 
contributions of the Lamb wave modes were then separated by exploiting their symmetry 
or anti-symmetry with respect to the mid-plane of the plate. The dominant surface 
displacement components for each of the three modes are plotted in Fig. 4(b). 

Numerical Model Based on Excitability Functions 

The same system was modeled numerically, using the excitability functions defined 
in Equations (9) and (10). First the appropriate toneburst excitation signal was Fourier 
transformed. Then the surface displacement components associated with each guided wave 
mode were calculated for each frequency component of the input signal, using the proposed 
in-plane 3D excitability functions. Finally the data for all frequency components were 
summed. This yields the results shown in Fig. 4(c). 

It can be seen that excellent agreement is obtained between the FE model and the 
numerical model based on the proposed excitability functions. The absolute discrepancy 
between the results from the two models is of the order of 2 %, and this is most likely due 
to the FE mesh not being quite fine enough. Unfortunately, this was the largest model that 
could be run with the available computer, so it was not possible to check if a finer mesh 
could have reduced the discrepancy. Nonetheless, it is felt that the agreement that has been 
obtained is sufficient to validate the hypothesis about the nature of the 3D in-plane 
excitability functions. 
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FIGURE 4. (a) Finite element mesh. Grayscale plots of the predicted surface displacements associated with 
Lamb and SH modes are shown from (b) the finite element model and (c) the numerical model using 
excitability functions. 

EXAMPLE APPLICATION - PANCAKE COIL EMATS 

As an example the modal selectivity of pancake coil EMATs is considered. These 
devices apply an axially symmetric distribution of radial in-plane surface tractions to the 
surface of a metallic plate. Their construction is shown in Fig. 5(a). In an experiment to 
characterize their performance, one EMAT was excited with a suitable toneburst and the 
received signals were detected at a second identical device some distance away. The 
separation between EMATs was chosen so that the signals from the A0 and S0 Lamb wave 
modes (no SH0 waves are excited or detected due to the axial symmetry of the EMATs) 
could be resolved in time and their amplitudes measured as a function of frequency. 

The experimental configuration was also modeled using excitability functions. For 
the transmitting EMAT, the annular area on the surface of the plate below it was assumed 
to be subjected to uniform, time harmonic radial shear stress in the radial direction. This 
area was discretised into a number of in-plane point sources, polarized in the appropriate 
directions. The guided wave fields from each of these were calculated using the excitability 
model and then integrated, to obtain the radiated surface displacement components in an 
annular area beneath the receiving EMAT. 
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FIGURE 5. (a) Schematic diagram of pancake coil EMAT. The graph in (b) shows the relative amplitudes of 
the A0 and S0 Lamb wave modes measured experimentally (circles) and predictions of these quantities made 
using the excitability model (solid lines). 

The operation of the receiving EMAT was modeled by integrating the radial 
components of in-plane surface displacement (relative to its own center) over an annular 
area beneath it. In this way, the model was used to predict the relative amplitudes of the A0 
and S0 Lamb wave modes measured at the receiver for direct comparison with experimental 
data. These results are shown in Fig. 5(b) and it can be seen that good agreement is 
obtained. 

CONCLUSION 

The excitability functions for all possibilities of line source excitation of guided 
waves in an isotropic plate have been presented. It has been demonstrated numerically that 
there is a simple relationship between these and the excitability functions for point source 
excitation. The application of excitability functions for transducer modeling has been 
demonstrated for the case of pancake coil EMATs. 
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