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The design of transducers to excite and detect guided waves is a fundamental part of a
nondestructive evaluation or structural health monitoring system and requires the ability to predict
the radiated guided wave field of a transmitting transducer. For most transducers, this can be
performed by making the assumption that the transducer is weakly coupled and then integrating the
Green’s function of the structure over the area of the transducer. The majority of guided wave
modeling is based on two-dimensional (2D) formulations where plane, straight-crested waves are
modeled. Several techniques can be readily applied to obtain the solution to the forced 2D problem
in terms of modal amplitudes. However, for transducer modeling it is desirable to obtain the
complete three-dimensional (3D) field, which is particularly challenging in anisotropic materials. In
this paper, a technique for obtaining a far-field asymptotic solution to the 3D Green’s function in
terms of the modal solutions to the forced 2D problem is presented. Results are shown that illustrate
the application of the technique to isotropic (aluminium) and anisotropic (cross-ply and
unidirectional composite) plates. Where possible, results from the asymptotic model are compared
to those from 3D time-marching finite element simulations and good agreement is demonstrated.
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I. INTRODUCTION

The analysis of guided waves in multilayered media has
been the subject of a considerable amount of research for
over a century. The first solutions of the unforced modal
problem considered a two-dimensional (2D) cross section
through the waveguide. In this formulation, the media are
assumed to be in a state of plane strain and the guided wave
modes predicted are plane, straight-crested waves with wave
fronts perpendicular to the cross section. In the current paper,
the plane-strain formulation for straight-crested guided
waves is referred to as the 2D formulation. Much research
has been devoted to analyzing the dispersion relationships
for guided waves using the 2D formulation and a number of
methods of solution have been developed including global
and transfer matrix methods'~ and semianalytical finite ele-
ment (SAFE) methods.*® Numerical solutions using some of
these methods are well established and commercially
available.® Although less well known, the tools for predicting
the amplitude of excited guided waves based on a 2D formu-
lation are also well established. For example, the forced
problem can be solved directly by using integral
transforms,” the SAFE method'” or by using modal expan-
sion and the principle of reciprocity.”’12

In practice the modal solution obtained from a 2D for-
mulation provides an adequate basis for understanding many
aspects of wave propagation in real three-dimensional (3D)
structures. However, the 2D formulation is a much less sat-
isfactory basis for modeling the radiated guided wave field
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from a finite sized transducer, since the 2D formulation in-
herently requires the force distribution to extend infinitely in
the plane perpendicular to the cross section. To accurately
model a transducer a 3D formulation is required. This has
been addressed by a number of researchers for specific cases.
There are several approaches to finding the solution of the
3D forced problem. For example, the 3D wave field due to
surface load can be calculated by using multiple integral
transforms coupled with matrix methods for isotropic13 and
anisotropic14 materials or using a modal expansion method. "
It is also possible to use the finite element method'® or other
numerical methods.” In some particular cases the analytical
expressions for the 3D solutions can be obtained. For ex-
ample, for an isotropic plate and axisymmetric normal sur-
face loading such formulas have been presented by Ditri et
al.'®

In this paper, the 3D Green’s function is written in such
a way that its far-field asymptotic solution can be expressed
in terms of the modal expansion of a forced 2D system,
which, as previously noted, can be obtained by a number of
established methods. A technique is therefore provided for
numerically computing the 3D excited guided wave field
from a finite sized transducer using only the dispersion rela-
tionships and mode shapes obtained from 2D formulations.
For the case of an isotropic plate such a method has been
presented by Wilcox." In the recent paper by Moulin et al. 20
the particular case of normal surface force on the isotropic
plate is considered. Based on existing analytical expressions
for solutions to the 3D and 2D problems, the authors then
derived the relationship between them. However, analytical
solutions are available for only a few specific cases, and
direct comparison between 3D and 2D solutions becomes
impossible for the case of anisotropic layered media. The
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FIG. 1. System geometry.

technique proposed here is applicable to generally aniso-
tropic layered media, although the relationship between 2D
and 3D solutions is more complex than in isotropic or trans-
versely isotropic layered media.

Il. THEORY
A. Formulation of general 3D problem

A planar multilayered system consisting of N generally
anisotropic layers is considered with Cartesian coordinate
axes (x,y,z) defined with the z axis normal to the plane of
the layers. An arbitrary time harmonic load q® e~/ is ap-
plied to the upper surface of the system at z=0. The system
is illustrated schematically in Fig. 1. The resulting time-
harmonic displacement field in the system due to ¢ is de-
noted by u®. The function u® is related to q*® by the 3D
Green’s function g(3)(x,y,z):

u<3>(x,y,z,q<3>)=ffg“)(x—x’,y—y’,z)

Xq(3)(x’,y’)dx’dy'. (1)

The Green’s function, g(3), can be written in terms of its
2D spatial Fourier transform, GO, as

1 A
g<3)(x,y,Z)=ﬁ f j GOk, ky,2)e E RV dk dk,,  (2)

where the matrix G(3)(kx,ky,z) is the Green’s function for
straight-crested waves propagating in the direction given by
the components k., k, of the wave vector.

B. 2D problem

A new coordinate system (&, 7,z) is defined that is a
rotation of the original coordinate system by an angle y
about the vertical axis z (Fig. 1).

A special case of q® may be defined as q®(€) which is
invariant in the 7 direction. The displacement field due to
this loading is defined as u®(y, £,z,q?). The loading q®®
and displacement u® represent the case of 2D excitation.
The relationship between u® and q® may be written as the
convolution integral

u?(y.£2.9%) = f g (ré-¢.0q%(¢Nag.  3)
where g is the 2D Green’s function; g can be written in
terms of its one-dimensional spatial Fourier transform, G2,

as
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L[ A
g (ré9) =~ f G(y.k.z)e dk. (4)

By using the residues technique, the integration in Eq.
(4) can be reduced to the sum of residuals

g?(7,£2) = 2 EQ(y,2)ené,

)
E(7,2) =ires GP(7,k,2) |1

where ES) is defined as the 2D modal excitability matrix.

The real poles of the matrix G represent the propagat-
ing waves while the complex poles represent nonpropagating
waves that decay exponentially with propagation distance
from the source. In this paper only the contributions from
real poles are considered.

To solve the 2D problem using the described integral
transforms method it is necessary to calculate matrix G,
The modal solution of the forced 2D problem can also be
obtained by a number of other established methods. For ex-
ample, the reciprocity approach11 leads to an alternative ex-
pression for mode amplitude Eff) that is useful because it can
be computed directly from the mode shape. The expression
for21propagating mode amplitude (see, for example, Niifiez er
al.”’) is

EP(7.0) = 1o, (1.2) - Uy (7,22 0), (6)
4P,
where * denotes complex conjugation, 7 represents transpose
and w,,,= (U, Uy » u,,.)" is the displacement field distribution
for mth mode. Coefficient P,, is the average power flow of
the mode, given by11

P, = g Im J (Tmu;)ndz, (7)

where T,, is the stress tensor and n=(1 ,0,0)7 is the direction
of mode propagation.

C. Relation between 2D and 3D problems
for straight-crested waves

Consider now the relationship between 2D and 3D
Green’s functions for straight-crested waves G and G©.

The transformation from the coordinate system (x,y,z)
to the new coordinate system (&, 77,z) is represented by the
matrix A

& X cosy siny O
n|=A|y | Aly)=|-siny cosy 0[. (8)
z z 0 0o 1

The Fourier variables, kg and k,,, in the new coordinate
system are related to those in the original coordinate system

by
k,=kgcos y—k,siny, k,=kesiny+k,cosy 9)

The Green’s matrix in the Fourier domain, G®
X (ky,ky,z), is transformed as
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Gk k,p2) = AG® (kg cos y—k, sin y,kg sin y
+k, cos v,z )AL (10)

Here G )(kg, ,,,z) is the Green’s function for straight-
crested Wave with wave vector (kg,k ,0). On the other hand,
G®(v,k,z) is Green’s function for straight-crested wave
with wave vector (k,0,0). Hence,

G2 (y,k2) = G(k,0,2),
or

G (y,k,z) = AG¥(k cos v,k sin y,2)A". (11)

D. Far-field asymptotic solution to 3D problem

The double wave number integral (2) can be evaluated
numerically and different calculation methods have been
developed.zz’23 But numerical evaluation of this type of inte-
gral is very difficult due to the presence of singularities and
the high oscillation of integrand in the far-field zone. An
alternative approach is asymptotical analysis of the integral,
which is used in this paper.

Expression (5) gives the expansion of the 2D solution in
terms of 2D modes. In this section the analogous mode ex-
pansion of the 3D solution in the far-field will be derived. As
in the 2D case the mode amplitudes are proportional to the
residuals for real poles of the matrix G®). Then by using Eq.
(11) it is possible to obtain the relationship between mode
amplitudes in 2D and 3D cases.

First a change of global coordinates from Cartesian
(x,y,2) to cylindrical polar (r,¢,z) is defined:

x=rcos¢, y=rsine, k. =kcosvy, ky=ksiny.

The expression (2) for the 3D Green’s function g® can
therefore be written in (r, ¢,z) coordinates as:

o+37/2
g¥(r,¢,2) = s f G (k cos vy, ksin v,2)
o—/2 r
X e s~k dk dy. (12)

The contour of integration I' coincides with the real positive
half axis except for real poles. In these points it diverges in
the complex plane k in accordance with the principle of lim-
iting absorption.7’13

The integral with respect to vy is divided into two parts:
from ¢—7/2 to ¢+ /2 and from @+ 7/2 to ¢+37/2. In the
second integral vy is changed to y+m and k to —k. Then

@+/2
O(r,¢,2) = f G (k cos vy, ksin v,2)
4172 o—-m/2 JTU-T
X e 0~k dk dy. (13)

The integration with respect to k can be performed by
using the residues theory. The contours I' and —I" can be
closed in the upper half plane of k and the integrals are
reduced to the sum of residues of the poles and integrals
along the imaginary axis. Propagating modes are described
by the real poles only and decrease as r~/? as r—o. The
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contributions of the residues in complex poles and integrals
along the imaginary axis have a larger order of decrease.
Therefore,

@+/2
3) _ _E J ,S?('}’,Z)|km(’y)|€ikm(7)r cos(y—qo)d,y
m —7/2
+ 0(},—3/2)’ F— o,

G (y,2) =i res GP(k cos y,k sin y,z)|k=km(y). (14)

Integrals with respect to vy are then calculated using the
stationary phase method. This enables the final expression
for the far-field asymptote to the 3D problem to be written
as:

(?)(r ®,7) = _E E;z)((P’Z)ei@m(ﬂ/m,w) + O(r‘3/2), r— o,
vV

I m

EY(¢,2) = Bo(9)GY (7,,2), (15)

where ES) is defined as the 3D modal excitability matrix.
The phase functions ®,, and coefficients B,, are given by

D, (v,0) =k, (y)cos(y— @),

5 - k()] LU C7A N N PP, (Y @)
m= \/’W 4 m | m 19’}/2 .
(16)
The angle y,,= ¥,,(¢) is found from the following equa-
tion:

IP,(v, ) ™ 7

TP S0, p-m=y=@+—. 17
oy Py =Y=e+ (17)

The angles ¢ and 7y, are related by

@ =1, +arctan () , (18)

(V)

here ¢(y)=w/k,(y) is phase velocity.

E. Relation between 2D and 3D problems

In summary, the 2D Green’s function is

g@(7.£.2) = 2 EN (y.2)e™nt,
m
and the far-field asymptotic to the 3D Green’s function is

gV (r.e.2) = —E E}) (¢,2)e" nlm?),
NI m

Using expression (11), the modal excitability matrices in
the 2D and 3D cases can be related by

E(¢,2) = Bo(@) A (1) EL (1,0 ) A (). (19)

The far-field solution for a particular mode in the ¢ di-
rection is therefore intimately related to the appropriate 2D
solution for the same mode in the v, direction.

The phase function ®,, can be written as ®,,=k,,-n. In
this expression K, = (k,,(7,,)c08 V,p»k(¥,)sin v,,) 7 is a wave
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FIG. 2. Flow chart of excitability calculation.

vector and n=(cos ¢,sin @)’ is a unit vector in ¢ direction.
Therefore, the angle(s) v, is the phase velocity direction(s)
for the mth mode. Moreover, the relation (18) shows that
vector n is normal to the slowness surface, k,,(y)/, at the
direction 7,,. It means that angle ¢ is direction of group
velocity for the mth mode."!

Note that the coefficients b,, in expression (16) can be
written in the form

b, = — (c"+¢) . (20)

eV + (c")? -

It is supposed in the previous analysis that b,, # 0. From
Eq. (18) we obtain that if b,,=0, then de/dy=0. In this case
the group velocity direction remains the same while the
phase velocity direction varies and in such directions the
wave field decays as O(r~'3).

The complete procedure for predicting the far-field dis-
placement in the ¢ direction under point harmonic loading is
as follows:

e Compute dispersion relationships k,,(y). For mth mode,
find angle or angles v,,.

e Solve 2D problem at angle v,,.

e Compute the amplitude of 3D mode at angle ¢ from 2D
solution at angle v,,.

J. Acoust. Soc. Am., Vol. 121, No. 1, January 2007

In the special case of an isotropic or transversely isotro-
pic layered medium, the slowness profiles of all modes are
circular, hence the phase and group velocity directions are
identical. In this case, the relationship between 2D and 3D
modal excitability matrices reduces to

EC(p.2) =/ %e-f”"‘A-l(@)Ef,?(z)Aup). 1)

In the case of material damping all wave numbers k,,
become complex and the asymptotic of the solution given by
Eq. (15) to the 3D problem is not valid. This topic requires
further research.

lll. IMPLEMENTATION OF ASYMPTOTIC MODEL

The asymptotic model described in the previous section
has been implemented numerically using functions written in
the MATLAB (The Mathworks Inc., Natick, Massachusetts)
modeling environment. The overall operation of the numeri-
cal program is shown in the flow chart in Fig. 2, and can be
separated into two distinct parts. The first part of the program
generates dispersion data for the structure and the second
part converts this into modal excitability matrices for guided
wave propagation in a specified direction.
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A. Dispersion curve generation

Dispersion curves are generated for different angles of
propagation using a semianalytic finite element technique
(implemented in MATLAB) similar to that described by Ha-
yashi, Song, and Rose.” Other dispersion curve calculation
techniques such as the global matrix or transfer matrix
methods® could also be used. The semianalytic finite element
method is used here to allow easy integration of the complete
model in MATLAB. For each angle, 7, this technique yields a
number of discrete points lying in w-k space, where k is
complex. Each point corresponds to a modal solution for the
propagation of straight-crested guided waves in the vy direc-
tion. Associated with each point is a displacement mode
shape, from which the stress mode shape and hence the
power flow associated with any chosen amplitude of wave
can be deduced. At this stage the mode shape at each point is
power-flow normalized and points with imaginary k compo-
nents are discarded as these correspond to nonpropagating
modes. The result is a number of discrete points lying in
w—k—7y space and a power-flow normalized mode shape as-
sociated with each point.

The most challenging aspect of the numerical implemen-
tation is to link the discrete points in w-k-7y space together
into modes to create dispersion surfaces. This is required
since it is necessary in the subsequent excitability calculation
to interpolate modal data in both @ and vy and also to differ-
entiate the wave number, k, of a mode with respect to y [Eq.
(17)]. First, points are linked at each y angle by comparing
the mode shapes at nearby points in w-k space to form dis-
persion curves. Next, dispersion curves are linked between
adjacent y angles to form dispersion surfaces by comparing
both mode shapes and dispersion curve shapes.

This aspect of the model is illustrated by the example in
Fig. 3 which shows (a) the discrete points generated by the
semianalytical finite element method and (b) the dispersion
surfaces for three modes obtained by joining the points. For
clarity the data in this figure have been plotted as phase-
velocity rather then wave number versus frequency and
angle. The dispersion data are for the cross-ply composite
plate example discussed in the next section.

The final stage of the generation of dispersion data is to
rotate the phase of mode shapes for each mode so that the
phase is consistent at all points. This is necessary for subse-
quent interpolation between mode shapes of a mode in both
w and . The phase of mode shapes for all points on a mode
are rotated so that the phase of the dominant surface compo-
nent of the displacement mode shape is zero.

B. Excitability matrix calculation

Once the dispersion data are obtained for all modes, ex-
citability matrices for any mode, m, frequency, w,, and
propagation direction, ¢, can be computed. First, the disper-
sion data (power flow normalized mode shape and wave
number) are interpolated in  to find its values at wy. The
next stage of the calculation is to compute the angle or
angles, v,,,, which satisfy Eq. (17) for the mth mode in the ¢
direction. To perform this calculation, it is first necessary to
numerically compute the derivatives d/dy [k, (wy,7y)] and
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FIG. 3. (Color online) Example of dispersion data: (a) discrete points gen-
erated by the semianalytical finite element method and (b) the resulting
dispersion surfaces. The data are for a cross-ply composite plate.

d*/d*y [k, (wy,y) cos(y—@)]. The first of these two quanti-
ties is used to identify pairs of discrete vy angles at which the
available dispersion data bracket solutions to Eq. (18). Ap-
proximations to solutions v,,, are obtained by linear interpo-
lation between these angles. If there is more than one v,,,,
then each must be treated separately, and in the final result
this effect appears as extra modes. The dispersion data and
d*/ d*y[k,,(wy, y)cos(y—¢)] are then interpolated again, this
time in 7, to obtain values at 7,,,. The 2D excitability matrix,
E,(j,),(wo’ Yan)» 18 calculated by using expression (6). Finally,
the 3D excitability matrix, Efsr)l(wo, ¢), is computed accord-
ing to Eq. (19) and the effective wave number in the ¢ di-
rection, ®,,,, is calculated from Eq. (16).

The excitability matrix and effective wave number pro-
vide all information necessary to perform wave excitation
simulation. Typically this may involve the simulation of ei-
ther time-domain signals recorded at a particular point or the
surface displacement around a source at a particular instant
in time.

IV. FINITE ELEMENT MODELING

In order to validate the implementation of the three-
dimensional (3D) excitability model described in the previ-
ous sections, a number of explicit time marching finite ele-
ment (FE) simulations have been performed. These are also
3D and require considerable computational power. Symme-
try conditions are exploited where possible, but in order to
distinguish different modes and separate directly excited
modes from edge reflections, a significant area of a plate-like
structure must be modeled. The maximum size of FE model
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FIG. 4. Finite element (FE) model geometry.

that can be run on the computer resources available is limited
to around 5 X 10° degrees of freedom and this means that a
compromise must be made between the size of the structure
modeled and the mesh density. For this reason, the mesh
density used is somewhat less than ideal and this is mani-
fested in an underestimate of guided wave velocity that is
more pronounced for short wavelength modes. Notwith-
standing these limitations, the FE results are sufficient to
qualitatively show that the excitability algorithm has been
correctly implemented and also to indicate the regions where
the asymptotic assumptions break down.

The general FE model geometry, used for all cases con-
sidered here, is shown in Fig. 4. Cubic eight noded elements
are used with side length 0.25 mm. Planes of symmetry are
assigned as shown and only the response to out-of-plane
forcing is considered. The force in all cases is a five cycle
Hanning windowed toneburst with a center frequency of
300 kHz. All FE modeling was performed using the ABAQUS
package (Version 6.5.2, ABAQUS Inc., Providence, RI) run-
ning on a Viglen CL2000, using a single Intel Xeon 32 GHz
processor incorporating 64 bit PCI with a Linux operating
system and 8 GB random access memory.

For comparison purposes, the displacement field due to
each mode should ideally be analyzed separately. However,
while the asymptotic model can be used on a mode by mode
basis, the FE model implicitly includes the contributions
from all guided wave modes. A rudimentary method for par-
tially separating the contributions from different modes in
the FE model, which has been employed here, is to monitor
displacements at nodes on both upper and lower surfaces of
the plate. This then allows the contributions to be separated
into those due to symmetric and antisymmetric nodes. In the
relatively low frequency thickness regime where the model-
ing has been performed in this paper, only three fundamental
mode types exist corresponding to A, and S, Lamb-type
modes and a symmetric shear-horizontal SH-type mode, re-
ferred to as SH,. The modal separation technique employed
therefore allows complete separation of the A, mode but not
of the Sy and SH,, modes.

V. RESULTS

The results from a number of sample cases are presented
here, beginning with the simplest case of guided waves in an
isotropic plate excited by an out-of-plane point force. This
demonstrates the procedure and also highlights the limited
accuracy of the FE model. The excitation of guided waves by
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TABLE 1. Properties of aluminium plate

Property Value Units
Density 2700 kgm™
Young’s modulus 70 MN mm™
Poisson’s ratio 0.3

an out-of-plane point force in two highly anisotropic plates is
then considered to illustrate the capability and limitations of
the asymptotic model. The final case demonstrates the appli-
cation of the asymptotic model to in-plane forcing of an
isotropic plate which produces a nonaxisymmetric guided
wave field. In all cases, a I1-mm-thick plate is considered and
the excitation signal is a five cycle Hanning windowed
toneburst with a center frequency of 300 kHz. At this
frequency-thickness product the only propagating modes in
all cases are the two fundamental Lamb modes (4, and S;)
and the fundamental shear-horizontal mode (SH,). The rea-
son for this choice of frequency-thickness product is to pro-
vide results that can be quantified and compared to FE re-
sults, it does not reflect any limitation of the asymptotic
calculation. There is also no limitation other than increased
mesh density and computation time in the semianalytic finite
element method, although the subsequent connection of dis-
crete dispersion points into dispersion surfaces becomes in-
creasingly challenging if more modes are present.

A. Out-of-plane excitability of isotropic plate

The first case considered is an isotropic 1-mm-thick alu-
minium plate, the properties of which are shown in Table I.
Ay, Sy and SH; modes may exist in this system. However, the
isotropy of the plate and orientation of the input force means
that the problem is axisymmetric and hence only A, and S,
are excited. Figures 5(a) and 5(b) show snapshots of the
out-of-plane surface displacement 25 us after the start of the
input signal obtained from the FE model for the A, and S,
modes. The nonaxisymmetric signal near the origin in Fig.
5(b) is due to the unwanted presence of higher order modes
at the upper frequency limit of the input signal that cannot be
correctly modeled by the mesh density used. Figures 5(c)
and 5(d) show the equivalent results obtained from the
asymptotic model. The gray scale in both images is the same,
and it can be seen that the FE and asymptotic models are in
excellent agreement. There is in fact a slight velocity dis-
crepancy for the Ay mode due to the relatively coarse mesh
used in the FE model.

B. Cross-ply composite plate

A cross-ply composite plate has been modeled using
equivalent homogenous properties which are listed in Table
II. Again over the frequency range considered A,, S, and
SH,-type modes may exist in this system. However, it should
be noted that, other than in the 0° and 90° directions the
mode shapes of S, and SH,, both contain displacement com-
ponents in directions parallel and perpendicular to the direc-
tion of propagation, hence the designation of the mode
names in these directions is ambiguous. However, this at-
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tribute of the mode shapes means that in this system, all
three modes are excited by the application of an out-of-plane
point force in certain directions.

Figures 6(a) and 6(b) show snapshots of the out-of-plane
surface displacement 25 us after the start of the input signal
obtained from the FE model for the anti-symmetric (4,) and
symmetric modes (S, and SH,), respectively. Figures 6(c)
and 6(d) show the equivalent results obtained from the

TABLE II. Properties of cross-ply composite plate.

X (mm)

Asymptotic

X (mm) 150
FIG. 5. Out-of-plane surface displace-
ment of a I-mm-thick aluminum plate,
0 2.5 nm 25 us after the start of a five cycle

Hanning windowed toneburst of out-
of-plane force applied at (0,0) with
center frequency 300 kHz: FE model
results showing contributions from (a)
A, mode and (b) S, mode; asymptotic
model results showing contributions
from (c) Ay mode and (d) S, mode.

Asymptotic

150

0 0.003 nm

asymptotic model. Figures 6(e) and 6(f) show the results
from the asymptotic model separated into contributions from
the S, and SH,, modes.

It can be seen that the FE and asymptotic models are in
reasonable agreement with regard to the overall pattern of
the radiated wave field and its amplitude. Of particular inter-
est here is the behavior of the SH, mode. The latter has a
highly anisotropic velocity profile and over the range of

Property Value Units
Density 1560 kgm™
Stiffness matrix

€11:€125C13,C14,C15:Clg 64.24 5.6 7.73 0 0 0 MN mm~
C215€22,C23,C24,C25,Cag 5.6 70.78 8.39 0 0 0 MN mm™
€31,C325€33,C34,C35,C36 7.73 8.39 13.3 0 0 0 MN mm~2
C415C405C435C445Ca5,Cag 0 0 0 2.97 0 0 MN mm~™2
C51,C52,C53,C54,C55,C56 0 0 0 0 3.06 0 MN mm~
C615C62+C635Coa>C65>Co6 0 0 0 0 0 4.7 MN mm~
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EE
0.050m 0 0150m  -0.15nm 0 0.15 nm

© ®

FIG. 6. Out-of-plane surface displacement of a 1-mm-thick cross-ply com-
posite plate, 25 us after the start of a five cycle Hanning windowed tone-
burst of out-of-plane force applied at (0,0) with center frequency 300 kHz:
FE model results showing contributions from (a) A, mode and (b) Sy+SH,
modes; asymptotic model results showing contributions from (c) A, mode,
(d) Sy+SH, modes, (e) S, mode and (f) SH, mode.

Asymptotic

0 X (mm) 150

B s

-25 nm 0 25 nm -0.3 nm 0 0.3 nm
@ @

Asymptotic

0 X (mm) 150 0 X (mm) 150

[ R

-0.3 nm 0 0.3 nm -0.15 nm 0 0.15 nm
(b) (e)

150

Asymptotic

Asymptotic

y (mm)

150 0 X (mm) 150

x (mm)

-25 nm 0 25 nm -25nm 0 25 nm

(© ]

FIG. 7. Out-of-plane surface displacement of a 1-mm-thick uni-directional
composite plate, 25 us after the start of a five cycle Hanning windowed
toneburst of out-of-plane force applied at (0,0) with center frequency
300 kHz: FE model results showing contributions from (a) A, mode and (b)
So+SH, modes; asymptotic model results showing contributions from (c) A,
mode, (d) Sy+SH, modes, (¢) S, mode and (f) SH, mode.

TABLE III. Properties of unidirectional composite plate

Property Value Units
Density 1560 kgm™
Stiffness matrix

€11:€125C13,C14,C15:Clg 143.8 6.2 6.2 0 0 0 MN mm™
€31,€22,C23,Ca4,C25,Cag 6.2 133 6.5 0 0 0 MN mm~
€31,C325€33,C34,C35,C36 6.2 6.5 13.3 0 0 0 MN mm~2
C415C425C43>Ca4,Ca55Cag 0 0 0 3.6 0 0 MN mm™2
C51,C52,C53,C54,C55,C56 0 0 0 0 3.6 0 MN mm~
C615C62+C635Coa>C65>Co6 0 0 0 0 0 5.7 MN mm~
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150

Asymptotic

Asymptotic

5

y (mm)

<
-
-150 X (mm) 150
I
-1.2nm 0 1.2 nm

(b)

propagation angles from 6 to 84° has three possible values of
YVuns Tesulting in three different wave packets (the third and
fastest SH, wave packet propagates with a similar profile to
the S, mode but is of low amplitude and is scarcely visible in
the figure). The velocity discrepancy between the models is
particularly apparent for the slower SH, components around
45°. At the extremities of the angular range where the SH,,
modes exist, it can be seen that there is an abrupt disconti-
nuity in displacements. This represents the breakdown of the
asymptotic approximation in Eq. (15), since at these points
the coefficient b,, in expression (16) is equal to zero and the
group velocity direction is stationary.

C. Unidirectional composite plate

A uni-directional composite plate has also been modeled
as an example of a highly anisotropic plate. The equivalent
bulk properties used for computing dispersion curves are
listed in Table III. As for the cross-ply case, all three funda-
mental modes are excited in certain directions. Figures 7(a)

68 J. Acoust. Soc. Am., Vol. 121, No. 1, January 2007

Asymptotic

FIG. 8. Surface displacement of a 1-
mm-thick aluminium plate, 25 us af-
ter the start of a five cycle Hanning
windowed toneburst of in-plane force
applied at (0,0) at 30° to horizontal
with center frequency 300 kHz: (a) ra-
dial displacement, (b) angular dis-
placement and (c) out-of-plane dis-
placement.

and 7(b) show snapshots of the out-of-plane surface displace-
ment obtained from the FE model 25 us after the start of the
input signal for the anti-symmetric (A,) and symmetric
modes (S, and SH,), respectively. Figures 7(c) and 7(d) show
the equivalent results obtained from the asymptotic model.
The fiber direction in all cases is aligned with the x axis. The
agreement in all cases is good with the exception of an ob-
vious discontinuity in the symmetric modes predicted by the
asymptotic model. Figures 7(e) and 7(f) show the symmetric
modes predicted by the asymptotic model separated into the
contributions from the S, and SH, modes, respectively. From
Fig. 7(f) it is clear that the discontinuity is again due to the
SH, mode and that in fact two discontinuities occur at the
ends of the angular range over which the SH, mode is ex-
cited. Between these angles, the mode again has multiple
components as in the case of the cross-ply plate.

D. In-plane excitation of isotropic plate

The final example is chosen to illustrate the nonaxisym-
metric field excited by an in-plane point force applied to an
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isotropic aluminium plate. The force is orientated at 30° to
the x axis and the resulting in-plane radial, in-plane angular
and out-of-plane surface displacements predicted by the
asymptotic model 25 us after the start of the input signal are
shown in Figs. 8(a)-8(c), respectively. There is no accompa-
nying FE validation in this case as the lack of symmetry
requires a model with too many degrees of freedom to run on
the available computer resources.

The in-plane radial and out-of-plane displacement com-
ponents in this example are due entirely to the Lamb modes,
Ay and S,, while the in-plane angular displacement is due
entirely to the SH, mode. The modal amplitude as a function
of angle with respect to the forcing direction is either sinu-
soidal for the SH, mode (i.e., maximum amplitude at right
angles to forcing direction) or co-sinusoidal for the A, and S
Lamb wave modes (i.e., maximum amplitude in line with the
forcing direction).

This example also illustrates a minor implementation
challenge. The excitability matrices are only computed over
an angular range from 0° to 90° to save time but excitability
matrices may be required at any angle and a procedure is
therefore required to map the available data to the desired
angle. This procedure, while simple in principle, proved sur-
prisingly awkward to implement correctly due to the need to
preserve the correct sign of all nine elements in the excitabil-
ity matrix in all four angular quadrants. The results in Fig. 8
show that the implementation is successful. There is conti-
nuity of all three displacement components between quad-
rants and the displacement components are of opposite sign
on either side of the null direction for each mode.

V1. CONCLUSION

A mathematical basic of a far-field asymptotic technique
for predicting the modal amplitude of the 3D guided wave
field due to a harmonic point force applied to the surface of
a planar multilayered anisotropic waveguide has been de-
scribed. The amplitude of the displacement fields of each
mode is related to the input force by modal excitability ma-
trices which are functions of direction and frequency. A key
attribute of the technique is that the excitability matrices in
the 3D case are computed from the excitability matrices for
the 2D case of straight-crested waves excited by line sources.
The latter are readily obtained from modal dispersion data
that can be computed by a number of existing methods. The
numerical implementation of the technique has been dis-
cussed and practical challenges highlighted. Example results
from a number of test cases have been presented which show
generally good agreement with 3D time-marching finite ele-
ment simulations. The points where the asymptotic assump-
tions are invalid are clearly visible in these results and relate
to the points where the normal to the phase slowness surface
of a mode (i.e., the group velocity direction) is stationary. In
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principle a more accurate asymptotic approximation at the
vicinity of these points could be obtained but this has not yet
been implemented.
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