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PREFACE 

The propagation of mechanical disturbances in solids is of interest in many 
branches of the physical sciences and engineering. This book aims to present 
an account of the theory of wave propagation in elastic solids. The material 
is arranged to present an exposition of the basic concepts of mechanical 
wave propagation within a one-dimensional setting and a discussion of 
formal aspects of elastodynamic theory in three dimensions, followed by 
chapters expounding on typical wave propagation phenomena, such as 
radiation, reflection, refraction, propagation in waveguides, and diffraction. 
The treatment necessarily involves considerable mathematical analysis. 
The pertinent mathematical techniques are, however, discussed at some 
length. 

I hope that the book will serve a dual purpose. In addition to being a 
reference book for engineers and scientists in the broad sense, it is also 
intended to be a textbook for graduate courses in elastic wave propagation. 
As a text the book should be suitable for students who have completed 
first-year graduate courses in mechanics and mathematics. To add to its 
utility as a textbook each chapter is supplemented by a set of problems, 
which provide a useful test of the reader's understanding, as well as further 
illustrations of the basic ideas. 

The book was developed from notes for a course offered to graduate 
students at Northwestern University. In the spring of 1969 a substantial 
part of the text was prepared in the form of typewritten notes for a series 
of lectures, while I was a visiting member of the faculty at the University 
of California in La Jolla. I am pleased to record my thanks for that op-
portunity. I also wish to express my gratitude to the Rector Magnificus of 
the Technological University of Delft and the Trustees of the Ir. Cornelis 
Gelderman Fund for inviting me to act as visiting professor in the department 
of mechanical engineering at the Technological University, in 1970-1971. 
While I was in Delft the larger part of the manuscript was completed. A 
sabbatical leave from Northwestern University during that period is 
gratefully acknowledged. 
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VIII PREFACE 

For the material of Chapters 5 and 6 I should like to acknowledge my 
indebtedness to the lectures and publications of Professor R. D. Mindlin. 
Substantial parts of Chapter 3 are based on the dissertation of Professor 
A. T. de Hoop, and on the work of Professor E. Sternberg. I am also in-
debted to many colleagues who read chapters of the book, and who provided 
me with their constructive criticism. Needless to say, I alone am responsible 
for errors of fact and logic. 

A special word of thanks goes to Mrs. Ruth H. Meier who for many 
years provided excellent secretarial assistance, and who typed and retyped 
most of the manuscript as the material was arranged and rearranged. 

Let me close with the wish that this book may convey some of the fas-
cinating aspects of wave propagation as a phenomenon, and that it may have 
done justice to the elegance of the mathematical methods that have been 
employed. 

J. D. A. 



INTRODUCTION 

The propagation of mechanical disturbances 

The local excitation of a medium i-s not instantaneously detected at positions 
that are at a distance from the region of excitation. It takes time for a 
disturbance to propagate from its source to other positions. This phenom-
enon of propagation of disturbances is well known from physical experience, 
and some illustrative examples immediately come to mind. Thus an 
earthquake or an underground nuclear explosion is recorded in another 
continent well after it has occurred. The report of a distant gun is heard 
after the projectile has arrived, because the velocity of disturbances in air, 
i.e., the speed of sound, is generally smaller than the velocity of the projectile. 
More familiar manifestations of the propagation of disturbances are waves 
in a rope or propagating ripples on the surface of water. These examples 
illustrate mechanical wave motions or mechanical wave propagation. 

Mechanical waves originate in the forced motion of a portion of a 
deformable medium. As elements of the medium are deformed the dis-
turbance is transmitted from one point to the next and the disturbance, or 
wave, progresses through the medium. In this process the resistance offered 
to deformation by the consistency of the medium, as well as the resistance 
to motion offered by inertia, must be overcome. As the disturbance propa-
gates through the medium it carries along amounts of energy in the forms of 
kinetic and potential energies. Energy can be transmitted over considerable 
distances by wave motion. The transmission of energy is effected because 
motion is passed on from one particle to the next and not by any sustained 
bulk motion of the entire medium. Mechanical waves are characterized by 
the transport of energy through motions of particles about an equilibrium 
position. Thus, bulk motions of a medium such as occur, for example, in 
turbulence in a fluid are not wave motions. 

Deformability and inertia are essential properties of a medium for the 
transmission of mechanical wave motions. If the medium were not deformable 
any part of the medium would immediately experience a disturbance in the 
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2 INTRODUCTION 

form of an internal force or an acceleration upon application of a localized 
excitation. Similarly, if a hypothetical medium were without inertia there 
would be no delay in the displacement of particles and the transmission of 
the disturbance from particle to particle would be effected instantaneously 
to the most distant particle. Indeed, in later chapters it will be shown 
analytically that the velocity of propagation of a mechanical disturbance 
always assumes the form of the square root of the ratio of a parameter 
denning the resistance to deformation and a parameter denning the inertia 
of the medium. All real materials are of course deformable and possess 
mass and thus all real materials transmit mechanical waves. 

The inertia of a medium first offers resistance to motion, but once the 
medium is in motion inertia in conjunction with the resilience of the medium 
tends to sustain the motion. If, after a certain interval the externally applied 
excitation becomes stationary, the motion of the medium will eventually 
subside due to frictional lossess and a state of static deformation will be 
reached. The importance of dynamic effects depends on the relative magni-
tudes of two characteristic times: the time characterizing the external ap-
plication of the disturbance and the characteristic time of transmission of 
disturbances across the body. 

Suppose we consider a solid body subjected to an external disturbance F(t) 
applied at a point P. The purpose of an analysis is to compute the deformation 
and the distribution of stresses as functions of the spatial coordinates and time. 
If the greatest velocity of propagation of disturbances is c, and if the external 
disturbance is applied at time t = 0, the disturbed regions at times t = tx 

and t = t2 are bounded by spheres centered at the point P, with radii ctt 

and ct2, respectively. Thus the whole of the body is disturbed at time 
t = r/c, where r is the largest distance within the body measured from the 
point P. Now suppose that the significant changes in F(t) take place over a 
time ta. It can then be stated that dynamic effects are of importance if 
ta and r/c are of the same order of magnitude. If ta > r/c, the problem is 
quasistatic rather than dynamic in nature and inertia effects can be neglected. 
Thus for bodies of small dimensions a wave propagation analysis is called 
for if ta is small. If the excitation source is removed the body returns to 
rest after a certain time. For excitation sources that are applied and removed, 
the effects of wave motion are important if the time interval of application 
is of the same order of magnitude as a characteristic time of transmission 
of a disturbance across the body. For bodies of finite dimensions this is the 
case for loads of explosive origins or for impact loads. For sustained external 
disturbances the effects of wave motions need be considered if the externally 
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applied disturbances are rapidly changing with time, i.e., if the frequency is 
high. 

In mathematical terms a traveling wave in one dimension is defined by 
an expression of the type f = f (x — ct), where f as a function of the spatial 
coordinate x and the time t represents a disturbance in the values of some 
physical quantity. For mechanical waves f generally denotes a displacement, 
a particle velocity or a stress component. The function f(x—ct) is called a 
simple wave function, and the argument x — ct is the phase of the wave 
function. If t is increased by any value, say At, and simultaneously x is in-
creased by cAt, the value of f(x — ct) is clearly not altered. The function 
f(x — ct) thus represents a disturbance advancing in the positive x-direction 
with a velocity c. The velocity c is termed the phase velocity. The propagating 
disturbance represented by f (x — ct) is a special wave in that the shape of the 
disturbance is unaltered as it propagates through the medium. 

Continuum mechanics 

Problems of the motion and deformation of substances are rendered 
amenable to mathematical analysis by introducing the concept of a con-
tinuum or continuous medium. In this idealization it is assumed that 
properties averaged over a very small element, for example, the mean mass 
density, the mean displacement, the mean interaction force, etc., vary 
continuously with position in the medium, so that we may speak about the 
mass density, the displacement and the stress, as functions of position and 
time. Although it might seem that the microscopic structure of real materials 
is not consistent with the concept of a continuum, the idealization produces 
very useful results, simply because the lengths characterizing the microscopic 
structure of most materials are generally much smaller than any lengths 
arising in the deformation of the medium. Even if in certain special cases 
the microstructure gives rise to significant phenomena, these can be taken 
into account within the framework of the continuum theory by appropriate 
generalizations. 

The analysis of disturbances in a medium within the context of the 
continuum concept belongs to the time-tested discipline of continuum 
mechanics. In achieving the traditional objective of determining the motion 
and deformation generated by external excitations the analysis passes through 
two major stages. In the first stage the body is idealized as a continuous 
medium and the physical phenomena are described in mathematical terms 
by introducing appropriate mathematical abstractions. Completion of this 



4 INTRODUCTION 

stage yields a system of partial differential equations with boundary and 
initial conditions. In the second stage the techniques of applied mathematics 
are employed to find solutions to the system of governing partial differential 
equations and to obtain the physical information which is desired. Usually 
the goal is to obtain analytical expressions for some of the field variables in 
terms of the position and time as well as in terms of the geometrical and 
material parameters. 

Continuum mechanics is a classical subject which has been discussed in 
great generality in several treatises. The theory of continuous media is built 
upon the basic concepts of stress, motion and deformation, upon the laws 
of conservation of mass, linear momentum, moment of momentum, and 
energy, and on the constitutive relations. The constitutive relations charac-
terize the mechanical and thermal response of a material while the basic 
conservation laws abstract the common features of all mechanical phenomena 
irrespective of the constitutive relations. The general system of equations 
governing the three-dimensional motions of elastic bodies is strongly non-
linear. As a consequence very few significant wave propagation problems 
can be solved analytically on the basis of this general system of equations. 
Fortunately it is a matter of wide experience that many wave propagation 
effects in solids can adequately be described by a linearized theory. 

Outline of contents 

A detailed discussion of the general three-dimensional theory of elasticity 
and the process of linearization which results in the equations governing the 
classical theory of linearized elasticity falls outside the scope of this book. 
It is, however, instructive to review briefly the nonlinear elastic theory 
within a one-dimensional geometry. This review is carried out in chapter 1, 
where the conditions justifying linearization of the one-dimensional theory 
for the express purpose of describing problems of wave propagation are 
also examined. 

The three-dimensional equations governing isothermal linearized elasticity 
of a homogeneous isotropic medium are summarized in chapter 2. Except 
for the last chapter the remainder of the book is strictly concerned with 
linearized theory and perfectly elastic media. When, in the last chapter, the 
treatment goes beyond ideal elasticity and beyond isothermal conditions, 
the pertinent governing equations are introduced when needed. 

Wave motions can be classified according to the trajectory of a particle 
of the medium as the disturbance passes by. Thus we distinguish a pulse or 
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a single wave from a train of waves. A special case of the latter is a periodic 
train of waves in which each particle experiences a periodic motion. The 
simplest special case of periodic wave motion is a simple harmonic wave 
wherein each particle is displaced sinusoidally with time. Simple harmonic 
waves are treated in consideiable detail in chapters 1, 5 and 6, not only 
because of their intrinsic interest but also because in the linear theory a 
general periodic disturbance or even a single pulse can be represented by a 
superposition of simple harmonic waves. 

In considering wave propagation in three dimensions we can, at a certain 
instant of time, draw a surface through all points undergoing an identical 
disturbance. As time goes on, such a surface, which is called a wavefront, 
moves along showing how the disturbance propagates. The direction of 
propagation is always at right angles to the wavefront. The normals de-
fining the direction of wave propagation are called the rays. For a homo-
geneous and isotropic medium the rays are straight lines. If the wave 
propagation is limited to a single direction the disturbance at a given instant 
will be the same at all points in a plane perpendicular to the direction of 
wave propagation and we speak of a plane wave. Other simple cases are 
spherical waves and cylindrical waves, where the wavefronts are spherical 
and cylindrical surfaces, respectively. It is shown in chapter 4 that there are 
two types of plane waves: transverse and longitudinal waves. In transverse 
waves the motion is normal to the direction of wave propagation. If the 
direction of motion coincides with the direction of wave propagation we 
speak of longitudinal waves. 

Among the most important aspects of wave motion are the reflection 
and transmission of waves. When a wave encounters a boundary separating 
two media with different properties, part of the disturbance is reflected and 
part is transmitted into the second medium, as discussed in chapters 1 and 5. 
If a body has a finite cross-sectional dimension waves bounce back and forth 
between the bounding surfaces. Although it is then very difficult to trace 
the actual reflections it can be noted that the general direction of energy 
transmission is in a direction parallel to the bounding surfaces, and we say 
that the waves are propagating in a waveguide. The analysis of harmonic 
waves in waveguides leads to some new notions such as modes of wave 
propagation, the frequency spectrum, dispersion, and group velocity. 
Harmonic waves in waveguides are discussed in detail in chapter 6. Im-
portant wave propagation effects are surface waves propagating along a 
bounding surface. Rayleigh waves at a free boundary and Stoneley waves 
at an interface are discussed in chapter 5. 
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Pulses generated in elastic bodies by distributions of body forces or 
surface disturbances are analyzed in chapters 7 and 8 by means of integral 
transform techniques. Exact methods of inverting transforms such as the 
Cagniard-de Hoop method, as well as approximate means of evaluating 
integrals in terms of asymptotic expansions, are also discussed in these 
chapters. 

In chapter 3 several formal aspects of the theory of dynamic elasticity 
are discussed. Among the theorems that are proven, the uniqueness theorem 
for the properly formulated boundary-initial value problem is of primary 
importance. The chapter also contains a discussion of the decomposition 
of the displacement vector in terms of derivatives of displacement potentials. 
The displacement potentials satisfy classical wave equations. 

In the mathematical literature hyperbolic partial differential equations 
which govern wave propagation phenomena have been studied in great 
detail. It is well known that the general solution of the wave equation can 
be expressed in terms of the external disturbances by means of integrals 
over the bounding surface and the interior of a body. In chapter 3 the 
relevance of integral representations to problems of elastic wave propagation 
is examined. 

A complete solution of a wave propagation problem involves a con-
siderable amount of mathematical analysis. For transient waves information 
on discontinuities in the field variables at the moving surfaces separating 
the undisturbed from the disturbed regions of the body can be obtained in 
a fairly straightforward and simple manner by methods which are analogous 
to the ray tracing techniques of geometrical optics. In chapter 4 propagating 
discontinuities are analyzed within the context of the linear theory of 
elasticity. 

There are several mathematical methods which are suitable for certain 
problems but not for others. For example, if a problem displays dynamic 
similarity, convenient and simple mathematical methods can be employed 
to obtain a solution, as shownan chapter 4. Also under certain conditions 
numerical schemes based on the method of characteristics offer an efficient 
means of obtaining information on the field variables. Some applications 
of the method of characteristics are discussed in chapter 4. 

When a pulse propagating through an elastic medium encounters an 
irregularity such as a void or an inclusion, the pulse is diffracted. In chapter 
9 the diffraction of waves is analyzed for the case that the diffracting surface 
is a semi-infinite slit. The analysis of diffraction problems requires the in-
troduction of mathematical methods that are suitable for mixed boundary 
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value problems. Particular attention is devoted to diffraction by a slit 
because a slit may be considered as representing a crack-type flaw in the 
medium. As the wave strikes the crack a stress singularity is generated at 
the crack tip, which may give rise to propagation of the crack and thus to 
fracture of the body. 

In chapter 10 we relax some of the restrictions on material behavior in-
herent in the treatment of earlier chapters. In this chapter it is no longer 
required that the material behavior be identical in all directions. The field 
equations for an anisotropic medium are stated, and time-harmonic waves 
in such a medium are briefly discussed. All real materials exhibit some kind 
of damping of mechanical disturbances. This effect is included by modeling 
the constitutive behavior of the medium as linearly viscoelastic. The prop-
agation of waves in a linearly viscoelastic medium is discussed in chapter 
10. External disturbances are not necessarily of a mechanical nature. As 
an example we may think of the sudden deposition of heat in a medium. 
Since the heat deposition will give rise to thermal expansion, a mechanical 
wave can be generated. The interaction between thermal and mechanical 
effects is also examined in chapter 10. In the last section of the book we 
analyze a one-dimensional nonlinear problem and we explore some typically 
nonlinear effects such as the formation of shocks. 

Historical sketch 

The study of wave propagation in elastic solids has a long and distinguished 
history. The early work on elastic waves received its impetus from the view 
which was prevalent until the middle of the 19th century that light could be 
regarded as the propagation of a disturbance in an elastic aether. This view 
was espoused by such great mathematicians as Cauchy and Poisson and to 
a large extent motivated them to develop what is now generally known as 
the theory of elasticity. The early investigations on the propagation of waves 
in elastic solids carried out by Poisson, Ostrogradsky, Cauchy, Green, 
Lame, Stokes, Clebsch and Christoffel are discussed in the Historical In-
troduction to Love's treatise of the mathematical theory of elasticity [ l]1 . 

In the latter part of the 19th century interest in the study of waves in 
elastic solids gained momentum again because of applications in the field 
of geophysics. Several contributions of lasting significance, particularly as 
related to the discovery of specific wave propagation effects, stem from the 

1 Numbers in brackets refer to the bibliography at the end of this Introduction. 



8 INTRODUCTION 

years between 1880 and 1910, and are due to Rayleigh, Lamb and Love. 
Since that time wave propagation in solids has remained a very active area 
of investigation in seismology because of the need for more accurate in-
formation on earthquake phenomena, prospecting techniques and the 
detection of nuclear explosions. Aspects of wave propagation that are 
of interest in seismology are discussed in the books by Bullen [2], Ewing 
et al. [3] and Cagniard [4]. 

As far as engineering applications are concerned a substantial interest in 
wave propagation effects manifested itself in the early forties, when 
the specific technological needs of the time required information on the 
performance of structures under high rates of loading. Since then interest 
in elastic waves has increased. This interest has been stimulated by techno-
logical developments related to high-speed machinery, ultrasonics, and 
piezoelectric phenomena, as well as to methods in materials science for 
measuring the properties of materials, and to, for example, such civil 
engineering practices as pile driving. By now the study of wave propagation 
effects has become well established in the field of applied mechanics. 

With regard to other works specifically dealing with the propagation of 
waves in elastic solids we mention in the first place the book by Kolsky 
[5]. A thorough but rather brief discussion of elastodynamic theory was 
also presented by Schoch [6]. A review article which lists most of the con-
tributions to the field until 1964 was published by Miklowitz [7]. 

Parallel to the study of waves in elastic solids the propagation of waves 
was investigated extensively within the context of applied mathematics, 
electromagnetic theory and acoustics. Especially the work in acoustics, 
beginning with the classical treatise of Lord Rayleigh [8], is closely related. 
In this regard we mention the books by Brekhovskikh [9], Lindsay [10] 
and Morse and Ingard [11], which actually contain chapters on waves in 
elastic solids. To conclude this brief bibliography we mention the mono-
graph on ocean acoustics which was written by Tolstoy and Clay [12]. 
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CHAPTER 1 

ONE-DIMENSIONAL MOTION OF AN ELASTIC CONTINUUM 

1.1. Introduction 

Some of the characteristic features of wave motion in a continuum can be 
brought out by an analysis in a one-dimensional geometry. With one spatial 
variable the concepts and principles of continuum mechanics can be 
deployed without the encumbrance of geometrical complications to display 
the essential aspects of motion of a continuum and to derive the governing 
system of nonlinear equations. In one dimension it is subsequently straight-
forward to examine rigorously the conditions for linearization of the equa-
tions, particularly for elastic solids. 

One-dimensional linearized elastic theory is governed by a simple partial 
differential equation whose general solution can be determined by the use 
of elementary mathematics. In section 1.3 it is shown analytically that an 
external disturbance applied to an initially quiescent medium generates a 
pulse which propagates with a distinct velocity. Any particle in the medium 
remains undisturbed until sufficient time has passed for the pulse to reach 
the particle. Reflection takes place when a pulse reaches an external bound-
ary of the body. Strictly speaking, a pulse is completely reflected only at 
a boundary of an elastic body with a vacuum. At all other boundaries there 
is not only reflection but also transmission of the pulse across the interface 
into the neighboring medium. Transmission across interfaces between two 
media of comparable elastic moduli and mass densities can give rise to 
some interesting and typical wave propagation effects, which are discussed 
in section 1.4. 

A substantial part of the wave propagation literature is devoted to the 
study of sinusoidal wave trains. This interest is meaningful because in a 
linearized theory a propagating pulse of arbitrary shape can be represented 
by a superposition of sinusoidal wave trains. The superposition is achieved 
by means of Fourier series or Fourier integrals. In sections 1.6-1.9 the 
salient aspects of Fourier analysis are displayed by means of one-dimensional 
examples. 

10 



C h . 1, § 1.2.] NONLINEAR CONTINUUM MECHANICS IN ONE DIMENSION 11 

1.2. Nonlinear continuum mechanics in one dimension 

1.2.1. Motion 

In a purely one-dimensional longitudinal motion all material particles 
move along parallel lines, and the motion is uniform in planes normal to 
the direction of motion. Clearly one length coordinate and time are suf-
ficient to describe the one-dimensional longitudinal motion of a continuum. 
Suppose the position of a material point P a t a certain time, say t = 0, 
is defined by the coordinate X. At a later time t the position of the particle 
can then be specified by 

x = P(X,t). (1.1) 

The mapping x = P(X, t) is called the material description of the motion. 
This description, where X and t are independent variables, is often also 
called the Lagrangian description. In eq. (1.1), a value of the independent 
variable X identifies the particle for all time and its value equals the reference 
position of that particle. A value of the dependent variable x specifies the 
present position of the particle whose reference position was X. 

Alternatively, the motion may be described in the spatial description. 
In this description, which is often also called the Eulerian description, the 
independent variables are t and the position x. Values of x and t are related by 

X=p(x,t). (1.2) 

In eq. (1.2), a value of the independent variable x specifies a place. The 
dependent variable X gives the reference position of the particle presently 
situated at position x. The two descriptions of the motion must of course 
be consistent with each other, i.e., eq. (1.2) can be obtained by solving (1.1) 
for X, and vice versa. 

To identify field quantities relative to the independent variables we use 
upper case letters for quantities which are expressed in terms of the material 
variables X and /. Lower case letters are employed for the spatial descrip-
tion. For example, the displacement is denoted by U(X, t) in the material 
description and it is denoted by u(x, t) in the spatial description. We have 

U(X,t)=P(X9t)-X9 (1.3) 
and 

u(x, t) = x-p(x91). (1.4) 

1.2.2. Deformation 

The purely one-dimensional motion of an element is depicted in figure 1.1. 
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As a consequence of the nonuniformity in the direction of the motion, the 
element undergoes a deformation. For the one-dimensional case, the 
simplest measure of the deformation is simply the extension divided by the 
original length of an element comprised of the same material particles. This 

* » . * * ■ 

AX 

X,x 

Fig. 1.1. Motion and deformation of an element. 

deformation measure may thus be expressed by (Ax — AX)/AX. In the limit 
we have 

,. Ax-AX dU 
lim = — , 

AX-+O AX dX 

(1.5) 

and we obtain the displacement gradient dU/dXa.s measure of the deforma-
tion in material coordinates. In three-dimensional deformations it is more 
convenient to take the difference between squares of length elements as 
measure of deformation. This leads to the Lagrangian strain tensor. For a 
one-dimensional geometry, the Lagrangian strain is 

E-jlim^-^'-gg + lH'. (1.6) 
AX-+O (AX)2 dX 2\dX) 

Eqs. (1.5) and (1.6) refer the deformation to the undeformed configuration. 
The deformation can, of course, also be described in the system of spatial 
coordinates. For an elastic solid, the deformation measures (1.5) and (1.6) 
are more natural since there always is an undeformed reference state to 
which the material returns when the external loads are removed. 

1.2.3. Time-rates of change 

The velocity of a material particle is the time-rate of change of x = P(X91) 
constant reference oosition X. 

dP(X,t) ( 1 7 ) 

dt 

for constant reference position X, 

V(X, t) -

This equation gives the material description of the particle velocity, i.e., 
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it gives the velocity of a certain particle as a function of time. In the spatial 
description the particle velocity is obtained by substituting X from (1.2) 
into (1.7). We obtain 

v(x,t) = V[p(x,t),t]. (1.8) 

For a fixed spatial position x, (1.8) defines the velocity of the particular 
particle which passes through position x at time /. 

Often the instantaneous motion of the continuum is described by the 
displacement u(x, t) of a particle instantaneously located at position x. 
Since the instantaneous velocity is defined for a fixed particle, we must use 
the chain rule of differentiation to obtain 

du du ,A „s 

1? = — +!> — . (1.9) 
dt dx v ' 

Eq. (1.9) expresses the total or material derivative of u(x, t). The operation 
expressed by (1.9) is usually denoted by D/Df, i.e., 

° . £ + „ A . (i.io) 
Dt dt dx 

In eqs. (1.7) and (1.9) the partial derivative djdt is the derivative with 
respect to time for a fixed value of the other variable. Generally it is evident 
from the context which one the other variable is, since upper case symbols 
are used for field quantities which are expressed in terms of the material 
variables X and /, while lower case symbols are employed for field quantities 
in the spatial description where x and t are the variables. 

In the material description the acceleration is defined as 

A - * J ^ > . (1.11) 
dt } 

If the particle velocity is known as a function of position and time, we have 
in the spatial description 

Dv dv dv ,„ ._. 
a = — = — + v —. (1.12) 

Dt dt dx 
The second term in the right-hand side of (1.12) is called the convected part 
of the acceleration. 

For the purpose of examining conservation of mass and balance of linear 
momentum it is necessary to evaluate time-rates of change of line integrals. 
In the spatial description we consider the fixed region xx ^ x ^ x2, which 
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instantaneously contains a moving mass system. The total of a global 
quantity f (x, t) instantaneously carried by the mass system is given by 

/ : 
f (x, t)dx. 

The time-rate of change of this integral consists of two terms, namely, 
the rate of increase of f (x, t) instantaneously located inside the region and 
the net rate of outward flux of f (x, t). This is expressed in the form 

_d 

dt 

r*2 [X2 3f 

f(x, t)dx = — dx + f(x, t)v(x, t)l*=*2- (1.13) 
J xx J xi dt 

The physical interpretation of the terms on the right-hand side of (1.13) 
thus is 

I 
X2df 

— dx = rate of increase inside the region, 
i dt 

f (x, f)v(x, f)l*=x2 = n e t r a t e of outward flux. 

The left-hand side of (1.13) represents the time-rate of increase of the total 
of the quantity f(x, t) instantaneously located in the spatial region 
xx ^ x ^ JC2. Eq. (1.13) is the one-dimensional version of Reynolds' 
transport theorem. The theorem may, of course, also be expressed in the 
form 

d P 2 

— f(x, t)dx 

1.2.4. Conservation of mass 

C2 T5 f d ,c , 1 dx. / (1.14) 

One of the fundamental principles of classical mechanics is that matter can 
be neither created nor destroyed. Let us consider a mass system which 
instantaneously occupies the fixed spatial region xt ^ x ^ x 2 . Let p(x, t) 
be the mass density at location x and time t in the spatial description, and 
let p0(X) be the mass density as a function of the reference configuration. 
Conservation of mass then implies 

f*2 rp(x2,t) 

p(x, t)dx = p0(X)dX. 
J Xi J P(xitt) 

where p(x, t) is defined by eq. (1.2). In the left-hand side of this equality 
we now introduce a change of variables by the use of eq. (1.1). It then 
follows that p0{X) and p(x, i) are related by 
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p0(X) = p(x9t)
d*£^. (1.15) 

oX 

The principle of conservation of mass also implies that the time-rate of 
change of the mass of a system of particles vanishes. Thus, if the particles 
instantaneously occupy the spatial region xt ^ x ^ x2, we have 

d CX2 

— p(x, t)dx = 0. 

dtJXi 

The use of (1.14) then yields 

££+A(P«,) = O. (i.i6) 
ot ox 

This equation expresses conservation of mass in the spatial description. 
Eq. (1.16) can conveniently be used to simplify the material derivatives 

of integrals over a product of the mass density and another function. Ac-
cording to the transport theorem (1.14), we can write 

- rpfdx = r [ - ( p f ) + - ( p f u ) l dx. 
dtJXi J Xl Ldt dx J 

The right-hand side can be simplified by employing (1.16), and we obtain 

d f*2 -f*2 Df 
f pfdx = p ^ d x , (1.17) 
dtJXl JXI Dt 

where D/Dt is defined by eq. (1.10). This result will prove useful in the 
discussion of the balances of momentum and energy. 

1.2.5. Balance of momentum 

The principle of balance of linear momentum states that the instantaneous 
rate of change of the linear momentum of a system equals the resultant 
external force acting on the system at the particular instant of time. 
Considering a mass system of unit cross-sectional area instantaneously 
contained in the region xt ^ x ^ x2, the principle implies that 

T(X, r)|*;*J = ~ f % ( x , t)v(x9 t)dx. (1.18) 
dtJxi 

Here T(X, t) defines the stress in the spatial description at position x, and 
body forces are not taken into account. Upon writing the left-hand side 
as an integral and simplifying the right-hand side by means of (1.17), the 
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equation may be rewritten as 

Od*-/><>• (u9) 
Clearly, (1.19) is equivalent to 

— = p — . (1.20) 
dx Dt V ' 

This is the equation of motion in spatial coordinates. To determine the 
equation of motion in material coordinates we return to (1.18), and we 
introduce a change of coordinates by means of the mapping (1.1). By 
employing the relation between p0(X) and p(x91), we then obtain 

— = Po — • (1.21) 
dX dt 

where T(X, t) = z[P(X, t), t] is the stress in the material description. 
A stress-equation of motion must be supplemented by a relation between 

stress and deformation. For an ideally elastic solid, the stress is a function 
of the appropriate measure of deformation. In one dimension it is con-
venient to consider the stress T(X, t) in the material description as a func-
tion of the displacement gradient dU/dX, 

T(X, t) = ^(dU/dX). (1.22) 

The equation of motion in the material description may then^be written as 

C2 ^ = 8^ (I 23) 
C dX2 dt' ' ( J 

where 

C2 = 1 d6/? . (1.24) 
p0 d(du/dx) 

12.6. Balance of energy 

The principle of conservation of energy states that the time-rate of change 
of the sum of the kinetic and internal energies of a mass system is equal to 
the rate of work of the external forces plus all other energies that enter or 
leave the system per unit time. 

Denoting the instantaneous energy per unit mass by e(x, t), the internal 
energy instantaneously contained in the region xx ^ x ^ x2 is 



Ch. 1, § 1.2.] NONLINEAR CONTINUUM MECHANICS IN ONE DIMENSION 17 

r pe(x, t)dx. 

The instantaneous kinetic energy is 
+ X2 

pv2dx. 
2: T 

The stresses transmit energy to the system in the form of mechanical work. 
The rate of work is called the power input P. We have 

p = - T(XX , i)v(xx, t) + T(X2 , t)v(x2, t) 

-rs 
(Tt?)djc. (1.25) 

1 dx 

In this equation, body forces are again not taken into account. 
Energy can also be transmitted in the form of heat, by conduction or 

by heat sources that are distributed inside the continuum. At this stage 
thermal effects will, however, be left out of consideration. 

For a purely mechanical system the principle of conservation of energy 
can now be stated as 

d CX1 d f*2 

p = _ p e d x + — ipv2dx. (1.26) 
dtJXl dtJXl 

The integrals on the right-hand side can be evaluated by employing (1.17). 
Using also the equation of motion (1.20), we find 

p — = r — , (1.27) 
Dr dx 

which expresses local conservation of energy. 

1.2.7. Linearized theory 

Although it is possible to determine solutions for certain one-dimensional 
problems governed by the nonlinear theory, there are often rather sub-
stantial complications.1 These complications disappear altogether when the 
theory is appropriately linearized. 

A linearized theory is amenable to treatment by standard mathematical 
methods because the principle of superposition applies. Since a phenomenon 
described by linear equations is also intuitively easier to understand, an 

1 A nonlinear problem is discussed in section 10.7. 
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examination of a problem on the basis of linearized equations often leads 
to considerable insight into the actual physical situation. On the other 
hand one always has to make sure that the assumptions on which the 
linearization is based are satisfied, because small nonlinearities sometimes 
give rise to quite significant modifications of results obtained from a 
linearized theory. It is therefore worthwhile to examine the conditions 
justifying a linearization of the theory. 

Let us first consider the constitutive relation (1.22) for the special case 
that T(X, t) is proportional to dU/dX: 

7 = 5 , ^ . (1.28) 

ex v y 

For some materials this relation may be an approximation applicable only 
when \dU/dX\ <C 1. For other materials and within the context of a one-
dimensional theory it may be exact in the sense that it may apply for quite 
large values of \dU/dX\. If (1.28) holds, eq. (1.23) reduces to the linear wave 
equation 

^ - - ^ , < ! ■ * » 

dX2 C2 dt2 V 

where 
C2 =SJPo. (1.30) 

A general solution to the linear wave equation can be obtained by intro-
ducing the substitutions 

X X 
a = t , fi = t+-9 (1.31a, b) 

whereby (1.29) reduces to 

d2U = 0. (1.32) 
dadp 

It follows that dU/da. is a function of a only. Integrating again, we find 
that U(X, t) must be of the form 

U = F(a) + G(/J) = F ( f - | ) +G (*+ | ) . (1.33) 

Any arbitrary form of the functions F( ), G{ ) employed in this equation 
will give a solution of the linear wave equation (1.29). If time t is increased 
by any value, say At, and simultaneously Xis increased by CAt, the argument 
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t — X/C is clearly not altered. The term F(t — X[C) thus represents a dis-
placement disturbance propagating in the positive X-direction. Similarly, 
G(t + X/C) represents a disturbance propagating in the negative X-direction. 
Since the shape of the propagating disturbances does not alter, the prop-
agation is called distortionless and lossless. 

It is rather remarkable that for the one-dimensional case a linear relation 
between the stress and the displacement gradient in the material description 
is all that is required for a linear wave equation in material coordinates. It 
should be emphasized, however, that the kinematics still are nonlinear in 
the spatial description of the motion. If an observer positioned at a fixed 
location x observes the displacement u(x, t), the convective terms still must 
be included in computing the velocity and the acceleration of a particle. 
This becomes evident if we employ (1.9) and (1.12) to compute the following 
exact relations: 

v = duldt (1.34) 
l—du/dx 

(l-dujdxf 

(l-duldx)2d2uldt2 + 2(l-duldx)(duldt)(d2uldx dt)+(duldt)2d2uldx2 

du dU 
i-^/ 

dx ex 

du 
and v cz — 

dt 

(1.35) 
From (1.3) and (1.4) it follows that 

du = dUldX 

dx 1 + dU/dX 

If the linearization of the relation between T and dUfdX is now justifiable 
only for \dU/dX\ < 1, then the relations (1.36) and (1.34) can also be 
linearized. We find 

A*. An a,, 
(1.37a, b) 

It is, however, not yet possible to simplify (1.35), since the orders of 
magnitudes of du/dt and the second-order derivatives are not immediately 
apparent. 

To determine the conditions for complete linearization, we write the 
equation of motion in spatial coordinates. By employing the results (1.15), 
(1.28), (1.35) and (1.36) in eq. (1.20), the following non-linear equation is 
obtained: 

\C2- (84] ^ = ( l - ^ + 2 ( l - * ) * *L , (1.38) 
L \dt/Jdx2 \ dx! dt2 \ dxl 8t dx8t 
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where C is defined by (1.30). It is perhaps surprising that this equation also 
admits a solution of the form 

« (x ,0 = f ( t - ^ ) . (1.39) 

The validity of (1.39) can be checked by direct substitution, but it can also 
be concluded by constructing u(x, t) from F(t — X/C) via eq. (1.4). See 
Problem 1.2. 

From (1.39) it follows that 

| - f \ £ « - f 7 C (1.40a, b) 
dt ox 

where a prime denotes the derivative with respect to the argument. By 
inspecting (1.35) and (1.38) it can now be concluded on the basis of (1.39) 
and (1.40a, b) that 

82U (1-41) 

(1.42) 

ided that 

a = ^ 

2 d
2u _ 82u 

a ^ " a t 1 

If'I < C. (1.43) 

It should be noted that (1.43) implies | dufdx\ <C 1 or equivalently | dUfdX\ <C 1. 
Thus, in the one-dimensional problem the rates of change of external 
disturbances must satisfy the restriction (1.43) in order that the motion can 
be described by a completely linearized theory. 

Several additional observations on the linearization of the theory can be 
found in an article by Thurston.2 

1.2.8. Notation for the linearized theory 

When the problem is completely linearized the distinction between the 
material and spatial descriptions of the motion vanishes altogether. Thus, 
either the notation of the material description with upper-case letters or the 
notation of the spatial description with lower case letters could be used. 
Over the years it has, however, become customary to use lower case symbols 

2 R. N. Thurston, The Journal of the Acoustical Society of America 45 (1969) 1329-1341. 
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for the linearized theory. Generally, the Greek symbols ex and xx are used 
for the displacement gradient dujdx and the stress component, respectively. 
According to (1.28), the stress component TX is proportional to sx. In the 
next chapter it will be shown that the proportionality constant can be 
expressed in terms of the Lame elastic constants X and fi as St = A + 2/i. 
Thus 

TX = (A + 2 / I ) ^ . (1.44) 
OX 

The stress equation of motion may be written as 

drx d2u 
— = P — 
dx dt / > - : > d-45) 

where p is the constant mass density. Substitution of (1.44) into (1.45) 
yields the wave equation 

d 2 l i X ^ (AA*\ 

r-2 = ~2 ^ r > ( L 4 6 ) 
ox el ot where 

cZ = ^ £ . (1.47) 
^2 _ A+ 2/4 

1.3. Half-space subjected to uniform surface tractions 

A simple example which displays many of the features of transient wave 
propagation according to the linearized theory is provided by the wave 
motion generated in an initially undisturbed, homogeneous, isotropic 
elastic half-space by the application of a spatially uniform surface pressure 
p(t). Suppose that the half-space is defined by x ^ 0 (see figure 1.2). Denoting 

p(t)—A 

Fig. 1.2. Half-space subjected to surface tractions. 

the normal stress in the x-direction by ix{x, t), we have at the boundary 
x = 0 
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xx = -p(t), where p{t) = 0 for t < 0. (1.48) 

The other stress components vanish identically at x = 0. 
Any plane parallel to the x-axis is clearly a plane of symmetry. As a 

consequence, transverse displacements are not possible and the motion of 
the half-space is described by the displacement in the x-direction, denoted 
by u(x, t), which is a function of x and t only. The half-plane is evidently 
in a state of one-dimensional deformation, and the equations defined in 
section 1.2 apply. Thus the deformation of the half-space is completely 
described by the single strain component 

«,«?■ d-49) 
OX 

We say that the half-plane is in a state of one-dimensional longitudinal 
strain. According to (1.44), the stress and the strain are related by 

TX = (A + 2 / 0 ^ , (1.50) 
dx 

while the displacement equation of motion is 

dx2 cl dt2 

where cL is defined by (1.47). Assuming that the half-space is at rest prior 
to time / = 0, eqs. (1.48) and (1.51) are supplemented by the initial con-
ditions 

u = u = 0 for t = 0, x > 0. (1.52) 

The general solution of (1.51) is 

u(x,t) = f(t-^J+g(t+?-y (1.53) 

Although it is intuitively rather obvious that the surface pressure p(t) 
generates a wave propagating in the positive ^-direction only, we will not 
a priori discard the function g(t + x/cL), but rather follow a strictly math-
ematical approach. Thus, employing the full form of (1.53), the initial 
conditions (1.52) require that for x > 0 

f(-xfcL)+g(x/cL) = 0 (1.54) 

A-x/cL) + g'(xlcL)=0, (1.55) 

where primes indicate differentiations with respect to the argument. The 
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solutions to these equations are 

f(-x/cL) = -g(x/cL) =A for x > 0, (1.56) 

where A is a constant. Since t + x/cL is always positive for t ^ 0 and x > 0, 
eq. (1.53) reduces to 

(fit--) -A for r > * 

(o for t < -
CL 

which satisfies the initial conditions. This solution shows that a wavefront 
separating the disturbed from the undisturbed medium propagates through 
the material with the velocity cL. A particle located at x = x remains at 
rest until time t = t = x/cL. 

The boundary condition at x = 0 yields 

Upon integration of this equation, f{t — x/cL) follows as 

' ( ' " - ) = T ^ V f"X /%(s)ds+.B, (1-58) 
\ cLI A + 2fxJ0 

where 5 is a constant. According to (1.48), the function p(s) vanishes 
identically for s < 0 and the integral over p(s) thus disappears when 
/ < x/cL. In order that eq. (1.58) is consistent with (1.56) we should then 
have B = A. The expression for the displacement eq. (1.58) then becomes 

u(x, 0 = -Sk- |" XlC%(s)ds. (1.59) 

The corresponding normal stress TX(X, t) follows from (1.50) as 

K) *x = -P 

The normal stresses in the transverse directions, denoted by xy and T2, can 
be computed as 

Ty = xz = P (^ ) • 

In the expressions for w(x, /) and TX(JC, t) it should be taken into account 
that/>(f) = 0 for / < 0, as stated by eq. (1.48). 



24 ONE-DIMENSIONAL MOTION OF AN ELASTIC CONTINUUM [Ch. 1, § 1.3. 

The solutions for the displacement and the stresses show that the surface 
pressure generates a disturbance which propagates into the half-space with 
velocity cL. A particle located at x = x remains at rest until the time 
t = x/cL, when the wavefront arrives which separates the disturbed part 
from the undisturbed part of the half-space. The normal stress at x = 3c 
is compressive and has the value of the external pressure for the value of 
the argument t — x/cL. The displacement is proportional to the area under 
the curve representing the external pressure between arguments 0 and 
t — x/cL. The displacements and stresses describe a transient wave motion. 
It should be noted that for this simple problem the shape of the stress pulse 
does not alter as it propagates through the medium. 

By employing (1.59) the particle velocity u(x, t) = du/dt is computed as 

u =-^-p(t--). (1.60) 

Clearly then, for a wave propagating in the positive ^-direction, the stress 
rx(x, t) and the particle velocity u(x, t) are related by 

*x = ~pcLu. (1.61) 

The ratio of the stress and the particle velocity is called the mechanical 
impedance. In this case the mechanical impedance pcL is a material constant. 
Since it measures the stress that is required to generate motion it is often 
called the wave resistance of the material. 

Considering a unit area element normal to the x-axis at a position xf 

the instantaneous rate of work of the traction acting on the element is the 
vector product of rx(x, t) and the particle velocity u(x, t). This instantaneous 
rate of work is called the power per unit area and it is denoted by 0*. We have 

0>(x,t) = -rxu. (1.62) 

The minus sign appears because a stress vector (which is positive in tension) 
and a velocity vector acting in the same direction yield a positive value for 
the power. By the use of (1.61) we find 

0>(x, t) = pcLu\ (1.63) 

The power defines the rate at which energy is communicated per unit 
time across a unit area. Clearly 0 represents the energy flux across the 
area element and it must, therefore, be related to the total energy density 
JF. The total energy per unit volume equals the sum of the kinetic energy 
density Jf* and the strain energy density ^ , thus 
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tf = tf + W = ipw2 + K* + 2A0(—) • (1-64) 

If more energy flows across the point x + dx than flows across x, then the 
energy contained in length dx of the medium diminishes, i.e., 

0>(x + dx)-0>(x) = -dx 

or 

— 4- = 0, 
dx dt 

which is the equation of continuity for energy. Substituting (1.62) and 
(1.64) we find 

(drx -A . 
— —pu\u — 

\dx J 
T X - ( A + 2/I) 

du 

dxj 
^ = 0 , 
dx 

which is, of course, identically satisfied in view of eqs. (1.50) and (1.51). 
Since energy is conserved it is required that at a certain time t the work 

done by the surface pressure p(i) equals the sum of the kinetic and strain 
energies in the disturbed part of the half-space, i.e., 

rt raj 
0>(O9 t)dt = Jf(x, t)dx. 

Jo Jo 

The first integral assumes the form 

JO A + ZfiJO 

By the use of (1.64) and (1.59) we find for the right-hand side of (1.65) 

(1.65) 

fCIV(x, t)dx = - 1 - (^ \p It- -) 
Jo X + 2fiJo L \ cL! 

dx. 

By introducing a change of variables in this equation, the equality (1.65) 
can easily be verified. 

By neglecting the inertia term the equation governing the corresponding 
static problem is immediately obtained from (1.51). Upon integrating once, 
we find 

T , = (A + 2 / i ) - ^ = -p(t\ 
dx 
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where we have used the boundary condition (1.48). Suppose we consider 
a monotonically increasing function p(t), and we expand 

p(t--\ ~ p(t)--p(t). 
\ Cjl Cr 

It is then clear that for given x and t, t > x/cL9 the difference between the 
static and dynamic stresses is small if 

cL P(t) 

This result shows that dynamic effects are of most interest if either x is 
large or p(t) is appreciable. 

It is finally noted that it follows from eqs. (1.39), (1.43) and (1.59) that 
for the present problem the linearized theory is valid if 

1.4. Reflection and transmission 

When a propagating disturbance strikes the interface between two media 
of different material properties, part of the disturbance is reflected and 
part is transmitted across the interface. In the special case that the second 
medium cannot carry mechanical waves, i.e., if it is a vacuum, the incident 
wave is completely reflected. We will consider the latter case first. 

Suppose the incident stress wave is denoted by 

(t,), = f {i- jj , (1.66) 

where f(s) = 0 for s < 0. Since the reflected stress wave propagates in the 
negative x-direction, it can be represented by 

(rx)r = g[t+jY (1.67) 

At the free boundary x = a the stress xx vanishes, i.e. 

*x = (**)* +COr = 0 at x = a. 

For t < a/cL this equation implies g(t + x/cL) = 0. For t ^ a/cL we find 

('♦f)--'(-d-
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Now setting s = t + a/cL, we conclude 

g(s)= - f ( s - 2 ^ , 

and the reflected stress wave may thus be represented by 

( r , ) r = - f ( ; - - i + ^ ) . (1.68) 

Eq. (1.68) shows that the reflected stress pulse has the same shape as the 
incident stress pulse, but the sign of the stress changes upon reflection. 
Thus, at a free surface a tensile pulse is reflected as a pressure pulse, and 
vice versa. The direction of the displacement remains unchanged, however, 
upon reflection. 

The conversion of a pressure pulse into a tensile pulse can have some 
interesting implications for materials that are of relatively low tensile 
strength. As a compressive pulse of short enough length is reflected at a 
free surface, the resulting tensile stresses may cause fracture. This type of 
tensile fracture under rapid compressive loading is a typical wave propaga-
tion effect which is known as spalling or scabbing. The effect was first 
demonstrated experimentally by B. Hopkinson3, who detonated an ex-
plosive charge in contact with a metal plate. The reflection of the pulse 
from the free surface produced tensile fractures which caused a disk of 
metal roughly in the shape of a spherical cap to break away from the surface 
directly opposite the explosive charge. 

Let us now consider the reflection and transmission at an interface 
between two media of different material properties. The incident wave is 
of the form (1.66). The reflected and transmitted waves may be represented 
by 

/ \ / 0 x — a\ 

\ CL CL I 

and 

respectively. (See figure 1.3). By enforcing continuity of the stress and the 
particle velocity at the interface x = a, we find 

3 B. Hopkinson, Collected scientific papers. Cambridge, University Press (1921), p. 423. 
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,. a , x-a\ 
CL 

P,c, 

*(*-£-&) 

x = a 
PA,c£ 

Fig. 1.3. Incident, reflected and transmitted waves. 

{xx\ = Crf I t - - + 
\ cL cL I 

\ cL ci ) 

The reflection coefficient Cr and the transmission coefficient Ct are 

pAct/pcL-l 
Cr = 

Ct = 

pAcilpcL+l 

2pAci/pcL 

pAcllpcL + l 

These expressions show that the ratio of the mechanical impedances 
completely determines the nature of the reflection and the transmission at 

2r 

_ 1 

1 2 3 

^T 

~~c7~ 

4 5 6 7 

L 

Fig. 1.4. Reflection and transmission coefficients. 
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the interface. The reflection and transmission coefficients are plotted versus 
the ratio of the mechanical impedances in figure 1.4. For pAcfJpcL = 0, 
which corresponds to a free surface, Cr = — 1 and Ct = 0, which agrees 
with the result (1.68). For pAcA/pcL = 1, the pulse is completely transmitted. 
If pAcA/pcL > 1, the reflected pulse is of the same sign as the incident wave. 
The transmitted wave always is of the same type as the incident wave. 

If a number of layers follow each other, the pattern of transient waves 
can still be unraveled in a one-dimensional geometry. The succession of 
reflections and transmissions may give rise to somewhat unexpected effects, 
such as high tensile stresses under compressive loads. Thus it was shown 
by Achenbach et al.4, by analysis and experiment, that tensile failure may 
occur in a segmented rod at the first interface adjacent to the end where a 
compressive load of short duration is applied. Failure occurs if segments 
with very different mechanical impedances are altered, particularly if the 
mechanical impedance of the first segment is relatively small. 

1.5. Waves in one-dimensional longitudinal stress 

Waves in one-dimensional longitudinal strain are not the only type of wave 
motion for a purely longitudinal disturbance. The second type is provided 
by wave motion in one-dimensional stress, whereby the longitudinal normal 
stress, say TX, which is a function of x and t only, is the one nonvanishing 
stress component. All other stress components vanish. 

The deformation of an element in one-dimensional stress is sketched in 
figure 1.5. The difference with the deformation sketched in figure 1.1 is 

1 1 
1 1 Tx 
^ AxJ 

1 1 
i i 
I -J 

Fig. 1.5. Deformation in one-dimensional stress. 

that in one-dimensional stress an element is not prevented from deforming 
in the transverse direction. In fact, as shown in figure 1.5, the cross section 
decreases if the element is in tension. For the case of one-dimensional stress, 
TX and ex are related by 

xx = EsX9 (1.69) 

4 J. D. Achenbach, J. H. Hemann and F. Ziegler, AIAA Journal 6 (1968) 2040-2043. 
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where E is Young's modulus. By writing the equation of motion for an 
element, we find 

dxx _ d2u 
= p-d- a-70) 

Substitution of (1.69) into (1.70) yields 

(1.71) 
d2u _ 

dx2 ~ 

cl 

1 d2u 

4 at2 ' 

_ E 
where 

(1.72) 
P 

Waves in a one-dimensional state of stress approximate wave motion 
in a thin rod. The velocity cb is usually called the bar velocity. If a semi-
infinite thin rod (JC ^ 0) is subjected at JC = 0 to a pressure p(t), the resulting 
stress wave is 

T» = ~P [t- ^ . (1.73) 

It should be emphasized that (1.73) is an approximate solution which is 
valid only for a very thin rod. If the rod is very thick, the deformation is 
expected to be closer to a state of one-dimensional strain. Often rods are 
neither very thin nor very thick, so that both approximations are unsatis-
factory, and a more exact treatment allowing two- or three-dimensional 
variation of the field variable is required. A more exact treatment of wave 
propagation in a rod is discussed in chapter 8. It turns out, however, that the 
approximation of one-dimensional stress is generally very satisfactory. 

1.6. Harmonic waves 

1.6.1. Traveling waves 

Let us consider an expression for the longitudinal displacement of the form 

W(JC, t) = A cos [k(x-ct)l (1.74) 

where the amplitude A is independent of JC and t. Eq. (1.74) is of the general 
form f{x—ct) and thus clearly represents a traveling wave. The argument 
k(x—ci) is called the phase of the wave; points of constant phase are 
propagated with the phase velocity c. At any instant t, u(x, t) is a periodic 
function of x with wavelength A, where A = 2n/k. The quantity k = 2n/A, 
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which counts the number of wavelengths over 2n, is termed the wavenumber. 
At any position the displacement u(x, t) is time-harmonic with time period 
T, where T = 2n/co. The circular frequency co follows from (1.74) as 

co = kc. (1.75) 

It follows that an alternative representation of u(x, t) is 

u(x, t) = A cos co ( - -t | . (1-76) 

Eqs. (1.74) and (1.76) are called traveling harmonic waves. The expressions 
represent trains of sinusoidal waves, which disturb at any instant of time 
the complete (unbounded) extent of the medium. Harmonic waves are 
steady-state waves, as opposed to the transient waves (pulses) which were 
discussed in the preceding sections of this chapter. 

By substituting (1.74) into the wave equation of sections 1.2.8 and 1.5, 
we obtain 

c = cL, and c = cb9 (1.77a, b) 

from eqs. (1.46) and (1.71), respectively. Eqs. (1.77a, b) show that the phase 
velocities of traveling harmonic waves in one-dimensional longitudinal 
strain and one-dimensional longitudinal stress are independent of the 
wavelength A. This implies that very short waves propagate with the same 
phase velocity as long waves. If the phase velocity does not depend on the 
wavelength we say that the system is nondispersive. If the material is not 
purely elastic but displays dissipative behavior, it is found that the phase 
velocity of harmonic waves depends on the wavelength, and the system is 
said to be dispersive. Dispersion is an important phenomenon because it 
governs the change of shape of a pulse as it propagates through a dispersive 
medium. Dispersion occurs not only in inelastic bodies but also in elastic 
waveguides, as will be discussed in chapter 6. 

The phase velocity c should be clearly distinguished from the particle 
velocity u(x, t\ which is obtained as 

u(x, t) = Akc sin [k(x — ct)]. 

For one-dimensional longitudinal strain the maximum value of the ratio 
of the particle velocity and the phase velocity is thus obtained as 

(w/Omax = Ak = InA/A. 

Within the range of validity of the linear theory the ratio A/A should be 
much less than unity. 
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1.6.2. Complex notation 

For mathematical convenience we generally use, instead of eq. (1.74), the 
expression 

u(x, t) = A exp [ik(x-ct)]9 (1.78) 

where / = N
/(— 1). Without stating it explicitly, henceforth it is understood 

that the real or imaginary part of (1.78) is to be taken for the physical 
interpretation of the solution. For the case of one-dimensional longitudinal 
stress the corresponding stress is then represented by 

TX(X, t) = iEAkexp[ik(x — cbt)], (1-79) 

and the particle velocity is written as 

u(x, t) = —iAkcbQxp [ik(x — cbt)]. (1.80) 

1.6.3. Standing waves 

Let us consider two displacement waves of the same frequency and wave-
length, but traveling in opposite directions. Since the wave equation is 
linear the resultant displacement is 

u(x, t) = A+ e'^-^ + '+U-A- e
i(kx+<ot+y-\ (1.81) 

where A+ and A. are real-valued amplitudes, and y+ and y_ are phase 
angles. If the amplitudes of the two simple harmonic waves are equal, 
A+ = A- =^ [ , we can write 

= 2A exp [i(kx + %y+ + iy_) ] cos (a>t-%y + + iy_) . 

The real part of this expression is 

u(x, t) = 2A cos (kx+iy + + iy«) cos (cot - i y + + i y « ) . (1.82) 

Eqs. (1.82) represents a standing wave, since the shape of the wave does 
not travel. At points where cos (kx + %y+ + iy_ ) = 0 , the two traveling 
waves always cancel each other and the medium is at rest. These points are 
called the nodal points. Halfway between each pair of nodal points are the 
antinodes, where the motion has the largest amplitude. 

1.6.4. Modes of free vibration 

Standing waves form certain modes of free vibration of an elastic body. 
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As an example we consider the vibrations of a rod. If we consider a semi-
infinite rod and if we require that the displacement vanishes at x = 0, the 
possible harmonic motions are subject to restrictions. Eq. (1.78) can now 
not be used and we have to employ the standing wave form (1.82) with the 
angles y+ and y_ chosen so that a nodal point coincides with the boundary 
x = 0, i.e., 

y+ + y_ = n 
and 

u(x, t) = 2A sin (kx) sin (cot — y+). (1.83) 

When, as a second boundary condition we add u = 0 at x = /, the 
harmonic motion is still further limited, for now of all the harmonic motions 
represented by (1.83) only those which have a nodal point at x = / can be 
used. Thus we require 

sin (kl) = 0, 
which implies 

i i 2%\ . . _ . 
kl = — = nn n = I, 2, 3, 4, . . . 

A 

The distance between nodal points is half the wavelength, and thus this 
distance must be /, 1/2,1/3, etc. The corresponding circular frequencies are 

nncb co = kcb = . 

The circular frequency of the lowest or fundamental mode, which is called 
the fundamental frequency, is co0 = ncb/l radians per second; in cycles per 
second the fundamental frequency is f0 = cb/2l. The frequencies of the 
higher modes are in cycles per second, f2 = 2cb/2l, f3 = 3cb/2l, etc. The 
higher frequencies are called overtones. For the example of the rod with 
rigidly supported ends the overtones are integral multiples of the fun-
damental frequency. Overtones with this simple relation to the fundamental 
are called harmonics. Only for the simplest vibrating systems governed by 
the wave equation are the modes of vibration as simple as discussed in this 
section. 

1.7. Flux of energy in time-harmonic waves 

The rate at which energy is communicated per unit area is equal to the 
power per unit area, which can be computed by employing eq. (1.16). 
Since the product of the real parts is not the same as the real part of the 
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product of two complex numbers, 0t{u) must be used in eq. (1.16). For the 
case of one-dimensional longitudinal stress, 0(x,1) is obtained as 

= pclk2A2 sin2 [k(x-cbty] 

EA2co 
( L 8 4 ) 

cb 

sin \_k(x — cbt)~\. 

It is noted that for harmonic waves the power per unit area is an infinite 
sequence of pulses traveling with the phase velocity cb. 

7.7.7. Time-average power per unit area 

A useful representation of the intensity of the wave is expressed by an 
average of 0 over time, at an arbitrary position and at an arbitrary time. 
This time-average power per unit area is 

sin (kx-cos)ds, (1.85) 
cb taJt 

which can easily be evaluated if we choose as range of integration the period 
T = 2n/co. By employing 

*t + T 

{ sin2 (kx — cos)ds = \, 

the time average of 0 over a period, which is denoted by <^> , is obtained 
as 

<^> = \ M!^.2 . (1.86) 
2 cb 

The same expression is found if the limit of (1.85) is taken for a ta which 
increases beyond bounds. 

In the cgs system, <^> is measured in ergs/sec-cm2, and in the mks 
system, < 0s) is expressed in watts/sec-m2. It is noted that < ̂ > is proportional 
to the squares of the frequency and the amplitude. 

The time average of a product of the real parts of two complex functions 
F and f must often be evaluated in energy computations. If F and f are of 
the forms 

F = F0e
i((Ot-yi\ f =f0e

i((Ot-y2\ 

where F 0 and f0 are real-valued, the following relation holds 

(9t{F) x 31(f)} = \0t{Fi\ (1.87) 



Ch. 1, § 1.7.] FLUX OF ENERGY IN TIME-HARMONIC WAVES 35 

where f is the complex conjugate off. In the book by Brillouin5, eq. (1.87) 
is proven by substituting f and F into the left-hand side of (1.87). Using 
eq. (1.87), the expression (1.86) for <^> can be written immediately. 

1.7.2. Velocity of energy flux 

The average power <^> represents the average energy transmission per 
unit time and per unit area. We can thus speak of a "flow" of energy and 
we can introduce a velocity of energy flux ce. The energy velocity is defined 
as the time-average energy transmission divided by the time-average of the 
total energy density 

<^> = < J O c e . (1.88) 

The total energy per unit volume consists of kinetic energy and strain energy. 
By employing (1.87), the time average of the kinetic energy per unit volume 
is computed as 

<jf > = - - f p(u)2dt = ipA2co2. (1.89) 

Similarly, the time-average strain energy density is obtained as 

<^> = - 1 C + T£ l—Ydt = iEA2k2. (1.90) 

Since k = co/ch and c2 = E/p, we conclude <Jf'> = <^>. Thus, for plane 
time-harmonic waves the time-average energy density is equally divided 
between the time-averages of the kinetic and strain energy densities. Taking 
the sum of (1.89) and (1.90), we obtain 

<^> = ipA2o2. (1.91) 

By substituting (1.86) and (1.91) into (1.88), the velocity ce is found as 

ce = cb. 

From the foregoing it follows that there are essentially two ways of 
calculating the average rate of flow of energy in a plane time-harmonic 
progressive wave. The first consists of forming the vector product of the 
traction and the particle velocity and taking the time-average of this product. 
The second proceeds by calculating the time-average of either the kinetic or 

5 L. Brillouin, Wave propagation in periodic structures, New York, Dover Publications, 
Inc. (1953), p. 70. 



36 ONE-DIMENSIONAL MOTION OF AN ELASTIC CONTINUUM [Ch. 1, § 1.7. 

the strain energy per unit volume; twice either quantity multiplied by the 
velocity of energy transmission yields the time-average energy transmission. 

For the example discussed in this section the velocity of energy transmis-
sion equals the phase velocity. This is generally true for non-dispersive wave 
propagation. For dispersive wave propagation ce differs, however, from the 
phase velocity, as will be shown in chapter 6. 

1.7.3. Energy transmission for standing waves 

Let us consider the power per unit area for the case that the displacement 
consists of the superposition of two waves propagating in opposite direc-
tions, as described by eq. (1.81). The spatial and the time derivatives of 
u(x, t) are 

— = A+k6++A-k9.. 
dx 

— = -A+CD0++A-OJ9_ , 
dt 

where 

9+ = exp 

9~ = exp 

i J kx — cot + y+ + - I 

i l/cx + cof + y_ + - j 

By employing the relation SP — —TXU, the power per unit area is obtained 
as 

-^ = Ek(o[(A+)2&(9+)@(9+)-(A_)2@(0-)@(9-y]. 

It is noted that for waves traveling in opposite directions & has no cross 
terms, so that even the instantaneous values of the energy transmission are 
simply the differences between the individual fluxes. By employing (1.87), 
the time average is immediately obtained as 

If the amplitudes A + and A _ are equal there is no net flow of energy. As 
discussed in section 1.6, this case corresponds to a standing wave. Indeed, 
in a standing wave energy cannot be transmitted past nodal points, and the 
energy can thus flow only back and forth between the nodes, whereby at 
any position the net flow over a period T vanishes. 
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1.8. Fourier series and Fourier integrals 

It is well known that any physically reasonable function, though not all 
mathematically conceivable functions, can be split up into a collection 
of components. In the most common case the components are sinusoidal 
functions, or alternatively, exponential functions with imaginary exponents. 
If the function repeats periodically with period T and circular frequency 
co = 2n[T, it can be expressed as a Fourier series of cosine and sine terms 
having frequencies co, 2co,. . ., or as a series of exponentials with the same 
frequencies. If the disturbance is not periodic it can be expressed as a 
Fourier integral over sinusoidal or exponential terms. In this section we 
briefly summarize the salient aspects of the representations by Fourier 
series and Fourier integrals. 

1.8.L Fourier series 

A function is periodic in time if its values are repeated through all time at 
an interval T. This implies/(/ + r ) = f(t), where 2" is the period. A periodic 
function is depicted in figure 1.6. Similarly a function may be periodic 
in space with periodic length (wavelength) A, i.Q.,f(x + A) =f(x). 

Fig. 1.6. A periodic function. 

Subject to rather unrestrictive conditions a periodic function of period T 
can be represented by a Fourier series 

00 

71 = 

It is not at all a trivial matter to determine the conditions that this series 
is convergent and converges to f(t). The conditions are, however, satisfied 
if/(/) and its first derivative are continuous except for a finite number of 

an cos XT) + b„ sin m (1.92) 
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discontinuities within each period. The smoother the function the more 
rapidly the series converges. 

By employing the orthogonality relations of the sines and the cosines, 

f±T . (2nnt\ . (2nmt\ . . „ 

cos I 1 sin I 1 dt = 0 n ^ 0, m > 0, 

where the Kronecker delta symbol Snm is zero if n # m and unity if n = m9 

the coefficients of the Fourier series are obtained as 

^n=~f_Tf(t) cos {~)^t (1-93) 

^ C / M T ^ ' (L94) 

«o = | f* T / (<)d<. (1-95) 

By means of eq. (1.92) the recurrent function is represented by a non-
periodic component of magnitude ia0 and by a harmonic function of 
frequency l/T, together with an infinite series of higher harmonics. 

A useful alternative of the sine and cosine series is obtained by writing 

cos(n(ot) = i(eino>t + e-inmt) 

sin (not) = -(ein<ot-e-in<ot). 
2i 

This gives in place of (1.92) 

/ ( ' ) = I c„exp(-ina>0, (1-96) 
n = — oo 

where we have used co = 2n/T, and 

c0 = i^o* c.n = i(an-ibn), cn = ^aH + ibH). 

The exponential functions form an orthogonal set and the coefficients cn 

can, therefore, also be calculated directly as 
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1 f * r rt x (2nint\ , 

Fourier series can also be used for non-periodic functions, if we are 
concerned only with a limited range of the variable, say 0 ^ t ^ T. The 
function may be represented by a collection of harmonics, taking T as 
the longest period. The collection combines, of course, to form a function 
which is periodic over all values of the variable. This does, however, not 
matter since we are considering only the range 0 ^ t ^ T. The longer the 
range, the lower is the fundamental frequency of the Fourier series. 

The coefficients of a Fourier series can be plotted versus the frequency 
as a pair of line spectra (see figure 1.7). The frequencies of successive terms 
in the representation of a non-periodic function in the range 0 S t S T are 
coi = 2n/T, o)2 = 2col,. . ., con = na>1 . 

a0 

oj 2OJ 3cu 

\b' \h \h 
(A) 2cj 3co 

' Fig. 1.7. Line spectra of Fourier coefficients. 

Thus the spacing in the line spectrum becomes more closely packed when 
the range of representation is widened. The accuracy with which details are 
represented depends on the highest frequency components that are included. 
This follows from the consideration that a local variation which is of 
"duration" 7\ cannot be represented by terms of characteristic period much 
greater than Tl9 and thus possessing frequencies less than 2n/Tl. The 
number of Fourier terms required thus increases as the detail required in-
creases. 

1.8.2. Fourier integrals 

If a function is not recurrent and must be represented over the whole range 
of the variable, i.e., if it consists of an isolated pulse, it can be represented 
by a Fouiier integral. The integral representation of a function/(r) is of the 
form 

m = ^ f" e^n^dco, (1.97) 
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where 
/•oo 

/ » = eimf(t)dt. (1.98) 
J — oo 

The function/*(co) is usually called the Fourier transform of/(f). In that 
terminology (1.97) defines the inverse transform. 

An appealing heuristic way of deriving the integral relations (1.97) and 
(1.98) is to consider the limiting case of a Fourier series whose interval 
of definition grows without limit. Indeed, the structure of the frequency 
spectrum of a Fourier series suggests that the range of representation of 
a function can be increased indefinitely by packing the terms closely in 
frequency space. In the limit as the range increases beyond bounds, the 
discrete spectrum should, in fact, convert into a continuous spectrum 
represented by f*(co). On the basis of this argument /*(a>)dco is the con-
tribution to the amplitude at co from the indefinitely small frequency band 
dco. 

Let us consider a function/(/) defined in the interval — \T < t < \T. The 
function can be represented by an exponential Fourier series of the form 
(1.96) 

m = i i />exp(^)d s]eX p(-^) (1.99) 

If we set con = 2nn/T, and observe that con+1— con = 2n/T, it can be stated 
that for large values of T a small frequency range ACD embraces Aco/(2n/T) 
terms. The contribution made by these to the sum (1.99) is 

TAco 

[?/>>■ 2n LTJ-±T 
e~i<0nt. 

Formally proceeding to the limit T-+ oo, the summation in eq. (1.99) 
becomes an integration, and we obtain 

i /*oo f*oo 

f{i) = -L e^'dw f(s)e 
ATI* - o o •/ - o o 

(1.100) 

Eq. (1.100) is the well-known Fourier integral theorem. 
The form of (1.100) suggests the Fourier transform f*(co) as given by 

(1.98), and the inverse transform as given by (1.97). 
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1.9. The use of Fourier integrals 

As a consequence of the linearity of the wave propagation problems that 
are under discussion, it is allowable to express the total response to a 
number of separate excitations as the superposition of the individual 
responses. Linear superposition, in conjunction with integral represen-
tations of forcing functions provide us with the means of determining 
solutions to problems of elastic wave propagation. 

Suppose we wish to determine the stress wave generated in a half-space 
by a surface traction at x = 0 of the form 

* , = -p0e-"H(t), (1.101) 

where H(t) is the Heaviside step function. By means of (1.97) and (1.98) 
the surface traction can be represented by the following Fourier integral 

r co — icot 

Tx(Qit)=Po_\ 1 dco. (1.102) 
2niJ -oo co + ir] 

Now consider a time-harmonic stress wave of the form 

Tx(x, t) = —1— <r-«-*/^>. (i.io3) 
co+irj 

Clearly this wave is generated in a half-space by a surface traction of the 
form (CO + ZT/)"1 exp ( — icot). Since linear superposition is allowable, and 
since the response to the individual components of the integral representa-
tion (1.102) is given by (1.103), the stress due to a surface traction of the 
form (1.101) may be expressed as 

Tx = P°L ̂  e - M r - x / c t ) Jco_ ^ ( 1 1 Q 4 ) 

2niJ -co co + irj 

Eq. (1.104) provides us with a formal representation of the stress due to 
a surface traction of the form (1.101). The integral in eq. (1.104) can be 
evaluated by means of the technique of contour integration in the complex 
plane. Integrals appearing in solutions of the form (1.104) are exemplified by 

/ = ^ ^f(£)dC, (1.105) 

where f(() is single-valued and a is real. These integrals are evaluated by 
the residue theorem, which states that for counterclockwise integration 

— f elXf(()dC = sum of the residues inside J\ (1.106) 
2niJ r 
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To evaluate integrals of the form (1.105) we select a contour r consisting 
of the real axis and a semicircle of radius R about the origin. For a > 0, 
the semicircle is taken in the upper half-plane. In the limit R -► oo, the 
integral along the semicircle vanishes if the following condition applies: 
F(R) -» 0 as R -+ oo, where \f(Reid)\ ^ F(R). This result is known as 
Jordan's lemma. The residue theorem and Jordan's lemma are discussed 
in books on functions of a complex variable.6 

For the particular case of (1.104) we close the contour in the upper 
half-plane for t — xjcL < 0, and in the lower half-plane for t—x/cL > 0, 
in order that the integration over the semicircle vanishes. Since there are 
no poles in the upper half-plane, we find 

tx(x9 0 = 0 for cLt < x. (1.107) 

In the lower half-plane there is a pole at co = —irj, whose contribution yields 

*x = -Poexp hK): for cLt = x. (1.108) 

This is, of course, just the solution obtained in section 1.3. 
Although the foregoing example displays the features of Fourier integral 

analysis, the example is rather simple. Another example will be discussed 
in chapter 4, while a more complete treatment of Fourier transform tech-
niques is given in chapter 7. 

1.10. Problems 

1.1. Derive the one-dimensional equations of motion in the material and 
spatial descriptions for the case when the medium is subjected to a distribu-
tion of body forces which depends on position and time. 

1.2. Suppose that in the material description a propagating displacement 
pulse is defined by 

WO-F (,-§). 
For a specific time t the displacement pulse is shown in the figure. Since 
x = X+ U, the corresponding pulse in the spatial description can be 
obtained by a shifting of abscissa. What is the form of w(x, t)1 Carry out 
the geometrical construction of u(x, t) and observe that there is a limitation 

6 See, e.g., G. F. Carrier, M. Krook and C. E. Pearson, Functions of a complex variable. 
New York, McGraw-Hill, Inc. (1966), pp. 57, 81. 
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on F'( ), where a prime denotes a derivative with respect to the argument. 
What is the physical significance of this limitation? 

1.3. It can be verified by direct substitution that f(t — xfc) and g(t + xfc) 
satisfy eq. (1.38). The sum of these two expressions is, however, generally 
not a solution of eq. (1.38). Show that iff+g is to satisfy eq. (1.38), the 
following condition must be met: 

f"g'(l+g'/c) + g"f'(l+f'/c)=0. 

For what type of displacement distribution F(t — X/C) is this relation 
automatically satisfied? 

1.4. Consider an elastic rod (Young's modulus E, mass density p) of length 
/, which is rigidly clamped at x = /, as shown in the figure. The rod is 
initially at rest. At time t — 0 the end x — 0 is subjected to a pressure p{t). 

P(0 I 

Assuming that the linearized one-dimensional stress approximation is valid, 
(a) Determine the reflection at x = / of the primary stress wave. 
(b) Find an expression in the form of a series for the stress at a position 

x at an arbitrary time t. 
(c) Suppose p(t) is a square pulse of length a/cL and magnitude p0, 

where a < I. If the material is brittle, and much weaker in tension 
than in compression, and if p0 exceeds the tensile strength of the 
rod, at what location would you expect the rod to break? 

0 ( 0 . 

i 

1 

L 

a/cL 
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7.5. An initially undisturbed rod of cross-sectional area A is subjected to 
a concentrated load FQH{t\ where H{t) is the Heaviside step function. 
At x = / a point mass m is fixed to the rod. Determine the reflected and 
transmitted waves for the linearized theory. 

FQH{t) m 

/ 

1.6. A rod of length / and square cross section (cross-sectional area h2) 
is resting on one of its lateral sides on a smooth plane surface. At time 
/ = 0 the rod is subjected at one end to an axial force F0H(t). There is no 
friction between the plane surface and the rod. The total mass of the rod 
is h2lp, where p is the mass density. If the rod were infinitely rigid the 
motion of the center of gravity would follow from an application of New-
ton's law. Consider a rod of Young's modulus E, and compare in the time 
interval 0 ^ / fg 5l/cb the motions of the centers of gravity of the rigid and 
the deformable rods. 

1.7. A split-Hopkinson bar is a device to measure mechanical properties 
of a material. A very thin slice of the material is placed between a main 
rod and an extension rod as shown in the figure. The inertia of the specimen 

specimen 
/ 

H 
main rod extension rod 

is neglected. Suppose that an incident and a reflected pulse are measured at 
a position in the main rod, and a transmitted pulse is measured in the ex-
tension rod. How can this information be used to determine the relation 
between xx and ex in the specimen? 

1.8. An initially undisturbed rod of cross-sectional area A is subjected to a 
concentrated load F0H(t). In the interval / ^ x ^ l+a, an inclusion of 

FQH(t) f
E>P (

E>* ,E>P 

' 1 l I ' ~ 

M I * 

m~X 

m a ^ 
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a different material is placed, as shown in the figure. Determine the trans-
mitted waves into the region x > l+a. Show that the result of problem 1.5 
is a limitcase of the result of the present problem. 

1.9. A very long rod of cross-sectional area A with an attached (rigid) mass 
M is traveling to the right with constant velocity V0, without stress. A 
remote section S is stopped in a time which is very short, but not zero. S 
is then held. 

f \M 

(a) Sketch the form of the particle velocity wave f (f — x/cb) which runs 
along the rod from S, for a time t before arrival at M. Here cb = (E/p)*. 

(b) The time of arrival at M is chosen as t — 0. Show that for t > 0 the 
(absolute) velocity of M is given by 

vM(t) = Vo + t'tf + e-" |V[^'W-f"«]d*, 
•/ o 

where \i = ApcJM. 

1.10. In problem 1.9 the time of stopping at S is now taken extremely short, 
approaching zero as a limit. 

(a) Examine the limiting forms of f(?) and of the integrals in 1.9b, and 
show that in the limit 

vM(t)= Voile'"'-!). 

(b) Show that the displacement of M to the right after the arrival of the 
wave is 

A = ^ ( l - l n 2 ) . 

(c) Consider the extremes M -> oo and M -► 0. State separately (i) what 
values of vM(t) you would expect, and why; and (ii) what values are obtained 
from 1.10a. 



CHAPTER 2 

THE LINEARIZED THEORY OF ELASTICITY 

2.1. Introduction 

An elastic body has a natural undeformed state to which it returns when 
all external loads are removed. There are, therefore, conceptual advantages 
in describing the deformation of an elastic body within the context of the 
material description, where the independent variables are time and the 
reference position of a particle in the undeformed state. A detailed deriva-
tion would show that the general system of equations governing the three-
dimensional motion of an elastic body in the material description is strongly 
nonlinear. It is, however, a matter of wide experience that many wave 
propagation effects in elastic solids can adequately be described by a 
linearized theory. 

For a one-dimensional geometry the general theory, as well as the 
linearized theory and the conditions for linearization, were discussed in 
chapter 1. To treat in some detail the nonlinear theory and the corresponding 
linearization in a three-dimensional setting falls outside the scope of this 
book. We will thus restrict ourselves to the remark that for the material 
description the linearization is justifiable if the spatial gradients of the 
displacement components are much smaller than unity and if all the com-
ponents of the Cauchy stress tensor are of the same order of magnitude. If, 
moreover, the time derivatives of the displacement components are small 
enough, the convective terms in the spatial description of the velocity and the 
acceleration may be neglected. The differences between the material and 
the spatial descriptions of the motion then disappear and it suffices to 
employ one system of dependent and independent field variables. 

The linearized theory of elasticity has been the subject of several treatises. 
For a detailed treatment we refer to the book by Sokolnikoff.1 The basic 
equations are, however, briefly summarized in this chapter for the purpose 
of reference. Some topics which are particularly relevant to dynamic 

1 I. S. Sokolnikoff, Mathematical theory of elasticity. New York, Mc-Graw-Hill Book 
Co. (1956). 
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problems are discussed in more detail. We also include a summary of the 
linearized equations in rectangular, spherical and cylindrical coordinates. 
The chapter is concluded with a brief discussion of the governing equations 
for an ideal fluid. 

2.2. Notation and mathematical preliminaries 

Physical quantities are mathematically represented by tensors of various 
orders.2 The equations describing physical laws are tensor equations. 
Quantities that are not associated with any special direction and are measured 
by a single number are represented by scalars, or tensors of order zero. 
Tensors of order one are vectors, which represent quantities that are char-
acterized by a direction as well as a magnitude. More complicated physical 
quantities are represented by tensors of order greater than one. Throughout 
this book light-faced Roman or Greek letters stand for scalars, Roman 
letters in boldface denote vectors, while lower case Greek letters in boldface 
denote second-order tensors. 

2.2.1. Indicia! notation 

A system of fixed rectangular Cartesian coordinates is sufficient for the 
presentation of the theory. In indicial notation, the coordinate axes may be 
denoted by Xj and the base vectors by ij, where j = 1, 2, 3. In the sequel, 
subscripts assume the values 1, 2, 3 unless explicitly otherwise specified. If 
the components of a vector u are denoted by uj9 we have 

u = w1i1+w2i2 + w3i3. (2.1) 

Since summations of the type (2.1) frequently occur in the mathematical 
description of the mechanics of a continuous medium, we introduce the 
summation convention, whereby a repeated subscript implies a summation. 
Eq. (2.1) may then be rewritten as 

u = Ujij. (2 .2) 

As another example of the use of the summation convention, the scalar 
product of two vectors is expressed as 

u - v = UJVJ = uivi + u2v2 + u3v3. (2.3) 

2 As a reference for the elements of vector and tensor analysis used in this section we 
refer to H. Jeffreys, Cartesian tensors. Cambridge, University Press (1931). 



48 THE LINEARIZED THEORY OF ELASTICITY [Ch. 2, § 2.2. 

As opposed to the free index in uj9 which may assume any one of the values 
1, 2, 3, the index j in (2.2) and (2.3) is a bound index or a dummy index, 
which must assume all three values 1, 2 and 3. 

Quantities with two free indices as subscripts, such as rij9 denote com-
ponents of a tensor of second rank T, and similarly three free indices define 
a tensor of rank three. A well-known special tensor of rank two is the 
Kronecker delta, whose components are defined as 

*» = 0 if i * ; . ( 2 - 4 ) 

A frequently-used special tensor of rank three is the alternating tensor, 
whose components are defined as follows: 

+ 1 if ijk represents an even permutation of 123 

eijk = 0 if any two of the ijk indices are equal (2.5) 

— 1 if ijk represents an odd permutation of 123. 

By the use of the alternating tensor and the summation convention, the 
components of the cross product h = u AV may be expressed as 

hi = eijkUjVk. (2.6) 

In extended notation the components of h are 

h\ = u2v3 — u3v2 

h2 = u3v1-u1v3 

h2 = ulv2 — u1v1. 

2.2.2. Vector operators 

Particularly significant in vector calculus is the vector operator del (or 
nabla) denoted by V, 

. d . d . d .^ _N 
= ' i — + ' 2 — + » 3 — • (2 .7) 

dxl ox2 ox3 

When applied to the scalar field f(xx, x2, x3), the vector operator V yields 
a vector field which is known as the gradient of the scalar field, 

, f „ . of df _ df 
grad f = Vf = ix h i2 h i3 — . 

dx1 dx2 dx3 
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In indicial notation, partial differentiation is commonly denoted by a comma, 
and thus 

gradf = Vf = ipfp. (2.8) 

The appearance of the single subscript in f p indicates that f p are the 
components of a tensor of rank one, i.e., a vector. 

In a vector field, denoted by u(x), the components of the vector are 
functions of the spatial coordinates. The components are denoted by 
ui(xi> x2> x3)- Assuming that functions Ui(xl9 x2,x3) are differentiate, 
the nine partial derivatives dui(x1, x2, x3)/dXj can be written in indicial 
notation as ui%j. It can be shown that utj are the components of a second-
rank tensor. 

When the vector operator V operates on a vector in a manner analogous 
to scalar multiplication, the result is a scalar field, termed the divergence 
of the vector field u(x) 

divu = V- u = uiyi. (2.9) 

By taking the cross product of V and 11, we obtain a vector termed the curl 
of u, denoted by curl u or V A U. If q = V A a, the components of q are 

<l\ = *ijkUk,j- (2-10) 

The Laplace operator V2 is obtained by taking the divergence of a gradient. 
The Laplacian of a twice differentiable scalar field is another scalar field, 

div gradf = V • Vf = f £i. (2.11) 

The Laplacian of a vector field is another vector field denoted by V2II 

V2K = \ ' \ u = uPtjJip. (2.12) 

2.2.3. Gauss" theorem 

We close this section with the statement of the most important integral 
theorem of tensor analysis. This theorem, which is known as Gauss' 
theorem, relates a volume integral to a surface integral over the bounding 
surface of the volume. Consider a convex region B of volume V, bounded 
by a surface S which possesses a piecewise continuously turning tangent 
plane. Such a region is said to be regular. Now let us consider a tensor field 
TjklmmmP, and let every component of xjkl_p be continuously differentiable 
in B. Then Gauss' theorem states 

*jki...P,t<lV = ritTju.^pdA, (2.13) 
J v J s 
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where nt are the components of the unit vector along the outer normal to 
the surface S. If eq. (2.13) is written with the three components of a vector 
u successively substituted for rjkl _ ,,, and if the three resulting equations 
are added, the result is 

I UitidV = I niUidA. (2.14) 

Eq. (2.14) is the well-known divergence theorem of vector calculus which 
states that the integral of the outer normal component of a vector over a 
closed surface is equal to the integral of the divergence of the vector over the 
volume bounded by the closed surface. 

2.2.4. Notation 

The equations governing the linearized theory of elasticity are presented in 
the following commonly used notation: 

position vector: x (coordinates x£) (2.15) 

displacement vector: u (components ut) (2.16) 

small strain tensor: g (components ei7) (2-17) 

stress tensor: T (components TI7) (2.18) 

2.3. Kinematics and dynamics 

2.3.1. Deformation 

Let the field defining the displacements of particles be denoted by u(x, t). 
As a direct implication of the notion of a continuum, the deformation of 
the medium can be expressed in terms of the gradients of the displacement 
vector. Within the restrictions of the linearized theory the deformation 
is described in a very simple manner by the small-strain tensor g, with 
components 

It is evident that ê - = sJi9 i.e., s is a symmetric tensor of rank two. It is 
also useful to introduce the rotation tensor o whose components are 
defined as 

cDij = ^uij-ujfi). (2.20) 

We note that w is an antisymmetric tensor, co0- = — Oj^ 
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2.3.2. Linear momentum and the stress tensor 

A basic postulate in the theory of continuous media is that the mechanical 
action of the material points which are situated on one side of an arbitrary 
material surface within a body upon those on the other side can be com-
pletely accounted for by prescribing a suitable surface traction on this 
surface. Thus if a surface element has a unit outward normal n we introduce 
the surface tractions *, defining a force per unit area. The surface tractions 
generally depend on the orientation of n as well as on the location x of the 
surface element. 

Suppose we remove from a body a closed region V+ S, where S is the 
boundary. The surface S is subjected to a distribution of surface tractions 
t(x, t). Each mass element of the body may be subjected to a body force 
per unit mass, f(x, t). According to the principle of balance of linear 
momentum, the instantaneous rate of change of the linear momentum of 
a body is equal to the resultant external force acting on the body at the 
particular instant of time. In the linearized theory this leads to the equation 

I tdA + pfdV = I pudV. (2.21) 
J s J v J v 

By means of the "tetrahedron argument," eq. (2.21) subsequently leads to 
the stress tensor T with components ikl, where 

U = rhink. (2.22) 

Eq. (2.22) is the Cauchy stress formula. Physically xkl is the component 
in the ^/-direction of the traction on the surface with the unit normal ik. 

By substitution of tt = rklnk9 eq. (2.21) is rewritten in indicial notation as 

\zklnkdA+ f pfidV = f putdV. (2.23) 
J S *J V J V 

The surface integral can be transformed into a volume integral by Gauss' 
theorem, eq. (2.13), and we obtain 

h (?ki.k+pfi-P*i)W = 0. (2.24) 

Since V may be an arbitrary part of the body it follows that wherever the 
integrand is continuous, we have 

*ki,k + pfi = P*i- (2.25) 

This is Cauchy's first law of motion. 
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2.3.3. Balance of moment of momentum 

For the linearized theory the principle of moment of momentum states 

j(x A t)dA + J (x Af)pdV = j p ~ (x A A)dK 

Simplifying the right-hand side and introducing indicial notation, this 
equation can be written as 

ekimxitmdA+ pe^xJ^V = umdV. (2.26) 

Elimination of tm from the surface integral and the use of Gauss' theorem 
result in 

1 s Jv 

By virtue of the first law of motion, eq. (2.26) then reduces to 

Jl 
or 

This result implies that 
tlm^-Cml, (2.27) 

i.e., the stress tensor is symmetric. 

2.4. The homogeneous, isotropic, linearly elastic solid 

2.4.1. Stress-strain relations 

In general terms, the linear relation between the components of the stress 
tensor and the components of the strain tensor is 

xij == Cijkl8kl> 
where 

Cijkl = Cjikl — Cklij = Cijlk-

Thus, 21 of the 81 components of the tensor Cijkl are independent. The 
medium is elastically homogeneous if the coefficients Cijkl are constants. 
The material is elastically isotropic when there are no preferred directions 
in the material, and the elastic constants must be the same whatever the 
orientation of the Cartesian coordinate system in which the components of 
x{j and Sij are evaluated. It can be shown that elastic isotropy implies that 
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the constants Cijkl may be expressed as 

Cijki = A$ij<>ki + Kdik<>ji + $iidjk)> 

Hooke's law then assumes the well-known form 

*tj = **kk8ij+2l*u. (2.28) 

Eq. (2.28) contains two elastic constants X and \i, which are known as 
Lame's elastic constants. 

Putting./ = / in eq. (2.28), thus implying a summation, we obtain 

T„ = (3X + 2ii)sU9 (2.29) 

where we have used 5H = <5n+<522 + (533 = 3. By substituting eit = 
Tu/(3X + 2fi) into (2.28) and solving for eu, we obtain the strains in terms 
of the stresses as 

'■'--mtwz"+T/"- ("0) 

It is clear that s0- can be uniquely determined by %Vj only if 

\i ^ 0 and 3A + 2/z # 0. 

In order not to have zero strain for a finite stress we should also have 

|/*| < oo and |3A + 2ju| < oo. 

By considering the special state of stress defined by T1 2 # 0, all other 
v.. = 0, which defines a state of simple shear, we identify \i as the shear 
modulus which relates r12 and s12 by T1 2 = 2fis12. Since experimental 
observations show that for small deformations T1 2 and e12 have the same 
direction, we may state 

PL > 0 . 

Another special state of stress, known as hydrostatic pressure, is defined by 
T0' = —P$ij- By employing eq. (2.29) we find/? = —Bs^, where B = X+%p, 
is known as the modulus of compression or the bulk modulus. For in-
finitesimal deformation ekk denotes the volume change of an element. Since 
a hydrostatic pressure should reduce the volume of a body, we should have 
B > 0, or 

3A + 2/Z > 0. 

The foregoing observations on the elastic constants pu and 3X + 2fi may now 
be summarized as 

0 < 3A + 2/Z < oo, 0 < \i < oo. (2.31) 



54 THE LINEARIZED THEORY OF ELASTICITY [Ch. 2, § 2.4. 

2.4.2. Stress and strain deviators 

The stress tensor can be written as the sum of two tensors, one representing 
a spherical or hydrostatic stress in which each normal stress component is 
%zkk and all shear stresses vanish. The complementary tensor is called the 
stress deviator, denoted by su. Thus, the components of the stress deviator 
are defined by 

*u = lij-frkktij- ( 2 -32) 

In the same manner we can define the strain deviator etj by 

eu = £ij-iekktij> ( 2 - 3 3 ) 

From eq. (2.28) it can now quite easily be shown that the following simple 
relation exists between s^ and etj: 

stj = 2fieij9 (2.34) 

where \i is the shear modulus. In addition we also have, according to (2.29), 

\xkk = Bekk9 (2.35) 
where 

B = X + %pi (2.36) 

is the bulk modulus, which came up earlier in the discussion of the state of 
hydrostatic pressure. Eqs. (2.34) and (2.35) are completely equivalent to 
Hooke's law (2.28), and these equations may thus also be considered as 
the constitutive equations for a homogeneous, isotropic, linearly elastic solid. 

Other elastic constants that often appear in linear elasticity are Young's 
modulus E and the Poisson's ratio v. A number of useful relationships among 
the isotropic elastic constants are summarized in table 2.1. 

TABLE 2.1 

Relationships among isotropic elastic constants 

h 

E 

E,v 

Ev 

( l + v ) ( l - 2 i 0 

E 

2(1 +v) 

E 

E 

3(1 -2v) 

E, ju 

fx{E—2fj) 

3fj,-E 

E 

IxE 

E-2p 

X,fJL 

x 

I1 

^(3A+2^) 

, 2 

A 

2fi 2(A+A0 
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2.4.3. Strain energy 

By the definition of the strain energy density °l£, we have 

d ^ = Tydfiy. 

In terms of the stress and strain deviators d<% assumes the form 

d ^ = (siJ + &kkSij)d(eij + ±eu8ij), 
which reduces to 

Use of eqs. (2.34) and (2.35) then leads to the integrated form 

& = i*(s*k)2 + M*y*y> 

where it is assumed that °U vanishes in the undeformed reference state. 
It is now clear that the conditions on \i and 3A + 2ju as stated by eq. (2.31) 
imply that °U is positive semi-definite 

^ ^ 0. (2.37) 

One can also take a different point of view and state (2.31) as a necessary 
and sufficient condition for the required positive definiteness of the strain 
energy function. 

By consulting table 2.1 it can be checked that the following conditions are 
equivalent to (2.31): 

E > 0 and - 1 < v < | . 

The isotropic strain energy density function can be written in the alternative 
form 

* = ^ M 2 + ^yfiy. (2.38) 

2.5. Problem statement in dynamic elasticity 

We consider a body B occupying a regular region V in space, which may be 
bounded or unbounded, with interior V, closure V and boundary S. The 
system of equations governing the motion of a homogeneous, isotropic, 
linearly elastic body consists of the stress equations of motion, Hooke's 
law and the strain-displacement relations: 

*ijj+Pfi=pui (2.39) 

*tj = ̂ Sij + 2/iBtj (2.40) 
and 

fiy = ± K y + «!/.i)> (2.41) 
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respectively. If the strain-displacement relations are substituted into Hooke's 
law and the expressions for the stresses are subsequently substituted in the 
stress-equations of motion, we obtain the displacement equations of motion 

Vui,jj + (* + v)uj,ji+Pfi = P*i- (2.42) 

Eqs. (2.39)-(2.42) must be satisfied at every interior point of the undeformed 
body B, i.e., in the domain V. In general, we require 

ut(x, t) e V2(Vx T) n ^ ( F x T) (2.43) 

/ i f r O e ^ F x r ) , (2.44) 

where T is an arbitrary interval of time. The class of functions defined by 
^(R) consists of all tensor-valued functions of any order that are defined 
and continuous on a subset defined by R. For a positive integer, ^"(R) 
consists of all functions in ^(R) whose partial derivatives of order up to 
and including n exist on the interior of R, and there coincide with functions 
belonging to ^(R). If the displacements do not satisfy the smoothness 
requirements (2.43), separate relations must be satisfied by the discon-
tinuities. 

On the surface S of the undeformed body, boundary conditions must 
be prescribed. The following boundary conditions are most common: 

(i) Displacement boundary conditions: the three components ut are 
prescribed on the boundary. 

(ii) Traction boundary conditions: the three traction components tt are 
prescribed on the boundary with unit normal n. Through Cauchy's formula 

U = ty/i,, (2.45) 

this case actually corresponds to conditions on three components of the 
stress tensor. 

(iii) Displacement boundary conditions on part Sx of the boundary and 
traction boundary conditions on the remaining part S—Sx. 

Other conditions are possible on the boundary of the body. In the dis-
cussion of the uniqueness theorem in chapter 3 the boundary conditions 
will be stated in detail. 

To complete the problem statement we define initial conditions; in V 
we have at time t = 0 

ufa 0) = iii(x) 

ui(x,0+) = °vi(x). 
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2.6. One-dimensional problems 

If the body forces and the components of the stress tensor depend on one 
spatial variable, say xt, the stress-equations of motion reduce to 

iiui+Pfi = P»i- (2.46) 

Three separate cases can be considered. 

Longitudinal strain. Of all displacement components only the longitudinal 
displacement u1{x1, t) does not vanish. The one strain component is ex l = 
dujdx1. By employing (2.28) the components of the stress tensor are 
obtained as 

x n = 0* + 2ju)wlfl,T22 = T 3 3 =Aulil9 (2.47) 

and the equation of motion is 

(A + 2Ai)wl j l l+p/1 = pu\. (2.48) 

Longitudinal stress. The longitudinal normal stress xll9 which is a function 
of xx and t only, is the one nonvanishing stress component. Equating the 
transverse normal stresses T 2 2 and T 3 3 to zero, we obtain the following 
relations 

£22 = £33 = - — -f in = -v*u, (2.49) 
2(A+/i) 

where v is Poisson's ratio. Subsequent substitution of these results in the 
expression for T n yields 

*ii=E*ii, (2.50) 
where 

A + /J 

The constant E is known as Young's modulus. The equation of motion 
follows by substitution of (2.50) into (2.46). Wave propagation in one-
dimensional stress was considered in section 1.5. 

Shear. In this case the displacement is in a plane normal to the jq-axis, 

u = u2(xx,t)i2 + u3(xl9t)i3. 
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The stresses are 

Clearly, the equations of motion reduce to uncoupled wave equations for 
u2 and «3, respectively. 

2.7. Two-dimensional problems 

In two-dimensional problems the body forces and the components of the 
stress tensor are independent of one of the coordinates, say x3. The stress 
equations of motion can be derived from (2.39) by setting d/dx3 = 0. We 
find that the system of equations splits up into two uncoupled systems. 
These are 

xH,p+Ph =P«3 (2.52) 
and 

**M+Pf* = P"«- (2-53) 

In eqs. (2.52) and (2.53), and throughout this section, Greek indices can 
assume the values 1 and 2 only. 

2.7.7. Antiplane shear 

A deformation described by a displacement distribution u$(xl9x29t) is 
called an antiplane shear deformation. The corresponding stress com-
ponents follow from Hooke's law as 

Eliminating r3/J from eqs. (2.52) and (2.54), we find that u3(xl9x291) is 
governed by the scalar wave equation 

Ws.n+Pf* = P " 3 - (2-55) 

Pure shear motions governed by (2.55) are usually called horizontally 
polarized shear motions. 

2.7.2, In-plane motions 

It follows from eq. (2.53) that the in-plane displacements ua depend on 
xY, x2 and / only. With regard to the dependence of w3 on the spatial coor-
dinates and time, two separate cases are described by eq. (2.53). 
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Plane strain. In a deformation in plane strain all field variables are in-
dependent of x3 and the displacement in the x3-direction vanishes identical-
ly. Hooke's law then yields the following relations: 

T*p = Auy.-Afi + Kui.p + Ui,,*) (2-56) 

*3 3 = ^ y > y , (2.57) 

where Greek indices can assume the values 1 and 2 only. 
Elimination of xxfi from (2.53) and (2.56) leads to 

M ^ ^ + ^ + ^ H . ^ + p / a =pw*- (2.58) 

Eq. (2.58) can of course also be derived directly from (2.42) by setting 
1/3 = 0 and d/dx3 == 0. 

Plane stress. A two-dimensional stress field is called plane stress if T 3 3 , T 2 3 

and T 1 3 are identically zero. From Hooke's law it follows that e33 is related 
to £ n + e 2 2 by 

£33 = - - — W y y . (2.59) 

Substitution of (2.59) into the expressions for ta/? yields 

Substituting (2.60) into (2.53), we obtain the displacement equations of 
motion. As far as the governing equations are concerned, the difference 
between plane strain and plane stress is merely a matter of different constant 
coefficients. It should be noted that (2.59) implies a linear dependence of 
u3 on the coordinate x3. The case of plane stress is often used for an ap-
proximate description of in-plane motions of a thin sheet. 

The results of this section show that wave motions in two dimensions 
are the superposition of horizontally polarized motions and inplane motions. 
These motions are governed by uncoupled equations. 

2,8. The energy identity 

Surface tractions and body forces transmit mechanical energy to a body. 
The rate of work of external forces is called the power input. For a body 
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B occupying a regular region V with boundary S, the power input may be 
expressed in the form 

P = L M ^ f pMidV, (2.61) 

where the summation convention must be invoked. By employing Cauchy's 
stress formula tx = T^W,-, and by a subsequent application of Gauss' 
theorem, this expression may be rewritten as 

P = jl(?tj*th + pfi*tW. (2.62) 

To further evaluate (2.62) we decompose uitj into 

*u = £ij + 6>ij> (2.63) 

where s^ and a>u are defined by eqs. (2.19) and (2.20), respectively. Since 
the contraction of a symmetric and an antisymmetric tensor vanishes, 
tijiiij may be written as 

T i A ; = T*A'- (2-64) 

By virtue of (2.64) and the equation of motion (2.39), the expression for 
the power input then reduces to 

P = f pfi | li |dK+ f TyBydK (2.65) 

The kinetic energy of the body is defined as 

K = ±JpM,dK, (2-66) 

and it thus follows that the power input may be rewritten as 

» dK f - J I* 

dr J K 

If the material is linearly elastic the total strain energy of the body is 

tf - i f TyfiydK (2.67) 

The time derivative of U can be evaluated as 

— = i (*iyCiy + ^ e v ) d ^ = Tiyeyd7, 
df %/K « > K 
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where we have used Hooke's law. For a linearly elastic body we thus find 

P = ^ + ^ . (2.68) 
dt dt 

Eq. (2.68) shows that for an elastic body the energy flowing into the body 
through the activity of the surface tractions and the body forces is converted 
into kinetic energy and strain energy. 

For a body with a quiescent past, (2.68) can be integrated over time 
between the limits 0 and t, to yield the energy identity 

nr(jc, s) • «(*, s)dAds + \ \ pf(x, s) • u(x, s)dVds = K(t)+ U(t), (2.69) 

where K{t) and U(t) are the kinetic and the strain energies of the body, 
respectively. 

2.9. Hamilton's principle 

2.9.1. Statement of the principle 

The dynamic behavior of homogeneous systems in space, including continua, 
can be specified by a single function, a Lagrangian density «J§?, which is a 
function of, say, n local dependent variables ^ , ^ 2 , . . . , ^ , and their first 
derivatives 

4}-*f, and qu-
dJl. (2.70) 

dt 0Xj 

Thus, 

& = &{*i,ii,<lu). (2.71) 

Generally there is no direct dependence of 3? on the independent variables 
Xj and /; there is only an indirect dependence since qi9 q( and qtj are func-
tions of Xj and /. 

Hamilton's principle states that of all possible paths of motion between 
two instants tt and t2, the actual path taken by the system is such that the 
integral over time and space of the Lagrangian density JSf is stationary. An 
analogous but more usual statement of the principle is that the variation 
of the integral vanishes for any changes Sqt which vanish at t = tl and 
t = t2, and on the boundary of the arbitrary volume V, 

J tt J) 
tS?dxidx2dx3dt = 0. (2.72) 

v 
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It is well established in the calculus of variations3 that the condition that 
the integral 

J ti J v 
&dxldx2dx3dt (2.73) 

shall have a stationary value with respect to all possible values for which 
the variables t, xi9 x2 and x3 have an unchanged range of integration is the 
existence of the set of Euler equations 

dt 

mdsr\ 3 

+ 
Ld4iJ 

i A \J*_] _ ** . o. (2.74) 
j = idxj ld(qitJ)J cqt 

There is one equation for each value of/ (/ = 1, 2, 3). This set of equations 
comprises the equations of motion of the system. 

If matter is continuously distributed and if the system is conservative, the 
Lagrangian density J?7 equals the kinetic energy density minus the potential 
energy density, 

se = jfr-<%. (2.75) 

Thus, for the linearized theory of elasticity we have 

JS? = ipd l i i J - [ iA(6 t t )
2 + /i6yfiy], (2.76) 

and J*? depends on ui and uitj only. 
For an elastic body of finite dimensions subjected to body forces and 

surface tractions the statement of Hamilton's principle must be modified to 

S r I (X'-<W)dVdt + j 2dWedt = 0. (2.77) 
J ti J v J tj. 

Here, dWe denotes the work done by the body forces and surface tractions 
when the displacement is varied. 

Hamilton's principle, as enunciated by eq. (2.72), is usually employed to 
obtain a system of equations of motion from given energy densities. Thus, 
by means of the Euler eqs. (2.74), the displacement equations of motion 
of a homogeneous, isotropic, linearly elastic solid can be derived by em-
ploying (2.76). An application of the principle is presented in section 6.11. 
It is, however, also instructive and of interest to work in the opposite direc-
tion and to construct Hamilton's principle by taking the stress equations of 
motion, eq. (2.39), as point of departure. 

3 P. M. Morse and H. Feshbach, Methods of theoretical physics. New York, McGraw-
Hill Book Company, Inc. (1953), p. 275. 
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2.9.2. Variational equation of motion 

We consider an elastodynamic problem for a body subjected to specified 
body forces and specified surface tractions. The boundary surface S consists 
of two parts, St and Su, with the following boundary conditions: 

over St: the surface traction t is prescribed, 
over Su: the displacement u is prescribed. 
Let us now consider a class of displacements Su that are consistent with 

the external constraints on the body but that are otherwise arbitrary. Thus 
Su must vanish on Su, but Su is arbitrary over St. Furthermore, Su as a 
function of xt and / is assumed to be thrice differentiate. The arbitrary 
displacements Su are called virtual displacements. The terminology "virtual" 
implies that the virtual displacements are not actual displacements. 

The virtual displacements that are imposed on the body cause the external 
forces and the surface tractions to do virtual work. If pf are the body forces 
per unit volume, the virtual work is 

SW = pfiSuidV + tiSutdA. (2.78) 
Jv J st 

The surface integral in this expression can be transformed into a volume 
integral by employing Cauchy's stress formula tt = Ttjnjy and by a sub-
sequent application of Gauss' theorem, see eq. (2.13). We obtain 

/» 

ttSuM = M " . ) . ; d F 

St JV 

(2.79) 

= (TijjSUi + ZijSuijWV. 

By employing the decomposition 

and by taking note that Sz^ and Sco^ are symmetric and antisymmetric, 
respectively, we conclude in view of the symmetry of TI7 

TuduifJ = TijSSij. 

By virtue of the stress equations of motion, the virtual work may then be 
written as 

SW = I piiiSuidV+ I TijSeijdV. (2.80) 
J V J V 

Equating the two expressions for the virtual work, (2.78) and (2.80), yields 
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the variational equation of motion 

pfi5uidV+ uSuidA = pui8uidV + Tl 7^l 7dK (2.81) 
J v J st J v J v 

2.9.3. Derivation of Hamilton's principle 

Let us integrate the variational equation of motion with respect to time 
between two arbitrary instants t0 and tl9 

I W d f = I dr I xiJ8eijdV+ | 'dt | pu^u^V. (2 .82) 
J t0 J t0 J V J t0 J V 

By inverting the order of integration, and integrating by parts over t, the 
second term can be written as 

/ = j pu.diii l dV- j dV j ' -(pdu^Uidt. 
J V |(o J V J t0 dt 

Now we impose the restriction that <5wf vanishes identically at all points 
of the body at times t = t0 and / = tl. Then 

/ = - I dF I V - (p^dt = - pdV 'u^Uidt 
J v J t0 dt Jv J t0 

= - \SKdt9 
Jt0 

where K is the kinetic energy 

K = tfdV = i\ putney. 

Tf the body is perfectly elastic we have a strain energy density ^(e^-), such 
that 

"*7 

Then 

v— . (2.83) 

f Ty&ydK = S\ WAV = 51/, 
J V J V 
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and eq. (2.82) reduces to 

S\ (U-K)dt = 6Wedt. (2.84) 

Eq. (2.84) is Hamilton's principle for a perfectly elastic body. 

2.10. Displacement potentials 

In the absence of body forces the displacement equations of motion follow 
from (2.42) as 

IMijj + il + tiUjji = put. (2.85) 

As usual, the summation convention is implied. This system of equations 
has a disadvantageous feature in that it couples the three displacement 
components. The system of equations can of course be uncoupled by 
eliminating two of the three displacement components through two of the 
three equations, but this results in partial differential equations of the sixth 
order. A far more convenient approach is to express the components of the 
displacement vector in terms of derivatives of potentials. These potentials 
satisfy uncoupled wave equations. 

In vector notation the displacement-equation of motion (2.85) can be 
written as 

/iV2ii + (A + /*)VV • u = pu. (2.86) 

Let us consider a decomposition of the displacement vector of the form 

u =V<p + V A f (2.87) 

Substitution of the displacement representation (2.87) into eq. (2.86) yields 

/zV2[V(p + VA^] + (A + /*)VV-[V<p + VAi/f] = p — [V<? + V A ^ ] . 
dt2 

Since V • \q> — V2(p and V • V A \j/ = 0, we obtain upon rearranging terms 

V[(A + 2/i)V2<p-p#] + V A | > V V - P # ] = 0. (2.88) 

Clearly, the displacement representation (2.87) satisfies the equation of 
motion if 

VV = I ip (2.89) 

and 

VV = 1 if,, (2.90) 
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where 

C 2 = A + 2M a n d c2=» (2.91a, b) 

P P 

Eqs. (2.89) and (2.90) are uncoupled wave equations. 
Although the scalar potential cp and the components of the vector potential 

xjf are generally coupled through the boundary conditions, which still 
causes substantial mathematical complications, the use of the displacement 
decomposition generally simplifies the analysis. To determine the solution 
of a boundary-initial value problem one may simply select appropriate 
particular solutions of eqs. (2.89) and (2.90) in terms of arbitrary functions 
or integrals over arbitrary functions. If these functions can subsequently be 
chosen so that the boundary conditions and the initial conditions are satis-
fied, then the solution to the problem has been found. The solution is unique 
by virtue of the uniqueness theorem, which will be discussed in chapter 3. 

It should be noted that eq. (2.87) relates the three components of the 
displacement vector to four other functions: the scalar potential and the 
three components of the vector potential. This indicates that q> and the 
components of \// should be subjected to an additional constraint condition. 
Generally the components of }// are taken to be related in some manner. 
Usually, but not always, the relation 

V - ^ = 0 

is taken as the additional constraint condition. This relation has the ad-
vantage that it is consistent with the Helmholtz decomposition of a vector, 
which is discussed in section 3.5. Moreover, it will be shown in section 3.4 
that for an unbounded medium subjected to a distribution of body forces, 
and for arbitrary initial conditions, the condition V • \// = 0 is a sufficient 
condition for the elastodynamic displacement to be of the form 

U = \(p + V A l//. 

2.11. Summary of equations In rectangular coordinates 

In indicial notation the equations governing the linearized theory of elasticity 
for a homogeneous, isotropic medium are given in section 2.5. Many con-
tributions to the field of elastic wave propagation employ, however, x, y 
and z as coordinates rather than x1, x2 and x3. In terms of an x, >>, z 
system, where the displacements in the coordinate directions are denoted by 
w, v and w, respectively, the strain-displacement relations are 
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du dv 

dx dy 

du dv 
^Cxy *-Zyx ' ? 

dv dw 
2eyz = 2ezy = — H , 

dz dy 
_ _ dw du 
2ezx = 2EXZ = — H . 

dx dz 

dw 
(2. 92a, b, c) 

(2.93) 

(2.94) 

(2.95) 

The stress-strain relations, as represented by Hooke's law, result in the 
following expressions 

du 
= k — + — + — ) +2/z 

\8x dy dz 1 
. (du dv dw\ 

= A — + — + — 1 +2fi 
\dx dy dz I 

, /3M dv dw\ 

\(3x (3y <3z/ 

/dw diA 

(dv dw\ 

/<3w dw\ 

3x 

ay 

3w 

dz 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

The relations between the components of the displacement vector and the 
scalar and vector potentials are represented by (2.87). In the .xyz-system 
we have 

B , 3 ? + ^ _ 3 | f > > ( 2 1 0 2 ) 

dx dy dz 

p . a ? _ ^ + a^f (2103) 
dy dx dz 

w = ^ +#,_#*_ ( 2 1 0 4 ) 

dz dx dy 

The scalar potential cp and the components il/X9\l/y and \//z of the vector 
potential \jf satisfy the equations 
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vV, 

wnere 

cr at2 

c\ dt2 

„2 a2 a2 d2 

5x2 dj>2 5z2 

(2.105) 

= 1 T T (2.106a, b,c) 
cr of 

(2.107) 

By substituting (2.102)-(2.104) into (2.96)-(2.101), the stresses may be 
written in terms of the displacement potentials as 

- ^ ♦ * I 3 ♦£(£-£)] <-8> 

t „ . v . „ r2 i> + i m - * ) _£(?*._ #A-I (2.m) 
L <5x3>> d)>\d)> dz J dx\dx dz J A 

tyz. Tzy = „ r2 i ! t _ i (**> - m + 1 td.h _ *+>)] (2.ii2) 
L dydz dz\dx dz 1 dy\dx dy/J 

= /i [ 2 ^ + 1 ( ^ - ^ + 1 ( ^ - ^ ) 1 . (2.113) 
L dxdz dz\dy dz } dx\dx dy/J 

2.12. Orthogonal curvilinear coordinates 

For the analysis of specific problems of elastic wave propagation, orthogonal 
curvilinear coordinates often lead to simplifications of the mathematical 
treatment. The simplifications materialize if in a suitably chosen system of 
curvilinear coordinates one of the coordinates is constant on a bounding 
surface of the body. For example, for waves emanating from a spherical 
cavity of radius a in an unbounded medium, the forcing conditions on the 
surface of the cavity are in spherical coordinates simply prescribed at r = a. 

By means of general tensor calculus, nonorthogonal curvilinear coor-
dinate systems of any dimension can be treated. Here we restrict the discus-
sion, however, to three-dimensional orthogonal curvilinear coordinates. Let 
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us consider a set of three independent functions q( of the Cartesian variables 

<li =4iOl>*2>*3)> (2-114) 

and let us assume that these equations may be solved for Xj in terms of qi9 or 

Xj = Xj{ql9q2iq3). (2.115) 

The three equations qt = ci9 where ct are constants, represent three families 
of surfaces whose lines of intersection form three families of curved lines. 
These lines of intersection will be used as the coordinate lines in our cur-
vilinear coordinate system. Thus, the position of a point in space can be 
defined by the values of three coordinates ql9 q2 and q3. The local coor-
dinate directions at a point are tangent to the three coordinate lines inter-
secting at the point. 

In an orthogonal coordinate system, which is considered in this section, 
the three coordinate directions are mutually perpendicular. We choose an 
orthonormal right-handed basis whose unit vectors el9e2 and e3 are 
respectively directed in the sense of increase of the coordinates qx, q2 and 
q3. The following well-known relations hold 

erej=Sij (2.116) 

et*ej = ek9 (2.117) 

where in (2.117) the indices i9j and k are in cyclic order. A major difference 
between curvilinear coordinates and Cartesian coordinates is that the 
coordinates ql9q2 and q3 are not necessarily measured in lengths. For 
example, in cylindrical coordinates qt = r9 q2 = 0, and q3 = x3. This 
difference manifests itself in the appearance of scale factors in the relation 
between the infinitesimal displacement vector dr and the infinitesimal 
variations dql9 dq2 and d#3, namely, 

dr = elh1dql + e2h2dq2 + e3h3dq3. (2.118) 

The scale factors h{ are in general functions of the coordinates q}. 
The unit vectors et generally vary in direction from point to point in 

space, and a careful examination of the partial derivatives d/dqj of the unit 
vectors et is consequently required. From the expression for dr, eq. (2.118), 
we have 

dr 
— = eihi (no summation, i = 1, 2 or 3). 
dqt 
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Since the order of differentiation may be changed in d2r/dq1 dq2, we have 

— (eihi) = -r-(eihil 
oql dq2 

or 
dh2 , de2 dhx . dex ,- ,^ N 

e2 —- +h2 —± = ci —- +hx — . (2.119) 
Hi Hi Hi Hz 

By taking the scalar product with e1 we obtain 

h2et •-* = -+, (2.120) 
Hi Hi 

where we have used (2.116), as well as the fact that in an orthogonal system 
ei ' (deilHi) = 0- By multiplying (2.119) scalarly by e3 we find 

W ^ - M a " ? 1 - (2.121) 
Hi ocii 

By permutation of the indices, two expressions analogous to (2.121) are 
found as 

M I •—* = M i ' ; r J . h1e2---l = h3e2- —^ . (2.122a, b) 
Hi Hz Hz d<li 

Now, by taking the derivatives of e3 • e2 = 0, el • e2 = 0 and ex • e3 = 0 
with respect to ql9 q3 and #2, respectively, and using the resulting equations 
as well as eqs. (2.122a, b), the following manipulations are directly veri-
fiable: 

de2 _ de3 _ ht del _ hx ^ de2 
C3 ' — C2 ' — — C2 * — Ci * 

Hi Hi h dq3 h3 dq3 

= *!±e .^h = -hi e .?£l=-e .^1 
h2 dq2 h2 dq2 dql 

The result shows that the inner product of e3 and de2/dq1 vanishes. Since 
it is also clear that the inner product of e2 and de2/dq1 vanishes, it is con-
cluded that de2jdql does not have components in the directions of e2 and 
e3, and it follows from (2.120) that 

de2 _ ex dhl 

dqv h2 dq2 

Five other relations of this form can be derived by permutation of the 
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indices, and the six results can be summarized as 

i ^ j : —- = — —J- (no summation). (2.123) 
Hj K Hi 

By employing (2.117) we can also write 

oex d , x de3 de2 
— = — ( ^ 2 A e 3 J = e2A e3 A — 
Hi Hi Hi Hi 

_ e3 dht e2 dhi 

h3 dq3 h2 dq2 

Two similar expressions can be derived for de2/dq2 and de3jdq3. In indicial 
notation we have 

det e: dht ek dht , . . ( . 
—- = — —- (no summation), (2.124) 
dqt hj dqj hk dqk 

where ij and k must be taken in cyclic order. 
All equations in Cartesian coordinates which do not involve space 

derivatives and which pertain to properties at a point carry over unchanged 
into curvilinear coordinates. If space derivatives are involved, however, 
equations do not directly carry over, since the differential operators such 
as the gradient, divergence, curl and the Laplacian assume different forms. 

We consider first the gradient operator V. When applied to a scalar q> 
it gives a vector V<p, with components which we call ft, f2 and f 3 . Thus 

\cp = flel+f2e2 + f3e3. 

The increment of q> due to a change of position dr is 

dq> = \<p -dr = hif1dql+h2f2dq2 + h3f3dq3, 

where (2.118) has been used. The increment dcp can also be written as 

d<p = -£ dq,+ -^- dq2+ - ^ dq3, 
Hi d(li Hz 

whence it can be concluded that 

V = liA + ^A + f 3 A . (2.125) 
ht dqx h2 dq2 h3 dq3 

If the operation (2.125) is applied to a vector w, we obtain 

V „ = l i ^ + £ i ^ - + f 2 ^ , (2.126) 
hi dqt h2 dq2 h3 dq3 
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which can be written out in more detail by using (2.123) and (2.124) 
The divergence of a vector u is 

diva = V • u = V • (u1el + u2e2 + u3e3) 

= V ' ("i«i) + V ' {u2e2) + \ • (u3e3). 

Since qt are independent coordinates we find, by using (2.125) 

e{ \qt = — (no summation). 

(2.127) 

(2.128) 

By writing the vector product of Sqx and \q2 we then find 

ei = hjhkVqjAVqk (no summation), 

where i,j and k are in cyclic order. Substituting this result for i = l,y = 2, 
A: = 3 into the first of (2.127), we obtain 

1 5 
'2 " 3 / 

(M1ft2ft3). 
h1h2h3 dqx 

The two other terms can be worked out in a similar manner, and thus 

v.—i-

The cw/7 operator of a vector u is 

" /-) / } r) 

— ( " 1 M 3 H ~~(u2h3h1)+ - - ^ M i ) 
- < ^ 1 ^ 2 ^ 3 

(2.129) 

V A U = V A ( W 1 A 1 V ^ 1 ) + V A ( W 2 / ? 2 V ^ ) + V A ( I / 3 / I 3 V ^ ) , 

where (2.128) has been used. By employing the rule on the curl of a product 
of a scalar and a vector we obtain for the first term 

V A ( W 1 / Z 1 V ^ 1 ) = 
d , , x e 3 

■ ( « i * i ) - ( w i ^ i ) -
M l 5^3 M l d?2 

The other two terms can be worked out in a similar manner, and thus 

V A H = 
1 

hlh2h3 

M i 

a 
dtfi 

M i 

fc2«2 

5 
dq2 

h2u2 

Ma 
d 

dq3 

h3u3 

(2.130) 
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The Laplace operator of a scalar can easily be derived by using (2.129) 
and (2.125). Thus 

~hl h2h3 dq>l 

hih2h3n = i dqn h„ dqj 
(2.131) 

The Laplacian of a vector is more complicated, and we will not write out 
the expression. It is noted, however, that by using 

V2
M = V ( V - W ) - V A V A M , 

and by employing the expressions for the gradient, the divergence and the 
curl, V2M can be obtained. 

2.13. Summary of equations in cylindrical coordinates 

In cylindrical coordinates we choose 

?i = r, q2 = 0, q3 = z. 

The corresponding scale factors and unit base vectors are 

K = i> 

« 1 = *r> 

h2 = r , 

e2 = e$9 

The following equations then follow from 

dqx 

dql 

dqx 

de] 

— = 'e, 
dq2 
de2 

dq2 

Hi 

h3 = i 

e3 = k. 

(2.123) and (2.124): 

^ 1 = 0 

, ^ = 0 
Hz 

These relations can now be used to write the expressions for the differential 
operators, which are given by (2.125)—(2.131). 

Denoting the displacement components in the r, 9 and z directions by 
u, v and w, respectively, the relations between the displacement components 
and the potentials follow from (2.87) as 

u = d-l + 1 dt:- _ W± (2.132) 
dr r dO dz 

v = l d l +
 dA-dh (2.133) 

r dO dz dr 
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dz r dr r dO 

where 

V,-±£. (,,35) 

and the Laplacian is defined as 

72 a2 1 d Id2 d2 

dr2 r dr r2 dO2 dz 
V2 = — + - - + - — + ^ - . (2.136) 

The components of the vector potential r̂ satisfy the equations 

r2 r2 39 c\ dt2 ' 

^ 1_3^=1 3 ^ 

r2 r2 39 c2 dt2 

*** = kd-7T' (2-139) 
c\ dt2 

In cylindrical coordinates the strain-displacement relations are given by 

du u 1 dv dw ,„ . Ar. f . 
sr = — , e0 = - + , ez = — (2.140a, b, c) 

dr r r d6 dz 
dv v 1 du ,_ , -4v 

2er, = 2e0r = + - — (2.141) 
dr r r od 

^ ^ I dw dv ,- , ^ x 

2edz = 2eze = - — + - (2.142) 
r 00 dz 

2e2r = 2srz = — + — . (2.143) 
dz or 

The stress-strain relations are of the forms 

. (du u 1 dv dw\ ^ du / . iAA, 

\or r r dd oz I dr 

( du u 1 dv dw\ ^ (u 1 dv\ M 1 , . X 

— + - + + — +2/z - + (2.145) 
dr r r dd dz/ \r r 80/ 
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. [du u 1 dv dw\ ^ dw ,^ „ , ,x 

Tr = x - + - + - - + - ) + 2 / 1 - (2.146) 
\or r r d# dz/ dz 

** = **(- + - - (2-147) 

(1 dw dv\ ,^ A . 

" - + - ) (2.148) 
r 09 czl 

<S + Tr) ' P-149) 

The stresses can be written in terms of the displacement potentials by sub-
stituting (2.132)-(2.134) into the relations (2.144)-(2.149). 

2.14. Summary of equations in spherical coordinates 

In spherical coordinates the orthogonal surfaces are the spheres r = const, 
the circular cones 9 = const, and the planes % = const (see figure 2.1). We 

Fig. 2.1. Spherical coordinates. 

choose the coordinates 

?i = r,q2 = 9, q3 = / , 

with scale factors 

and unit base vectors 

h{ = 1, h2 = r, h3 = r sin 9, 

el — er> e2 ~ e9i e3 ~~~ ex 

Eqs. (2.123) and (2.124) then yield 
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—- = 0, —- = ee, —- = ex sin 9 
dql dq2 dq3 

dey ^ de? de 2 = 0, —- = -er, — = excos6 
dq1 dq2 dq3 

—±-= 0, —- = 0, —- = -ersmQ-eecosQ. 
dql dq2 dq3 

Substitution of these expressions into (2.125)—(2.131) yields the expressions 
for the differential operators in spherical coordinates. 

Denoting the displacement components in the directions of increasing r, 
9 and x by w, y and w, respectively, the relations between displacements and 
potentials become 

dq> 1 r d .. . n. d\jje 

u = —- + — (ij/x sin 9)- — 
dr r sin 9 LdO dy -

w = 

1 dcp 

r d9 r Lsin 9 dx 

1 <fy , 1 [ d 

r sin 0 3# 

(2.150) 

» = - ^ + - r ~ ^ - - ( ^ (2.151) 
r Lsin 9 dy dr J 

3y r Ldr o9 A 

where 

V, - ± " - ? (1153) 1 ^ 

and the Laplacian V2 is defined as 

,2 I 8 { 2 d\ . 1 d ( . nd\ . 1 
r2— + ^ sing —) + , - . (2.154) 

2 dr \ 5r/ r2 sin 9 89 \ 89 r2 sin2 9 dy2 

Also 

vV,- 4*r- -T^-T ^(*•sin 0 ) " - r ^ ; T-x = 4 ^ r (2-155) ' -^ "Ar 5 OAo sin 9) ^ = — —r— 
r2 r2 sin 9 89 r2 sin 9 8X c\ 8t2 

VV.- - ^ V + 4: - - 4 ^ " - X = K d^T (2-156) 
r 2 s in 2 0 r2 39 r2 sin2 9 8X c\ 3t2 

Vty - ^* + 2 ^ + 2C0Sd ^tl = -^t* (2 157) 
* r2 sin2 0 r2 sin 0 3 Z

 r 2 sin2 9 dx c\ 3t2 
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The strain-displacement relations are 

du /* * ^̂ x 
er = - (2.158) 

dr 
1 dv u //% A ^N 

£„ = - - + - (2.159) 
r dO r 

ex = (— +u sin 9 + v cos 0} (2.160) 
r sin 0 \ dx / 

2% = 2exd = - — + — — - - w cos 0) (2.162) 
r 36 r sin 9 \dx I 

2exr = 2erx = — + (— - w s i n 0 | (2.163) 
dr r sin 0 \dy J 

From Hooke's law we find 

Tr = 2e + 2 / i - (2.164) 
dr 

(\ dv u\ 
T, = ^ + 2JI ( - — + - ) (2.165) 

zx = Ae + — — (— +usind + vcosO) (2.166) 

r sin 0 \ dx J 

*—*-> £♦;(*-)] <"*> 
^ —-'Es^.^-"-)] (2168) 

V- t r , -4^ + _ i_( | f -» s i „ ( , ) ] , (2.1,9) 
Ldr rs in0\dx /J 

e = — + + - + I— + usin0 + t;cos0) . (2.170) 
dr r dQ r r sin 0 \ dx 1 

The stresses are obtained in terms of the displacement potentials by sub-
stituting (2.150)-(2.152) into the relations (2.164)-(2.169). 

where 
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2.15. The ideal fluid 

It is a matter of experience that a fluid at rest or in uniform flow cannot 
sustain shear stresses. Hence the state of stress is purely hydrostatic. An 
ideal (nonviscous) fluid is a fluid which cannot sustain shear stresses, even 
when it is in motion. The state of stress in an ideal fluid is thus described by 

Ty = -p5tj9 (2.171) 

where p is the pressure, which satisfies the equation of state. When the 
equation of state is p = p(p), where p is the mass density, the ideal fluid is 
called an elastic fluid. For small disturbances from equilibrium which we 
are considering here, the equations of state follow directly from Hooke's 
law, eq. (2.28), by setting \i = 0. We find 

T n = T22 = T33 = Aekk = -p (2 .172) 

*12 = *13 = *23 = 0. ( 2 . 1 7 3 ) 

In liquids X is very large, whereas it has only moderate values for gases. 
Ignoring body forces the equations of motion for an ideal elastic fluid are 
in the linear approximation 

AVV-M =pi i . (2.174) 

It is convenient to introduce a scalar velocity potential <p by the relation 

u = Vcp. (2.175) 

Clearly eq. (2.174) is satisfied if 

V2cp = -2<p, (2.176) 
cF 

where 

c | = £ . (2.177) 

This wave equation holds for small disturbances propagating in an ideal 
elastic fluid. It finally follows from (2.172) and (2.176) that 

p = -AV-u = -pep. (2.178) 



CHAPTER 3 

ELASTODYNAMIC THEORY 

3.1. Introduction 

This chapter is concerned with the discussion of several formal aspects of 
the theory of dynamic elasticity and with general methods of solution of 
elastodynamic problems. Among the theorems that are proven, the unique-
ness theorem for the properly formulated boundary-initial value problem 
of elastodynamics is of primary importance. Another theorem states the 
dynamic reciprocal identity which relates two elastodynamic states of the 
same body. The dynamic reciprocal identity is of interest both as a vehicle 
for the development of further theoretical results and for the generation of 
solutions of problems. We also investigate in more detail the decomposition 
of the displacement vector which was introduced in section 2.10, and we 
prove a completeness theorem for the scalar and vector potentials. 

The scalar and vector potentials for the displacement field are governed 
by classical wave equations which have been studied in great detail in the 
mathematical literature. In sections 3.6 and 3.7 general integral representa-
tions for the solution of the classical wave equation are examined with a 
view toward determining the elastic wave motion generated by body forces 
in an unbounded medium. The displacement and stress fields due to a time-
dependent point load are determined in section 3.8. These fields which 
comprise the basic singular solution of elastodynamics are subsequently 
employed to derive general integral representations for the field variables in 
a bounded elastic body subjected to surface disturbances. The integral 
representations are, however, mainly of formal interest because the elasto-
dynamic response to surface disturbances is generally determined in a more 
efficient manner by direct applications of methods of analysis to the system 
of governing equations. Several methods of analysis are introduced by means 
of examples in the next chapter. The particularly useful methods based on 
the application of integral transform techniques are discussed in considerable 
detail in chapter 7. 

A general statement of the elastodynamic problem for a body B with 
79 
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interior V, closure Kand boundary S was given in section 2.5. For economy 
of presentation of the material of this chapter it is convenient to employ 
the definition of elastodynamic states, which was introduced by Wheeler 
and Sternberg.1 

Elastodynamic state: Consider a vector-valued function II(JC, t) and a 
tensor-valued function T(JC, i)9 both defined o n F x I , where Tis an arbitrary 
interval of time. We call the ordered pair 5f = [II, r] an elastodynamic state 
on V x T, with the displacement field u and the stress field T, corresponding 
to the body-force density/, the mass density p and the Lame elastic constants 
X and fi, if 

(a) ueV2(VxT)ntfl(VxT) (3.1) 

T G ^ ( F X T ) (3.2) 

fetf(VxT) (3.3) 

(b) p > 0, 0 < 3X + 2fi < oo, 0 < fi < oo (3.4) 

(c) on VxT, a, T , / , p, A and /i satisfy the equations 
Tijj+Pfi = P»i (3-5) 
T«i = to^Sij + iibuij + Uj^). (3.6) 

We write 
ST = [ « , T ] 6 ^ ( / , p , A , | x ; F x r ) . 

If in particular 
u = 0 on Fx (—oo, 0], 

where ( — oo, 0] is a subinterval of T, we say that £f is an elastodynamic state 
with a quiescent past, and we write 

ST = [II, T] = £0(f,p9l9ii;V). 

3.2. Uniqueness of solution 

It is not difficult to show that the solution of the elastodynamic problem 
formulated in section 2.5 satisfies the criterion of uniqueness for an ap-
propriate set of boundary conditions. The proof of uniqueness given in this 
section is essentially due to Neumann; it can also be found in this form in 
the book by Sokolnikoff.2 The proof is based on energy considerations. 

We consider a bounded body B occupying the regular region Fwith 
1 L. T. Wheeler and E. Sternberg, Archive for Rational Mechanics and Analysis 31 

(1968) 51. 
2 I. S. Sokolnikoff, Mathematical theory of elasticity. New York, McGraw-Hill Book 

Co., Inc. (1956), p. 87. 
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boundary S. The time interval is the half-open interval T+ — [0, oo). We 
state the following uniqueness theorem. 

Theorem 3.1: Let Sfr and 5?" be two elastodynamic states with the 
following properties: 

(a) ST = [u',T']e<?(f,p,X,fi;VxT+) 

ST" = [u",T"]e<?(f,p,A,ii;VxT + ) , 

i.e., both sets of displacements and stresses satisfy eqs. (3.5) and (3.6) and 
the requirements (3.1)—(3.4). 

(b) Both elastodynamic states have the same initial conditions, i.e., 

u{x) = u"(x), v'(x) = »"(*) for every xeV. 

(c) The boundary conditions of the two elastodynamic states satisfy the 
condition 

Jj (t'-t")-(u'-u")dA = 0 on SxT+ 

is 
Then 

9" = Sf" on VxT + 

or 
«'(*, t) = u"{xy t) and T'(JC, t) = x"(x91) on Vx T+. 

Proof. By virtue of the linearity of the problem it is clear that the set of 
solutions defined by 

u = «' — u", T = T' — T" (3.7) 

will satisfy eqs. (3.5) and (3.6) wi th / = 0. In view of supposition (b), the 
initial conditions on u and u are 

u = u = 0 for t ^ 0. (3.8) 

We now turn to the energy identity for a body with a quiescent past, which 
was derived as eq. (2.69) in section 2.8, and which states 

n r « < L 4 d s + f I f-udVds= K(t)+U(t), 
s J oJ v 

where K(t) and U(t) are the kinetic and the strain energies, respectively. 
From supposition (c) it now follows that 

/ : / . t • udAds = 0. 
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Since we also have f = 0, it is concluded that 

K(t)+U(t) = 0. 

Both the kinetic and the strain energies are, however, positive semidefinite, 
and thus 

K = U = 0. 
The first of these implies 

u = 0. 
Since u(x, 0) = 0, we conclude 

u(x, t) = 0. 

Hence the two solutions are identical and the proof of the theorem is 
completed. 

For a discussion of the uniqueness theorem for an unbounded domain 
we refer to the previously cited paper by Wheeler and Sternberg. 

The boundary conditions that will lead to a unique solution are implied 
in supposition (c). Obviously, if either the tractions or the displacements are 
prescribed, (c) is satisfied and the solution is unique. These boundary 
conditions are stated under (i), (ii) and (iii) in section 2.5. It is noted, 
however, that mixed boundary conditions whereby over the whole or part 
of S mutually orthogonal displacements and surface tractions are prescribed 
will also lead to a unique solution. 

3.3. The dynamic reciprocal identity 

The dynamic reciprocal identity, sometimes also referred to as the dynamic 
Betti-Rayleigh theorem presents a relation between two elastodynamic 
states of the same body. The identity relates two sets of displacements and 
stresses both satisfying (3.5) and (3.6), but with possibly different distri-
butions of body forces, different initial conditions and different boundary 
conditions. The present discussion of the dynamic reciprocal identity is 
based on the previously cited work of Wheeler and Sternberg. 

The identity can be stated and proved in a convenient manner by em-
ploying some results of the theory of Riemann convolutions. Consider two 
continuous scalar functions g(x, t) and h(x, t) 

g(x, t) e V(Vx T + ) , h(x, t) e V(Vx T+), 

where V is a region in space, and T+ is the half-open interval [0, oo). The 
half-open interval (—oo, 0] is denoted by T" . The Riemann convolution of 
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g(x, t) and h(x, t), which is denoted by [g * h](x91), is then denned as 

[g * K](x, 0 = 0 for all (x, t) e V x T~ , . 

= g(x, t - s)h(x, s)ds for all (JC, i) e V x T + . 
Jo 

For brevity we usually write 

g * h instead of [g * h](x, t). 

Eq. (3.9) represents the convolution of two scalar quantities. 
The Riemann convolution of two vectors u(x, t) and if'(*, t) is defined as 

u * u — ut * u[ = uY * u[+u2 * u'2 + u3 * t/3. (3.10) 

Similarly the convolution of a tensor T and a vector i# is defined as 

T * W = Tt-y * «,-, ( 3 . 11 ) 

where the summation convention must, of course, be invoked. 
A frequently useful property of Riemann convolutions is the property of 

commutativity, 

g * h = h* g. (3.12) 

If g(x9 t) and h(x91) are at least once continuously differentiable with respect 
to time, then g * h is also at least once continuously differentiable with 
respect to time. The analogous statement also holds with regard to dif-
ferentiation with respect to a spatial coordinate. The derivatives may be 
expressed as 

| (g * fc) = g * h + g(x9 0)h(x, i) (3.13) 
ot 

— (g*h) = gti*h + g *hti. (3.14) 
CXi 

We now turn to the reciprocal identity for a bounded body B occupying 
the regular region V in space, with boundary S. 

Theorem 3.2: Suppose 

Se = [«, T]e«?( / , p,X,K VxT+) 

^f = [H', r ' ] e <?(/',p, 2 ,^ ; VxT + \ 
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with surface tractions 

tt = TjiHj and t[ = TjiTijj (3.15a, b) 

respectively, and further for every xe V 

u(x,0) = «(*), ii(x,0+) = v(x) 

u'(x,0) = u'(x), ii\x,0+) = v'(x). 

Then, for every t > 0 

I t * u'dA + p I {/ * »' +A'(x, 0 • »(x) + iT(x, 0 • S(x)}d7 

= r'*ii<L4 + p ( {/ '*« + «(x, 0 •»'(*) + »(*» O ^ ' W } ^ - (3-16) 
J s J v 

Proof: We consider a time / in the interval (0, oo) and we define the 
vector-valued function p(x, t) through 

Since/?,(*> f) is continuously differentiable the divergence of/?/(x, t) may be 
written as 

Pi, i = ?ji, i * " } + Tjt *Ujfi- Tjif i*Uj- Tji * UJf i, 

where (3.14) has been used. By employing the stress-equation of motion, 
and by splitting the terms Ujt and ujti in symmetric and antisymmetric 
parts, we find 

p.. = p(Uj * u'j)-p(fj * ufi + Tjt * e'jt , 3 18^ 

-p ( i i ; * uj) + p(fj * u y ) - ^ . * EJi9 

where e,,- is the strain tensor. By employing Hooke's law and the distributivity 
and the commutativity of convolutions we easily find 

*ji*eJi = T y i * e y « - ( 3 - 1 9 ) 

Application of the rule on differentiation with respect to time, see (3.13), 
twice in succession to ut * u[ yields the result 

u*u' — uf * u = v' - u + uf • it — v - u— u u on Kx(0, oo). 

Substitution of this result and (3.19) into (3.18) yields in vector notation 

V • p = p{f * II + M • fi +ii • h'}-p{f * w' + u' •» + «'• »}. (3.20) 
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Tn view of the divergence theorem we have 

V-pdV = p^dA 
Jv Js (3.21) 

= (tj*u'j-tj*Uj)dA, 

where (3.17) and (3.15a, b) have been used. Substitution of (3.20) into the 
left-hand side of (3.21) completes the proof. 

An extension of this theorem to unbounded bodies was presented by 
Wheeler and Sternberg.3 

3.4. Scalar and vector potentials for the displacement field 

3.4.1. Displacement representation 

In section 2.10 it was shown that a vector field of the form 

u(x,t) = V<? + V A ^ (3.22) 

satisfies the displacement equations of motion provided that cp(x, t) and 
i//(x, t) are solutions of wave equations with characteristic velocities cL 

and cT, respectively. 
The question of the completeness of the representation (3.22) was raised 

by Clebsch, who asserted that every solution of the displacement equation 
of motion admits the representation (3.22). The work of Clebsch and others, 
particularly Duhem, was discussed by Sternberg.4 

3.4.2. Completeness theorem 

In the formulation and the proof of the completeness theorem we will in-
clude body forces. The completeness theorem may then be stated as 

Theorem 3.3: Let u(x, t) and / (x , t) satisfy the conditions 

uetf2(VxT) 

feV(VxT), 
and meet the equation 

pV2u + (X + p)\\ • u+pf = pu (3.23) 

3 L. T. Wheeler and E. Sternberg, ibid., p. 80. 
4 E. Sternberg, Archive Rational Mechanics and Analysis 6 (1960), 34. 
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in a region of space Fand in a closed time interval T. Also let5 

/ = C £ V F + C J V A G . (3.24) 

Then there exists a scalar function cp{x, t) and a vector-valued function 
i/f(x, t) such that u(x, t) is represented by 

u = Vcp + VA^, (3.25) 
where 

V • xjf = 0, (3.26) 

and where <p(jc, /) and ^(JC, ?) satisfy the inhomogeneous wave equations 

V W - 4 * (*2 = ̂ ) (3.27) 

VV + G = ^ > ( ^ = - ) - (3-28) 
Cj \ p / 

Proof: We start by eliminating V2« from eq. (3.23) by employing the 
well-known vector identity 

V2u = V V - I I - V A V A I I . 

The displacement equation of motion then may be written in the form 

u = c£VV- H - C J V A V A » + / . 

Integrating this equation twice with respect to t, we obtain 

u = c£V (V- i i )dsdT-4VA (VAi#)dsdt 
JoJo JoJo 

+ / d s d i + v(jc)f+ «(*), 
JoJo 

where M(JC) and V(JC) are the initial conditions on II(JC, /) and i(x, t), respec-
tively. We now proceed to define 

q> = c£ (V • ii)dsdt + c£ FdsdT + <p0(*)' + <Po(*) (3-29) 
JoJo JoJo 

if, = - C J (VAii)d5dT + 4 Gdsd t+ &>(*)*+ &>(*). (3.30) 
JoJo JoJo 

5 It will be shown in the next section that any reasonably well-behaved vector /(x, /) 
can be expressed in the form (3.24). 
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where eq. (3.24) and the following representations for v and u have been 
used: 

v = V0O + V A ^ O (3.31) 

u = V ^ 0 + V A ^ 0 . (3.32) 

It remains to be proven that cp and if/ satisfy eqs. (3.26)-(3.28). Differentiation 
of (3.29) and (3.30) twice with respect to time yields 

q> = c£V -u + c2
LF (3.33) 

^ = - C | V A » + 4 G . (3.34) 

By applying the V • operation to (3.25) we obtain 

V u = V V (3.35) 

Substitution of (3.35) into (3.33) shows that cp satisfies (3.27). Next we 
apply the operation V A to (3.25) to obtain 

V A I I = V A V A ^ 

= - V V + W - ^ r . (3.36) 

From (3.36) and (3.34) it is now evident that}// will satisfy the wave equation 
(3.28) provided that 

V • ijf = 0. (3.37) 

This completes the proof of theorem 3.3. The proof as given here is essentially 
due to Somigliana. 

The initial conditions on q> and \// follow from eqs. (3.29) and (3.30). 
We have 

<p(x, 0) = <p0(x), <p(x, 0) = (p0(x) (3.38a, b) 

iK*, 0) = W 4 *(*, 0) = ^oW- (3.39a, b) 

It should also be pointed out that well-defined vectors such as / , v and u, 
which form the given data of a problem can always be resolved into the 
forms shown by eqs. (3.24), (3.31) and (3.32). The representation of a 
vector p by 

p = V P + V A Q , (3.40) 
where 

V - Q = 0 , (3.41) 

is called the Helmholtz decomposition of the vector p. The construction 
of the scalar P and the vector Q in terms of the vector p is discussed in the 
next section. 
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As a last comment on the completeness theorem it is noted from (3.30) 
and (3.41) that all that is required for the condition V • i// = 0 to be satis-
fied is that the vector potentials G, \jf0 and \j/0 are constructed as Helmholtz 
potentials according to the procedure which is discussed in the next section. 

3.5. The Helmholtz decomposition of a vector 

Let the vector p(x) be piecewise differentiable in a finite open region V 

of space. With each point of space we now associate the vector 

4nJjJv\x-Z\ 
where 

and 

\x-(\ = [ ( * i - £ . ) 2 + ( x 2 - £ 2 ) 2 + (x3-£3)2]*. 

It is well known that W(x) then satisfies the vector equation 

V2 W = p{x) 

at interior points where p is continuous, and 

V2W = 0 

at points outside the region V. 
Now we employ the vector identity 

V2W= VV W - V A V A W. (3.44) 

Let W(x, t) be defined by eq. (3.42). By using (3.43), eq. (3.44) can then 
be rewritten as 

p = v[V- FF] + V A [ - V A W]. (3.45) 

Eq. (3.45) is of the form 
p = V P + V A Q (3.46) 

if we set 
P = V • W (3.47) 

Q = - V A W. (3.48) 

It can be shown thai P and Q are everywhere definite and continuous, and 
are differentiable at interior points where p is continuous. 

To prove the Helmholtz decomposition we have thus provided a recipe 

(3.42) 

(3.43) 
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for the construction of P and Q. Given the vector field p(x), the vector 
W(x) can be constructed from (3.42), whereupon P(x) and Q(x) are 
obtained from (3.47) and (3.48), respectively. Since the divergence of a 
curl vanishes we observe that 

V • Q = 0. (3.49) 

The Helmholtz decomposition is also valid for an infinite domain provided 
that p = 0(r~2), i.e., provided that \p\ decreases to zero at large distances 
r from the origin at least as rapidly as a constant times r~2.6 

3.6. Wave motion generated by body forces 

3.6.1. Radiation 

A class of interesting problems is concerned with an initially undisturbed 
body which in its interior, and at a specified time, say t = 0, is subjected to 
external disturbances. The external disturbances give rise to wave motions 
propagating away from the disturbed region. Problems defined in this 
manner may be called radiation problems. A typical elastodynamic radiation 
problem concerns the motion generated in an unbounded medium by body 
forces distributed over a finite region V of the medium. 

Wave motions in homogeneous, isotropic, linearly elastic media can be 
analyzed in a convenient manner by employing scalar and vector potentials 
for the displacement field, as discussed in sections 2.10 and 3.4. For the 
problem at hand it follows from eqs. (3.27) and (3.28) that the governing 
equations for the displacement potentials are classical wave equations with 
inhomogeneous terms and with homogeneous initial conditions. To determine 
the motion generated in an initially quiescent unbounded medium by a 
distribution of body forces it is thus only required to find solutions in un-
bounded domains for (at most) four inhomogeneous wave equations. 

Let us consider the scalar potential cp(x, t) in some detail. We need to 
determine the solution of the inhomogeneous wave equation 

V V i f ? = -F(x9t)9 (3.50) 
cL dr 

with the homogeneous initial conditions 

6 Cf. H. B. Phillips, Vector analysis. New York, John Wiley & Sons, Inc. (1933), p. 
187. 
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<p(x, 0) = 0, <p(x, 0) = 0. (3.51a, b) 

In the sequel it will be convenient to employ a generalized function, which 
is known as the Dirac delta function. In one dimension the delta function 
is defined by the property 

h(s)3(t-s)ds = h(t) for t e (a, b) 

= 0 for f £ (a, b)J 
f 
•/ a 

The delta function has any number of derivatives 5'(t — s), S"(t — s),. . ., 
the prime indicating a derivative with respect to the argument. The deriv-
atives are defined by the following property: 

«/ a 
h(s)din\t - s)ds = ( - l)nhin\t) for te(a9b)\ 

= 0 for t$(a9 b)) 

In three-dimensional space the delta function <5|JC — £| is defined in the 
following manner: 

/ . 
h(i)&\x-S\dV( = h(x) for xev\ {3M) 

V 

= 0 

where Fis a regular region in space, and dV% = d ^ d ^ d ^ . In rectangular 
coordinates we may write 

<5|x-£| = d(Xl-^)S(x2-^)d(x3-^3). 

A delta function centered at the origin of the coordinate system may in 
spherical coordinates be represented by 

Anr2 
where r = (x\+x\ + xif. (3.55) 

The fundamental solution $(r, t) describing radiation from a point, which 
we take as the origin of the coordinate system, is singular at r = 0 in such 
a way that 

l i m f | ^ < U = f(0. (3.56) 

In eq. (3.56) the integration is carried out at time t, and over the surface of 
a sphere with radius e, where dA is the surface element. The function f(/) 
is the intensity of radiation as a function of time. The fundamental solution 
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satisfies homogeneous initial conditions and, except at the origin, satisfies 
the homogeneous wave equation in spherical coordinates with polar sym-
metry 

J_A(r^)_i^ = 0, r > 0 . (3.57) 
r2 8r\ drl c2

L dt2 V ' 

A formulation which is equivalent to (3.57) together with the condition 
(3.56) is 

r or\ drl c\ dt2 4nr2 

or in rectangular coordinates 

v * 0 - -2 V 7 = f ( W (3.59) 

The general solution of (3.57) can be obtained by introducing the sub-
stitution 

<p(r, t) = - *(/•, t). 
r 

We find that (P(r, i) is governed by the one-dimensional wave equation 

d2<P 1 d2<P _ 

dr2 c2
L dt2 

This equation represents one of the rare cases when one can immediately 
write out the solution in general form in terms of arbitrary functions. The 
general solution, which was given by d'Alembert, was derived in section 
1.2 as 

*••>-'(-£)+«K)-
A general solution of (3.57) is thus obtained as 

The two terms represent an outgoing and an incoming wave, respectively, 
whose amplitudes steadily change. 

For the radiation problem defined by (3.56) and (3.57) the wave obviously 
is an outgoing wave, and we consider 
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# r , 0 = - - / - f ( t - L ) , (3.60) 

where f(r) = 0 for T < 0. It is easily verified that (3.60) meets the condition 
(3.56). Consequently (3.60) is also the solution of the equivalent eqs. 
(3.58) and (3.59). Eq. (3.60) shows that a point at a distance r from the 
origin is at rest until time t = r/cL9 when the particle experiences a single 
impulse of the same duration as the external disturbance which was applied 
at the origin at time / = 0. 

If the source point is located at xt = £f, we have instead of eq. (3.59) 

V 0 - 1 7 1 = f(0*l*-*l- (3-61) 
c2

L dt2 

It is now obvious that the solution of (3.61) is of the form 

4>(x9 t;t) = - — 1 - f (t- l * - ^ 1 ) , (3.62) 

where 

l*~«l = [ ( * 1 - « I ) 2 + ( * 2 - « 2 ) 2 + ( J C 3 - « 3 ) 2 ] * . (3-63) 

If f(/) is a delta function applied at / = s, i.e., f(/) = S(t — s), the cor-
responding solution evidently is 

g(x, t; «, s) = - — i — 8 i t s - ^ l 1 ) . (3.64) 
4n\x-£\ \ cL J 

In physical terms this expression is the field at time / at the point of observa-
tion x due to an impulsive unit point source applied at time s at the source 
point £. Eq. (3.64) is called the Green's function for the unbounded domain. 
The field due to a distribution of sources — F(x, t) can be obtained by adding 
the effects due to each elementary portion of source. By this argument 
tp(x, t) takes the form of an integral over s and ££ of the product 

, ( , , r) = 1 f d s f ^ S ( t - s - > ^ « ! ) dK„ (3.65) 
4nJ o Jv \x-£\ \ cL I 

where V is the domain over which the distribution of body forces is defined. 
By employing (3.52), eq. (3.65) can be simplified to 

rfx.,)-J.f O t i d f z W a l d . i . (3.66) 
4nJBL \X-£\ 
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where dV% = d ^ d ^ d ^ , and the integration is carried out over the sphere 
BL with center at JC and radius cLt. A convenient shorthand notation for 
this integral expression is 

*(x,0 = f f r~7dlv (3.67) 

The accolades indicate that we must take the value of the inhomogeneous 
term at time t — \x — £\/cL. In physical terms this indicates that the effect of 
a source at £ needs a finite time |x — £|/cL to reach the position JC. The expres-
sion (3.66) is called a retarded potential. It may be verified by direct sub-
stitution that (3.65) indeed satisfies eq. (3.50). 

3.6.2. Elastodynamic solution 

It is evident that in an analogous manner the solution of (3.28) can be 
expressed as 

4nJ BT JC-£ 4TZJBT | JC -£ | 

where tne accolades indicate that we must take the value of G at time 
t— |JC — %\/cT, and BT is the sphere with center at JC and radius cTt. In view 
of eq. (3.25), the displacement may then be written 

4K«(*,0 = f V i£kdF<+ f V,A , - ^ - d ^ , 
JBL | X - { | JBT | J C - { | 

where the V-operator is with respect to the xrcoordinates. 

3.7. Radiation in two dimensions 

The scheme of constructing the solution to the inhomogeneous problem 
as a superposition of impulses can also be used to treat the radiation 
problem in two dimensions. We will again focus our attention on the scalar 
potential which is governed by 

d2(p d2q> 1 82(p w . ,_ ^oX 

ox\ dx2 cL dr 
and 

q>(xl, x2, 0) = 0, <p(xl9x2,0) = 0. (3.69) 

Analogously to eq. (3.61) the fundamental solution describing radiation 
from a point source must meet the equation 
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d^p d20 _ 1 d20 

dx\ dx\ cl dt 
2 + 7 i - l T T = ((t)S(Xl-^)d(x2-i2). (3.70) 

In a convenient manner the solution of (3.70) can be constructed by linear 
superposition of the three-dimensional solution, which is defined by eq. 
(3.62). Thus we express the solution of (3.70) as 

«* , ;« - - I f ' , (,-fc«)J!& p.,1, 
47rJ-oo \ cjr / | J C - { | 

where \x — £| is defined by eq. (3.63). Since f(i) = 0 for T < 0, the actual 

limits of integration are 

In view of the symmetry with respect to x3, eq. (3.71) may then also be 
written as twice the integral between the limits x3—[clt2 — (xl — ^l)

2 

— (x2 — £2)2]* a n d x3 • Upon introducing the new variable 

where 

K = [ (* . -£>) 2 +(*2-£ 2 ) 2 ]* , 

eq. (3.71) subsequently reduces to 

2TTJO [ C £ ( * - 0 2 - - R 2 ] * 

for / > i?/cL. Note that <p is independent of x3. 
Comparing the fundamental solutions (3.62) and (3.72), we note a basic 

difference in the manner in which localized external disturbances generate 
the fields in three and two dimensions, respectively. In the three-dimensional 
field a particular position experiences a single impulse, of the same time-
dependence as the external disturbance which was applied at the origin at 
time t = 0. The disturbance arrives at time 

t = h = [(x1^^)2+(x2-^2y+(x3-^)2]Vc,9 

and the material returns to the quiescent state at time tx after the external 
disturbance at the origin has been removed. The two-dimensional solution 
does not depend on an external impulse applied at a single point, but rather 
on an infinite number of points which form the line defined by xx = £i9 

^2 =^2) _ 0 ° < <̂3 < °°- A s a consequence, the disturbance experienced 
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at a position takes the form of a superposition integral as shown in eq. 
(3.72). The disturbance arrives at time t = tx = [x1 — ^l)

2 + (x2 — £2)2]*/CL> 

but does not cease at time tY after the external disturbance has been removed. 
For a long time there will be a tail effect decaying with time. 

Graphically, an explanation of the different effects of a point-disturbance 
and a line-disturbance, i.e., the difference in radiation in three and two 
dimensions, is shown in figure 3.1. The observation that in three dimensions 
an external disturbance of finite duration is observed later at a different 
point as an effect which timewise is equally delimited, was made by Huyghens. 

^ - ~ V £ i 

X3~h 
(a) point-source (b) line-source 

Fig. 3.1. Radiation from a point-source and a line-source. 

It is known as Huyghens' principle. In two dimensions, an external disturbance 
of finite duration produces a persisting signal, although of decaying am-
plitude, implying that Huyghens' principle is not valid in two dimensions. 

If f(r) is a delta function applied at / = s, i.e., f(/) = S(t — s), eq. (3.72) 
reduces to the two-dimensional Green's function 

g(xi9t;£i9s) = -
cL H(t-s-RlcL) 

(3.73) 
2n [C*(f-*)*-**]* 

where H{ ) is the Heaviside step function. This expression represents the 
field at time t at position xi, x2 due to an impulsive unit line source applied 
at time .y at £ l 5 £2, — oo < £3 < oo. By linear superposition the solution 
to eq. (3.68) may then be written as 

2nJ J J K[c2
L(t-sy-(xl-^y-(x2-^2)

2y 

where Kis a cone in (£l,£2> ^)-space defined by 

0 ^ ^ ! , (xl-il)
2 + (x2-^2)

2-^cl(t-s)2. (3.75) 
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It hardly needs to be stated that the components of the vector potential 
can be computed in the same manner. 

3.8. The basic singular solution of elastodynamics 

3.8.1. Point load 

In this section we will examine the displacements and the stresses in an un-
bounded medium due to the sudden application of a rather special distribu-
tion of body forces, namely, a time-dependent point load. These displace-
ments and stresses comprise the fundamental singular solution of the field 
equations of elastodynamics. The displacements generated by a time-
dependent point load were first presented by Stokes.7 

Stokes' solution can be deduced by means of a limit process from a family 
of time-dependent body-force fields that tends to a point load. Here we 
present a somewhat more formal approach in that we immediately view 
the point load as a special distribution of body forces per unit mass, namely, 
as a distribution in the form of a Dirac delta function. In three-dimensional 
space the delta function <5|JC — £| was defined by eq. (3.54). 

In the presence of a system of body forces per unit mass the displacement 
equations of motion become 

/iV2a + (A + /i)VV • u+pf = pu. (3.76) 

We consider a concentrated load of magnitude g(t), where g(t) is twice 
continuously differentiable. The load is directed along the constant unit 
vector a. Without loss of generality we may place the origin of the coor-
dinate system at the point of application of the concentrated load. In that 
case we have 

/ ( * , 0 = ag(t)S\x\. (3.77) 

In accordance with eq. (3.24) we wish to decompose the body-force vector as 

/ = C2
L\F + C2

T\AG. 

The decomposition can be achieved by means of the Helmholtz resolution 
which was discussed in section 3.5. Thus, employing eqs. (3.47), (3.48) and 
(3.42), we find 

c2
LF(x,t)= - V - ( - f L ) * ( 0 

and 

7 G. G. Stokes, Transactions of the Cambridge Philosophical Society 9 (1849) 1. 
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4G(X,O = VA (—)*('). 

where 
r2 = x2

l+x
2

2 + x2
3. (3.78) 

Writing the displacement vector in the form (3.25), i.e., 

II(JC, t) = V(p + VA^, (3.79) 

it follows from eqs. (3.27) and (3.28) that (p(x, t) and \j/(x, t) must satisfy 
the inhomogeneous wave equations 

c2
L c2

L \4nrl 

vV-i*--4)VA(iL). 
Cj Cj \Anrl 

lenne 

& = <Pa, «P = f a , 

(3.80) 

(3.81) 

(3.82a, b) 

(3.83a, b) 

For convenience we define 

By setting 

Eqs. (3.80) and (3.81) are satisfied if <P and W are solutions of the following 
inhomogeneous scalar wave equations 

V2<Z>- 1 * = ^ - L (3.84) 
c£ c£ 47rr 

V2¥>- l y = ?£) J L , (3.85) 
c£ c\ 4nr 

where r is defined by (3.78). 
Appropriate solutions of (3.84) and (3.85) are readily derived. Since the 

inhomogeneous term shows polar symmetry, the solution is most con-
veniently obtained by employing spherical coordinates. Eq. (3.84) may 
then be rewritten as 

Ii|^|.I?L*BiW!. (3.86) 
r2 dr\ drf c\ dt2 Anc2

L r 

Now we introduce the substitution 

*(r,f) = ^ - ) , (3-87) 
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whereupon for r > 0 eq. (3.86) reduces to the inhomogeneous one-di-
mensional wave equation 

dr2 c2 dt2 4nc2
L

 V J 

A particular solution of this equation is 

1 f' 
XPO) = ~ — sg(t-s)ds, 

4nJo 

where we have used that g{t) = 0 for t < 0. The general solutions of the 
homogeneous equation are arbitrary functions of the arguments t — rjcL 

and t + r/cL, respectively. Clearly the solution of (3.88) satisfying the con-
ditions that %(r, t) vanishes at r = 0 may then be written 

n±r/cL / r \ f 
4nx(r, t) = \ sg lt± s I ds— sg(t — s)ds. 

The plus signs correspond to a wave approaching r = 0; the minus signs 
correspond to a wave propagating away from the point r — 0. For the 
problem at hand we discard the waves converging on r = 0, and returning 
to (3.87), the pertinent solution of (3.86), and thus of (3.84), is obtained as 

1 f'~r/CL 1 r \ 1 fr 

47i#(jt, t) = - sg [t s )ds- - sg(t-s)ds, (3.89) 
rJo \ cL / rJo 

where r is defined by eq. (3.78). The pertinent solution of (3.85) is anal-
ogously obtained as 

47r^(jc, i) = - j ^sg (t-r--s)ds--\ sg(t-s)ds. (3.90) 
rJo \ cT / rJo 

Since g{t) = 0 for t < 0, the first integrals in (3.89) and (3.90) do not yield 
contributions for t < rjcL and / < r/cT, respectively. 

In view of (3.79) and (3.82a, b), the displacement vector is written as 

u = VV • $ - V A V A ! P . 

By virtue of the vector identity 

V2«P = VV- ! P - V A V A ! P 

the displacement vector can also be expressed as 

u = V V ( ^ - ^ ) + V2«P. (3.91) 
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Substitution of (3.89) and (3.90) into (3.91) yields 

4TTII(JC, t) = VV • - sg I t - — - s \ ds- ~ sg I t - — - s \ ds\ 

+ 4 -* ( ' " - ) • (3-92) 

Suppose now that the concentrated load is acting in the direction of the 
xk-axis, i.e., a — ik. The displacement in the direction of the xraxis is then 
of the form 

4nut(x9 t) = D*[0; g(t)l (3.93) 

where Dk
t[ ] is a linear operator, wherein 0 indicates that the load is applied 

at the origin, and g(t) defines the function subjected to the operation. The 
linear operator D\[ ] follows from (3.92) as 

tf[0; 9(m = f f \- f ' % (t- - s) ds 
dXi oxk \rJo \ cL j 

_ir%(,.l_,)dll+??i,(l_i), (3.94) 
rJo \ cT ] ) cT r \ cTl 

where r is defined as r = {x\ + x\ + x\)*> see eq. (3.78). After a few mani-
pulations, including changes of the integration variables, the operator may 
be rewritten as 

- = 2 - 1 rrlcr 

O | [ 0 ; ^ ( 0 ] = f ! 7 - sg(t-s)ds 

2 XdxJ \dxk! \_c2
L \ cj c\ \ cTJA 

^ - * ( ' - - ) ■ (3-95) 
cT r \ cTJ 

For a force acting parallel to the .x^-axis this expression yields the same 
displacement as given by Love.8 

The position dependence of the integration limits can be eliminated 
through a change of the integration variable. Also evaluating the derivatives 
(3.95) may then be rewritten as 

8 A. E. H. Love, The mathematical theory of elasticity. New York, Dover Publications 
(1944), p. 305. 
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tf[0;*(0] - ( ^ r - Sf)f/CTsg(t-rs)d 

+ 
XiXk 

•CL \ CJ CT \ CT'-1 cT r \ cTl 

The corresponding stresses can be computed by the use of Hooke's law. 
We obtain 

47TTy(x, 0 = Sf,[0; g(t)l (3.97) 

where the operator Sf*[ ] is given by 

5XiXjXk _ diJxk + 5ikXj + Sjkxi'\ j CT
sg(t_rs\£s 

J l/CL 
p-1S&[0;flf(r)]= - 6 4 

+ 2 
"6Xi xy xfc Sij xk + <5ik x y + 8Jk xt 

L r . \ cTJ \cLJ \ cLJ \ 

♦^['(•-fJ-GiM-fJ] 
1-2 

tikXj + SjkXj 
g(t--)+-d(t--\ 
. \ CTJ CT \ CTJ. 

(3.98) 

The displacement and stress fields were listed in the forms (3.96) and (3.98) 
by Wheeler and Sternberg.9 

If the point load is applied at x = £ rather than at the origin we have 
instead of (3.77). 

f{x9t)=ag{t)8\x-i\. 

It is apparent that for a load in the xk direction the displacement and stress 
fields can be obtained from (3.93) and (3.97) by writing ^ —^ instead of 
xt in the operators D\[ ] and Sk

u[ ], and by defining r as 

r = | x - { | = [ (x 1 -^ 1 ) 2 + ( x 2 - ^ 2 ) 2 + ( x 3 - ^ ) 2 ^ 

These solutions are denoted by 

4K«,(*, 0 = i>JK; 9{t)~] (3-99) 
and 

L. T. Wheeler and E. Sternberg, be. cit., p. 80. 

(3.100) 
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3.8.2. Center of compression 

Let a force of magnitude h~1pg(t) be applied at the origin in the direction 
of the jq-axis, and let an equal and opposite force be applied at the point 
*i = h, x2 = x3 = 0. 

If we pass to the limit by supposing that h is diminished indefinitely, the 
components of the displacements become the derivatives with respect to 
x t ofeq . (3.93), 

4nui(x,t) = ^-{Dl[0;g(t)-]} 
oxl 

These displacements may be referred to as the displacements due to a "double 
force without moment". Now we combine three double forces without 
moment, applied in the directions of Xj, x2 and x3, respectively. The 
components of the total displacement are 

4nu.,{x, t)=j- {D/[0; g(t)]} + A {D?[0; g(t)]}+ / - {D?[0; g(t)]}-
ox^ dx2 ox3 

(3.101) 
From (3.94) we can, however, easily conclude that 

D?[0; g(t)-] = D< [0; g(t)l 

and (3.101) may be replaced by 

4^(x,/)= A { D . l [ 0 ; ^ ) ] } + A { ^ [ 0 ; ^ ) ] } + A{ D.3 [ 0;^)]} . 
ox1 ox2 ox3 

(3.102) 

The displacement component wt(x, /) defined in this manner is recognized as 
the divergence of the displacement vector for a concentrated load acting in 
the direction of xt. From (3.79) we conclude 

V u = V2cp. 

By employing (3.82a) and (3.83a) we then find the divergence due to the 
concentrated load in the xrdirection as 

XdxJ dxt 

Substitution of (3.89) subsequently yields 
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and thus (3.102) becomes 

4ncL oxi r \ Cjl. 
(3.103) 

Eq. (3.103) represents the displacement components due to a center of 
compression. 

3,9. Three-dimensional integral representation 

The object of this section is to obtain an integral representation for the 
elastodynamic displacement distribution analogous to KirchhofTs formula 
for the wave equation. 

3.9.1. Kirchhoff's formula 

For a regular domain V bounded by a surface S, a general solution of the 
inhomogeneous wave equation 

c2 dt2 

was obtained by Kirchhoff in the form10 

*»-iH--'<*•> 

4nJv \x-£\ 

+ 1 f f 1 f<!v\ _ w A __L_ + 1 1 W 3 ' X - .?J ' 
47rJs L|JC — £| Idn^j drc,* |JC —£| c |JC — £| 13* j 3n§ 

d ^ , 

where «5 is the outward unit normal to 5, and x is, of course, inside the 
domain V. Also, the accolade notation was defined earlier with reference 
to eq. (3.67); thus {dcp/dn^} means calculate (3/d/i5)<p(£, s) a n c l t n e n replace 
s by the retarded time t— |x —§|/c. The volume integral in the Kirchhoff 
formula is analogous to eq. (3.67) and represents the contribution to the 
scalar potential cp of the distribution of sources inside V. The surface in-
tegral provides the contribution of sources outside V that are necessary to 
yield the required conditions on S. If <p and its derivatives are known on 
S, cp is completely determined. It is, of course, not possible to assign both 
cp and dcp/dn^ arbitrarily on the surface S. 

1 0 Proofs can be found in B. B. Baker and E. T. Copson, The mathematical theory of 
Huygens principle. London, Oxford University Press (1953), p. 36, or D.S.Jones, The 
theory of electromagnetism. London, The Macmillan Company (1964), p. 40. 
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3.9.2. Elastodynamic representation theorem 

Following the work of Wheeler and Sternberg11 the theorem is derived by 
an application of the dynamic reciprocal identity to suitably chosen elasto-
dynamic states. 

Theorem 3.4 (integral identity for the displacement field): Let V be a 
regular region with boundary S. Suppose 

ST = [u,T]e^0(f,p,l,ii;V). (3.104) 

Then the displacement components can be expressed in terms of the trac-
tions and the displacements on S and the body forces in V, by 

47cpnfc(«, 0 = S f { # K ; *t(x, 0]-»ySfyK; ufa t)]}dA 
i=lJ S 

+ P £ f 2>?K;/,(x, 0]d7, (3.105) 
i = 1 J V 

where the integrations are carried out over jcl5 x2 and x3, and where the 
operators D\[ ] and S*.[ ] are defined by eqs. (3.96), (3.99) and (3.98), 
(3.100), respectively. 

Proof: As point of departure we take the dynamic reciprocal identity 
which was stated by eq. (3.16). We consider two elastodynamic states, 
namely, the state defined by eq. (3.104) and the state defined by 

u; = DfK;fif(0] (3.106) 

x'u = SljlS;g(t)l (3.107) 

The latter distribution of displacements and stresses is due to a concentrated 
load of magnitude g(t), acting in the ^-direction, and applied at the position 
x = £ at time t = 0. Since both states have a quiescent past the terms con-
taining the initial values disappear from the dynamic reciprocal identity, 
and we can write 

Tunj * uldA + p fi * u[dV = rljUj * utdA + p f{ * utdV. (3.108) 
J s J v J s J v 

The body-force distribution/'(JC, t) is, however, of the special form 

f(x,t) =4nikg(t)5\x-S\. 

By employing the sifting property of the Dirac delta function the last term 

1 1 L. T. Wheeler and E. Sternberg, be. cit., p. 80. 
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of (3.108) can then immediately be evaluated, yielding the result 

4np[g * tifc]({, i) = pj / , * u[&V + J [r^n,- * wJ-T/yW,. * i*JcL4. 

We introduce the operator relations (3.106) and (3.107) to obtain 

4np[g * «»]({, 0 = p j \ / i * D?K; 0(0] dK 

+ J* {*, *D?K; 0(0]-",".• * SfyK; »(0]} <^- (3.109) 

If the function #(/) is twice continuously differentiable we have 

/1 * tfK; 3(0] = E 0 * Df K; /*(*, 0]- p.no) 

This equality can readily be verified by employing eq. (3.96) and by in-
troducing appropriate changes of the integration variables in the con-
volution integrals. Similarly we have 

U * Dili; 0(0] = I 9 * Dl[i; U{x, 0] (3.111) 

ut * Sfy[«; g(t)] = ig* S?,K; i*,(*, t)]. (3.112) 
i = 1 

Eqs. (3.110)-(3.112) are substituted into (3.109). In the resulting integrals 
the order of the spatial integrations and the convolutions can be inter-
changed, and we obtain 

[**"*](«, 0 = 0, (3.H3) 
where 

wfc({, 0 = 4npuk(Z, t)-p £ f Dj[{; /,(x, f)]dF 
i= W V 

- i f {otK; *«(*, 0]-»;SyK;«<(*. 0 ] } ^ . (3.114) 
i=lJ S 

Since J and f were chosen arbitrarily in Kx(0, oo), eq. (3.114) holds for 
all ({,/)eKx(0,oo). Since the terms in the convolution (3.113) are 
continuous, it follows that either g(t) or wk(%, t) must vanish. Since we 
have chosen g{t) # Owe must have 

MZ> 0 = o, 
and (3.105) immediately follows from (3.114). This completes the proof. 
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Eq. (3.105) is valid for any point of observation inside the region V. 
The first two terms involve the tractions and the displacements on the 
bounding surface S. The third term gives the displacement due to the dis-
tribution of body forces per unit mass of density ft(x91). The integral 
identity is the extension to elastodynamics of Kirchhoff's formula for the 
wave equation. The representation theorem (3.105) was apparently first 
derived in essentially the present form by De Hoop.12 

The integral identity (3.105) is useful in the solution of certain elasto-
dynamic diffraction problems in an unbounded medium. Since it involves 
both the surface displacements and the surface tractions on the boundary of 
the body, it is not suited to solve the first and the second fundamental 
boundary-initial value problems in classical elastodynamics, since the 
boundary data consist of prescribed surface displacements in the first 
problem and of prescribed surface tractions in the second problem. To 
obtain integral identities for the fundamental boundary-initial value 
problems it is thus necessary to eliminate from the integrals in (3.105) the 
surface tractions for the first problem and the surface displacements in 
connection with the second problem. This work was carried out in the 
previously cited paper by Wheeler and Sternberg. These authors proved 
the integral representations for the solutions of the first and the second 
boundary-initial value problems for states with a quiescent past. 

3.10. Two-dimensional integral representations 

If the field variables are independent of the x3-coordinate, the displacement 
equations of motion reduce to the following system of uncoupled equations: 

1^3, fifi+ Pf3 = PU3 (3.115) 

fMa,fifi + (A + f*)Ufi,fia + Pf* = P"«. (3.116) 

In eqs. (3.115) and (3.116), and throughout this section, Greek indices can 
assume the values 1 and 2 only. Eqs. (3.115) and (3.116), which describe 
antiplane shear motions and plane strain motions, respectively, were derived 
in section 2.7. 

3.10.1. Basic singular solutions 

In two dimensions the basic singular solutions are the displacements 

12 A. T. de Hoop, Representation theorems for the displacement in an elastic solid and 
their application to elastodynamic diffraction theory. Doctoral Dissertation, Delft (1958). 
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and the stresses due to the following distributions of body forces: 

Mxl9x2, *) = g(t)8(Xl)d(x2), (3.117) 
and 

/«(*i, *2, 0 = 9(t)S(x1)S(x2)9 (3.118) 

where a = 1, 2. We can, of course, directly determine the solutions of eqs. 
(3.115) and (3.116) for the body-force distributions (3.117) and (3.118), 
respectively. Because of the linearity of the problem it is, however, also 
possible to obtain the two-dimensional solution as a superposition integral 
over the solutions for the point load. Suppose a point load of magnitude 
g{t) in the ^-direction is applied at the position xx = 0, x2 = 0, x3 = £3. 
According to eq. (3.99) the corresponding displacements may then be ex-
pressed as 

4nui(x,t) = Dk^3i3;g(t)l (3.119) 

where we may employ any of the forms (3.94), (3.95) or (3.96) for the 
operator Dk[ ], provided x3 is replaced by x3 — ̂ 3. It should also be 
realized that r is now defined by 

r = [x2
i+x2

2 + (x3-£3)
2f. (3.120) 

The solution to a line load is obtained by integrating (3.119) between the 
limits £3 = — oo and £3 = +oo. As we shall see soon, the dependence on 
x3 vanishes in this process. The two-dimensional solution again is of the 
form of an operator, which we denote by A\ [ ], i.e. 

4nui(xl,x2,t) = Ak
i[<);g(t)l (3.121) 

where the symbol 0 indicates that the line load is applied at xx = 0, x2 = 0, 
and pg(t) indicates the magnitude of the load. We have 

4[0;<K01 = r ' f l fKa^Wldk - (3-122) 
J — oo 

Similary the corresponding stresses are denoted by 

47rry(x1,x2,0 = ZJi[0;flf(0], (3-123) 
where 

$ [0 ; 0(0] = f + "Wyfo h I 0(O]dfc • (3-124) 
J — OO 

At a position defined by x, signals propagating with velocities cL and cT 

do, however, not arrive until cLt = r and cTt = r, respectively, which 
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implies that the limits of integration of (3.122) and (3.124) will be ap-
propriately modified. For example, by employing the form of D\[ ] given 
by (3.94), eq. (3.122) assumes the form 

[*x3 + [cL2t2-xi2-x2
2P F) f) l\ Ct~rlcL I r \ \ 

4[0; 0(0] = JZ3 f-f-l-] sg(t-L s) ds 

•>x3-[ci.2f2-XI2-X22F dxt oxk [rJo \ cL 1 ) 

d § 3 — — - sglt s)ds\ 
J x3-[cT2t2-xl

2-X22]± OXt OXk [rJo \ CT I ) 

%\ di3-g(t-L), (3-125) 
CTJ Xi-[CT2t2-Xi2-X22^ V \ CTJ 

where r is defined by (3.120). 

3.10.2. Antiplane line load 

Let us first consider the case k — 3. For / = 1 or 2, the first two integrals 
vanish because they are integrations of odd functions of x3 — {3 over 
intervals that are symmetric with respect to x3. The last integral vanishes 
on account of the Kronecker delta. Thus 

Al[0;g(t)-]=0. (3.126) 

For k = 3 and / = 3 the evaluation of the integrals is slightly more compli-
cated. One way of achieving a quick evaluation is to bring one of the 
derivatives d/dx3 in front of the integrals in both the first and the second 
integral of (3.125). This is allowable provided that we compensate for the 
contributions from the limits of integration to the derivative of the integrals 
with respect to x 3 . The latter contributions are, however, zero since the 
integrand vanishes at the integration limits. Thus we can simply bring one 
derivative with respect to x3 outside of the integration over £3. The thus 
obtained integrals vanish, however, since they are integrations of odd func-
tions. The only contribution thus comes from the last term of (3.125), and 
we have 

9 fX3+(CT2t2-Xl
2-X2

2)^ 1 / « \ 

Al[$3i3;g(t)-] = ±\ Lglt-L\dZ3, (3.127) 
cTJx3 r \ cTJ 

where r is defined by (3.120). To further evaluate eq. (3.127) we introduce 
the change of variables 

r 
T = t , 

CT 
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whereupon (3.127) reduces to 

4 ^ 3 ; ^ ) ] 4 r C T
r / f)d»2l2l,> (3-128) 

c\U [(t-r)2-R2lc2
Ty 

where 
R2 = x\ + x\. (3.129) 

It should be noted that (3.128) is independent of x3. Substitution of (3.128) 
into (3.119) shows that u3 agrees with the fundamental solution of the wave 
equation which was previously derived as eq. (3.72). 

Although it is, of course, possible to evaluate (3.124) it is, in fact easier 
to derive the stresses corresponding to the displacement distribution 
(3.128) by direct substitution of the displacement into Hooke's law. Since 
(3.128) is independent of x3 we find that this displacement gives rise to 
stresses T 3 1 ( X 1 , X2, t) and T32(X1, X2, t) only 

^ . *,, 0 - A f CCT „ ff* . (3-130) 
where R is defined by (3.129). We conclude that a line load of body forces 
pointing in the x3-direction gives rise to shear waves with the displacements 
polarized in the x3-direction. 

3.103. In-plane line load 

We proceed to the case k = 1, 2, i.e., we set k = y, where y = 1, 2. The 
first two integrals in eq. (3.125) vanish for / = 3, because they comprise 
integrations of odd functions of x3 — £3, over intervals that are symmetric 
with respect to x3. The last integral vanishes on account of the Kronecker 
delta. Thus 

^ [ O ; 0 « ] = O . (3.131) 

For / = 1, 2 we first bring the derivatives with respect to xv and xa (a = 1,2) 
in front of the integral signs. This can be done because the integrands 
vanish at the limit of integration. Then we introduce changes of variables 
for the integration over £3 by introducing 

in the first integral, and 

r 
x = t 

r 
T = t 
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in the second and third integrals, where r is defined by (3.120). The results 
of these operations are 

d d r~R/CL dr fT 

4 [ 0 ; g(t)] = 2 f f a \ sg(T-s)ds 
dxa dxyJo l(t-T)2-R2lcl]2Jo 

d d rt-R/cT d T p 
- 2 ——- sg(T — s)ds 

dxa dxjo l(t-T)2-R2/c2
TfJo V ' 

+ 2 ^ p - 9W* (3.132) 

4 Jo [(r-T)2-K2/cT]} v ; 

where, as before R = (x2 + x\)*. 
The stresses corresponding to (3.132) are obtained by substitution of 

47rJ£[0; g(t)] into the stress-displacement relations. It is observed that (3.131) 
does not contain x3 and that concentrated line loads in the x±- and x2-
directions produce in-plane motions only. 

3.10.4. Integral representations 

The results of section (3.9) can be employed to derive a two-dimensional 
integral representation from the three-dimensional integral identity for 
the displacement field given by (3.105). The reduction from three to two 
dimensions by appropriate integration of the three-dimensional integral 
identity was shown by de Hoop13, whose derivation is by and large re-
produced here. 

Let C be a simple closed curve in the (xt, x2)-plane, and let D be its 
interior. In the three-dimensional integral identity (3.105) we take for S 
the closed surface consisting of the plane portions x3 = £3 — L, x3 = £ 3 +L, 
(xi,x2)eD, together with the cylindrical part —L ^ x3 — £3 ^ L, 
(xl9 x 2 ) e C , where L > 0. As can be seen from the definitions of D\[ ] 
and 5fy[ ], the contributions to the surface integrals of x3 = £3 — L and 
x3 = £ 3 + ^ (X1,X2)E D vanish in the limit L -► 00. In this way we obtain 

Anpuk{^ , «2 , f) = £ f { 4 K ; t,(x, t)]-njz!jlt; «,(*, 0]}dc 

+ PH f 4B;/i(*,0]d*id*2> (3-133) 
i=lJD 

where dc is the element of the contour C. The operators are defined similarly 
to (3.122) and (3.124) except that the point of application is now at x = £. 

1 3 A. T. de Hoop, he. cit., p. 105. 
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The result (3.125) still holds except that we must replace xt by xx — £t 

and x2 by x2-£2. In particular, J*[£; g{t% A\[i\ g(t)]9 Ay
3[£; g(t)] and 

Altf; g(t)] are defined by (3.126), (3.128), (3.131) and (3.132), respectively, 
provided we define R as 

* = [ (* i -S i ) 2 + (*2-«2)2]*. (3-134) 

The corresponding operators Ik
ti[ ] are easiest obtained by substituting 

the displacements into Hooke's law. 
For k = 3 the integral identity (3.133) simplifies to 

4npu3(^ Ai, t) = J { ^ K ; h{x9 *)]-««*!«[«; u3(x9 t)]}dc 

+ p{ AlH; f3(x9t)']dx1dx2 . (3.135) 
J D 

For k = 1 or 2, we find 

47rpWy(^ , £2, t) = £ f {JJK; ta{x9 0 3 - n ^ ^ K ; ii.(x, t)]}dc 
a = W C 

+ p £ f 4;B;/,(jc,0]dx1dx2. (3.136) 

Eq. (3.135) agrees with Volterra's solution of the two-dimensional wave 
equation.14 

3.11. Boundary-value problems 

In fairly general terms the elastodynamic boundary-value problem was 
formulated in section 2.5, where the following conditions on the boundary 
S were considered: 

Ui = Ui(xj9t) on St (3.137) 
and 

Zjinj = tt{xj9t) on S-St. (3.138) 

If S1 = S9 the displacements are prescribed over the whole of the boundary 
S. For St = 0, the boundary conditions are on the tractions only. In the 
form (3.137) and (3.138) the boundary conditions define a mixed boundary-
-value problem. Except for bodies of a very simple shape, such as half-
spaces, layers or cylinders, it is rather difficult to obtain solutions of boun-
dary-value problems of elastodynamics. 

14 V. Volterra, Acta Mathematica 18, (1894), 161. 
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Let us first consider the dynamic response of an initially undisturbed body 
of finite dimensions to body forces. For definiteness we consider the motion 
generated by a distribution of body forces fi(xj9 t) in a body which is 
rigidly clamped along its outer surface S, i.e., u( = 0 on S. In accordance 
with the approach of sections 3.6 and 3.7 it is conceptually possible to write 
the displacement as a superposition integral over/)(*,-, f) and a Green's 
function. The Green's function should satisfy the homogeneous equations 
except at the source point where an appropriate singularity must exist. 
Moreover, the Green's function should vanish on S. In physical terms the 
Green's function defines the response of the rigidly supported body to an 
impulsive point load. Unfortunately it is generally rather complicated to 
determine an elastodynamic Green's function even for a simple domain 
such as a half-space. Only in special cases is it possible to construct the 
function in a simple manner from the Green's function of the unbounded 
domain. 

Some simple examples for which Green's functions can easily be obtained 
are concerned with two-dimensional motions in antiplane shear. These 
motions are governed by a single wave equation, which was stated in section 
2.7 as 

^ + ^ + / 3 = i ^ . (3-139) 
dx\ cx\ CT dtz 

If we consider a half-space with traction free boundary, u3(xl9 x29 t) must 
satisfy 

^1 = 0 at x2 = 0. (3.140) 
dx2 

The Green's function is the displacement field generated by an antiplane 
impulsive line load applied at time t = s at position xt = £l,x2 = £2 

(see figure 3.2). Suppose we consider an unbounded medium and suppose 
we also apply an impulsive line load at time t = s at position xt = £i9 

x2 == —£2. In thQ unbounded medium the derivative with respect to x2 

of the sum of the two displacement fields vanishes at x2 = 0 because of 
symmetry with respect to x2 = 0. In the half-plane x2 > 0, the sum of the 
two displacement fields satisfies (3.139) and (3.140) as well as the proper 
condition at xi = £l9 x2 = £2. This sum thus defines the Green's function 
for the half-space. At a point defined by xl > 0, x2 > 0, the first signal 
arrives directly from the primary source. After an additional time interval 
a signal arrives from the image of the primary source with respect to the 
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plane x2 = 0. This second signal is to be interpreted as the reflection from 
the plane x2 = 0. The wavefronts are shown in figure 3.2. 

Fig. 3.2. Antiplane line load in a half-space. 

The idea of imaging the primary source with respect to free surfaces can 
also be used to determine the Green's function for a region bounded by two 
planes. Suppose we have at x2 = 0 and x2 = h: 

ou3 

dx7 

= 0. 

In this case we take the image of the primary source with respect to both 
x2 = 0 and x2 = h. The image with respect to x2 — h destroys, however, 
the symmetry of the primary source and its image with respect to x2 — 0, 
and we thus must add another source in the region x2 < 0 to restore sym-
metry. The system of sources must, however, also again be symmetric with 
respect to x2 = h, which establishes the need for another source at x2 > h, 
whereupon an additional source must be applied at x2 < 0, and so forth. 
It is concluded that an infinite number of sources is needed to satisfy the 
conditions of du3/dx2 = 0 at x2 = 0 and x2 = h. At a point 0 ^ x2 ^ h, 
an infinite sequence of signals is observed. The signals are interpreted as the 
primary signal and subsequent reflections from the two free surfaces. The 
sources and the pattern of waves are shown in figure 3.3. The arcs AB and 
A'B' indicate the wavefronts which separate the disturbed from the un-
disturbed part of the layer. 
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Fig. 3.3. Antiplane line load in a layer. 

By employing displacement potentials the general elastodynamic problem 
is also governed by classical wave equations. The potentials are, however, 
coupled by the boundary conditions, at least for the physically significant 
boundary conditions covered by eqs. (3.137) and (3.138). As a consequence 
it is generally not possible to employ the scheme of imaging to construct 

Fig. 3.4. Half-space subjected to an interior point load. 

the Green's functions for simple domains from the Green's function for 
the unbounded domain. This can be exemplified by considering a half-
space subjected to an internal point load, as shown in figure 3.4. In cylin-
drical coordinates the boundary conditions at z — 0 are 

0: TZ = 0, = 0, 0. 

Now let us compare these boundary conditions with the conditions that 
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prevail in an unbounded medium with two symmetrically placed point 
loads as shown in figure 3.5. In view of axial symmetry we do have xzQ = 0 
at z = 0. Symmetry with respect to z = 0 yields, however tzr = 0 and 
w = 0 at z = 0. By the method of images it is apparently possible to satisfy 
the conditions of a smooth boundary at z = 0, but not the much more 
significant conditions of a traction free boundary. 

I F 

f 
\h 

r l 
T 

1 

F 

Fig. 3.5. Symmetrically placed point loads. 

Motions that are generated by surface disturbances are equally difficult 
to express in a simple manner. For this case we may employ a Green's 
function for the boundary condition. Such a Green's function satisfies the 
governing equation inside the body and shows appropriate singular behavior 
at one point of the boundary. For example, if a body is subjected to a 
distribution of normal surface tractions, the appropriate Green's function 
is the displacement due to an impulsive normal point load on the surface. 
The displacement at any point can then be expressed in the form of a super-
position integral over the distribution of surface tractions and the Green's 
function. For the general elastodynamic problem such Green's functions 
are again rather complicated. For the half-space and the layer some examples 
are worked out in chapters 7 and 8, respectively. 

Green's function techniques are only one way of solving boundary-
value problems. Solutions of elastodynamic boundary-value problems are 
usually obtained by direct application of methods of applied mathematics 
to the system of governing partial differential equations and the boundary 
and initial conditions. Several worked out examples are presented in chapters 
4, 7, 8 and 9. 
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3.12. Steady-state time-harmonic response 

3.12.1. Time-harmonic source 

We will return to the radiation problems of sections 3.6 and 3.7 to consider 
the special case that the external disturbances vary in a simple harmonic 
manner with time. Suppose, for example, that the inhomogeneous term in 
the radiation problem for an unbounded medium, defined by (3.50), is 
time-harmonic with period of oscillation 2n/co; i.e., 

d di 
V V ~ -2 - y = -F(x) cos (cot+ <x). (3.141) 

The general solution then follows from eq. (3.66) as 

<p(x9t) = — f Z ^ . c o s ( c w r - - | x - f | + a ) d K . (3.142) 

where dV^ = d ^ d£2d£3, and the integration is carried out over the sphere 
BL with center at x and with radius cLt. 

The inhomogeneous term in (3.141) may also be written as 

@F(x)ei(<ot+a\ (3.143) 

where i = x/ — 1 and 0t indicates that the real part should be taken. Eq. 
(3.142) then assumes the form 

<p(x, t) = — mei{(0t+a) f I&- e-
|<«/^)l*-*ld]/€. (3.144) 

47T JBL\X-£\ 

It must be emphasized that the time does not appear only in the ex-
ponential term of (3.144), but also in the limits of integration. The solution 
as it is represented by (3.144) is for an initial-value problem. Let us now 
consider this solution for large values of time. If r is large enough the in-
tegration over B will include the complete region over which the inhomo-
geneous term is defined. This region, which is independent of time, is denoted 
by V. Thus, for large t the solution (3.144) may be written as 

<p(x, t) = &eii<ot+a)&(x), (3.145) 
where 

<p(x) = i r iw.g-«(«>/ci.)ix-«id7 ( 3 1 4 6 ) 
4nJv | J C - £ | 

Eq. (3.145) is called the steady-state solution for'the problem at hand. 
For the special case that F(x) = d\x — f| we find 
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1 -i((o/cL)\x-Z\ 

*(x;Q = -e— — - . (3.147) 
4TT | x - f | 

Clearly (3.147) in conjunction with (3.145) represents a wave propagating 
in the direction of increasing values of |x — £|. For a position x = JC15 

this solution is valid for t > |xx—f|/cL. In the three-dimensional case the 
steady-state solution applies for a position defined by xt if cLt is larger than 
the radius of the smallest sphere, centered at x = xx, which includes the 
region of external disturbances V. 

In a steady-state analysis we generally immediately assume a solution 
of the form (3.145). It is, however, convenient to omit the symbol £% during 
the analysis, until the very last stage, when the real part must be taken to 
obtain the final result. Thus we consider steady-state solutions of the form 

cp(x, t) = <P{x)ei<0\ (3.148) 

with the understanding that we are interested in the real part. Here #(x) 
may be a complex function because it is now taken to include the phase 
angle a. This representation is permissible provided that only linear oper-
ations are carried out, i.e., operations in which it is immaterial whether 
taking the real part is done before or after the operation. Typical examples 
of such operations are addition, subtraction, integration and taking a 
derivative. 

Time-harmonic motions described by (3.148) may be of two types, either 
progressive harmonic waves or standing harmonic waves. Standing waves 
are characterized by the appearance of stationary points of zero phase, 
called nodes. Progressive harmonic waves do not have stationary nodes, 
but moving nodes. Standing waves occur in bodies of finite extent. If the 
shape of the body is simple enough, standing waves can be analyzed by the 
method of separation of variables. Progressive harmonic waves are generally 
of interest for very large bodies. 

3J2.2. Helmholtz's equation 

If a steady-state solution of the form (3.148) is substituted into 

cl dt2 

we obtain 

V2<P + k2$ = -F(x), (3.149) 

w - h TT = -nxy-. 
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where we have introduced the wavenumber k as 

fe = - , (3.150) 
c 

A particular solution of (3.149) is given by (3.146). The homogeneous form 
of (3.149) is called the space form of the Wave equation, or Helmholtz 
equation. 

3.12.3. Helmholtz's first (interior) formula 

A formula analogous to KirchhofTs formula, which was stated in section 
3.9, can now be stated for the time-harmonic case. Considering a point 
defined by the position vector x inside a region V bounded by the surface 
S, we find 

4nJv | x - ? | 

l f rt^l m) _„„ A (£!!^)l ^ p.,,,, 
4nJs L | x - { | dn; dn^\ |x-{| /J € 

As usual, «£ is the outward normal to S. The integral representation (3.151) 
is known as Helmholtz's interior formula. 

3.12.4. Helmholtz's second (exterior) formula 

Let us now consider a point defined by the position vector x outside the 
boundary S of the region V. The point is in the region T which is bounded 
internally by S and externally by another closed surface SR. The surface in 
eq. (3.151) is now composed of S+SR. It should be realized that n is the 
outward normal to the region of integration T. For the surface SR we now 
take a spherical surface of (large) radius R centered at x. Then as R -» oo 

3 d ' „, „ 
and | x - { = R. 

dn$ dR 
Hence 

e-'*\*-*\ <3<2> , x d r^-£ k | x-«h 
■ * ( 0 ^ 

| x - f | 3n< V / < ^ L | x - { | J 

Now let it be required that 

1 e~" 
ik<P\ — 

J R 

ikR „~ikR d<P .,S\e-"K ^e 
— + ik<P +<P 
.dR 

\R*\ < M (3.152) 
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and 

R (^+,"**)"° (3>153) 

uniformly with respect to direction as R -► oo, where R is the distance from 
position x. These conditions are known as the Sommerfeld radiation con-
ditions. Since the area of S is of order R2

9 we have in view of (3.152) 
-ikR 

L <P —— dA -> 0 as R -► oo, 
sR R2 

and in view of (3.153) 

f /d<P \ e~~ikR 

— +ik<P\ dA-+Q as R-+co. 
JsR\dR I R 

Hence when # satisfies the radiation conditions the integral representation 
for <P(x) becomes 

L (■ ^ cm _m ± 1L^1\] iAt, (3.154) 

where 7 is the whole of space outside S, and n' is an inward normal to the 
closed surface S. Eq. (3.154) is Helmholtz's second formula, which is applied 
extensively in the investigation of scattering of acoustic waves by obstacles. 
For a discussion of applications of the formula to scattering and diffraction 
problems we refer to the monograph by Mow and Pao.15 

It can be shown that Sommerfeld's radiation conditions are a consequence 
of the property of the solution of the initial value problem that waves 
propagate outward from their source.16 

3.12.5. Steady-state solutions in two dimensions 

In two dimensions, a solution of 

V2<J> + k 2 # = 5 | x - { | 
is given by 

*(*;«) = -^Xkr), (3.155) 

15 C. C. Mow and Y. H. Pao, The diffraction of elastic waves and dynamic stress con-
centrations. Report R-482-PR, The Rand Corporation (1971), p. 140. 

16 C. H. Wilcox, Archive Rational Mechanics and Analysis 3 (1959), 133. 
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where 
r = | x - { | = [ ( x . - ^ O ' + fe-W2]*- (3.156) 

Here H^2)(kr) is the Hankel function of the second kind. In books on 
Bessel functions the following asymptotic representation can be found: 

\nkrj 

which shows that 

4 

does indeed represent a wave diverging from the axis x = £. 
By employing (3.155), a particular integral of the two-dimensional 

Helmholtz's equation with inhomogeneous term F{x) is obtained as 

*(r) = i f F ( ^ 2 ) ( f c r ) < U c , 
4 J A 

where r is defined by (3.156), and A is the area occupied by F(x). The two-
dimensional fundamental solution can be employed to derive an integral 
representation. For a point located inside the area A bounded by the curve 
C, which does not contain sources, we find 

*W = " ; i \¥-H?Xkr)-*-£-HVXkr)\ *%■ (3-157) 

Here n is the outward normal to C. Eq. (3.157) is known as Weber's interior 
formula. An analogous formula can be derived for an exterior region. 

3.13. Problems 

3.1. Suppose a point load acting in the jc3-direction is applied at time 
t = 0 in an unbounded medium and is then maintained at a position which 
moves with a constant velocity v along the positive x3-axis. Consider the 
case v < cL. If the initial point of application is taken as the origin of the 
coordinate system the displacement equation of motion may be stated as 

4 V 2 « + ( c i - c | ) V ( V • « ) - « = Q8(x1)S(x2)S(x3-vt)i3. 

Here Q is a constant measuring the strength of the moving force. The 
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initial conditions are 
W(JC, 0) = i (x , 0) = 0. 

The displacement distribution for this moving load problem can be de-
termined in an elegant manner by employing the dynamic reciprocal identity. 

(a) Show that the dynamic reciprocal identity reduces to 

/*i#'dK4 = I / ' *ndJ/*, 
J v J v 

where 

f(^s) = Qd(il)S(i2)S(^-vs)i3. 

(b) Determine the displacement in the xl -direction by choosing ap-
propriate expressions fo r / ' and u'. 

3.2. Determine the displacement components u1 and u2 due to a two-
dimensional center of compression. 

3.3. Show that in cylindrical coordinates the radial displacement due to a 
point load of magnitude pg{t) acting in the axial direction may be expressed 
in the form 

1 3zrCR,CT , XJ 1 zr \\ I R\ 1 / U\"| 
ur = — — sg(t-s)ds+ — — \—g\t -~g It 1 , 

4TT R5JR/CL An R3 lc2
L \ cj c\ \ cT) J 

where z and r are cylindrical coordinates and 

E2 =r2 + z2. 

3.4. Use the expression for ur of Problem 3.3 to write the displacement 
in the radial direction in the plane z — 0 for the case that two equal point 
loads are oriented as shown in figure 3.5. 

3.5. An unbounded medium is subjected to a distribution of antiplane loads 
which are independent of the jc3-coordinate. The distribution is represented 
by 

/ ( * i , * 2 , 0 =f0H(Xl)d(x2)H(t)i3. 

By employing eq. (3.130) determine the stress field T31(xl5 x2, t) generated 
by the loads. What is the nature of the stress singularity in the vicinity of 

Xl = 0, x2 = 0? 
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3.6. An unbounded medium containing a semi-infinite crack is subjected 
to equal and opposite antiplane line loads on the faces of the crack, as shown 
in the figure. Observe that for xt ^ 0 the displacement w3 vanishes in the 

r 
rtwrfow <yyy fry 

^777 r^p. 

plane of the crack. The medium is not subjected to body foices. Consider 
the time interval t ^ h/cT, and employ the appropriate integral representa-
tion in conjunction with the fact that u3(xl909t) = 0 for xt ^ 0, to obtain 
an integral equation for u3(x1, 0, t) on the faces of the crack. 

3.7. A quarterspace which is free of surface tractions is subjected to a con-
centrated line load, which is defined by 

f=f0d{x-^)5{x-^)S(t)i3. 

Determine the displacement at xx, x2 as a function of time. 

V77777777777T77777i 77777+ 

A 
^ , X 2 

3.8. An unbounded medium is subjected to a time-harmonic point load. 
Use the results of section 3.12 to determine the steady-state displacement 
response of the medium. 

3.9. For the two-dimensional case an equation analogous to eq. (3.154) 
can be derived. What are the pertinent radiation conditions? 

3.10. Reexamine eqs. (3.155)—(3.157) for the case that the steady-state 
solution is assumed in the form 

<p(x, t) = <P(x)e~i(0t. 



CHAPTER 4 

ELASTIC WAVES IN AN UNBOUNDED MEDIUM 

4.1. Plane waves 

A plane displacement wave propagating with phase velocity c in a direction 
defined by the unit propagation vector p is represented by 

u = f(x-p-ct)d. (4.1) 

In this equation d and p are unit vectors defining the directions of motion 
and propagation, respectively. The vector x denotes the position vector, 
and x • p = constant describes a plane normal to the unit vector p. Eq. 
(4.1) thus represents a plane wave whose planes of constant phase are normal 
to p and propagate with velocity c. 

By substituting the components of (4.1) into Hooke's law, see eq. (2.40), 
the components of the stress tensor are obtained as 

hm = [Mim(djPj) + V(diPm + dmPl)y(xnpn-ctl (4.2) 

where the summation convention must be invoked, and a prime denotes a 
derivative of the function f ( ) with respect to its argument. 

In the absence of body forces the components of the displacement vector 
in a homogeneous, isotropic, linearly elastic medium are governed by the 
following system of partial differential equations: 

\iV2u + (A + fi)VV • u = pu, (4.3) 

where X and \x are Lame's elastic constants, and p is the mass density. 
The vector operator V is defined as 

V = i t — + i 2 — + i 3 — , (4-4) 
ox1 ox2 ox3 

and V2 is the Laplacian. We will substitute the expression for the plane 
wave, eq. (4.1), into the system of field equations (4.3). By employing the 
relations 

122 
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V « = (p-d)f'(x-p-ct) 

V V - H = (p-d)f"(x-p-ct)p 

V2« = f"(x *!>-<*>* 

« = c2f"(x- p-ct)d, 

we obtain 

&«I + (A + AO(|> ' d)p-pc2d]f"(x • p - c f ) = 0, 

or 

( / i - p c 2 y + (A + M ) ( p - r f > = 0 . (4.5) 

Since p and d are two different unit vectors, eq. (4.5) can be satisfied in 
two ways only: 

either d = ±p9 or p - d = 0. 

If d = ±p9 we have J • p = ± 1 , and eq. (4.5) yields 

, . Cl _ (d±^)*. (4.6, 

In this case the motion is parallel to the direction of propagation and the 
wave is therefore called a longitudinal wave. 

The components of the rotation V A U are 

eumdiUm = eklmpldj\ 

and thus 

V A U = (pAd)f'(x- p-ct) = 0. 

The rotation thus vanishes, which has motivated the alternative terminology 
irrotational wave. This type of wave is also often called a dilatational wave, 
a pressure wave, or a P-wave (primary, pressure). 

If P # ±d, both terms in (4.5) have to vanish independently, yielding 

p • d = 0 and c = cT = ^ . (4.7a, b) 

Now the motion is normal to the direction of propagation, and the wave 
is called a transverse wave. It can easily be checked that in this case the 
divergence of the displacement vector vanishes, and we speak therefore also 
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of an equivoluminal wave. This type of wave is also often called a rotational 
wave, a shear wave, or an S-wave (secondary, shear). The displacement can 
have any direction in a plane normal to the direction of propagation, but 
usually we choose the (xi x2)-plane to contain the vector p and we consider 
motions which are in the (x1x2)-plane or normal to the (xlx2)-pl&ne. 
These transverse motions are called "vertically" and "horizontally" polarized 
transverse waves, respectively. 

From eqs. (4.6) and (4.7b) it follows that 

cL 

- - ( * * ) * -

•2(l-vy 
. l - 2 v . 

(4.8) 

where v = Poisson's ratio, and where table 2.1 has been employed. Since 
0 ^ v ^ 0.5, it follows that cL> cT. For metals, the phase velocities of 
longitudinal and transverse waves are generally very large. Thus we find 
for structural steel, cL = 590,000 cm/sec, and cT = 320,000 cm/sec. For 
a few materials, representative values of p, cL, cT and K are listed in table 4.1. 

TABLE 4.1. 

Approximate values of />, c , c and K 

Material 

air 
water 
steel 
copper 
aluminum 
glass 
rubber 

P 
(kg/m3) 

1.2 
1000 
7800 
8900 
2700 
2500 

930 

cL 
(m/sec) 

340 
1480 
5900 
4600 
6300 
5800 
1040 

cT 

(m/sec) 

3200 
2300 
3100 
3400 

27 

K 

1.845 
2 
2.03 
1.707 

38.5 

4.2. Time-harmonic plane waves 

In chapter 1 it was already pointed out that the results of studies on traveling 
harmonic waves in a linearly elastic medium are of interest by virtue of the 
applicability of linear superposition. By the use of Fourier series, harmonic 
waves can be employed to describe the propagation of periodic disturbances. 
Propagating pulses can be described by superpositions of harmonic waves 
in Fourier integrals. 

A plane harmonic displacement wave propagating with phase velocity 
c in a direction defined by the unit propagation vector p is represented by 
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u = Ad exp [ik(x • p-ct)], (4.9) 

where / = v(~" 1) a n d it is understood that the actual displacement com-
ponents are the real or imaginary parts of the right-hand side. The am-
plitude A may be real-valued or complex, but it is independent of x and t. As 
defined in chapter 1, a> = kc is the circular frequency and k is the wave-
number. These quantities are related to the period T and the wavelength A 
by (JO = 2n/T and k = 2n/A, respectively. 

Eq. (4.9) clearly is a special case of (4.1). This implies that the results of 
the previous section are applicable. Thus, we have two types of plane 
harmonic waves, longitudinal and transverse waves, propagating with phase 
velocities cL and c r , respectively. Since the wavenumber k does not appear 
in the expressions for the phase velocities, plane harmonic waves in an un-
bounded homogeneous, isotropic, linearly elastic medium are not dispersive. 

4.2.1. Inhomogeneous plane waves 

The space and time coordinates in the expression for plane harmonic waves, 
(4.9), are intrinsically real. For simple harmonic time variation co is also 
ieal, while Pj and k are usually taken as real-valued. As an interesting 
generalization of (4.9) we will now, however, consider the possibility of a 
complex-valued unit propagation vector p, 

P = p' + ip"- (4.10) 

Since p is a unit vector we still require 

pp = l, (4.11) 
which implies 

P''P'-P"-P" = 1 (4-12) 

/ > ' p " = 0 . (4.13) 

Substituting (4.10) into (4.9), we obtain 

u = Ad exp [ — k(x • />")] exp [ik(x • p' — ci)\. (4.14) 

This expression describes a wave with varying amplitude propagating in a 
direction defined by the vector p'. Planes of constant amplitude are given by 

x-p" =C19 (4.15) 

and at any particular time t, planes of constant phase are given by 

x-p' = C2, (4.16) 
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where Cl and C2 are constants. It now follows from (4.13) that the planes 
expressed by (4.15) and (4.16) are orthogonal, i.e., the planes of constant 
phase are orthogonal to the planes of constant amplitude. This means that 
the amplitude remains constant along lines in the direction of propagation, 
but varies exponentially in planes perpendicular to the direction of propaga-
tion. When the components of p are real, then we have the familiar case of 
uniform amplitude throughout space. Plane waves with a unit propagation 
vector whose components are not real are called inhomogeneous plane waves. 

Although the wave is harmonic and the vector p is complex-valued, the 
wave is still of the general form (4.1). The development leading to eq. (4.5) 
is not affected and it is concluded that we must again have 

(H-Pc2)d + {k+li){p ■ d)p = 0. (4.17) 

It should, of course, be realized that the unit vector d is now also complex-
valued. Just as for the case of real-valued vectors, (4.17) can be satisfied 
in two ways only: either d = ±p, or d • p = 0. These two cases yield 
c = cL and c = c r , respectively. 

For the subsequent discussion it is convenient to rewrite the expression 
for a plane wave as 

u = Ad exp [ico(x • q-t)]9 (4.18) 

where the slowness vector is defined as 

q = pfc. 

In view of (4.11) we have 

where q = l/cL for longitudinal waves, and q = l/cT for transverse waves. 
In most cases we choose our coordinate system so that/?3 = 0. Then if we 
assume that ql is real, q2 must be either real or imaginary, depending on 
the magnitude of qt in comparison with q: 

q2 = {q2-ql)i (4-19) 
or 

«2 = *(?1-«2)* = '7*. (4-20) 

The corresponding plane waves have the form 

u = Ad exp [i(o(xlq1+x2q2~-t)] (4-21) 
and 

u = Ad exp ( - a>x2 P) exp [ico(x1 qx — t)], (4.22) 
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respectively. In the first of these the oscillation amplitude is uniform 
throughout the field, and planes of fixed phase advance with speed c = \/q 
in the direction of the slowness vector q9 which has real components. In eq. 
(4.22) the oscillation amplitude decays exponentially in the positive x2-
direction. For fixed x2, however, there is a simple harmonic wave propagat-
ing in the ^-direction with phase velocity l/q1. 

4.2.2. Slowness diagrams 

As pointed out by Crandall1, the relations (4.19) and (4.20) can be rep-
resented in a slowness diagram, figure 4.1, by a circle and an equilateral 
hyperbola, respectively. Given qx < q, the corresponding value of q2 is on 
the circle of radius q. When q < q1 the corresponding value of P is on the 
hyperbola. 

Fig. 4.1. Slowness diagram. 

An alternative representation of eqs. (4.19) and (4.20) is obtained by 
introducing the angle 9 by 

Pi = sin 6, p2 = cos 9. 

Then, as shown in figure 4.1, 

q± = q sin 9, q2 = q cos 0. 

When qt < q, the angle 9 is real. When q < qx, it is convenient to set 

0 = irc-iy, 
and write 

qx = q cosh y, ft = q sinh y. 

As we shall see in section 13 of chapter 5, slowness diagrams are useful to 
illustrate reflections and refractions of waves. 

1 S. H. Crandall, Journal of the Acoustical Society of America ATI (1970), 1338-1342. 
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4.3. Wave motions with polar symmetry 

4.3.1. Governing equations 

Within a system of spherical coordinates the field variables describing wave 
motions with polar symmetry depend on r and t only. The single displacement 
component, which is in the radial direction, is denoted by u(r, t). The non-
vanishing stresses are the radial stress 

Tr = (A + 2 / z ) - + 2A- , (4.23) 
dr r 

and the normal stress in any direction perpendicular to r 

rd = X-+2(X + ii)U-. (4.24) 

dr r 

The equation of motion takes the form 

dr, + 2(Tr-Tfl) ^ 
dr r dt 

+ ^ ~ ^ = p ^ . (4.25) 

By substituting (4.23) and (4.24), the displacement equation of motion is 
obtained as 

d2u 2 du 2u _ 1 d2u , . 

d^+ rd>~ 7 ~ ?Ldt2' 

It is convenient to express the radial displacement in terms of a potential 
function cp(r, t)9 

u = ^ . (4.27) 
dr 

By substitution into (4.26) it is easily shown that u(r, t) is a solution of 
(4.26) if the product rep satisfies the one-dimensional wave equation 

a^M = j_^M (428) 
dr2 cl dt2 

Eq. (4.27) is consistent with the general representation given by eqs. (2.87) 
and (2.150) of chapter 2. The governing equation (4.28) could have been 
obtained directly from eq. (2.153) of chapter 2. 

The general solution of (4.28) is 

<p(r,t) = -f it--) + -gfr+ - ) . 
r \ cj r \ cj 
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Clearly the two terms represent waves diverging from r — 0 and converging 
to r = 0, respectively. 

4.3.2. Pressurization of a spherical cavity 

Now let us consider the specific wave motions that are generated by the 
rapid pressurization of a spherical cavity in a homogeneous, isotropic, 
linearly elastic medium (see figure 4.2). These wave motions display polar 
symmetry with respect to the center of the cavity. The problem at hand is 

Fig. 4.2. Pressurized spherical cavity. 

governed by (4.23) and (4.26), supplemented by the following boundary and 
initial conditions: 

r = a, t ^ 0: xr = -p{t) (4.29) 

r ^ a, t < 0: u(r, t) = u(r9 t) = 0. (4.30) 

Eq. (4.30) indicates that the medium is assumed to be at rest prior to time 
/ = 0 . 

The appropriate solution of (4.28), i.e., the one representing outgoing 
waves, may be expressed as 

«>(r,0 = -f(s) , (4.31) 
r 

where, instead of t — r/cL, we employ the argument 

s = t- — , (4.32) 

and where f{s) = 0 for s < 0. The functional form of f(s) depends on the 
boundary condition (4.29) and the initial conditions (4.30). 

In terms of f(s), the displacements and stresses may be written as 

u(r, 0 H - l . (4.33) 
cLr r 
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1 —v 

t9(r, r) = 
1—v 

pel rvf" 

<i^i:+2(-2v)(ilJ + i)l (4.34, 

:_(l_2v)(il + I ) l . (4.35) 
r \cLr r !A 

In eqs. (4.33)-(4.35), a prime denotes a differentiation of the function f(s) 
with respect to the argument s. We have eliminated X and p, in favor of c\ 
and the Poisson's ratio v, whereby the relations of table 2.1 have been 
employed. 

The actual functional form of f(s) remains to be determined. Since the 
displacement should be continuous at the wavefront, the initial conditions 
on f(s) are, in view of (4.30), 

f(0) = f'(0) = 0. (4.36) 

At r = a, the argument of f(s) reduces to s = t. The boundary condition 
(4.29) and the expression for the radial stress, (4.34), then combine to 
produce the following ordinary differential equation for f(s): 

^ + 2 « ^ + ( ^ + ^ ) f = - f p ( s ) , (4.37) 
as as p 

where 

a = 1~2 v °± R2
 =

 l~2v cl 
1-v a ' P ( 1 - v ) 2 a 2 ' 

By means of the substitution 

f(j) =g(s)exp(-as), (4.38) 

Eq. (4.37) can be simplified to 

^+P2g= - - p ( 5 ) e x p ( a s ) . (4.39) 

ds p 

The solution of (4.39) satisfying quiescent initial conditions is 

n 1 Cs 

g(s) = p(x) exp (ax) sin [/?(s-i)]dT. (4.40) 
p fiJo-

By substituting (4.40) into (4.38), by a change of the integration variable, 
and a subsequent substitution into (4.31), we find 

a l l 
9 P r 

p(s~T>"aTsin(iST)dT. (4.41) 
o 
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The radial displacement and the radial and the tangential stresses can be 
computed from (4.33), (4.34) and (4.35), respectively. 

The corresponding quasistatic solution can be obtained by evaluating 
the limit of (4.41) for p -» 0. 

<pst = - a lim — y \Sp(s-T)e-{a-mx&T. 
r p-o pfi Jo 

By integrating by parts we find 

a3 p(t) 1-v 
cp = £-i-i , 

r A + 2/x 2(1-2v) 

which can also be written as 

» = - a - * > 

r 4fi 

Eq. (4.41) can easily be evaluated for the special case 

p(t) =p0H(t), 

where H(t) is the Heaviside step function. The result is 

q>(r9 t) = - — —P-° [ l - ( 2 - 2 v ) ^ - a s s i n ()8s + y)]H(s), (4.42) 
4/i r 

where s is defined by (4.32), and 

y = cot"1 ( l -2v)* (in ^ y ^ i-Tc). 

It is noted that cp(r, r) approaches the quasistatic solution as t increases 
beyond bounds. The potential for a pulse of finite duration T may be found 
by superimposing on (4.42) the corresponding displacement potential for a 
pressure of the same magnitude but of opposite sign, and of indefinitely 
long duration starting at time T9 so that the cavity surface is made free from 
applied pressure after time T. 

For two positions the radial stresses and the circumferential normal 
stresses corresponding to (4.42) are plotted in figures 4.3 and 4.4, respec-
tively. For a fixed position r, the wave arrives at time t = (r — a)/cL. The 
static solutions are also shown in these figures and it is noted that both 
stresses show a dynamic overshoot of the static values. From eq. (4.42) it is 
seen that at a fixed position damped oscillations persist, which shows a 
distinction between spherical waves and plane waves. Another distinction 
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Fig. 4.3. Radial stress; denotes static solution. 

is that in spherical geometry the field variables are subjected to geometrical 
attenuation which is at least of order r" 1 . It is noteworthy that the circum-
ferential normal stress changes sign as the wave passes by. 

4.3.3. Superposition of harmonic waves 

For a spherical geometry an expression representing a harmonic wave with 
polar symmetry follows immediately from eqs. (4.31) and (4.32) as 

<p(r, t) = - exp 10) &")] 
By employing (4.34), the corresponding radial stress is found as 

T, -pD(co, r) - e x p 
r H^-'I 

(4.43) 

(4.44) 
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Fig. 4.4. Circumferential normal stress; denotes static solution. 

where 

D(co, r) = co2 + 2i ( - ) aco -2 ( l -v ) (-\ p\ (4.45) 

and a and /? are defined earlier in this section. Eqs. (4.43) and (4.44) describe 
outgoing waves. 

Superposition of harmonic waves represented by (4.43) and (4.44) can be 
employed as an alternative means to obtain the wave motion due to pres-
surization of a spherical cavity. To this end we employ eq. (1.97) of section 
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1.8 and we express the boundary condition (4.29) at r = a by 

Tr(fl, t) = - — f °° p*(co>-fwfdco. (4.46) 
271*/ -oo 

An outgoing time-harmonic spherical wave is given by eqs. (4.43) and 
(4.44). It follows that <p(r, t) may be expressed as 

<p(r, t) = ~ - - ^ ^ e-w-(r-a)!c^do)9 ( 4 4 7 ) 

2% r pJ -oo D(co) 

where i)(co) follows from (4.45) by setting r = a, 

D(co) = oo2 + 2i<xa)-2(l-v)p2. 

Eq. (4.47) can be evaluated by contour integration in the complex co-
plane. Let us consider the case that 

M = -rT-Tv (4'48) 

7r(e2 + r ) 
By employing eq. (1.98) of section 1.8, we find 

p*(co) = e-
eco. (4.49) 

The pressure distribution given by (4.48) is a pulse. In the limit as e -» 0, 
p(t) is zero everywhere, except at t = 0, where p{t) becomes unbounded. 
This limitcase is the well-known Dirac delta function, denoted by S(t). 
From (4.49) we see that/?*(co) reduces to unity as e approaches zero. Al-
though it may be considered as the limitcase of an impulse, the Dirac delta 
function has little physical significance as a forcing function. If it is possible 
to evaluate the response to a Dirac delta function, the response to other 
external disturbances can, however, be obtained by a superposition over 
time. Any function can be considered as an infinite sequence of delta func-
tions since 

f(t) = r f(s)S(f-s)ds. (4.50) 
J — oo 

For p(t) = 5(t), eq. (4.47) reduces to 

2% r pJ -oo D(o)) 

The roots of D(co) — 0 are computed as 

m . ( l - i v ) * ^ A-2vcL 
' 1 , 2 

1 —v a 1 —v 
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Thus the poles of the integrand are located in the lower half-plane at 
co = col and co = co2, respectively. For t — (r — a)/cL > 0, the contour is 
closed in the lower half-plane and the computation of the residues yields 

cp(r, t) = exp (-as) sin (f}s). (4-51) 
r p 0 

For t — (r — a)lcL < 0, the contour must be closed in the upper half-plane 
and we find cp(r, t) = 0. Eq. (4.51) agrees with (4.41) if we substitute 
p(t) = d(t) and employ the sifting property of the delta function expressed 
by (4.50). 

4.4. Two-dimensional wave motions with axial symmetry 

Transient wave motions with axial symmetry are much more difficult to 
analyze than wave motions with polar symmetry, even if the motion is also 
independent of the axial coordinate. The reason is the absence of a simple 
general solution for cylindrical waves. 

4.4.1. Governing equations 

In a system of cylindrical coordinates, motions that are independent of 
the axial coordinate z and the angular coordinate 9 can be separated into 
three types of uncoupled wave motions: 

Radial motions: These are governed by 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

shear motions: 

u = 

?r = 

T« = 

?z = 

d2(p 

dtp 

' Yr 

, (du 
A — + 

\dr 

, (du 

\8r 

r dr 

u\ du 

rf dr 

- +2/x-
rj r 

' ) 

1 d2q> 

~ cl dt2 " 

These are governed by 

„ _ # r 

dr 
(4.57) 
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(4.58) 

(4.59) 

ial shear motions: 

3Vr 
dr2 

(dv 

+ 1 # , 
r2 

3 
I 

"4 
5Vr 
at2 

The governing equations are 

5r2 

w = 

*zr = 

r dr 

1 dtye 
r dr 

dw 
11 Tr 

r" 

L) 

I 

"4 dr2 

(4.60) 

(4.61) 

(4.62) 

These sets of equations follow directly from the general system of equations 
stated in section 2.13. 

4.4.2. Harmonic waves 

Expressions representing time-harmonic wave motions of the radial, rotary 
shear or axial shear types can be obtained in a straightforward manner. To 
illustrate cylindrical waves of harmonic time dependence we consider radial 
motions. 

Considering a solution of the general form 

<p(r, t) = 0(r)e^\ (4.63) 

it follows from eq. (4.56) that <P(r) must satisfy 

+ +kl$ = 0, (4.64) 
dr2 r dr 

where 
CO 

kL = - . (4.65) 

The general solution of (4.64) is 

*(r) = AH$ \kL r) + BH™(kL r), (4.66) 

where H(o\kLr) and H^\kLr) are Hankel functions of the second type. 
Thus, cp(r, t) may be written as 

<p(r,t) = AeiatH#XkLr) + Be^H{£XkLr). (4.67) 

The nature of the wave motions represented by the two terms in (4.67) 
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becomes evident by inspecting the asymptotic representations of the Hankel 
functions for large values of kLr. In a text on Bessel functions the following 
asymptotic representations can be found: 

H(o\kLr) ~ ( . J L ) >*"-«/*> as kLr - oo (4.68) 
\nkLrJ 

H(
0
2)(kLr) ~ (-^—) e-i(kLr-n/4) as kLr -> oo. (4.69) 

\nkLrJ 

It is now apparent that the first term in (4.67) represents a wave converging 
toward r = 0, while the second term represents a wave diverging from 
r — 0. Since most applications are concerned with diverging waves we will 
generally deal with 

(p(r,t) = Bei(OtH(
0
2\kLr). (4.70) 

The Hankel function #(
0

2)(&i/) c a n be expressed in terms of Bessel 
functions of the first and second kinds as 

H(
0
2\kLr) = J0(kLr)-iY0(kLr). 

Well-known integral representations of the Bessel functions are 

_ 2 f °° sin xs 
Jo (*) = - 2 ds 

7rJ l (S - l ) 2 

. . 2 f00 cos xs 

7lJ 1 (S — 1)* 

and thus H(o2)(kLr) may be represented by 

flg'XM-- /V-^ d s - (4-71) 
n Ji (sl-ly 

The general solution (4.70) can now of course be employed to solve 
a specific problem, for example, the wave motion generated by a time-
harmonic pressure acting on the surface of a circular cylindrical cavity. 
By employing (4.53) and (4.52) the constant B can be obtained without 
difficulty. The details of this straightforward computation are left to the 
reader. Subsequently harmonic waves can be superposed to determine the 
wave motion generated by a pressure of arbitrary time dependence acting 
in a circular cylindrical cavity. Unfortunately it is rather difficult to evaluate 
the resulting superposition integrals. 
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Several authors have used Laplace transform techniques2 to investigate 
transient cylindrical wave motions, see for example the paper by Kromm.3 

For an interesting problem of cylindrical waves in plane stress we refer to an 
article by Miklowitz4, which is concerned with an application of the 
Laplace transform to examine plane-stress unloading waves emanating 
from a suddenly punched hole in a stretched elastic plate. The alternative 
to integral transform techniques are numerical methods based on the method 
of characteristics as discussed in section 4.8. 

4.5. Propagation of wavefronts 

If a medium is disturbed from a quiescent state by excitation at a boundary 
or within a restricted domain of the interior, neighboring domains are soon 
set in motion and put into states of deformation. The moving surface which 
separates the disturbed from the undisturbed part of the body is called the 
wavefront. Clearly the field quantities and/or their derivatives are discon-
tinuous at the wavefront. In the previous sections some cases of transient 
wave motion were considered with plane and spherical wavefronts. These 
problems were amenable to an exact analysis. Generally it is not possible 
to determine exact solutions if the wavefront is not of a geometrically simple 
shape. Consider for example the wave motion generated by the sudden 
pressurization of a cavity of irregular shape in an unbounded medium. It 
is evident that it will be rather difficult to obtain expressions describing the 
details of the induced wave motion. For a problem of this type it is, however, 
possible to determine the field variables and/or their spatial and time 
derivatives at the wavefronts. 

4.5.1. Propagating discontinuities 

The computation of variables at wavefronts is based on some general 
results regarding propagating surfaces of discontinuity in continuous 
media. The basic techniques for the study of propagating surfaces of dis-
continuity in continuum mechanics were established toward the end of the 
last century. For elastic media a brief exposition can be found in the book 
by Love.5 In recent years the theory was discussed in detail by T. Y. Thomas6. 

2 Integral transform methods are discussed in chapter 7. 
3 A. Kromm, Zeitschrift fur angewandte Mathematik und Mechanik 28 (1948), 297. 
4 J. Miklowitz, Journal of Applied Mechanics 27 (1960), 165. 
5 A. E. H. Love, The mathematical theory of elasticity, 4th edition. New York, Dover 

Publications (1944), p. 295. 
6 T. Y. Thomas, Plastic flow and fracture in solids. New York, Academic Press (1961), 

p. 37. 
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The procedures that are used are analogous to the ray-tracing and associated 
wavefront analysis of geometrical optics. For the scalar wave equation, 
wavefront analysis was discussed in great detail by Friedlander.7 A theory 
for the propagation of stress discontinuities in inhomogeneous isotropic 
media was presented by H. Keller.8 

The equations governing the motions of a homogeneous, isotropic, 
linearly elastic medium are stated in section 2.5. From the examples that 
have been treated in the preceding sections it can be concluded that we 
can impose initial and boundary conditions so that the stresses are con-
tinuous. On the other hand, we can also impose external conditions so that 
the stresses are discontinuous at the wavefront. It should be realized, how-
ever, that discontinuities of most kinds which occur in the mathematical 
analysis of physical situations are really idealizations of quantities which 
vary very rapidly in a small interval of space and time. Thus a discontinuous 
change is the mathematical description of a physical change which takes 
place in a thin layer. 

A wavefront does not necessarily propagate into undisturbed material. 
In the remainder of this section it will be assumed that the material is al-
ready disturbed before the wavefront of an additional disturbance arrives. 

We consider a nonstationary surface of discontinuity D, which divides 
a region V into two parts Vx and V2. The subscript 1 is used to denote the 
values of field variables on D when D is approached through Vx, and the 
subscript 2 is employed to denote the values when D is approached through 
V2. If, say, the components of xtj are discontinuous across D, the jumps 
will be denoted by the standard bracket notation 

[ T ^ C T ^ - C ^ . (4.72) 
We denote by p the unit normal to D pointing from Vx to V2 (see figure 4.5). 
It is assumed that the surface propagates with velocity c in the direction 
of the propagation vector p. 

Fig. 4.5. Propagating surface of discontinuity. 
7 F. G. Friedlander, Sound pulses. Cambridge, University Press (1958). 
8 H. Keller, SIAM Review 6 (1964), 356. 
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At time t, the propagating surface of discontinuity is represented by an 
equation of the form F(x, t) = 0. The position at a neighboring subsequent 
time t+At can be derived from the position at a previous time by subjecting 
the points of D to a displacement, directed at each point along the normal p. 
The equation F(x91) = 0 must then be satisfied to the first order in At 
when for xt and t we substitute 

Xi + cpiAt, t + At. (4.73a, b) 
It follows that 

dF 
ir+cFtiPi = 0. (4.74) 
ot 

If a surface of discontinuity is nonstationary we have dF/dt ^ 0, and 
F(x, t) may be solved for t. Thus, without loss of generality the surface may 
be represented by 

Z > = F ( x , f ) s s * ( * ) - / = 0. (4.75) 

Consequently the surface in xrspace 

x(x) = constant (4.76) 

is a surface across which certain field variables may be discontinuous at an 
appropriate instant of time; x(x) is called the wave function. 

By employing (4.75), eq. (4.74) becomes 

cx.iPi = i- (4-77) 

We also have, however, that 

pt-r+r (4-78) 

where 

«-{(£)'♦ £),+(£)T- <479) 

It then follows from (4.77) and (4.78) that/?f may be written as 

JPi = cx . f . (4.80) 

4.5.2. Dynamical conditions at the wavefront 

The dynamical conditions at the moving surface of discontinuity D are found 
by considering the impulse-momentum relation of a thin slice of the medium 
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surrounding a small area D0 of D. We consider the prismatic element which 
is bounded by D0, by the normals to D at the edge of D0 and by a surface 
parallel to D at a distance cAt behind the wavefront. Assuming that the 
medium is already in motion ahead of the wavefront, the element passes 
in the short time At from a motion defined by (uf)2 to a motion defined by 
(w f)i • The change is effected by the resultant force across D0. The components 
of the resultant traction are 

(iijhPj-btdiPj, (4-81) 

where p is the normal to D. The resultant force is obtained by multiplying 
(4.81) by Z>0, and the impulse is obtained by subsequently multiplying by 
At. The impulse-momentum relation is therefore 

pD0cAt{(ut)i -(udi) = {(rij)2-(*tj)i}Pjl>oAt (4.82) 
or 

[hj]Pj = -pc[utl (4.83) 

where we have introduced the notation defined by (4.72). 

4.5.3. Kinematical conditions at the wavefront 

Let ff(x, /) denote a field quantity which may be discontinuous across the 
moving surface D. Certain relations between the time rate of change of 
the jump and the jumps of spatial and temporal derivatives of ff follow 
directly from an examination of the motion of the moving surface. 

Consider two successive positions of the moving surface D9 one at time t, 
and the other at time t + At. Let the normal p at a generic point P of D 
intersect the surface D' at t + At at a point P\ where PP' = Ax. Denote by 
f J the one-sided limit of the function ff(x, t) at point P' at time t + At, and 
let ff be the one-sided limit of the function ft(x91) at point P at time t. For 
an observer moving with D at the normal velocity c = cp, the time rate of 
change of the field variable is 

TO = lim £z£. 
\dt / D Jf-o At 

= df1+df1 dxj 
8t 3xj dt 

= ^ + c f , ; P , . (4-84) 
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Observing that 

kjPj = ~ (4-85) 
dp 

is the derivative in the direction normal to the surface D, we find 

^ = ^+3. (4.86) 
d* dt dp 

In (4.86) we have introduced the notation dD/dt for the time-rate of change 
of a quantity as observed by an observer who moves with the propagating 
surface D. 

Assuming that f( is discontinuous, let us replace ft in (4.86) by (f,)2 and 
(fi)i, respectively. Subtracting the resulting equations, we obtain 

Eq. (4.87) is known as the kinematical condition of compatibility of the 
first order. If f£ is continuous across D9 we have 

A first kinematical relation between spatial and temporal derivatives of 
the displacement components follows from the required continuity of the 
displacements. Since the material should maintain its integrity at the wave-
front, we have 

[ut] = 0. (4.89) 

It then follows from (4.88) that 

M - - * [ p ] • (4.90) 

Since 

we can also write 

dp. 

PtlPj - -c[utJ. (4.91) 

4,54. Wavefronts and rays 

Discontinuous derivatives of the displacement vector give rise to discon-
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tinuities of the components of the stress tensor across the surface D. From 
Hooke's law, eq. (2.40), we find 

[TI7] = ^ijluktk~] + fi([uij'] + lujti']). 

Substitution of (4.91) yields 

c c 

According to (4.83) we have 

[*ij]Pj = -pc[ut]9 

and thus 
pc2[ut] = I5ij[uk]pkpj + ii([ui]pjpj+ [Uj]PiPj) 

or 
(»-pc2)[*i] + (X + p)[uk]pkPi = 0. (4.92) 

This equation is equivalent to eq. (4.5) for plane waves. Again we can 
distinguish two cases: either [iij is proportional to pi9 or [uk]pk = 0. The 
first case defines a longitudinal wavefront. By taking the inner product of 
(4.92) with Pi we find 

c = cL = . 
P 

The case [uk]pk = 0 defines a transverse wavefront. We find 

2 _ 2 _ M 
C — Cf — - • 

p 
The path of a point P which moves with the wavefront is always normal 

to the wavefront. Such an orthogonal trajectory of the family of wave-
fronts is called a ray. Let us consider the change of direction of the path by 
examining the time derivative of p. By employing (4.80), we find 

dpi d , x 

dt dt 

or 

dt 3x, W dxf 

where (4.75) has been used. Thus for a homogeneous material the rays 
are straight lines. With this information the wavefronts at times t subsequent 
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to a time t = tQ can be constructed by advancing from the wavefront at 
/ = t0 a distance c(t —10) along a ray. This construction of wavefronts was 
proposed very early in the development of wave theory by Huyghens; it is 
known as Huyghens' principle. 

It remains to determine the changes of the magnitudes as the discon-
tinuities propagate through the medium. Here we state just the result.9 If 
R and S are the principal radii of curvature at the wavefront we have for 
the magnitude f of a field variable at a wavefront 

f2RS = constant (4.93) 

along the ray. This shows that for spherical waves f decays as R'1. If one 
of the radii, say S, is infinite, as in the case of two-dimensional wave motions, 
we have instead of (4.93) 

f 2R = constant. 

Thus for cylindrical waves f decays as R~*. 

4.6. Expansions behind the wavefront 

It is possible to compute not only the magnitudes of propagating discon-
tinuities of field variables, but also the discontinuities of their temporal 
derivatives. This then makes it feasible to construct Taylor expansions of 
field quantities at a fixed position for short times after the wavefront has 
passed. Denoting the position of the wavefront by x(x) — l-> the Taylor 
expansions are of the general form 

fi(x,t) = t±{t-X(x)y\d
1£] , (4.94) 

for t ^ X(JC). The computation of the propagating discontinuities [dnft/dtn] 
will be illustrated by the example of transient rotatory shear motion. 

We consider an elastic plate with a circular hole of radius a. Suppose at 
time t = 0 an in-plane shear traction is uniformly applied round the hole. 
The resulting motion is entirely rotary and involves shear stresses only. 
The one nonvanishing displacement component is v(r, t), while the single 
component of the stress tensor is 

Idv v\ (4.95) 

9 For a derivation we refer to H. Keller, SIAM Review 6 (1964) 356. 
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The corresponding equation of motion is of the form 

+ ^ = P ^ - (4-96) 
fare , 2rrd d v 

dr r dt2 

The statement of the problem is completed by the initial condition 

v(r, 0) = v(r, 0) s 0, r > a, (4.97) 

and the boundary condition 

r = a: xrQ = x0g{t). (4.98) 

The problem defined by eqs. (4.95)-(4.98) was treated by Goodier and 
Jahsman10, who employed the Laplace transform technique. 

For axially symmetric rotary shear waves the position of the wavefront 
is defined by an equation of the form 

y(r)-t=0. (4.99) 

The relation expressing conservation of linear momentum at the wavefront 
assumes the form 

bre\ = -pc 
Ldt_ 

In view of the continuity of the displacement v(r, t) we have 

(4.100) 

where we have taken into account that the wavefront propagates in the radial 
direction. From the stress-strain relation (4.95) it is concluded that 

[>*]=41] • (4'102) 

Combining (4.100), (4.101) and (4.102) it follows that 

■ © ■ 
and x(r) may thus be expressed as 

Z(r) = — • (4.103) 
cT 

10 J. N. Goodier and W. E. Jahsman, Journal of Applied Mechanics 23 (1956) 284. 
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Eq. (4.99) then implies that the wavefront is located at 

r = a + cTt. (4.104) 

From the preceding section we also recall the kinematical condition of 
compatibility which for the present problem assumes the form 

dp 
At 

[f] = 
"3f 

.dtj 
+ c, [!]• (4.105) 

where f(r, t) is a discontinuous field variable. 
The computational work simplifies somewhat if we introduce new 

variables x and V by 

T = r TH 

Eqs. (4.95) and (4.96) then reduce to 

T = \ir 
37 

dr 

d2V dx 3 

dr dt2 

The conservation of momentum relation (4.100) yields 

(4.106a, b) 

(4.107) 

(4.108) 

[T] = -pcTr3 

.dt] 

In view of (4.104), this relation can also be written as 

[T] = -pcT(a + cTt)3 r ^ H . (4.109) 

Let us assume that the function g(t) in eq. (4.98) can be expanded in a 
Maclaurin series. The condition on z at r = a can then be expressed as 

x(a91) = a2xQ ^ gn t > 0. 
n = 0 tl\ 

(4.110) 

Analogously to (4.94) we will seek solutions for r(r, /) of the form 

,(,.,) _£Ituffif£] . (4,,,) 
It will evolve that the discontinuities [dnx/dtn] satisfy simple ordinary dif-
ferential equations. 
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Assuming that i(r, t) is discontinuous at the wavefront, we have according 
to (4.105) 

r i \ UT ^5 
dt 

Employing (4.107) and (4.108), this expression can be rewritten as 

PT1 
idtl 

+ cT 

Vdil 

Ldrl 
(4.112) 

dt 
[x] = n(a + cTtf 

'd2v 

Ldrdt. 
+ pcT(a + cTt)3 \^p^ . (4.113) 

The kinematical condition of compatibility yields for d Vjdt 

do 

dt 

~dV~ 

.dt. 
= 

'd2V 

.dt2. 
+ c, 

idrdtj 

Combining (4.113) and (4.114) and employing (4.109), we find 

,3 W ] = o. d DW+K« + Cr0 3 ^- ' 

(4.114) 

(4.115) 
dt " " dr l(a + crf)3 

The solution of (4.115) is 

[T] = A0(fl + cTt)*, 

where ^40 follows from (4.110) as 

A0 = a T0g0. 

The actual discontinuity in the shear stress follows from (4.106a) as 

\a-f-crf/ 

As is usual for cylindrical waves the discontinuity decays with the square 
root of the radial distance from the cavity. 

To compute the higher order discontinuities we apply the condition of 
compatibility (4.105) to dnz/dtn 

do 

dt 

73V 

.dt". 
= 

-dn+i^. 

.dtn+1. 
+ C] 

idrdt". 

We also apply (4.105) to dn+1V/df , B + 1 

dp 

dt dt" 

ran+ 2 dn+2V\ 

df+2\ 
+ C7 

• dn+2x -I 

(4.117) 

(4.118) 

In eq. (4.118), the derivatives can be eliminated in favor of derivatives o f t 
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by employing (4.107) and (4.108). On combining the result with (4.117) we 
find 

Next we write the condition of compatibility (4.105) for dn~1z/dtn~1, and 

we eliminate [dnxjdr dt"'1] from the result and eq. (4.119) to obtain 

- 3 - ^ - ["-I = FJLt), (4.120) 
2 a + cTt ldtn] W ' J 

where 

d* l(a + c r r ) 3 d* Ld? J i 

The solution of eq. (4.119) is 

\°Tk[ = (fl + c r 0 * I ^ f r ) , ^ ,3 +a2x0gn. Lot A Jo (a + Cjs)^ 

This is a relatively simple relation expressing the discontinuity of order n 
in terms of the discontinuity of order n— 1. 

It was shown by Sun1 x that the method of this section can be extended to 
inhomogeneous and viscoelastic media. 

4.7. Axial shear waves by the method of characteristics 

A discussion of the characteristic surfaces of a system of partial differential 
equations comes best to its right if the equations are more complicated than 
the ones discussed in this chapter. The properties of characteristic surfaces 
indeed have many ramifications. These are discussed in considerable detail 
elsewhere.12 In this and the next section we will very briefly touch on what 
is called the method of characteristics, with regard to the numerical solution 
of problems of elastic wave propagation in two dimensions and with axial 
symmetry. 

We consider an unbounded elastic medium containing a circular cylin-
drical cavity of radius a. Suppose at time t = 0 an axial shear traction is 

dt 
11 
Jtn. 

11 C. T. Sun, International Journal of Solids and Structures 7 (1971), 25. 
12 R. Courant and D. Hilbert, Methods of mathematical physics, Vol. II. New York, 

Interscience Publishers (1962). 
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uniformly applied to the surface of the cavity. The resulting axial shear 
motion is governed by 

* b + I = _ p a - ! £ (4.121) 
dr r dt2 

and 

T„ = U 
dr 

T „ = A * ^ , (4.122) 

with the initial conditions 

w(r9 0) = w(r, 0) = 0 for r > a, (4.123) 

and the boundary conditions 

r = a xrz = T0 0(f)- (4.124) 

Eqs. (4.121) and (4.122) are analogous to eqs. (4.60)-(4.62). 
For convenience of notation we introduce 

Eq. (4.121) may 

while eq. (4.122) 

W 

then be rewritten as 

implies 

dx 1 

dr c\ 

dw 

Tt " 

the relation 

dx 

Tt 
dvv 

Tr~ 

= 

0. 

dw 

Tt 

T 

r 

(4.125a, b) 

(4.126) 

(4.127) 

Eqs. (4.126) and (4.127) form a system of coupled partial differential 
equations of the first order for t(r, t) and vv(r, t). Now suppose that T and 
w are known on a curve defined by C(r, t) = 0, and suppose that we wish 
to find these quantities at another point, say a point close to the curve 
C(r91) = 0. The desired values of r and w can be computed by means of 
Taylor expansions if at any point of the curve C(r, i) = 0 we can determine 
the derivatives of T and \v with respect to r and /, by the use of (4.126) and 
(4.127). As we shall see, this is, however, not possible for certain curves, 
which are called the characteristic curves of (4.126) and (4.127). 

We introduce new coordinates £ and t]9 where £ = C(r91), The expression 
for rj is restricted only by the requirement that each curve r\ = constant shall 
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intersect each curve £ = constant once and once only in the domain under 
consideration. On the curve f = 0, the functions x and w are given as func-
tions of rjf and thus dx/drj and dwfdrj are known. Also, 

dx _ dx dr dx dt 

drj dr drj dt drj 

dw dw dr dw dt 

drj dr drj dt drj 

At any point of the curve C(r, t) = 0, these equations together with (4.126) 
and (4.127) form a system of four algebraic equations for the unknowns 
dx/dr, dx/dt, dw/dr and dwjdt. In matrix notation this system may be written 
as 

f" 1 0 0 -l/c^irdx/drl 

0 1 - 1 O N dx/dt\ 

drjdrj dt/drj 0 0 II dw/dr 

L 0 0 drjdrj dt/drj Jldw/dt] 

With the inhomogeneous terms x, dx/drj and dwfdrj being known functions, 
the system of algebraic equations will have unique solutions for the deriv-
atives of T and w with respect to r and t if the determinant of the coefficients 
does not vanish. In that case the derivatives will have the same values below 
and above the curve C(r, t) = 0. If the determinant vanishes, the derivatives 
cannot be determined uniquely from (4.126) and (4.127) and the values of 
T and vv on C(r, t) = 0. The curves along which the determinant vanishes 
are the characteristic curves of the system (4.126) and (4.127). 

If the determinant of the coefficients is set equal to zero, the following 
equation is obtained: 

^ - - ( - ^ = 0 
\drjl c\ \drjj 

which implies 

— = ±cT. (4.129) 
dt 

The lines in the r—t plane defined by (4.129) are referred to as the Cj and 
Cj characteristics, respectively. By multiplying (4.126) by dr and (4.127) by 
d/, and by adding the two equations, we find that (4.126) and (4.127) may 
be replaced by 

-( l / r ) t -

0 

dxjdrj 

dwldn. 

(4.128) 
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Along Cji dr/dt = +cT 

1 dr 
dt dvv = — T — . (4.130) 

Along cT: dr/dt = — cT 

1 j . dr 
drH dvv = — T — . (4.131) 

It follows from (4.124) that at time t = 0 the initially undisturbed region 
is subjected to the following boundary condition at r = a: 

r(a9t) = ^g(t). (4.132) 

In the r — t plane information is then prescribed along the lines r = a and 
t = 0. Let us now consider the three points A, B and C (see figure 4.6). 
The lines AC and BC belong to the families of c% and cf characteristics, 
respectively. We can thus employ (4.130) along AC and (4.131) along BC. 

Fig. 4.6. Network of characteristic lines. 

Since t is zero at both A and B, the integration of these two equations yields, 
as result, that T and vv must vanish at the point C. In fact, it is now easily 
seen that T and vv are identically zero in the part of the r — t plane defined by 
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r > a + cTt. If the function g(t) defined by (4.132) is discontinuous at t = 0, 
we must anticipate a discontinuity of the field quantities T and vv at 
r = a + cTt. 

The ordinary differential eqs. (4.130) and (4.131) can now be used to 
solve for x(r, t) and vv(r, i) in the domain a ^ r ^ a + cTt. The solution is 
obtained by means of a numerical procedure of stepwise integration of 
(4.130) and (4.131) along the characteristic lines. We consider the grid 
system of characteristic lines in the r — t plane, as shown in figure 4.6. The 
ordinate r = a represents the boundary where the external disturbances are 
applied and where T(<Z, t) is given by (4.132). If i{a, t) is discontinuous in 
time, the discontinuity of T along r = a + cTt and the corresponding dis-
continuity in vv can be computed by the methods discussed in the previous 
sections. Alternatively, a jump in g(t) can be replaced by a change with a 
(small) rise time, so that the stresses and the particle velocities are con-
tinuous at the wavefront. In any case we will know both T and vv along 
PQS. . . Z. We first compute vv at point JR by integration of (4.131) along 
QR. Both T and vv are then known at R. Then we compute T and w at point 
T by integrating (4.130) and (4.131) along RT and ST, respectively, and 
solving the resulting system of two inhomogeneous algebraic equations. 
This process is continued. At every grid point in the region a ^ r ^ a + cTt, 
T and vv can be computed in this manner. The computations require very 
little time on a digital computer. The smaller the characteristic grid, the more 
accurate the numerical results will be. 

4.8. Radial motions 

The method of characteristics can also conveniently be applied to investigate 
transient wave motions in plane strain and with axial symmetry generated 
by a pressure distribution in a circular cylindrical cavity. For this case the 
stress equations of motion are of the form 

dxr rr — Tfl d2u 

dr r H 3t2 
+ ^—^ = p ^ . (4.133) 

The pertinent stress-strain relations are given by eqs. (4.53)-(4.55). 
In terms of the particle velocity 

« = ^ , (4.134) 
dt 

the equation of motion (4.133) can be written as 
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£ + l , _ 5 . * 0 . (4.135) 
or r r dt 

After differentiation with respect to time, eq. (4.53) becomes 

8Jr-(X+2li)
dA - ^ = 0. (4.136) 

dt dr r 

Also differentiating (4.54) and (4.55) with respect to time, and subsequently 
eliminating du/dr with eq. (4.136), we find 

dx9 _ x drr ^+11)11 u _ Q ( 4 1 3 7 ) 

dt X + 2p, dt X + 2pi r 

drz X dxr 2X\x u 
= 0. (4.138) 

dt X + 2fi dt X + 2fi r 

The characteristic curves of eqs. (4.135)-(4.138) can be obtained in the 
manner shown in the previous section. We find 

dr , 2 X + 2u ,A , ^ x 

— = ±cL9 where c2
L = - (4.139) 

dt p 
and 

— = 0. (4.140) 
dr 

The lines in the r — t plane defined by eq. (4.139) are referred to as the 
c£ and c£ characteristics. Along these lines, (4.135) and (4.136) may be 
replaced by: 

Along c'l: dr/dt = cL 

drr-pcLdu + \xr-xe-X —) — = 0. (4.141) 
\ cj r 

Along c"l: drjdt — — cL 

dxr + pcLdu- \Tr-Td + X—) — = 0. (4.142) 
\ cj r 

Along the third characteristic line, which is defined by (4.140) and which 
is denoted the c° characteristic, we have, according to (4.137) and (4.138) 

d T 9-_A_d T r-4(^Md, = 0 (4.143) 
X + 2n X+2n r 

d x x - — d r r - 2^L * dt = 0 (4.144) 
X + 2fl X + 2/J. T 
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In terms of the more commonly used Young's modulus E and Poisson's 
ratio v, the pertinent relations (4.141)-(4.143) may be rewritten as 

Along c£ :dr r —pcLdu = — 

Along cL : drr + pcLdu = 

v E ." 
T r — XQ U 

( l+v)( l-2v)cL . 
v E : 

xr - ig H u 
( l+v)( l-2v)cL . 

dr 
r 

dr 
r 

(4.145) 

(4.146) 

(4.147) 
A, o , 1—v j £ ii _. 
Along c : drr dte = at. 

v (1 + v)v r 
By writing eqs. (4.145)-(4.147) in finite difference form, solutions can be 

obtained for rr , xQ and u by numerical integration, analogously to the 
computations described in the previous section. Details of the numerical 
computations as well as several worked out examples can be found in the 
paper by Chou and Koenig.13 We close this section with the remarks that 
a more general approach to the numerical solution of two-dimensional 
elastodynamic problems was presented by Clifton14, and that the theory of 
characteristics was also applied to elastic wave propagation in two dimen-
sions by Ziv.15 

4.9. Homogeneous solutions of the wave equation 

4.9.1. Chaplygin's transformation 

A function w(qt, q2, . . ., qn) is said to be homogeneous of degree m in a 
region R if the relation 

w(a$! , ocq2, . . ., <xqn) = amw(^f1 ,q2,..., qn) (4.148) 

holds identically for every point (qx, q2,..., qn)€R. In this section we will 
investigate homogeneous functions which satisfy the two-dimensional wave 
equation. We will in particular consider homogeneous solutions of degree 
zero. 

It follows from (4.148) that in Cartesian coordinates homogeneous 
solutions of degree zero are functions of the arguments xft and yft. For the 
present purpose it is, however, more convenient to consider the wave equa-
tion in polar coordinates 

1 d_ I 8w\ 1 d2w 1 d2w 

r dr 
13 P. C. Chou and H. A. Koenig, Journal of Applied Mechanics 33 (1966), 159. 
14 R. J. Clifton, Quarterly of Applied Mathematics XXV (1967), 97. 
15 M. Ziv, International Journal of Solids and Structures 5 (1969), 1135. 

/ 8w\ 1 d2W 1 d2W ,A , ^ 

' * ) + ? 5 F - 2 « F - (4'149) 
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For (4.149), homogeneous solutions of order zero are functions of r[t 
and 9. It is noted that eq. (4.149) governs antiplane shear motions, where 
w(r[t, 9) is the displacement normal to the (r, 0)-plane. 

It is not immediately evident what kind of conditions on the geometry and 
the external excitation actually lead to solutions that are of the general 
form w(r/t, 9). In general terms it can be stated that the wave motion should 
emanate from one point, which can be a point of application of a concentrat-
ed load, a sharp corner which is struck by a wave, or another type of 
discontinuity which will give rise to cylindrical waves. The geometry should 
not include a characteristic length which would give rise to more than one 
center of cylindrical waves. This implies that in two dimensions the most 
general domain for which a homogeneous solution for all times can be found 
is an obtuse angled wedge. At the outset it is also not necessarily apparent 
what the time-dependence of the external excitation should be in order 
that a homogeneous solution is generated. It is therefore often necessary 
to proceed by a semi-inverse method, that is, a class of solutions is first 
constructed, and only then is the corresponding time-dependence of the 
external excitation determined. This is not a serious defect of the method 
because the response to arbitrary time-dependence can subsequently be 
written out in terms of a superposition integral. 

The method of homogeneous solutions has been used extensively in super-
sonic aerodynamics, where it is known as the method of conical flows.16 

Since we seek solutions of (4.149) depending on r/t and 9, it is expedient 
to introduce the new variable 

s = ~. (4.150) 
t 

As a function of s and 9 the displacement w(s, 9) must satisfy the equation 

2 A s2\d2w / 2s2\dw d2w . , . 1 C 1 N 
s * - T I —T +5 U T \ — + —T = °- (4.151) 

\ c2) ds2 \ c2
T) ds 392 

For s < cT, the following transformation 

P = cosh"1 fC-A, (4.152) 

which is known as Chaplygin's transformation, reduces eq. (4.151) to 

16 See G. N. Ward, Linearized theory of steady high-speed flow. Cambridge, University 
Press (1955), chapter 7. 
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Laplace's equation 

d2w d2w 
2 + 1ST = °' ( 4 ' 1 5 3 ) 

There are many ways of obtaining solutions of Laplace's equation. A 
powerful method is to express w(fi, 9) as the real part of an analytic func-
tion X(P, 6), 

w(p, e) = ax(p, e), 
and to employ the theory of analytic functions to construct an appropriate 
analytic function of the complex variable 

C = e+ip. 

The domain in the C-plane generally is a strip. From eq. (4.152) it is noted 
that s = rjt = cT corresponds to /? = 0, while r = 0 corresponds to /? = oo. 
The strip is thus generally defined by 0 ^ 6 ^ 0*9 0 ^ jS < oo. 

For s > cT, eq. (4.151) may be reduced to a simple wave equation by 
the transformation s = cT sec a. 

Now we will consider two examples. 

4.9.2. Line load 

Suppose at time t — 0 a concentrated antiplane line load is applied in an 
undisturbed medium. The load will give rise to an axially symmetric 
cylindrical wave with a wavefront defined by r = cTt. Behind the wave-
front we have rjt < cT, which implies that eq. (4.153) applies. In view of 
the axial symmetry the dependence on 6 vanishes, and the general solution 
of eq. (4.153) may be written as 

w =AP + C. (4.154) 

Let us assume that the time-dependence of the load is such that the dis-
placement is continuous at the wavefront. Since the material is undisturbed 
prior to arrival of the wavefront, the displacement is zero at r = ct, or 
equivalently 

w=0 for j 8 = 0 . (4.155) 

It follows from (4.154) and (4.155) that the constant C is zero. The dis-
placement may thus be written as 

L - t / c r A . , cTt + {c2
Tt2-r2f / „ i c c \ 

w = .4cosl-i l l — l = , 4 l n - ^ ^ - . (4.156) 
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To determine the constant A we compute the stress xrz as 

dw \iAcTt ,A . __N 

dr r(c rr — r y 

The magnitude of the concentrated force per unit length is denned as 

P = — 27C lim rzr 
r->0 

(4.158) 

By inspection it now follows that eq. (4.156) is the solution for a suddenly 
applied antiplane line load of magnitude P per unit length. From (4.157) 
and (4.158) the constant A is computed as A = P/lnfi. Thus, the displace-
ment wave due to a suddenly applied antiplane line load is 

w = In — ±-± '— H(cTt-r). 
2n\i r 

(4.159) 

4.9.3. Shear waves in an elastic wedge 

Next we consider a wedge of interior angle yrc whose faces are defined by 
6=0 and 6 = yn, respectively. The geometry is shown in figure 4.7. On the 
face 6 = 0 the wedge is subjected to a uniform but time-dependent shear 
traction xQz. No generality is lost by assuming y ^ i , since solutions for 
the case y < \ can be obtained by symmetry considerations. The shear 
tractions generate horizontally polarized shear motion in the z-direction. 

Fig. 4.7. Wavefronts at time /. 

The displacement field generated by a uniform surface traction of ar-
bitrary time-dependence can be obtained by linear superposition, once the 
displacement for a surface traction varying with time as the Dirac delta 
function has been found. As we shall see, the displacement is a homogeneous 
function of degree zero if the surface tractions are proportional to 8(t). 
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Thus we consider the following boundary conditions: 

0 = 0, r = 0: r9z = ^ — = Tj (5(0 (4.160) 

0 = yrc, r = 0: rez = 0. (4.161) 

Some observations on the pattern of waves propagating into the wedge can 
be deduced from elementary principles of wave propagation. The surface 
traction (4.160) generates a plane wave with constant displacement 

W l = - cJElL . (4.162) 
A* 

This wave is called the primary wave, and in figure 4.7 its wavefront at 
an arbitrary time t is indicated by BD. Since the wedge is at rest prior to 
time t = 0, the medium is undisturbed ahead of the wavefront BD, and as 
discussed above the displacement is constant behind it. In addition to the 
primary wave, the vertex of the wedge, as well as the nonuniformity of the 
surface traction across the vertex, generates a cylindrical wave with center 
at O. Since the displacement is continuous across the cylindrical wavefront 
it follows that w = 0 along BC. 

By means of eq. (4.152) the cylindrical domain OABC of the wedge is 
mapped into a strip in the (/?, 0)-plane defined by 0 = 0 ^ yn, 0 = /? < oo. 
Since the displacement remains bounded at r = 0, we have that w ap-
proaches zero as p increases. The conditions in the (/?, 0)-plane are 

0 = 0 , p = 0: 

0 = 771, p = 0: 

P = 0, 0 = 0 = - : 
2 

P = 0, - = 0 = yn: 
2 

In this case the appropriate solution of Laplace's equation can be obtained 
by elementary methods. A solution of (4.153) which satisfies the boundary 
conditions (4.163) and (4.164) may be written as 

MP>9) = I,a*e-m"7cos(-). (4.167) 
n = 0 \y / 

^ = 0 
de 

^ = 0 
de 

w = w1 

(4.163) 

(4.164) 

(4.165) 

(4.166) 
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This solution also behaves properly, as /? increases beyond bounds. From 
the orthogonality conditions of cos (nO/y) over the interval 0 ^ 6 ^ yn 
and the boundary conditions given by eqs. (4.165) and (4.166) the coeffi-
cients an follow as 

2w« 
an = sin ( = ) . « . . « , 

nn \2y 

Hence the displacement is given by 

W{P, e) = 2 - ^ t - e-"ly cos l ^ \ sin ( ™ ) . (4.169) 
n n=o n \y / \2yJ 

For 7 = i , eq. (4.169) vanishes identically. This case corresponds to a 
quarter-space subjected to uniform anti-plane surface tractions, and we 
should indeed have just a plane primary wave. For y = 1 and y = 2, 
the series can be summed. For arbitrary values of y it may be more con-
venient to obtain a closed form solution by employing a conformal mapping 
to map the region in the C-plane on an upper half-plane. This method was 
pursued by Achenbach.17 

Let us consider the special case 7 = 1, which corresponds to a half-space 
which is subjected to a uniform surface traction over half its surface. Eq. 
(4.169) then reduces to 

w(/?, 0) = ^ £ - e~np cos (nO) sin (inn). 
n n = i , 3 . . . n 

This series can be rewritten in the form 

w(P,e) = ^J? £ -{.(prT + iPin (4-170) 
n n = i , 3 . . . n 

where 

Pl =exp l-p + i (^+eY\ 

p2 = exp r_/? + i ^ - 0 H . 

Noting that each series in (4.170) is the expansion of tanh 1 p a. closed 
form expression for H>(/?, 9) can be written as 

w(0, 0) = - 1 . / [ t anh - 1 P i+ tanh" 1 p 2 ] . 
n 

17 J. D. Achenbach, International Journal of Solids and Structures 6 (1970), 379. 
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This expression can be simplified to 

w(/J, 0) = ^ (tan"1 f ™ (**+*)] + t a n - 1 \sJ^lZeJ]) . (4.171) 
2^1 L sinhj? J L sinh/? J j 

From (4.152) it follows that 

•kM-[(Cf')2-l]*. 
and eq. (4.171) thus further reduces to 

w(r, 9) = * t a n " ' f C O S / J . (4.172) 

The corresponding stress xQz is subsequently computed as 

_l(cTt)2-r2fcTzlsmO 

(cr0 r sm ^ 
where (4.162) has been used. 

An equivalent method of finding homogeneous solutions of the wave 
equation was developed in the early 1930's by V. I. Smirnov and S. L. 
Sobolev. A general discussion of that method as well as a few examples 
can be found in the book by Smirnov.18 

4.10. Problems 

4.1. An elastic hollow sphere of inner radius a and outer radius b is filled 
with a rigid substance which prevents relative motion of the inner surface 
of the sphere. At time / = 0 the outer surface is subjected to a uniform 
pressure of magnitude p0, which varies as a step function with time. 

(a) Determine the transient wave motion in the time interval 0 ^ t < 
(b-a)/cL. 

(b) Determine the wave motion in the time interval (b — a)fcL ^ t < 
2(b-a)/cL. 

(c) Discuss the limitcase of a -» 0. 

4.2. A rigid sphere of radius a is embedded in an unbounded elastic medium, 
with perfect contact between the sphere and the surrounding medium. By 

18 V. I. Smirnov, A course of higher mathematics, English translation, Vol. III. New 
York, Pergamon Press and Addison-Wesley Publishing Co., Inc. (1964), p. 203. 
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an internal mechanism the sphere is forced to oscillate around an axis through 
its center. In terms of the system of spherical coordinates stated in section 
2.14 the motion of a point on r — a is defined by 

u = 0, v = 0, w = w0 sin 9 sin cot, 

where co is the circular frequency. 
Observe that the motion induced in the surrounding medium is indepen-

dent of the angular coordinate x- Determine the steady-state displacement 
response of the medium. 

Hint: Note that for djd% = 0 the displacement component w(r, 9, t) 
depends on \j/r and \j/e only. Also note that the equations for \j/r and \J/d do not 
contain cp and \px. Select solutions of the forms 

\j/r = ^r(r) cos 9 sin cot 
and 

\j/d = ^ ( r ) sin 9 sin cot, 

and obseive that the ordinary differential equations for *Fr(
r) and ¥e(r) 

can be satisfied by ^ r ( r ) = — ¥e(
r) = ^ ( r ) - Proceed to solve for !P(r). 

An alternative approach proceeds directly from the displacement equations 
of motion in spherical coordinates. 

43. A cylindrical cavity of radius a in an unbounded medium is lined with 
an elastic shell of thickness h, where h/a <C 1. Contact between the shell and 
the wall of the cavity is perfect. The lined cavity is subjected to a spatially 
uniform but time-harmonic pressure distribution defined by p{t) = p0 

(1 +sin cot). For axial symmetry the equation of motion of the thin shell 
may be taken as 

Tr(a, t) + p(t)- -zE'u(t) = pshu, 
a 

where Tr(tf, t) is the stress in the medium at r = a, and p{t) is the pressure 
inside the shell. The mass density of the shell is p5 and E' is defined by 

where Es and vs are Young's modulus and Poisson's ratio for the material 
of the shell. 

Considering the steady-state response, 
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(a) Determine the radial displacement at r = a and at a point in the 
medium. 

(b) Compare (a) with the corresponding result for a cavity without 
lining. 

4.4. An elastic medium is bounded by a cylindrical parabolic surface which 
is defined by 

x = ay2, 

as shown in the figure. At time t = 0 the surface is suddenly subjected to a 
uniform distribution of antiplane shear tractions of magnitude T 0 . The 
medium is at rest prior to time t = 0. 

r 
K' 

(a) Find an expression for the position of the wavefront at time t. 
(b) Determine the magnitude of the discontinuity [T„2], where n is the 

normal to the wavefront. 

4.5. The method of characteristics may be applied to investigate transient 
wave motions with polar symmetry generated by a pressure distribution in 
a spherical cavity. Derive the expressions defining the characteristics, and 
determine the differential equations along the characteristic curves. 

4.6. Use eqs. (4.145)-(4.147) to examine the propagation of discontinuities 
in the stresses and the particle velocity. 

4.7. A hollow sphere of inner radius a and outer radius b is embedded in an 
infinite medium. The inner surface of the sphere is subjected to a uniform 
pressure of the form/?0 H{i). Contact between the sphere and the surrounding 
medium is perfect. The material properties of the sphere and the medium 
are A, /x, p and AB, fiB, pB, respectively. Examine the transmission of waves 
into the surrounding medium. 
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4.8. A hollow elastic cylinder of inner radius a and outer radius b fits into 
another hollow cylinder of inner radius b and outer radius c. Contact at 
the surface r = b is perfect. The inner surface (r = a) is subjected to a 
spatially uniform pressure p(t). The outer surface (r = c) is free of trac-
tions. The axially symmetric wave motion in the cylinders is to be analyzed 
numerically by the method of characteristics. Write out the equations 
defining the characteristics and state the differential equations along the 
characteristic curves. Sketch a network of characteristic lines analogous to 
the gridwork shown in figure 4.6. Describe the numerical procedure. Clearly 
state the computations that must be carried out for points on the boundaries 
r = a and r = c, for points at the interface r = b, and for interior points. 

4.9. Use eq. (4.169) to determine an expression for the shear stress T0Z, 
as a function of /? and 6. Eqs. (4.150) and (4.152) imply 

'-{?+[(*H}-
Use this result to show that the singularity of T9Z as r -> 0 is of the form 

t9i „ 2Illl{2cTtr^sm (-) sin (-) r 1""1 . 
ny \2yJ \yj 

4.10. A rigid wedge of semi-vertex angle a moves in the z-direction with a 
constant velocity V. At time t = 0 the wedge strikes the surface of an ideal 
elastic fluid. The geometry at the instant of impact is shown in the figure. 

surface of 

su r face of 
f l u i d 

h 

The motion of the fluid is governed by eqs. (2.175)—(2.178). The initial 
conditions are 

/ = 0 cp = (p = 0. 

It is assumed that the penetration of the wedge into the fluid is small. The 
boundary conditions then are prescribed at z = 0 as 
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^ (JC, 0,t)=V for |x| < Vt tan a 
dz 

cp(x, 0, /) = 0 for |JC| > Vt tan a. 

Consider the case 

M = —tan a > 1, 

i.e., the region over which the velocity is prescribed moves out super-
sonically. 

The motion of the fluid can be analyzed by employing the method of 
section 4.9. Show that on the wedge surface z = 0 the pressure is given by 

p(x9 0, t) M c . . _. x 

^v ' = ■—= for cFt < \x\ < Ff tana 
pVcF V M 2 - I 

P(x, 0, Q = 2 _ M _ f a n - 1 j / (M 2 - l ) (m^ 2
 f o r | x | < c ^ 

pKcF TC V M 2 - 1 r (Knana ) 2 - (xM) 2 



CHAPTER 5 

PLANE HARMONIC WAVES IN ELASTIC HALF-SPACES 

5.1. Reflection and refraction at a plane interface 

The presence of a discontinuity in the material properties generally produces 
a significant influence on systems of waves propagating through the medium. 
Consider, for example, the propagation of plane harmonic waves in an un-
bounded medium consisting of two joined elastic half-spaces of different 
material properties. In such a composite medium, systems of plane waves 
can be superposed to represent an incident wave in conjunction with reflec-
tions and refractions at the interface separating the two media. The wave 
which emanates from infinite depth in one of the media is called the incident 
wave. The question then is what combination of additional waves is required 
in order that the stresses and the displacements are continuous at the inter-
face. These additional waves are called reflected and refracted waves. For 
the special case of an elastic half-space which adjoins a medium which does 
not transmit mechanical waves, the system of waves consists of course of 
incident and reflected waves only. Strictly speaking all media transmit 
waves, but for practical purposes refraction of elastic waves at an interface 
of a solid elastic body with air generally can be neglected. We will therefore 
examine in considerable detail the reflection of plane waves at a free surface. 

The reflection and refraction pattern can be made unique by the require-
ment of causality. Although all the waves are steady-state traveling waves 
extending throughout the two joined half-spaces, the incident wave is taken 
to be the cause of the interface disturbance and the reflected and refracted 
waves are effects. This leads to the causality requirement that the reflected 
and refracted waves must propagate away from the interface. 

Most of this chapter is concerned with plane waves representing dis-
turbances that are uniform in planes of constant phase, i.e., in planes normal 
to the propagation vector. For bodies with a surface of material discon-
tinuity there are, however, plane waves which are not uniform in planes of 
constant phase. These waves, which are called surface waves, propagate 
parallel to the surface of discontinuity. They have the property that the 

165 
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disturbance decays rapidly as the distance from the surface increases. For 
a free surface the surface waves are known as Rayleigh waves, and they are 
discussed in section 5.11. Surface waves at an interface of two media are 
called Stoneley waves. 

5.2. Plane harmonic waves 

For the discussion of this chapter a convenient representation of a plane 
harmonic displacement wave is given by 

u = Adel\ (5.1) 

where 

rj = k(x'P-ct). (5.2) 

As shown in section 4.2, eq. (5.1) describes a plane wave propagating with 
phase velocity c in a direction defined by the unit propagation vector p. It is 
recalled that there are two types of plane harmonic waves: 

(1) Longitudinal waves for which d = ±p and c = cL. 
(2) Transverse waves for which d • p = 0 and c = cT. 
By substituting the components of (5.1) into Hooke's law, see eq. (2.40) 

of section 2.5, the components of the stress tensor are obtained as 

*im = l^lm(djPJ) + KdiPm + dmPiy]ikAei\ (5.3) 

where the summation convention must be invoked. 

5.3. Flux of energy in time-harmonic waves 

Considering a surface element of unit area, the instantaneous rate of work 
of the surface traction is the scalar product of the surface traction and the 
particle velocity. This scalar product is called the power per unit area and 
it is denoted by ^ , 

SP = t • M, (5.4) 

where t is the traction vector. As discussed in chapter 1, the power per unit 
area defines the rate at which energy is communicated per unit area of the 
surface; clearly it represents the energy flux across the surface element. If 
the .outer normal on the surface element is w, we have /, = Tlmnmi and thus 

0>=rlmnmul, (5.5) 

where the summation convention is implied. 
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Let us examine a harmonic longitudinal wave with propagation vector 
p, and let 

^\ — P\ — sin 9> d2 = p2 — cos 0, d3 = p3 = 0. 

For a surface element normal to the direction of propagation we have 

nx = —pY = — sin 0, n2 = —p2 — —cos 6, n3 = 0. 

The components of the stress tensor appearing in (5.5) then are TX1 , T 1 2 , T2 1 , 
and T22> which are obtained from (5.3) as 

T l l = (A + 2/z sin2 d)ikAeiT1 

Ti2 = T2i = (2/J sin 0 cos 9)ikAelTI 

t 2 2 = (A + 2/zcos20)//c^^, 

where rj = /:(.*! sin 9 + x2 cos S — cLt). 
Substituting these results into (5.5) and assuming that A is real-valued, 

we find 
&L = {X + 2ii)cLk2A20l(ieir])0l(iein). 

By employing the relation (1.87), the time-average over a period of the 
stress power is obtained as 

<0>L} = i(A + 2n)cLk2A2 

(D2 , (5.6) 

The time-average of the kinetic energy density is easily computed as 

<jf> = IpofA2. (5.7) 

Since the time-average of the total energy is twice <Jf>, w e n a v e 

< ^ > = ±pco2A2. (5.8) 

By virtue of the relation <^> = <^Oce , it is concluded that the velocity 
of energy flux is 

ce = cL. (5.9) 

Similarly for a plane transverse wave, the time-average stress power is 

cT 

Comparing eqs. (5.6) and (5.9) it is noted that for the same frequencies 
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and amplitudes the average energy transmission is larger for a P-wave than 
for an S-wave. 

5.4. Joined half-spaces 

Considering in-plane motions, the system of incident, reflected and re-
fracted waves must satisfy four conditions of continuity on the stresses and 
the displacements at the interface of the two half-spaces. It can therefore 
be expected that two reflected and two refracted waves generally will be 
required for each incident wave. The unit propagation vectors of the system 
of incident, reflected and refracted waves are shown in figure 5.1. The 

Fig. 5.1. Incident, reflected and refracted waves. 

material properties of the medium carrying the incident and the reflected 
waves are the Lame elastic constants X and \i and the mass density p. The 
material constants of the medium into which refraction takes place are 
labeled by superscripts B, i.e., they are defined by XB, jiB and pB. 

The incident as well as the reflected and refracted waves are represented by 

„« = 4 , d<">exp (»,„), (5.11) 

where different values of the index n serve to label the various types of waves 
that occur, and where 

1n = K(xlP[n)+x2py-cnt). (5.12) 

The index n is assigned the value n = 0 for the incident wave, i.e., 

p(0) = sin 0o i! +cos 60 i2. (5.13) 
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If the incident wave is a longitudinal wave we have 

d^ = p<°\ c0 = cL. (5.14) 

For an incident transverse wave we have 

</(0) •/>(0) = 0, c0 = cT. 

We distinguish between two types of transverse waves, the SV-waves and the 
SH-waves. An incident SV-wave is defined by 

d<°> = i3 A j><°>, c0 = cT. (5.15) 

For an incident SH-wave we have 

d(0) = i3, c0 = cT. (5.16) 

The reflected and refracted waves may be both longitudinal and transverse 
waves. The reflected longitudinal waves and the reflected transverse waves 
are labeled by n = 1 and n = 2, respectively. The refracted longitudinal 
and transverse waves are labeled by n = 3 and n = 4, respectively. Thus we 
summarize: 

Reflected longitudinal wave: 

p ( 1 ) = sin 6X i*! —cos #! i2, 

Reflected transverse wave: 

p{2) = sin 02 it — cos 02 i2 > 

Refracted longitudinal wave: 

p( 3 ) = sin 03 it +cos 93 i2 , 

Refracted transverse wave: 

p(4) = sin fl^+cos 0 4 i 2 , 

For a given incident wave, the amplitudes, the unit propagation vectors and 
the wavenumbers of the reflected and refracted waves must be computed 
from the conditions on the displacements and the stresses at the interface 
between the two media. Incident waves are completely reflected in the special 
case when there is no upper medium, and the plane x2 = 0 forms an external 
boundary. The reflection of harmonic waves at a plane boundary will be 
considered in the next four sections. Thereafter we will return to the joined 
half-spaces to examine the problem of reflection and refraction. 

d(1> = p(1>, 

d<2> = ,-3 A ]><2) 

<J(3) = J>( 3 ) , 

d<*> = i3 A ,<*>, 

Cl = CL 

c2 = cT 

c3 = cf 

C4 = = Cf . 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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5.5. Reflection of SH-waves 

Let us first consider the reflection of transverse waves which are horizontally 
polarized as defined by (5.16). Such SH-waves have displacement components 
in the x3-direction only. An incident wave propagating in the half-space 
x2 < 0 is represented by (see figure 5.2) 

u3
0) = A0 exp [ifc0(xi Sin 0o + x2 COS 0Q —cr*)]- (5.21) 

Fig. 5.2. Reflection of an SH-wave. 

In the plane x2 = 0 we have 

u(
3
0) = A0 exp [ik0(x1 sin 0O —cTf)]. 

It is noted that the displacement at x2 = 0 can be viewed as a wave prop-
agating in the ^-direction with apparent wavenumber k0 sin 0O and apparent 
phase velocity cr/sin0o. Since sin 90 ^ 1, the apparent phase velocity 
exceeds cT, except for the case of grazing incidence, which corresponds to 
0O = n/2. 

The relations governing the reflection depend on the boundary conditions 
at x2 = 0. The following conditions may be considered: 

(a) The displacements vanish at x2 = 0. 
(b) The plane x2 = 0 is free of tractions. 
The boundary conditions (a) and (b) correspond to a clamped and a free 

surface, respectively. Let us examine whether these two types of boundary 
conditions can be satisfied if it is assumed that an incident SH-wave is 
reflected as an SH-wave. 

A reflected SH-wave is represented by 

u(
3

2) = A2 exp [ik2(xlsin62 — x2 cos Q2 — cTt)\. (5.22) 

If the displacements are to vanish at x2 = 0 we have u3 = w(
3
0) + «3

2) = 0, 
i.e., 
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A0 exp [i/co^i sin 0O — cTtJ] + A2 exp \ik1(x1 sin 02 —CrO] = 0- (5.23) 

Since this equation must be satisfied for all values of Xt and t9 the ex-
ponentials must be equal, which requires 

k0 sin 0O = k2 sin 02, k0 = k2. 

Substituting these results into (5.23) it also follows that the amplitudes must 
be equal but opposite in sign. We conclude that 

k2 = k0, 62 = 0O, A2 = -A0. (5.24a, b, c) 

It is noted that the wave undergoes a 180° phase shift in the displacement as 
it is reflected. 

To examine the reflection at a plane that is free of tractions, we write 
out the components of the stress tensor z2j. By employing Hooke's law it is 
found that for an incident wave of the form (5.21) the one nontrivial stress 
component is T 2 3 , which equals \i u32. For the incident wave we find at 
x2 = 0 

T23} = ik0nA0 cos 0O exp [ i /co^ sin 0o — cTty]. 

The reflected SH-wave yields 

T2V = — ik2 \iA2 cos 62 exp [ifc2(
xi sin 02 — cT f)]. 

The requirement that T ^ + T 2 ^ vanishes at x2 = 0 can be satisfied only if 

k2 = k0, 0 2 =0o> A2 = A0. (5.25a, b,c) 

For a free boundary the reflected SH-wave thus is in phase with the incident 
wave. 

For the clamped surface the superposition of the incident and the reflected 
wave is computed by employing (5.21), (5.22) and (5.24a, b, c). The result is 

«3 = 2iA0 sin (k0x2 cos 60) exp [ik0(x1 sin 0o — cTt)]. (5.26) 

Similarly for a free surface the superposition yields 

u3 = 2A0 cos (k0x2 cos 0O) exp [ik0(x1 sin 0o — cTt)]. (5.27) 

Eqs. (5.26) and (5.27) represent wave motions behaving as standing waves 
in the ^ 2 -d i r e c t i ° n and progressive waves in the A^-direction. For normal 
incidence when 0O = 0, the expressions (5.26) and (5.27) represent purely 
standing waves. If the surface is clamped, the case of grazing incidence, 
which corresponds to 0O = in, is not compatible with horizontally polarized 
wave motion. 
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5.6. Reflection of P-waves 

In this section we examine the reflection of plane longitudinal waves whose 
displacement vectors and propagation vectors are situated in the (*i*2)-
plane. Employing the notation introduced in section 5.4 the incident as well 
as the reflected waves are denoted by 

« w = ^ d w e x p O a (5.28) 

where different values of the index n serve to label the various types of waves 
that occur when a longitudinal wave is reflected, and where rjn is defined by 
(5.12). For reflection at a plane x2 = 0 the relevant stresses are x2

n), where 
7 = 1,2. These components are readily computed by the use of Hooke's 
law, eq. (2.40), as 

*£? = iknl(X + 2fi)d?p?+M?ynA„ exp (*„.) (5.29) 

T£> - iKtifiW+fiYRA,exp(»/„). (5.30) 

The displacements and the stresses at x2 = 0 are obtained by replacing in 
(5.28)-(5.30) the term rjn by rjn, where 

*ln = fcn(*lFl-C„0 (5.31) 

Fig. 5.3. Reflection of a P-wave. 

The index n is assigned the value n = 0 for the incident P-wave (see 
figure 5.3). According to (5.13) and (5.14) we have 

4O ) = sin0o> 4 0 ) = cos 0O 

pc
1
0) = sin 0O, p(

2
0) = cos 0O 

Co — CL-

(5.32a) 

(5.32b) 

(5.32c) 
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In the plane x2 = 0 the displacements and the stresses of the incident 
wave then become 

u[0) = A0 sin 90 exp (ifj0) (5.33) 

u(
2
0) = A0 cos 0O exp (irj0) (5.34) 

^2i = ik0{k + 2n cos2 90)A0 exp (ifj0) (5.35) 

T2°i) = Hko H s i n ^o c o s #o ^o e xP 0*7o)> (5.36) 

where 

fj0 = fc0(x! sin 90-cLt). (5.37) 

The reflected P-wave is labeled by n = 1. According to (5.17) we have 

d[l) = sin 9t, 4 ° = - c o s 0t (5.38a) 

/ / ^ = sin 9,, j#> = - c o s 0l (5.38b) 

Ci = cL. (5.38c) 

It is anticipated that an incident P-wave gives rise to a reflected P-wave as 
well as to a reflected transverse wave with the displacement polarized in 
the (xjj^-plane. The latter type of transverse wave was earlier introduced 
as an SV-wave. The reflected SV-wave is labeled n = 2, and we have (see 
also figure 5.3) 

d[2) = cos 92, d2
2) = sin 92 (5.39a) 

p[2) = sin 02, p(
2
2) = - cos 92 (5.39b) 

c2 = cT. (5.39c) 

The relations governing the reflection depend on the boundary conditions 
at the reflecting plane x2 = 0. The following conditions may be considered: 

(a) The plane x2 = 0 is free of tractions: T2 2 = T2 1 = 0 (free boundary). 
(b) The displacements vanish at x2 = 0: ux = u2 = 0 (clamped bound-

ary). 
(c) The normal displacement and the tangential stress vanish: u2 = 0, 

T21 = 0 (smooth boundary). 
(d) The tangential displacement and the normal stress vanish: uY = 0, 

T22 = 0. 
Rather than consider these boundary conditions one by one, it is more 

efficient to first ask the question for which boundary conditions an incident 
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P-wave is reflected as a P-wave, under the angle 9t = 909 and with the same 
amplitude and wavenumber, i.e., 

A2 = 0, 9i=90, Ax=A0y kx=k0. (5.40) 

By employing (5.28)-(5.30), (5.38) and (5.40), we find at x2 = 0 for the 
reflected P-wave 

u(!1} = A0 sin 90 exp (ifj0) (5-41) 

u2
l) = -A0 cos 0O exp (irjo) (5.42) 

^22} = ik0(X+2p cos2 90)A0 exp (ifj0) (5.43) 

t ^ = — 2ik0 \i sin 90 cos 90 A0 exp (ifj0). (5.44) 

Superimposing (5.33)-(5.36) on (5.41)-(5.44) to obtain the total displace-
ments and stresses at x2 = 0, it is immediately seen that the normal dis-
placement and the tangential stress vanish at x2 = 0. Apparently (5.40) 
applies to the reflection of a longitudinal wave at a smooth surface. Thus, at 
a smooth boundary as defined under (c) a longitudinal wave is reflected as 
a longitudinal wave with the same amplitude and wavenumbers. Similarly 
we can consider 

A2 = 0, ui = C/Q, A± = — A0, k± = /c0. 

It is readily checked that these results apply if the tangential displacement 
and the normal stress vanish at x2 = 0. Thus for boundary conditions (d) 
a longitudinal displacement wave is also reflected as a longitudinal wave 
only. 

The two cases of "mixed" boundary conditions defined by (c) and (d) are 
unfortunately physically somewhat unrealistic. Of more practical significance 
are the reflections from a free or a clamped surface. In view of the foregoing 
results for mixed boundary conditions it is now expected that at a free or a 
clamped surface an incident longitudinal wave will generate not only a 
reflected P-wave but also a reflected SV-wave. 

For a free surface the sum of the three tractions must vanish at x2 = 0, 
and we obtain from eqs. (5.29), (5.30), (5.32), (5.38) and (5.39): 

T - T ( 0 ) 4 -T ( 1 ) + T ( 2 ) = 0-
T22 ~" T22 ' T22 "^T22 = u * 

ik0(X + 2fi cos2
 0O)AQ exp (/ij0)-H'fc1(A + 2/z cos2 91)Al exp (ifj^ 

— 2ik2fx sin 92 cos 92A2 exp (irj2) = 0 (5.45) 

T _ T<o)_i_r(i)_i_T(2) = n-
T21 — T21 + T 2 1 + T 2 1 ~ u -

2ikQii sin 90 cos 90A0 exp (ifj0) — 2ikifi sin 9X cos 91Al exp (Jfj^ 
+ ik2fi (sin2 92 — cos2 92)A2 exp (irj2) = 0. (5.46) 
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Eqs. (5.45) and (5.46) must be valid for all values of xi and t, and the 
exponentials must thus appear as factors in both equations, i.e., 

Inspection of fjn from (5.31) then leads to the following conclusions: 

k0 sin 0O = k± sin 0X = k2 sin 02 = k = apparent wavenumber 

k0cL = ktcL = k2cT — co = circular frequency. 

These results provide, in turn, the simpler relations 

kx = k0 (5.47) 

k2lk0 = cJcT = K (5.48) 

0i = Oo (5.49) 

sin 02 = ic"1 sin 0O. (5.50) 

The material constant K was defined by eq. (4.8) as 

* - R^V. (5.5D 
Ll -2vJ 

Since K > 1 and 02 ^ -J-7C, it is apparent from (5.50) that 02 < 6l. The 
wavenumber k = kosin0o is the wavenumber of the wave propagating 
along the surface x2 = 0. The phase velocity along the surface x2 = 0 is 
obtained as 

c = cofk = cjsin 0O. 

With the aid of (5.47)-(5.50) the algebraic equations for AJA0 and A2/A0 

can now be simplified to 

(A+ 2/i cos2 B0)(A1/A0)-Kfi sin 202(A2[AO) = -(A + 2/x cos2 0O) 

~jUsin20o(^[1/^o)-K:^ cos 202(,42yMo) = - / z s in20 o . 

The solutions of this set of equations are 

£ i _ sin 20o sin 202 - K2 cos2 202 

,40 sin 20o sin 202 + /c2 cos2 202 

A2 _ 2K sin 20o cos 202 

A0 sin 20o sin 202 + K2 COS2 202 

(5.52) 

(5.53) 

Inspection of the amplitude ratios (5.52) and (5.53) leads to several obser-
vations: 
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(1) The amplitude ratios are independent of the wavelength of the in-
cident wave, but depend only on the angle of incidence 60 and the material 
constant K. 

(2) For normal incidence, 60 = 0, and thus 0X = 0, A2/A0 = 0 and 
AJA0 — — 1. The incident P-wave is reflected as a P-wave. Since we have 
A0d2

0) = Axd2
l), the reflected displacement wave is in phase with the in-

cident wave. Superposition of the two waves produces a standing wave. 
(3) For 60 = 90° (grazing incidence), the incident P-wave is again reflect-

ed as a P-wave, which is, however, 180°, out of phase with the incident 
wave. If the two waves are superposed the displacement vanishes altogether. 
An alternative way of approaching the limit 90 = 90°, which was discussed 
by Goodier and Bishop1, leads to displacements that increase linearly with 
the distance from the free surface. 

(4) If sin 260 sin 26 2 = K2 COS2 262, the incident P-wave is reflected as 
an SV-wave only. This phenomenon is called mode conversion. The am-
plitude of the reflected SV-wave is obtained as 

AiIA0
 = K cot 2#2-

As an example, we consider v = 0.25, which corresponds to A = fi, when 
(5.51) yields K = v'3> and mode conversion occurs for two angles of in-
cidence, one of which is 60 = 60°. 

In figure 5.4, the amplitude ratios Al/A0 and A2[A0 are shown versus the 
angle of incidence 60, for Poisson's ratio v = 0.25. For various values of v, 

0° 30° 60° 90° 
Angle of incidence 60 

Fig. 5.4. Amplitude ratios for the reflection of a P-wave; v — 0.25. AJA0 = relative 
amplitude of reflected P-wave. A2IA0 = relative amplitude of reflected SV-wave. 

1 J. N. Goodier and R. E. D. Bishop, Journal of Applied Physics 23 (1952), 124. 
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the ratio A1/A0 is shown versus 60 in figure 5.5. The curves in figure 5.5 
are after results computed by Arenberg.2 

0 10 20 30 40 50 60 70 80 90 
Angle of incidence 0Q (degrees) 

Fig. 5.5. Relative amplitude of reflected P-wave for various values of Poisson's ratio v. 

The reflection of a longitudinal wave at a fixed (clamped) boundary can 
be discussed in a completely analogous manner. We list just the amplitude 
ratios, 

AL± __ COS(fl0 + fl2) 

A0 cos (60 — 92) 

A2 ___ sin 260 

A0 C O S ( 0 O - 0 2 ) ' 

where the relation between 02 and 90 is given by (5.50). 

5.7. Reflection of SV-waves 

To examine the reflection of incident SV-waves eqs. (5.28)-(5.30) are 
employed. We assign n = 0 to the incident SV-wave, so that 

2 D. L. Arenberg, Journal of the Acoustical Society of America 20 (1948), 1. 
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p[0) = sin 0O, 

d<0) = - c o s 0O, 

CQ = CT . 

p(
2

0) = cos 0O 

4 0 ) = sin 0O 

(5.54a) 

(5.54b) 

(5.54c) 

In the plane x2 = 0, the displacements and the stresses of the incident wave 
then are of the forms 

u(
1
0) = — A0 COS 90 exp (ifj0) (5.55) 

w(
2
0) = A0 sin 90 exp (ifj0) (5.56) 

T22} = 2 J/c0 \i sin 0O cos 0O A0 exp (w/0) (5.57) 

T ^ = ik0fi(sm2 0 o - cos 2 0oMo e xP ("7o)> (5.58) 

where 

t]0 = k0{x1 sin 60-cTt). (5.59) 

We will consider only the case that the reflecting surface x2 = 0 is free 
of tractions. For that case it is to be expected that an incident SV-wave 
generates a reflected P-wave as well as a reflected SV-wave. If the tractions 
vanish at the reflecting surface we have at x2 = 0: 

T - T
( 0 ) + T ( 1 ) 4 - T ( 2 ) = 0 -

T22 — T22 + T 22 + T 22 — u -
2ik0fi sin 90 cos 90A0 exp (irj0) + ik1(A + 2fj. cos2 91)Ai exp (/i^) 
— 2ik2n sin 02

 c o s #2^2 e xP (^2) = 0 (5.60) 

T 2 J — T 2 1 + T 2 1 + T 2 1 = U 

//:0/z(sin2 0O — cos2 0o)^o e xP (^o)^2iklfjL sin 0! cos 91A1 exp (w^) 

+ /£2/*(sin2 02 —cos2 #2)^2 e xP 0^2) = 0, (5.61) 

where, as in the previous section, the quantities associated with the reflected 
P- and SV-waves are denoted by n = 1 and n — 2, respectively. Since the 
exponentials must appear as factors, we conclude from the definition of fjn 

k0 sin 0O = kl sin 91 = k2 sin 92 = k 

KQCJ" = : k\Cj_i
 = = K2Cj" == CO. 

These equations yield the simpler results 

k2 = k0 (5.62) 

*,/*„ = cT/cL = K-1 (5.63) 

02 = 0O (5-64) 

sin0t = Ksin0 o . (5.65) 
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By employing (5.62)-(5.65), the algebraic equations for AJA0 and A2/A0 

can be simplified to 

(A + 2/zcos2 91)(A1fA0) — Kfi sm290(A2fA0) = — KJLL sin290 

—\x sin 291(A1fA0) — K\I COS 20O(A2/AO) = +Kfi cos200. 

The solutions to this set of equations are 

Ax K sin 40o 

A0 sin 20o sin 20t 4- K2 cos2 20o 

A2 _ sin 20o sin 291—K2 cos2 20o 

AQ sin 20osin201 + /c2cos220o 

(5.66) 

(5.67) 

From the expression for AJA0 it is observed that the reflected P-wave 
vanishes for 0O = 0, 0O = n/4, 90 = n/2. For these particular values of 
0O, the incident SV-wave is reflected as an SV-wave. An incident SV-wave 
is reflected as a P-wave if the numerator of (5.67) vanishes. We must, 
however, also consider the relation (5.65), which shows that 0! is a real-
valued angle only if 0O is smaller than the critical angle 0cr, where 

9cr = s i n " 1 ^ / * ) . 

For example, if v = 0.25 (A = fi), we have K = V ' 3 , and the angle of in-
cidence must satisfy the restriction 0 o < 3 5 ° 1 6 ' i n order that 91 be real-
valued. For 0O = 0cr, (5.65)-(5.67) become 

e = T T At _ 4 ( i c 2 - l ) » A, = _ t 

1 2 ' A0 <2 - fc 2 ) ' A0 

If 0O > 0cr, the component p2
l) becomes 

P(
2

l) = —COS0! = —IKfl, 

where 

P = (sin2 0 O - K T 2 ) * 

The reflected P-wave may then be written as 

u(1) = Sd(1) exp (k0px2) exp [ifc0 sin 90(x1—cLt/K sin 0O)~ia], (5.68) 

where 
S = ^ s i n 4 0 o (5.69) 

[K 2 COS4 2 0 O + 4 ( K 2 sin2 0O - 1 ) sin2 20o sin2 0O]* 

tan a = 2 ( K 2 s i " 2 0o ~ *)* s i n 2 e o s i n go (5 - 7 0) 
K COS2 2 0 o 
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Eq. (5.68) is an example of the type of inhomogeneous plane waves that 
were discussed in section 4.2. Referring to (4.14), the vectors p' and p", 
the wavenumber k and the phase velocity c are 

P' = P^h == K sin 0o*'i 

P" = P21)|#2 = — K;(sin2 O0-K~2)i2 

K = = /Cj ==: KQIK9 C = C^ . 

Since (5.67) is the ratio of two complex conjugates, we have \A2fA0\ = 1, 
and 

u(2) = —y40d
(2)exp [i'fc0(*i s*n ^o""x2 c o s 0o"crO""2ia], 

where a is defined by (5.70). The reflected P-wave is a wave propagating 
in the A^-direction with wavenumber k0 sin 90 and phase velocity CL[K 
sin 90. The amplitude of the reflected P-wave decays with the depth into 
the material (decreasing x2). This type of wave is called a surface wave. 

The amplitude ratio A2/A0 is plotted in figure 5.6. The critical angle 
0C, as well as the angle at which an incident SV-wave is reflected as a P-
wave, is plotted in figure 5.7. The latter figure also shows the angle at which 
an incident P-wave is completely converted into a reflected SV-wave. 

Fig. 5.6. Relative amplitude of the reflected SV-wave for various values of Poisson's 
ratio v. 
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Figures 5.6 and 5.7 are after results from the previously cited paper by 
Arenberg. 

5.8. Reflection and partition of energy at a free surface 

As shown in section 5.3, the average energy transmissions per unit area for 
longitudinal and transverse waves may be expressed as 

<&L> = ${A + 2li)-A2 

and 

cT 

respectively. Now let us consider (see figure 5.8) a beam of incident P-waves 
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of cross-sectional area AS0. The corresponding beams of reflected P-waves 
and SV-waves are of cross-sectional areas ASX and AS2, respectively. Since 
the surface area AS is free of tractions and since no energy is dissipated, the 

Fig. 5.8. Beams of incident and reflected waves. 

average energy transmission across AS0 must equal the sum of the average 
energy transmissions across ASX and AS2. Thus 

2 2 2 

$(X + 2ii) — (A0)
2AS0 = i(A + 2,x) — (AtfAS^ifi — (A2)

2AS2. (5.71) 
cL cL cT 

By using 

AS0 = ASX = AS cos 60, AS2 = AS cos 029 

we find 

cL cos0o 

lf02 is eliminated from (5.72) by means of (5.50), we obtain 

( 4 ) ' + ( * ) ' _ » _ ( , - * ! * ) * _ , . (5.73) 
\AQJ \AQI K COS 0O V K I 

It can be checked that the previously derived amplitude ratios (5.52) and 
(5.53) satisfy (5.73). From (5.71) we can also determine how the average 
energy transmission is partitioned over the reflected P-wave and the reflected 
SV-wave. 

5.9. Reflection and refraction of SH-waves 

If the space x2 > 0 is filled by another medium, either gaseous, liquid or 
solid, waves are transmitted across the interface x2 = 0. Some of the salient 
aspects of reflection and refraction can be exhibited by analyzing the 
problem of an SH-wave incident on the interface of two solids. For this 
case both the reflected and the transmitted waves are SH-waves. The wave 

\AJ + \AJ 
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**P* 

T & / p ( 0 ) 

p>p 
Fig. 5.9. Reflection and refraction of SH-waves. 

normals are indicated in figure 5.9, using the notation which was introduced 
in section 5.4. The incident wave is represented by 

u(
3
0) = A0 exp [i/c0()ci sin 90 + x2

 c o s 90-cTij\. 

On the plane x2 = 0 we find 

w3
0) = A0 exp [_ik0(xi sin 9Q — cTt)"\, 

and 
^23 = ik0/j, cos 90A0

 e xP [J^o(xi s i n 90 — cTt)~\. 

There are no other stress and displacement components associated with the 
incident SH-wave. The reflected SH-wave yields at x2 = 0 

w(
3
2) = A2 exp [ik2{xl sin 92 — cTty] 

r ( 2 ) -
r23 — 

— ik2 \i cos 82 A2 exp [i/c2(xi sin 92 — cT *)]. 

Identifying the material constants in the half-space x2 > 0 by superscripts 
B, we find for the refracted SH-wave at x2 = 0 

u3
4) = AA exp [ikj^x^ sin 9A. — c^t)'\ 

?Z3 = ikAfiBcos 94A4 exp [i/c^Xi sin 04 — c?*)]. 

At the interface x2 = 0 the displacement w3 and the stress T23 are con-
tinuous, which leads to two equations for A2 and A^ in terms of A0. Since 
the exponentials must appear as factors, we conclude that the following 
relations hold true 

k0 sin 90 = k2 sin 92 = /c4 sin 04 

0 ^T : = ^ 2 ^T = = 4 ^T > 

and thus 
k2 — k0, 92 = 90 

/c4 = \cTjcT)kQ 

sin 04 = (CT/CT) sin 0O. 

(5.74) 

(5.75) 

(5.76) 
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The amplitude ratios are subsequently computed as 

A2 _ \i cos 0o—fiB(cT/cT) cos 04 

A0 \x cos 0O + PLB{CTJCT) cos 04 

A± 2/i cos 90 

A0 [i cos 60 + MS(cT/c?) cos 04 

[Ch. 5, § 5.9. 

(5.77) 

(5.78) 

The amplitude ratios are plotted in figure 5.10 as functions of 90. Eqs. 
(5.74)-(5.78) prompt the following observations. 

13 

a 
E 
< 

1 

0 

-1 

A4/A 

A2/A 

) 

) \ | 

N 
30° 60° 

Angle Of incidence 00 

9 0 ° 

Fig. 5.10. Reflection and refraction of an incident SH-wave. /LIBIJU = 0.64, c?/cT = 0.8. 
A2/A0 = relative amplitude of reflected SH-wave; AJA0 = relative amplitude of re-

fracted SH-wave. 

(1) The wave is completely transmitted if 

\i cos 0 o - / A c r / c r ) C0S #4 = 0-

Thus, a combination of angle of incidence and material properties is possible 
for which no SH-wave is reflected. 

(2) If (c*/cT) sin 0O > I, sin 04 exceeds unity. In this case cos 04 is pure 
imaginary, and the transmitted wave takes the form 

7 i ( 4 ) 
W 3 A4 exp ( — bx2) exp [ikA{x1 sin 04 — c?*)], 

where 6 = &0[(c£/cr)
2 sin2 0O-1]*. Instead of a refracted wave this gives a 

surface movement in the upper half-space whose amplitude diminishes 
exponentially with increasing distance from the interface: When cos 04 is 
imaginary, A2fA0 equals the ratio of two conjugate complex numbers. 
Hence there is only a change of phase and the amplitude of the reflected 
wave equals the amplitude of the incident wave. Thus, if sin0o > Cr/cr> 
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we have total reflection with a shift in phase. If sin 0O = cTjc^, i.e., if sin 
04 = 1, there is total reflection without change of phase. 

(3) If x2 > 0 is vacuum, there is, of course, a reflected wave only, and 
we find 

in agreement with eq. (5.25). 

5.10. Reflection and refraction of P-waves 

In general it should be anticipated that a P-wave incident on the interface 
of two elastic solids will give rise to reflection and transmission of both 
P-waves and SV-waves, as shown in figure 5.1. The incident P-wave is 
represented by (5.33)-(5.36). From (5.28)-(5.30) we find the displacements 
and the stresses for the reflected P-wave and the reflected SV-wave by 
employing (5.28)-(5.30) with (5.38) and (5.39), respectively. For the trans-
mitted P-wave (n = 3), we have 

d[3) = sin 03 , 4 3 ) = cos 03 (5.79a) 

p[3) = sin 03 , p2
3) = cos 03 (5.79b) 

c4 = cB
L. (5.79c) 

The transmitted SV-wave (n = 4) is defined by 

d[4) = - c o s 04 , 4 4 ) = sin 04 (5.80a) 

j?i4) = sin 04, p2
4 ) = cos 04 (5.80b) 

c4 = cf. (5.80c) 

The wave speeds c\ and c* are defined as 

cf = [(AB + 2/)//]±, c? = W ) * 

For the physically most significant case of perfect contact the displacements 
and the stresses are continuous at x2 = 0: 

„<<» + „»> + „«> = a<3> + „W (5.81) 

W+W+W = W + W (5-82) 
where j = 1, 2. Eqs. (5.81) and (5.82) must be valid for all values of xt 

and /, which implies 

>7o = ^ i = fji = *\* = n ^ (5-83) 
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By employing (5.31) we conclude that (5.83) implies 

k0 sin 0O = kl sin 9t = k2 sin 02 = k3 sin 03 = /c4 sin 04 (5.84) 

^o CL ~~ ki CL ~~ ^2 c r — k3cL — /c4 c r . (5.85) 

For a given 0O and &0, the other angles and wavenumbers can thus be 
obtained from (5.84) and (5.85). Eqs. (5.81) and (5.82) form a system of four 
equations for the amplitudes Al9 A2, A3 and A4 in terms of A0. In matrix 
notation the system can be written as 

— sin^! 

cos 0X 

sin 20x 

-K 2 cos 20\ 

— cos 92 

— sin 02 

K cos 292 

K sin 202 

sin 03 

cos 03 

M* C_L 

V> c l 
sin 203 

IL c-k (^)2 c o s 2 0 4 

/̂  ^L 

In (5.86) we have used relations of the form 

A + 2/xcos2 0O 

— cos 04 

sin 04 

cos 204 
li cT 

^ ^ sin 204 
fl CT 

sin 0O 

cos 90 

sin 20o 

7C2 cos 20? 

A2 

A* 

(5.86) 

= K COS 2 0 2 , 

where K = cLjcT is defined by (5.51). 
Explicit expressions for the amplitude ratios A1/A0, etc. are given in the 

book by Ewing et al.3, where additional references are also listed. Here we 
will just briefly examine the special case of normal incidence which is defined 
by 

0o = 0 . 

In view of (5.84), the other angles then also vanish, and from the first and 
the third of (5.86) it is found that 

A2 = A, = 0. 

3 W. M. Ewing, W. S. Jardetzky and F. Press, Elastic waves in layered media. New 
York, McGraw-Hill Book Co., (1957), p. 87. 
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The two remaining equations yield 

A, pBcj-pcL 

A0 P*cZ+pcL 

d2 
A0 

2pcL 

pBcB
L + pcL 

(5.87) 

(5.88) 

Eq. (5.87) shows that no wave will be reflected at normal incidence when 
the product of the mass density and the velocity of longitudinal waves is the 
same for the two media. A product of the form pcL is known as a mechanical 
impedance of the medium. If pBc% > pcL, the signs of At and A3 are the 
same. Since the direction of propagation is, however, reversed upon reflec-
tion, the wave undergoes a change of phase of 180°. 

Eqs. (5.87) and (5.88) are, respectively, the reflection and the transmission 
coefficients for a harmonic displacement wave under normal incidence. 
In chapter 1, the coefficients were obtained for stress pulses of arbitrary 
shape. 

5.11. Rayleigh surface waves 

The possibility of a wave traveling along the free surface of an elastic half-
space such that the disturbance is largely confined to the neighborhood 
of the boundary was considered by Rayleigh.4 

x0 t 
Fig. 5.11. Rayleigh waves 

4 Lord Rayleigh, Proceedings London Mathematical Society 17 (1887), 4. 
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The criterion for surface waves or Rayleigh waves is that the displacement 
decays exponentially with distance from the free surface. Here we investigate 
the existence of Rayleigh waves for the two-dimensional case of plane waves 
propagating in the jq-direction (see figure 5.11). 

We consider displacement components of the form, 

ul = Ae~bX2 exp \_ik(xl -cf)] (5.89) 

u2 = Be'bX2 exp [ifcfo -ct)] (5.90) 

u3 = 0. (5.91) 

The real part of b is supposed to be positive, so that the displacements 
decrease with increasing x2 and tend to zero as x2 increases beyond bounds. 

Substitution of eqs. (5.89)-(5.91) into the displacement equations of 
motion yields two homogeneous equations for the constants A and B. A 
nontrival solution of this system of equations exists if the determinant of 
the coefficients vanishes, which leads to the equation 

lclb2-(ci-c2)k2Xc2
Tb2-(c2

T-c2)k2-] = 0. (5.92) 

The roots of (5.92) are 

»,-*(i-jj)*. *»-*(>-$*• 
It is noted that bx and b2 are real and positive if c < cT < cL and if positive 
roots are taken. 

The ratios (B/A) corresponding to bx and b2 can now be computed as 

/B\ = _ b± IB\ = ik 
[A/I " ik9 \A/2 ~ b2 

Returning to eqs. (5.89)-(5.91), a general solution of the displacement 
equations of motion may thus be written in the form 

Ul = [Ale-blX2 + A2e-b2X2]exp[ik(x1-ct)~] (5.93) 

- [ - a Axe-blX2+ -A2e~b2X2 explikfa-ctj]. (5.94) 

The constants Ax and A2 and the phase velocity c have to be chosen such 
that the stresses r22 and i21 vanish at x2 = 0. By substituting eqs. (5.93), 
(5.94) and (5.91) into the expressions for T22 and T21 at x2 = 0, we obtain 
after some manipulation 
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For a nontrival solution the determinant of the coefficients of At, A2 must 
vanish, which yields the following well-known equation for the phase 
velocity of Rayleigh waves: 

It is noted that the wavenumber does not enter in (5.95), and surface waves 
at a free surface of an elastic half-space are thus nondispersive. 

The computations leading to eq. (5.95) simplify somewhat if the dis-
placement potentials are employed, which were introduced in section 2.10. 
For the two-dimensional case of plane strain the displacement components 
ux and u2 can be expressed in terms of (pix^, x2, t) and il/^(xi9 x2, t). By 
considering expressions for the potentials of the general forms (5.89) and 
(5.90) it follows from the wave equations V2<p = (l/c£)# and V V 3 = 
0 A T ) # 3 that 

cp = Ce~blX2eik(xl'ct) 

and 

V>3 = De'b2X2eik(Xl~ct), 

respectively. Substituting these expressions into x22 and T 2 I , and invoking 
the boundary conditions at x2 = 0 yields eq. (5.95). 

If we substitute c = cT into the left-hand side of (5.95) we obtain unity. 
Substitution of c = ecT, where e is a very small number, yields 
— 2[1 — (cT/cL)2]e2, which is always negative. Hence (5.95) has at least one 
real root lying between c = 0 and c = cT. 

The questions now arise whether there is only one real root in the interval 
0 < c < cT, and whether there are possibly roots elsewhere along the real 
axis or in the complex plane. A convenient method to check on the number 
of roots of (5.95) is by means of the principle of the argument. This principle 
may be stated as follows as a theorem of the theory of complex variables: 
Let G(z) be analytic everywhere inside and on a simple closed curve C, 
except for a finite number of poles inside C, and let G(z) have no zeros on 
C. Then 

IniJc dz G(z) 
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where Z is the number of zeros inside C, and P is the number of poles. The 
numbers Z and P include the orders of poles and zeros, i.e., a pole of order 
three counts as three in the number P. The formula can be checked by re-
placing C by a sum of contours surrounding each zero or pole of G(z), 
since these are the only singularities of the integrand. By the use of Laurent-
series expansions these individual integrals are easily evaluated and their 
sum yields the number Z—P. 

To apply the principle of the argument to the Rayleigh equation it is 
convenient to rewrite eq. (5.95) in the form 

R(s) = ^ s 2 - * ^ 2 W ( s 2 - s 2 ) * ( s 2 - s 2 ) ± = 0, (5.96) 

where s = l/c is the slowness of surface waves, and sL and sT are the slow-
nesses of longitudinal and transverse waves, respectively: 

sL = - > 5T = - . (5.97a, b) 

In the complex s-plane the function R(s) is rendered single-valued by in-
troducing branch cuts along (l/cL) ^ \M(s)\ ^ (l/cT), J{s) = 0. Now 
consider the contour C consisting of T, and Tx and Tr as indicated in figure 
5.12a. Since the function R{s) clearly does not have poles in the complex 

(a) s-plane (b) v-plane 

Fig. 5.12. Mapping from s- to y-plane. 

5-plane, we find that within the contour C = r + rt + rr the number of 
zeros is given by 

Z-±{**±. (5.98) 
27r/Jc ds R(s) 
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The counting of the number of zeros is carried out by mapping the s-plane 
on the f-plane through the relation 

v = R(s). 

If Cv is the mapping of C in the u-plane, the integral (5.98) in the u-plane 
becomes 

J - f d-» = z. 
2niJ cv v 

The latter integral has a simple pole at v = 0, and thus Z is simply the 
number of times the image contour Cv encircles the origin in the u-plane 
in the counter-clockwise direction. To determine the number of zeros in 
the .s-plane we thus carefully trace the mapping of the contour C into the 
r-plane. 

Since R(s) = R( — s) the images of Tr and Tz are the same, and one of 
them, say Tr, needs to be considered. We have (see figure 5.12) 

at A: R(sL) = (2s2
L-s2)2 

along AB: R(s) = (2s2-s2
T)2 + i4s2(s2-s2

Lf(s2
T-s2f, 

where the minus sign applies above the cut, and the plus sign applies below 
the cut. Also, 

at B: R(sT) = $T • 

Note that along JHr we have M[R{s)] > 0, and the mapping into the v-
plane is thus qualitatively as indicated in figure 4.12b. For \s\ large, we find 

R(s) = 2s2(s2
L-s2

T) + 0(l). (5.99) 

The mappings of Tr and F, do not encircle the origin in the t;-plane but, as is 
seen from eq. (5.99), the mapping of r encircles the origin twice. In the 
.s-plane there are thus two zeros of the equation R(s) = 0, and consequently 
eq. (5.95) also possesses two roots. 

Since (5.95) is an equation for c2 the two roots are each other's opposite. 
As noted earlier, eq. (5.95) shows that the roots may be expected along the 
real axis for — cT < c < cT. Obviously only the positive real root is of 
interest. The root for c2 is usually computed by rationalizing (5.95), where-
upon a cubic equation emerges, which may, however, yield three real roots 
for c2. Two of these roots are extraneous; they arise from the rationalization 
process of squaring. 

Denoting the phase velocity of Rayleigh waves by cR, eq. (5.95) can be 



192 PLANE HARMONIC WAVES IN ELASTIC HALF-SPACES [Ch. 5, §5.11. 

considered as an equation for cR/cT, with Poisson's ratio v(0 ^ v ^ 0.5) as 
independent parameter. 

TABLE 5.1 

Velocity of Rayleigh waves for various values of Poisson's ratio 

V 

0 
0.25 
0.333 
0.5 

CR/CT 

0.862 
0.919 
0.932 
0.955 

For various values of Poisson's ratio the phase velocity is tabulated in 
table 5.1. A good approximation of cR can be written as 

_ 0.862 +1.14v 
CR — " CT -

1 + V 
(5.100) 

As v varies from 0 to 0.5, the Rayleigh wave phase velocity increases 
monotonically from 0.862cr to 0.955 cT. 

For two values of Poisson's ratio, figure 5.13 shows the variations of the 
displacements with depth. The displacements are referred to the normal 
displacement u2 at the surface, and they are plotted versus the ratio of x2 
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Fig. 5.13. Displacement amplitudes ul!u2(x2 = 0), curves 2, and u1\u1(x2 = 0), curves 1, 
for v = 0.25 ( ) and v = 0.34 ( ). 



Ch. 5, §5.11.] RAYLEIGH SURFACE WAVES 193 

and the wavelength. The variations of the stresses with depth are shown in 
figure 5.14, where the stresses are referred to r n at x2 = 0. 

Fig. 5.14. Stress amplitudes: curves 3, T n / i n f e = 0); curves 1, T12jrli(x2 = 0); and, 
curves 2, T22/T11(X2 = 0) for v = 0.25 ( ) and v = 0.34 ( ). 

The figures show the localization of the wave motion in a thin layer near 
the surface, of a thickness which is about twice the wavelength of the surface 
waves. 

Since the displacement components ux and u2 are 90° out of phase, the 
trajectories of the particles are ellipses. For the coordinate axes of figure 
5.11 the motion is counterclockwise at the free surface. 

At a depth of x2 ~ 0.2 A the direction of rotation reverses, since ut 

changes sign. The semimajor axes of the ellipses are normal to the free 
surface; the semiminor axes are parallel to the free surface. At the free surface 
the normal displacement is about 1.5 times the tangential displacement. 

Rayleigh waves have been studied in great detail, and they have found 
several applications. For additional information we refer to the book by 
Viktorov.5 

The attractive features are the absence of dispersion and the localization 
of the motion in the vicinity of the surface. 

Given suitable generating conditions, surface waves as well as body 
waves are generated at a bounding surface. For a two-dimensional geometry 
the surface waves are essentially one-dimensional, but the body waves are 
cylindrical and undergo geometrical attenuation. Thus at some distance 
from the source the disturbance due to the surface wave becomes predom-
inant. 

5 I. A. Viktorov, Rayleigh and Lamb waves. New York, Plenum Press, (1967). 
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Surface motions of a more general nature than discussed in this section 
were investigated by Knowles6, who considered all possible motions of the 
half-space for which the scalar potential cp and the components of the vector 
potential ij/j have the forms 

cp = <P(x1,x3>-flX2 + ,'fccf (5 .101) 

iA, = y / * i . * 3 > r t a 2 + l k r t - (5.102) 

From the wave equations for cp and ij/j and from the condition that the shear 
stresses x2a vanish at x2 = 0, where a = 1, 3, it can be shown that cp and 
\j/2 can be expressed in terms of \//l, \//3, k and c as 

» - - H i - i f H 9 '•>*■■> (5-103) 
1 / c V 

*2 = kV~?) *''" (5'104) 

where a, ft = 1, 3. It also follows that 

a = k(l-C-\ b = k (l- C-\ . (5.105a, b) 

In eq. (5.103), eaP is the two-dimensional alternator defined by et t = e3 3 =0, 
e13 = — e3i = 1. Furthermore \j/1 and i/r3 must satisfy the reduced wave 
equation 

VVa + fcVa = 0, (5.106) 

where V2 = d2ldx\ + d2fdxl. From the remaining condition of vanishing 
normal stress, T2 2 = 0 at x2 = 0, it then follows that c must satisfy eq. 
(5.95). 

5.12. Stoneley waves 

Propagating disturbances confined to the neighborhood of a surface occur 
not only in the vicinity of a free surface but also at the interface of two 
half-spaces filled with different materials. Thus, there can be surface waves 
at the interface of a solid and a fluid and also at the interface of two solids. 
The latter waves, which are called Stoneley waves, will be briefly discussed 
in this section. 

6 J. K. Knowles, Journal of Geophysical Research 71 (1966) 5480. 
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Let the material constants in the half-space x2 < 0 be denoted by sub-
scripts and superscripts B. The material constants in the half-space x2 > 0 
do not carry subscripts and superscripts. For x2 > 0 the displacement 
components ut and u2 are given by (5.93) and (5.94). In the half-space 
x2 < 0 we have 

ii! = [A3e
b3X2 + A4eb4X2~]exp[ik(xl-ct)1i 

ik b4 

„&4*2 exp [ik{xl—ci)~\, 

where 

['-(?)T *•-'[-(*)' 

(5.107) 

(5.108) 

(5.109) 

where cf and c* denote the phase velocities of longitudinal and transverse 
waves, respectively, in the half-space x2 < 0. 

The condition that the displacements and the stresses are continuous at 
x2 ~ 0 yields four homogeneous equations for the four constants Al9 A2i A3 

and A±. The determinant of the coefficients must vanish which yields the 
following equation 

1 

k 

2 * . ( 2 _ « ! ) * 
k \ cTI b7 

2 -

- 1 

k 

pi k 

- 1 
k_ 

- (a) * 4 

- 2 j 

= 0 (5.110) 

This equation is, of course, much more difficult to analyze than the much 
simpter Rayleigh equation (5.95). 

Taking note of the definitions of bl9b2,b3 and b4, we observe that 
the wavenumber k does not appear in eq. (5.110). Thus Stoneley waves are 
not dispersive. The number and the nature of the roots of (5.110) can again 
be determined by the principle of the argument. This analysis is presented 
in the book by Cagniard.7 It turns out that there are always two roots. The 
roots are, however, not necessarily real or on the proper Riemann surface. 
Only over a certain range of the ratios pBfp and \xB\\i are real roots of (5.110) 
obtained. 

7 L. Cagniard, Reflection and refraction of progressive seismic waves, translated and 
revised by E. A. Flinn and C. H. Dix, New York, McGraw-Hill Book Co. (1962), p. 47. 
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5.13. Slowness diagrams 

Some of the results on the reflection and refraction of waves can be il-
lustrated graphically by means of slowness diagrams. In particular, the 
relations between the angles of incidence, reflection and refraction can be 
shown, the critical angles can be identified, and the decay rates normal to 
the direction of propagation for plane waves with complex-valued unit 
propagation vectors can be determined. 

In this section, we provide a few examples of the use of slowness diagrams 
by reproducing some results from a paper by Crandall.8 Slowness diagrams 
were introduced in section 4.2, where it was shown that the components of 
the slowness vector q (which appears in the representation of a plane wave) 
are related by a circle or an equilateral hyperbola. Given ql < q, the cor-
responding value of q2 is on the circle of radius q. When q < qti the cor-
responding value of P is on the hyperbola, as indicated in figure 4.1. In a 
homogeneous isotropic elastic medium, q = qL = \/cL for longitudinal 
waves, and q — qT = \\cT for transverse waves. 

Considering reflections at a free surface, we draw two slowness diagrams; 
each consisting of a circle and a hyperbola, one pair with q = qL = l/cL 

and one with q = qT — l /cT. In figure 5.15, the incident longitudinal wave 
is given. The slowness vector of the incident wave is q(0). The slowness 
vectors of the reflected P- and SV-waves are <|(1) and g(2), respectively. 

Fig. 5.15. Slowness diagram for incident P-wave. 

Since the space-time distribution of the incident wave, see eqs. (5.33)—(5.36), 
on the surface x2 = 0 is a sinusoidal wave with frequency co and slowness 
q[°\ the reflected wave must have this same slowness and frequency on 
x2 = 0, if two independent boundary conditions are to be satisfied at all 
times and all positions on the surface. In figure 5.15, the directions of q(1) 

and q(2) are fixed by the requirement that their component in the ^-direc-
tion be q[0). Note that 

8 S. H. Crandall, Journal of the Acoustical Society of America 41 (1970), 1338. 
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0! = 0O, sin 02 = (qL/qT) sin 0O 

in agreement with (5.49) and (5.50). 
Figure 5.16 illustrates the similar configuration for an incident transverse 

wave. In both figures 5.15 and 5.16, the slowness component q°x along the 

Fig. 5.16. Slowness diagram for incident SV-wave, 0 < q(?] < qL. 

free surface is less than either qL or qT, so all waves have real slowness 
components. In figure 5.17, the incident transverse wave has a slowness 
q[0) such that qL < q[0) < qT, so that the reflected P-wave has a complex 
slowness. The amplitude decay rate is fixed by /?L, see eq. (4.20). This case 
corresponds to the results presented by eqs. (5.68)-(5.70). 

Fig. 5.17. Slowness diagram for incident SV-wave, qL < q{^ < qT. 

The configurations in figures 5.15-5.17 represent reflections of incident 
waves with entirely real slowness components. Various other cases are 
examined in the previously cited paper by Crandall. 

Slowness diagrams can also be used to examine refraction and reflection 
at an interface, as discussed in some detail in a paper by McNiven and 
Mengi.9 

9 H. D. McNiven and Y. Mengi, Journal of the Acoustical Society of America 44 (1968), 
1658. 
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5.14. Problems 

5,1, A thin layer of a substance whose elastic constants are very small and 
can be neglected is adhered to the surface of an elastic half-space. The 
mass density of the substance is ps. A plane harmonic longitudinal wave is 
incident on the covered surface. 

(a) Determine the influence of the mass-layer on the amplitudes of the 
reflected waves. 

(b) Consider beams of incident and reflected waves and investigate the 
averaged energy transmission over the cross sections of the beams. 

5.2, An elastic half-space is covered by a stretched thin membrane, as shown 
in the figure. The equation governing the motion of a membrane subjected 
to a load q(x1 ,x3,t) per unit area is 

d2u2 

dx\ + 
d2u 

dxl 

2 + 1 = R dl^l 
T T dt2 

Now let a plane harmonic longitudinal wave be incident on the covered 
surface, as shown in the figure. Assuming that there is perfect contact 

between the membrane and the half-space, and assuming that the membrane 
is infinitely rigid in its own plane, determine the amplitudes of the reflected 
wave(s). 
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5.3. Consider the reflection and refraction of SH-waves at an interface 
of two materials. This problem is discussed in section 5.9. For a specific 

set of material properties a slowness diagram is shown in the figure. Obtain 
the results (5.74)-(5.76) and the observations 1-3 (p. 184) from an examina-
tion of slowness diagrams. 

5.4. The reflection and refraction of SH-waves is discussed in section 5.9. 
Consider beams of incident, reflected and refracted waves and examine the 
averaged transmission of energy, in particular for the case {cjlcT) sin 0o > 1. 

5.5. An elastic half-space is covered with an ideal elastic fluid. Equations 
governing the motion of an ideal fluid are given in section 2.15. A harmonic 
longitudinal wave propagating in the solid is incident on the interface. 

S>>JS///J////>////J 

x~ /c 

,*2 

Fluid 
CF 

~7777777777777777777~^^ 

*1 
Solid 
CL>CT 

(a) Draw slowness diagrams for the case cF < cT < cL, cT < cF < cL 

and cT < cL < cF, and determine the critical angles. 
(b) Determine the amplitudes of the reflected and transmitted waves. 

5.6. The origin of a system of cylindrical coordinates is placed at a point 
on the surface of an elastic half-space. The z-axis is normal to the surface, 
with the positive z-axis pointing into the half-space. 

To investigate the propagation of axially symmetric surface waves it is 
convenient to use displacement potentials. The pertinent relations can be 
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found in section 2.13. Start off with expressions for cp(r, z, /) and ij/d(r, z, t) 
of the forms 

<p = <P(r)e~blZeikct 

and 

^ = V9(r)e-b»e*«9 

where bx and b2 are as stated in section 5.11, and determine <P(r) and 
¥e(r). Show that the phase velocity c must satisfy eq. (5.95). 

5.7. An elastic half-space is covered by a thin layer of fluid, as shown in 
the figure. Suppose that the layer is subjected to surface tension, so that it 
acts as a stretched thin membrane. We assume that the fluid adheres 
perfectly to the half-space, but that it is nonviscous, so that shear interac-
tion with the half-space can be ignored. 

| \ V W ^ ^ ^ V V k k ^ k k k k k S \ V ^ V V ^ V ^ V V V ^ ^ ^ ^ W 

?x„ 

Consider the propagation of surface waves in the half-space: 
(1) Determine the equation for the phase velocity. 
(2) Are the waves dispersive? 
(3) Check that the classical equation for Rayleigh waves along a free 

surface is a proper limit case. 
(4) Examine the roots of the equation. 

5.8. Examine the propagation of surface waves at an interface of a solid 
and an ideal elastic fluid. 

5.9. Consider two semi-infinite elastic solids in smooth contact, i.e., the 
shear stresses vanish as the interface while the normal displacement is 
continuous. Examine the propagation of Stoneley waves along the interface. 

(a) Show that the equation for the phase velocity can be expressed in 
the form 

sin) = «2 H?rM-(;) V R2 = 0, 
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where 

201 

OL = - - K = - -

CT cBr 

R2 = ( 2 - a V ) 2 - 4 

and 

c 
t] = - . 

cT 

(b) Does S(rj) = 0 always have real roots? If not, what are the conditions 
for real roots? 

5.10. Two semi-infinite elastic solids are in perfect contact. Draw a slowness 
diagram for the case 

Cj < cB
L < cT < cL, 

and determine the critical angle(s) for an incident longitudinal wave. Do 
the same for the other cases that are conceivable. 



CHAPTER 6 

HARMONIC WAVES IN WAVEGUIDES 

6.1. Introduction 

The analysis of plane time-harmonic waves in a half-space does not meet 
with many difficulties. Indeed, the rules governing the reflections at the 
surface can be derived in a straightforward manner, as was shown in some 
detail in chapter 5. In the present chapter we will examine the complications 
that enter if a body has a finite cross-sectional dimension. 

Let us first consider harmonic wave motion in a homogeneous elastic 
layer of thickness 2h and of infinite in-plane dimensions. The results of 
chapter 5 suggest that harmonic waves can propagate in a layer by being 
reflected back and forth between the two plane surfaces. In a steady-state 
situation, which is assumed for harmonic waves, the systems of incident and 
reflected waves form, however, a standing wave across the thickness of the 
layer, so that the propagation is essentially in the direction of the layer. 
This motivates the term waveguide for the layer or, for that matter, for any 
extended body with a cross section of finite dimensions. As another example 
of wave motion in a waveguide we will in a later section of this chapter 
examine waves in a circular cylinder of infinite length. 

For motion in the (x1x2)-plane the picture of reflecting waves in a layer 
becomes complicated because, as depicted in figure 6.1, both P- and SV-
waves are generally reflected at the incidence of either one. In a circular 

Fig. 6.1. Waves in a layer. 

cylinder it becomes rather impractical to trace the reflection of waves. The 
idea of reflecting waves is, therefore, usually discarded and the analysis 
is approached by a priori considering a wave motion of the form 

f(*2>*3)exp [ik(x1~ct)]. (6.1) 
202 
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Eq. (6.1) represents a standing wave across the cross section and a traveling 
wave in the direction of the waveguide. For the much simpler case of 
horizontally polarized shear motion of an elastic layer (SH-waves) some 
interesting insight is, however, gained by indeed considering the reflections 
at the two surfaces. 

The function f(x2, x3) is the interference pattern formed by the reflecting 
waves. In an unbounded layer the interference pattern is a function of the 
thickness coordinate only, and it is represented by trigonometric functions. 
The analysis of motions of a circular cylinder is more complicated because 
the distribution of the motion across the cross section involves Bessel func-
tions which are somewhat more difficult to deal with. 

The investigation of progressive waves in waveguides leads to the in-
troduction of several new concepts such as modes of wave propagation, 
the frequency spectrum, dispersion and group velocity. 

In the last sections of this chapter we examine some approximate theories 
which considerably simplify the analysis of waves in layers and cylinders. 
The classical approximate theories are generally applicable for wavelengths 
that are large compared to the cross-sectional dimension of the waveguide. 
The higher order approximations are good up to frequencies that are 
somewhat higher than the frequency of the highest thickness mode contained 
in the equations. 

6.2. Horizontally polarized shear waves in an elastic layer 

The reflection at a free surface of an incident SH-wave was studied in section 
5.5, where it was found that there is total reflection without change of phase, 
i.e., 92 = 00, A2 = A0 and k2 = k0, see eqs. (5.25a, b, c). If we consider 
a layer it is therefore conceivable that two systems of plane waves will 
propagate in the layer. One system has unit propagation vector sin 
90i1+cos60i2 and can be considered as an "incident" wave on the free 
surface x2 = +A, and a "reflected" wave from the surface x2 = — h. The 
second system has unit propagation vector sin floi*!—cos 90i2 and can be 
considered as a reflected wave from the surface x2 = +h, and an incident 
wave on the surface x2 = — h. Since the bounding surfaces of the layer are 
free of tractions, the system of incident and reflected waves must sustain 
itself if it is to form a steady-state pattern. For free waves the reflections 
must thus constructively interfere with each other. 

Referring to figure 6.2, we consider a ray ADEF which has been reflected 
once from each boundary. If the disturbance in the plane PBE is to interfere 
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p a D 
Fig. 6.2. SH-waves in a layer. 

constructively with the coincident disturbance which has traversed the ad-
ditional path BDE, it is required that 

A' 
x length BDE = n, (6.2) 

where A' is the wavelength and n is an integer. From the geometry of figure 
6.2 we obtain 

length BDE = 
2h 2h cos 20o = 4h cos 0O. (6.3) 

cos 0O cos 0O 

As the disturbance in the plane PBE moves a distance BC it traces the 
distance PQ in the horizontal direction. If c is the phase velocity of wave 
motion in the xt -direction, we find from figure 6.2 

sin 90 = BC/PQ = cT/c. (6.4) 

Denoting the wavenumbers in the jq-direction and the direction of the 
ray AD by k and k\ respectively, we have 

and thus 
(o = kc = k'cT9 

k = — = k sin 0O = 
/I A' 

(6.5) 

In (6.5), /t and A' are the wavelengths in the ^-direction and in the direction 
of AD, respectively. Eq. (6.5) implies 

A = /17s in0 o . (6.6) 

Substitution of (6.3) into (6.2), with the aid of (6.5), yields 

nn 
k cot 0O = 

2h 
(6.7) 
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Also, 

where we have used eq. (6.4). Eq. (6.7) can thus be expressed as 

This result shows that except for n = 0 the phase velocity depends on the 
wavenumber k. Harmonic SH-waves in an elastic layer thus are dispersive. 
Since co = kc the result (6.8) can also be written in the form 

Q2 = n2 + £\ (6.9) 

where the dimensionless frequency Q and the dimensionless wavenumber £ 
are defined as 

_. 2hco 2kh t . 
Q = , £ = , (6.10a, b) 

2ho> 
3 

7TCT 

E 2/c/i 
s = 

7C 

respectively. Eq. (6.9) is called the frequency equation. 
The treatment based on the principle of constructive interference is in-

structive. It is, however, mathematically more straightforward to derive 
the frequency equation (6.9) by postulating at the outset solutions of the 
form 

u3 =f(x2)exp[i(kx1 — (Qt)]. (6.11) 

This solution must satisfy the equation 

d2u3 d2u3 __ 1 d2u 

dxl dx\ c\ dt2 ' 

and the boundary conditions at x2 = ± h 

M ^ = 0. (6.13) 
cx2 

Substituting (6.11) into (6.12), and solving forf(x2) we find 

f(x2) = Bx sin (qx2) + B2 cos (qx2), (6.14) 

where 

q2 = -2-k>. (6.15) 
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The boundary conditions (6.13) yield 

Bx cos (qh)±B2 sin (qh) = 0. (6.16) 

Eq. (6.16) can be satisfied in two ways: 

either 
Bi =0 and sin (qh) = 0 (6.17) 

or 
B2 = 0 and cos (qh) = 0. (6.18) 

For an arbitrarily specified value of the wavenumber k, eqs. (6.17) and 
(6.18) yield an infinite number of solutions for the frequency cc>. A specific 
wave motion of the layer, called a mode of propagation, corresponds to 
each frequency satisfying (6.17) or (6.18). If Bx = 0, the expression for 
f(x2) shows that the displacement is symmetric with respect to the midplane 
of the layer. The displacement is antisymmetric if B2 = 0. In both cases the 
frequencies follow from 

where, however, n — 0, 2, 4 , . . . for symmetric modes, and n = 1, 3, 5 , . . . 
for antisymmetric modes. By using the definition of q9 (6.15), and the 
definitions of the dimensionless frequency and the dimensionless wave-
number, (6.10a, b), eq. (6.19) can also be written as Q2 = n2 + £2, which 
was derived earlier on the basis of constructive interference as eq. (6.9). 

6.3. The frequency spectrum of SH-modes 

In the £2-<!;-plane the frequency equation 

Q2 =n2 + £2, (6.20) 

yields an infinite number of continuous curves, called branches, each 
corresponding to an integer value of n. A branch displays the relationship 
between the dimensionless frequency Q and the dimensionless wavenumber 
£ for a particular mode of propagation. The collection of branches con-
stitutes the frequency spectrum, 

To identify the modes we call the symmetric SH-modes (n = 0, 2, 4 , . . . ) 
the SS-modes. Similarly, the antisymmetric SH-modes (n = 1, 3, 5 , . . . ) are 
called the AS-modes. Moreover, we introduce the index r in such a manner 
that SS(r) and AS(r) identify the rth symmetric and antisymmetric SH-
modes, respectively. For symmetric modes, r is related to n by r = \n. 
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For antisymmetric modes we have r = -£n + £. In figure 6.3 the displacement 
distributions for several modes are sketched. For the lowest symmetric 
mode (n = 0) the displacement is constant across the layer, for the lowest 
antisymmetric mode (n — 1) there is one node, etc. 

Fig. 6.3. Displacement distributions in the *2*3-plane. 

By eliminating Q through the relation co = kc or Q = £c/cT, the fol-
lowing relation between £ and the dimensionless phase velocity cfcT can 
be written 

If £ is eliminated, c/cT may also be expressed in the form 

In these equations the sign before the radical indicates the propagation 
sense of the wave. It is clear from both equations that except for SS(0) the 
phase velocity depends on the wavenumber (or on the frequency), and the 
higher modes are thus dispersive. 

In free motions the frequency should be taken as real-valued. It is now 
seen from the frequency equation (6.20) that for Q < n this equation can be 
satisfied only if £ is purely imaginary. As is evident from eq. (6.11), dis-
placements associated with positive imaginary wave numbers decay ex-
ponentially with xx. Such displacements do not represent progressive waves, 
but rather localized standing wave motions. For a particular mode the 
frequency at which the wavenumber changes from real to imaginary (or 
complex) values is called the cut-off frequency. It is noted that for horizontal-
ly polarized shear waves the cut-off frequencies are given by the frequencies 
at vanishing wavenumbers. 
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The frequency spectrum is shown in figure 6.4. If t; is real, the branches 
are hyperbolas with asymptotes Q = £. For imaginary wavenumbers eq. 
(6.20) represents circles with radii n. Since the frequency spectrum is sym-
metric in f, the second quadrant can be used to plot Q versus positive 

SUmag.) £(real) 
Fig. 6.4. Frequency spectrum for SH-modes in a layer. 

imaginary values of I. Negative values of Q need not be considered. Since 
the two relevant material constants u and p and the one relevant geometrical 
parameter h appear in Q and f only, the frequency spectrum can be employed 
for any homogeneous isotropic layer. 

6.4. Energy transport by SH-waves in a layer 

In section 5.3 it was shown that the propagation of time-harmonic waves 
is concomitant with a flux of energy. The time average energy transmission 
per unit area for transverse waves was computed as eq. (5.10) of chapter 5. 
Let us now examine the transport of energy for the case of SH-waves 
propagating in a layer. We are particularly interested in the velocity of energy 
flux along the layer. 

The time average over a period of the power per unit area integrated 
over the thickness of the layer is denoted by <P>, 

<P> = - - f d*f xl3u3dx2. (6.22) 
TJo J -h 
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The time averages of the integrals over the thickness of the total energy 
density, the kinetic energy density and the strain energy density are denoted 
by <//>, (K} and <£/>, respectively, where 

</!> = <£> + <[/> = 2<iO. (6.23) 
In eq. (6.23), 

< K> = - f dt f ip("3)2dx2. (6.24) 
TJo J -h 

To compute the velocity of energy flux we use the relation between the time 
average power transmission and the time average total energy 

<P> = (H}ce. (6.25) 

Suppose we consider an antisymmetrical mode, i.e., 

w3 = Bl sin (qx2) cos [k(xl — ct)]i (6.26) 

where q and c are defined by eqs. (6.15) and (6.8). We can now determine 
T 1 3 and u3 and easily evaluate the integrals in eqs. (6.22) and (6.24). The 
results are 

<P> = \\ichh\ k2 

<K> = ipc2hBlk2. 

By means of (6.25) and (6.23) the velocity of energy transmission is then 
computed as 

C 

or 

(6.28) 

---- = ,-rW (6-27) 
cT c (n2 + £2)* 

where we have used eq. (6.8). From the frequency equation (6.20) we derive 

d £ = { 

d£ ~ {n2 + ef 
Comparing (6.27) and (6.28) it is concluded that 

^ = — (6.29) 
cT d£ 

or 

ce = ^ . (6.30) 
dfe 
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It has thus been shown that for the propagation of SH-waves in a layer, the 
velocity of energy flux equals the derivative of the frequency with respect 
to the wavenumber. Using the relation a> = kc, we can also write this result 

dc 
ce = c + k—. (6.31) 

d/c 

For the lowest symmetric mode (n = 0) c is constant (c = cT) and then ce 

equals the phase velocity. If there is dispersion, i.e., c = c(k), it follows 
from (6.31) that the velocity of energy transport is different from the phase 
velocity. 

Historically the velocity defined by dco/dk entered the literature under 
the name group velocity, independent of the idea of energy propagation, 
but rather through a kinematic argument. The kinematic argument which 
motivated the terminology "group" velocity involves superposition of waves 
of various frequencies and will be presented in the next section. From now 
on we will however refer to cg = dcofdk as the group velocity. 

The dimensionless group velocity of SH-waves can be computed as 

f g - * g - ±t . (6.32) 

An alternative expression can be obtained by eliminating £, 

c ' " 2 \ * 

For a particular mode the group velocity is zero when dQ/d£ vanishes, 
which implies that the group velocity is zero at the cut-off frequencies. 
The dimensionless group velocity is plotted for several modes in figure 6.5. 
We note that for the lowest symmetrical mode, which is not dispersive, 
cg\cT = 1. For the higher modes cJcT < 1, but cg/cT approaches unity as 
£ increases, i.e., as the wavelength decreases. The asymptotic limit c = cT 

as £ increases, of both the phase velocity and the group velocity, is easily 
understood on physical grounds. As % increases the wavelength decreases, 
which means that the thickness of the layer becomes relatively large and 
waves propagate as in an unbounded medium. 

For imaginary wavenumbers the motion is nonpropagating. Indeed for 
imaginary £ the stress is 90° out of phase with the particle velocity, and 
the energy flux through a plane normal to the jq-axis is zero. It is thus seen 
that for the modes with imaginary wavenumbers the associated energy 
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1 2 3 4 5 

Fig. 6.5. Group velocity for SH-modes. 

is stored in the vicinity of xi = 0. The modes with imaginary wavenumbers 
play an important function in the forced horizontally polarized shear motions 
of a layer. In general an external forcing agency will generate motion in a 
large number of modes, consisting of both propagating and nonpropagating 
modes. Only the inclusion of nonpropagating modes generally makes it 
possible to satisfy prescribed boundary conditions on planes xt = const. 
In a later chapter we shall return to forced motions of layers. 

6.5. Energy propagation velocity and group velocity 

The result that in a perfectly harmonic motion of fixed wavenumber and 
fixed frequency, energy is propagated at a velocity which can be expressed 
as a ratio of changes of frequency and wavenumber in going to a neighboring 
wave solution, is rather surprising. For the case of SH-waves in a layer the 
result was verified rather than proven in the previous section. For several 
other examples similar verifications were presented by Biot.1 

As we shall see in this section it can in fact be proven for general periodic 
wave motion that energy propagates with the velocity dco/dk. 

For a one-dimensional case the relation between dco/dk and energy 

1 M. A. Biot, The Physical Review 105 (1957) 1129. 
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transport was already discussed by Rayleigh.2 In Rayleigh's discussion it is 
supposed that in a general dynamical system a pure imaginary change in 
wavenumber is made. It is then shown that the corresponding imaginary 
change in the frequency would be replaced by a zero frequency change if 
the motion of every particle in the system were resisted by an additional 
small force proportional to its momentum. The energy flow across a plane 
in this steady state is then calculated by balancing it against the dissipative 
action of those forces throughout the region beyond that plane. 

A general proof applicable to periodic waves in rather general systems 
is due to Lighthill.3 The proof is based on an argument that utilizes real 
rather than imaginary changes in frequency and wavenumber. Here we 
present a simpler proof that is suitable for waves in a waveguide. 

A time-harmonic wave propagating in an elastic waveguide of constant 
cross-sectional area A is represented by 

Ui = fi{x29x3)g(rj)9 (6.33) 
where 

9{n) = ^ i sin (rj) or g(rj) = B2 cos (rj), (6.34a) 
and 

Y\ = kx^—ojt. (6.34b) 

For example, a symmetric mode of horizontally polarized shear waves in a 
layer is represented by 

u2 = B2 cos (qx2) cos (rj). 

In this expression, q is a constant which depends on the boundary con-
ditions and on the mode that is considered. Thus, q does not change along 
a particular branch of the frequency spectrum. Similarly, the function 
fj(*2> ^3) in. eq. (6.33) is independent of k and co along a branch of the 
corresponding frequency spectrum. 

A mechanical system can be completely specified by the Lagrangian 
density J?'. For a linearly elastic, homogeneous and isotropic body the 
Lagrangian density is 

•^("i > ut, j) = iP*t "i - [iKekkY + V&ij e y ] , 
where the summation convention must be invoked, and the components of 
the small strain tensor el7 are 

2 Lord Rayleigh, The theory of sound, Vol. I. New York, Dover Publications (1945), 
p. 475. 

3 M. J. Lighthill, Journal of the Institute of Mathematics and Applications 1 (1965) 1. 
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Possible motions of the body must obey a set of governing equations that 
can be obtained from Hamilton's principle. As noted in section 2.9, the 
usual form of the principle states that 

!JH S£dV = 0, (6.35) 
>v 

for any changes <5w£ of the function ui(x1, x2, x3, /) which vanish at t = tx 

and t = /2 , and on the boundary of the arbitrary volume of integration V. 
For a Lagrangian density which depends on u{ and uifji the equations of 
motion implied by (6.35) are 

dt XduJ j = i dxj \duitjJ 

For a time-harmonic wave of the general form (6.33), propagating in a 
waveguide with free or clamped cylindrical surfaces, Hamilton's principle 
can be used in a slightly special form to obtain an expression for the velocity 
of energy propagation. This special form states that 

SI = <5| drj] ^dx2dx3=0, (6.37) 
J 0 J A 

for all 5ut that are harmonic functions of the form (6.33), with the same 
frequency and wavenumber as the ut themselves. In eq. (6.37), A is the 
cross-sectional area. To prove (6.37), we write 

81 = P ' d i , f E ( r ^ + i ? Suu) d * 2 d * 3 . (6-38) 
Jo JAI = I \dUi j=i duitj J 

which can also be written as 

*2T I r 3 

Jo J A at \i=i oui 1 

Jo JAI=I J = I 0Xj Xou^j J 

The first of these integrals vanishes by (6.36). The second integral can be 
rewritten as 

-co dx2dx3 — ( Z —5ut)drl> 
J A Jo Of] \ »=1 OUi I 
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whereupon it is immediately seen that the inner integral vanishes because 
of the periodicity of <5wf. The third integral can be expressed in the form 

Jo JA \J=2 dXj \i=i ouifj i drj\i=iduifl I) 

The first of these vanishes in view of the conditions on the cylindrical 
surfaces of the waveguide (note that ru = — dJ?/duit;), and the second is 
zero because of the periodicity of <5wf with respect to rj. 

By a simpler argument eq. (6.37) follows from the observation that for 
a linearly elastic solid the time average over a period of the kinetic energy 
equals the time average of the strain energy, and the time average over a 
period of the Lagrangian thus vanishes. 

In the usual manner the velocity of energy transport is defined as the 
ratio of the time average of the power per cross section and the time average 
of the total energy per unit length of the waveguide 

c. - <P> 

where 

<p> 

and 

-if™. 
TJo 

</f> = - I dt\ (W+Jf)dx2dx3. 
TJo J A 

In the latter equation, °ll and Jf* are the strain energy density and the kinetic 
energy density, respectively. We can write 

<P> = - / J T a t i i d x 2 d x 3 \ = / J Ya ~ utdx2dx 

<//> = | f At \ JTdx 2 dx 3 = / f £ d^uidx2dx3 
TJo J A \J A *=1 CUi 

Thus 

JA » = I 

d<£ 
uidx1dx2t 

C e = ^ « - i 3 « , , i , ( 6 J 9 ) 

J A 1=1 OUi 
f dx2dx3 

To show that ce also equals diofdk, we consider a perturbation of the 
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displacement field in which the wavenumber and the frequency change, 

Ui + dui = f,(x2, x3)g*(k*xt — co*t), 
where 

k* = k + dk, co* = co + 5co. (6.40a, b) 

We find by employing (6.38), 

W = ^ Z — - ^ ( - ^ f ^ ) + - — « ( k * f ^ ' ) + I r— * ~ ^ 

where 

In view of (6.40a, b), this expression can be rewritten as 

*/0 J i4 t = l LOU; ^ " i , l 

dco 

dk 

+ 
♦ 2 * 

dx2dx3 ii*,(fs,)-
j = 2 CU,^- \OXj / . 

r2n f 3 3^? r2" r 3 $& 
bk\ dt]\ X —fig'dx2dx3 + 8k\ drj \ £ - f^ 'dx 2 dx 3 . 

J o JAi=ldUi JO JAi=lCUitl 

Of the three terms on the right-hand side, the first represents the changes 
resulting from changes in the function g(rj) without changes in co and k. By 
virtue of the version of Hamilton's principle for changes in u{ which main-
tain frequency and wavenumber, i.e., eq. (6.37), this integral must vanish. 
In the remaining two integrals the integrations can be changed from rj to t. 
By identifying 

dg 
u = -ii(x2,x3)a> 

dr, 
we find 

dco 

dfc 

d; X ~ M x 2 d x 3 
Jo JA i = i duiti 

\ dt\ Z — - M x 2 d x 3 
Jo J A i=l OU: 

(6.41) 

Comparison of (6.39) and (6.41) yields the desired result 

dco ce = — • 
dk 
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The treatment of energy propagation velocity as it is presented in this 
section also provides a link with the concept of group velocity as it was 
originally introduced by means of a kinematic argument. The first def-
inition and derivation of the group velocity is apparently due to Stokes, 
whose treatment was discussed by Sommerfeld.4" 

In Stokes' treatment the group velocity appears when two plane waves 
that advance in the positive x-direction, with the same amplitude, but 
slightly different wavenumber, hence slightly different frequency, are super-
posed 

u = A{sin(klx —co1t)-\-sin (k2x — co2t)} 

- / c 2 v col-co2 \ . (kl+k2 ^ co1+co2 

Introducing 

kl~kl = Ak; 
2 2 

Eq. (6.42) can be written as 

u = Csin (k0x — co0t), 

= Aoo, 

where 
C = 2A cos (Akx — Acot). 

(6.43) 

(6.44) 

It is seen that a modulation represented by C is impressed on the carrier. 
The situation is depicted in figure 6.6. 

Modulation 

-Carrier 
wave •Group—H 

Fig. 6.6. Propagation of a group. 

The introduction of the "amplitude factor" C(x, t), which is responsible 
for the modulation, suggests that the cosine in eq. (6.44) is a slowly variable 

4 A. Sommerfeld, Mechanics of defor triable bodies. New York, Academic Press, Inc. 
(1964), p. 184. 
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quantity. The modulation results in the building up of groups with am-
plitude C which move along with the group velocity cg. The succession of 
wavelets represented by sin (k0x—co0t) moves along with the phase velocity 
c0 = co0fko> which is not very different from the phase velocities of the 
component waves, c± = col/kl and c2 = &>2/&2> respectively. On the other 
hand, the velocity of propagation of the modulation, or of the group, is 
found by setting 

Akx — Acot = constant, 

which when differentiated yields 

dx _ Aco 

dt " Ak ' 

In the limit of Ak -> 0 we obtain the group velocity as 

_ dco 
C9~dk' 

which is just the same as the velocity of energy transport of a monochromatic 
wave, as discussed earlier in this section. 

Both the dynamic and the kinematic arguments take as points of departure 
supposed small changes of the wavenumber and the associated small 
changes of the frequency. In the kinematic argument one can infer that the 
rate of transfer of energy is identical with the group velocity from the fact 
that no energy can travel past the nodes which move with velocity cg. Thus, 
even in the limit as Ak approaches zero and when the wavelength of the 
modulation increases beyond bounds, the energy still propagates with 
velocity cg. This limitcase just yields the superposition of two waves of 
the same amplitude, wavenumber and frequency, i.e., a monochromatic 
wave. Thus in a monochromatic wave the energy also propagates with the 
group velocity. 

There are several ways of expressing the group velocity: 

_ dco 

or 

i d c 

c9 = c + / c — , 
dk 

or 

AdC 

c = c-A — 9 dA 
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The group velocity and the phase velocity are shown in figure 6.7 in the 
(co-k)-plane. 

J \ Slope =cg 

/ 
/ \ S l o p e = c 

Fig. 6.7. (w-k)-plane. 

Another useful relation is 

co dc 

c 2 do 

In general, dc/dk < 0 and thus cg < c. The wavelets of the carrier wave 
are then building up at the back of the group, progressing through the 
group and disappearing in the front. If dc\dk < 0 we speak of normal 
dispersion. The converse case when dc/dk > 0 and cg > c is referred to 
as anomalous dispersion. 

6.6. Love waves 

The criterion for surface waves is that the propagating disturbance decays 
exponentially with distance from the surface. In chapter 5 Rayleigh surface 
waves propagating along the free surface of a half-space were examined. 
For Rayleigh waves the material particles move in the plane of propagation. 
Thus, for propagation in the ^-direction along the surface of the half-
space x2 ^ 0, the displacement u3(xt, JC2, x) vanishes for classical Rayleigh 
waves. 

The question may now be raised whether surface waves with displacements 
perpendicular to the plane of propagation, the (jc1x2)-plane, are possible 
in a homogeneous isotropic linearly elastic half-space. We recall that SH-
waves are governed by the equation 

dx\ 

3 , d2u3 

+ dx2 

l_ 

4 
3^3 
dt2 

(6.45) 

A solution of (6.45) representing a surface wave would be of the form 

«3 = Ae-bX2 exp [»fc(x, -<*)], (6-46) 
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where the real part of b must be positive. By substituting (6.46) into (6.45) 
we find 

*-*['-(s)T 
For a free surface the boundary condition at x2 = 0 is 

SU 3 

dX-y 
= 0. 

(6.47) 

(6.48) 

The boundary condition (6.48) can, however, be satisfied only if either 
A = 0 or b = 0. Neither case represents a surface wave. 

Experimental data, particularly as gathered from seismological obser-
vations, have, however, shown that SH surface waves may occur along free 
surfaces. An analytical resolution of this question was provided by Love, 
who showed that SH-waves are possible if the half-space is covered by a 
layer of a different material, as shown in figure 6.8. 

P > 8 

♦x0 

Fig. 6.8. Layered half-space. 

The wave motion in the layer can be represented by eq. (6.11), 

u\ = \_Bl sin (^BX2) + 5 2 COS ( ^ B X 2 ) ] exp [ i f c^ — ct)]9 (6.49) 

where 

qB = k W-
2 -\i 

1 (6.50) 

The motion of the half-space is given by eq. (6.46). The condition of 
vanishing shear stress at the free surface, x2 = —H, yields 

Bt cos (qBH) + B2 sin (qBH) = 0. 

Continuity of the shear stress and the displacement at the interface x2 = 0 
is satisfied if 

M ^ B ^ I = -fib A 

B2 = A. 
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By combining these three results we find the following equation for the 
phase velocity c, 

tan m l \H) _ £ [1-(*«•)? . 0. 
/ [(c/c?)2-!]* 

(6.51) 

The left-hand side of (6.51) is positive for c = cT, while it is negative for 
c = Cj. Apparently we can thus find a real root in the interval c* < c ^ cT. 
No real root exists if cT < c\. 

Eq. (6.51) shows that Love waves are dispersive, as opposed to Rayleigh 
waves which are not dispersive. If we consider kH as the independent 
variable, we have c = cT for kH = 0. As the wavelength decreases (kH 
increases), the phase velocity decreases. The phase velocity also approaches 
cT as [(cjcj)2 — 1 ]*kH approaches n, 2n, etc. The latter limits are for the 
higher modes. For the lowest mode, c/cT is shown versus the dimensionless 
wavenumber in figure 6.9. More extensive quantitative information can be 
found in the book by Ewing et al.5 

c 

1.0 

0.9 

0.8 

0.7\-

0.6 

0.5 

^ = 1 - 8 , ^ = 0.78 

0 5 1.0 1.5 
_L_ 

2.0 2.5 
2kH 

Fig. 6.9. Phase velocity for the lowest mode of Love waves. 

6.7. Waves in plane strain in an elastic layer 

For time-harmonic wave motion in plane strain of an elastic layer the 
equation relating frequency or phase velocity to the wavenumber can also 

5 W. M. Ewing, W. S. Jardetzky and F. Press, Elastic waves in layered media. New York, 
McGraw-Hill Book Company (1957), p. 210. 
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be derived on the basis of the principle of constructive interference. This 
approach was pursued by Tolstoy and Usdin.6 

In most treatments, however, the alternative approach is followed of 
employing expressions for the field variables representing a standing wave 
in the x2-direction and a propagating wave in the ^-direction. The expres-
sions are then substituted into the boundary conditions to derive the 
frequency equation. This more straightforward approach will be followed 
here. 

It is convenient to decompose the displacement field by the use of scalar 
and vector potentials, as discussed in chapter 2. For motion in plane strain 
in the (JCJ x2)-plane, we have 

u 3 ^ 0 , - ^ - ( ) = 0. (6.52) 

dx3 

Eq. (2.87) then reduces to 

Ml = — + — , (6.53) 
cxt ox2 

U2=
dJL-d±. (6.54) 

dx2 dxt 

For simplicity of notation the subscript 3 has been omitted from ij/ in (6.53) 
and (6.54). The relevant components of the stress tensor follow from 
Hooke's law as 

id^l + dJh\ = (2 d> _ <̂ V dhjA (6 55) 
\dxl dx2) \ dx{ dx2 dx\ dx\j ' 

X ( ^ +
 dM + 2„^ = ,& +

 dM+2, & - -?£-) . 
\dx1 dx2J dx2 \5JC! dx21 \dx\ dxidx2/ 

(6.56) 

As discussed in chapter 2, the potentials cp and ij/ satisfy wave equations, 
which for plane strain are two-dimensional, 

T 2 2 = 

^ + ^ = 1 ^ (6 57) 
dx\ dx\ cl dt2 ' 

dx\ dx2
2 c\ dt1 

6 I. Tolstoy and E. Usdin, Geophysics 18 (1953) 844. 
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To investigate wave motion in the elastic layer, we consider solutions of 
(6.57) and (6.58) of the form 

q> = #(x2)exp [i{kxl—(ot)]9 (6.59) 

xjz = W(x2)exp [i(kxl-(Dt)]. (6.60) 

Substituting (6.59) and (6.60) into (6.57) and (6.58), respectively, the 
solutions of the resulting equations are obtained as 

<P(x2) = Ax sin {px2)
JrA2 cos (px2) (6.61) 

¥(x2) = BY sin (?*2) + £2 cos (#JC2), (6.62) 

wherein 

p2 = ^ 2 ^ ^ q2 = *t_kim (6.63a, b) 

In the expressions for the displacement and the stress components, which 
are obtained from (6.53)-(6.56), the term exp [i{kxl—coi)'\ appears as a 
multiplier. Since the exponential appears in all of the expressions it does not 
play a further role in the determination of the frequency equation and it is 
therefore omitted in the sequel. Thus we write 

d ^ 
Ul = ikd>+ — (6.64) 

dx2 

u2 = — -UcW (6.65) 
dx2 

t 2 1 - l , ( 2 i f c ^ * + k a y + ^ ) (6.66) 
\ dx2 dx2J 

d2<P\ fd2(P d¥\ 

Inspection of (6.64) and (6.65) shows that the displacement components 
can be written in terms of elementary functions. For the displacement in 
the ^j-direction the motion is symmetric (antisymmetric) with regard to 
x2 = 0, if ux contains cosines (sines). The displacement in the x2-direction 
is symmetric (antisymmetric) if u2 contains sines (cosines). The modes of 
wave propagation in the elastic layer may thus be split up into two systems 
of symmetric and antisymmetric modes, respectively: 
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Symmetric modes: 

<P = A2 cos (px2) 

*F = Bx sin (qx2) 

ul = ikA2 cos (px2)-\-qB{ cos (qx2) 

u2 = — pA2 sin (px2) — ikBl sin (qx2) 
T2i = fi\_ — 2ikpA2 sin (px2) + (k2-q2)Bl sin (qx2)~\ 
T22 = — A(k2 + p2)A2 cos (px2) — 2fi[p2A2 cos (px2) + ikqBl cos (qx2)~]. 

Antisymmetric modes: 

0 = Al sin (px2) 

V = B2 cos (qx2) 

ui = ikA1 sin (px2) — qB2 sin (gx2) 

i/2 = p ^ ! cos (px2) — ikB2 cos (#x2) 

T21 = ^[2^/?^! cos (px2)-\-(k
2 — q2)B2 cos (<?x2)] 

T22 = _ A(k2 + p2)Ax sin (px2)~2/x[p2v41 sin(px2) — ikqB2 sin (gx2)]. 

The frequency relation, i.e. the expression relating co to the wave number 
k is now obtained from the boundary conditions. If the boundaries are free, 
we have at x2 = ±h: 

r21 = t 2 2 = 0. 

For the symmetric modes the boundary conditions yield a system of two 
homogeneous equations for the constants A2 and Bt. Similarly, for the 
antisymmetric modes two homogeneous equations for the constants Ax and 
B2 are obtained. Since the systems are homogeneous, the determinant of 
the coefficients must vanish, which yields the frequency equation. Thus, for 
the symmetric modes we find 

(k2 — q2) sin (qh) _ 2fiikq cos (qh) 

likpsin (ph) (kk2 4- Ap2 + 2\ip2) cos (ph) 

This equation can be rewritten as 

tan (qh) _ 4k2pq 
tan (ph) (q2~k2)2 

For the antisymmetric modes the boundary conditions yield 

(k2 - q2) cos (qh) Ijiikq sin (qh) 

(6.68) 

likp cos (ph) (Xk +Ap -f 2jup ) sin (ph) 
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or 

tan (ph) 4k2pq 

Eqs. (6.68) and (6.69) are the well-known Rayleigh-Lamb frequency 
equations. These transcendental equations look deceptively simple. Although 
the frequency equations were derived at the end of the 19th century it was 
not until quite recently that the frequency spectrum was unraveled in com-
plete detail by Mindlin.7 

The frequency equations for horizontally polarized shear waves, eq. 
(6.9) and for symmetric and antisymmetric motions in plane strain, eqs. 
(6.68) and (6.69), respectively, can also be obtained as the result of a some-
what more general approach if we take as point of departure expressions 
representing propagating waves for the scalar potential q> and for all three 
components of \j/: 

cp = (A cos px2 + B sin /?x2)exp [i(kx{ —cotj] 

\j/l = (C cos qx2 +D sin qx2) exp [_i(kx{ —cotj] 

\j/2 = (E cos qx2-\-F sin qx2) exp [i(kx{ —cotj] 

\jtz = (G cos qx2 + H sin qx2) exp \_i{kxi —cor)]. 

The boundary conditions of vanishing stresses i22,x2i and T 2 3 at x2 = ±h 
yield six homogeneous equations for the eight constants. Two additional 
equations are obtained, however, by evaluating the condition V • \j/ = 0 at 
*2 — ±h. A necessary and sufficient condition that the eight equations for 
the eight constants A, B, C, D, E, F, G and H possess solutions is that the 
determinant of the coefficients be zero. It can subsequently be shown that 
the eight by eight determinant can be reduced to the product of four sub-
determinants.8 Wave motions are thus possible if for given material 
parameters the frequency co and the wave number k are related in such a 
manner that one of these four subdeterminants vanishes. The equations that 
are obtained by equating the subdeterminants individually to zero are just 
the frequency equations (6.9), (6.68) and (6.69). 

Much simpler frequency equations than the Rayleigh-Lamb equations 
are obtained if we consider (the unfortunately rather unrealistic) mixed 

7 R. D. Mindlin, "Waves and vibrations in isotropic elastic plates", in: Structural 
mechanics, ed. by J. N. Goodier and N. J. Hoflf. New York, Pergamon Press (1960). 

8 See T. R. Meeker and A. H. Meitzler, "Guided wave propagation in elongated 
cylinders and plates", in: Physical acoustics, ed. by W. P. Mason. New York, Academic 
Press (1964), p. 115. 
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boundary conditions. These are described by the following conditions at 
x2 = ±h: either u2 = 0, r2l = 0, or ux — 0, T2 2 = 0. As conceivable ap-
proximations to these conditions one may think in the first case of a thin 
layer of lubricant, and in the second case of a thin layer of felt separating 
the elastic layer from a rigid boundary. 

We have seen earlier in the discussion of the reflection of time-harmonic 
waves that the mixed boundary conditions do not couple the equivoluminal 
and dilatational waves. Thus, if the boundary conditions u2 = 0, T21 — 0 
are examined for symmetric motions, we note that both boundary conditions 
can be satisfied by either A2 = 0 and sin qh = 0, or Bl = 0 and sin/?/* = 0. 
These two cases correspond to uncoupled equivoluminal and dilatational 
modes, respectively. The condition sin qh = 0 yields the following frequency 
equation 

q = — , n = 2, 4, 6. 
2h 

By employing the definition of q, eq. (6.63b), we rewrite the frequency 
equation as 

Q2 =n2 + Z2, 

where Q and £ are the dimensionless frequency and the dimensionless wave 
number, respectively, which were earlier defined as 

_ 2hco p _ 2kh 

ncT n 

The frequency equations corresponding to the boundary conditions 
w2 = 0, T2I = 0 at x2 = ±h can be summarized as follows: 

Symmetric equivoluminal modes: 

A2 = 0 ; Q2 =n2 + Z2, n 

Antisymmetric equivoluminal modes: 

Ax = 0 ; Q2 =n2 + £2
9 n 

Symmetric dilatational modes: 

B, = 0 ; Q2 = K2(m2 + Z2), 

Antisymmetric dilatational modes: 

B2 = 0 ; Q2 =K:2(m2 + £2), 

where K = cL/cT, see eq. (4.8). 

= 0, 2, 4, 6, . . . (6.70) 

= 1 , 3 , 5 , . . . (6.71) 

m = 0, 2, 4, 6 , . . . (6.72) 

m = 1,3, 5 , . . . (6.73) 
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For real-valued wave numbers, (6.70)-(6.73) represent hyperbolas in 
the £2-£-plane, with asymptotes Q = £ and Q = K£ for (6.70), (6.71) and 
(6.72), (6.73), respectively. For imaginary wave numbers, eqs. (6.70) and 
(6.71) represent circles with radius n, and eqs. (6.72) and (6.73) represent 
ellipses with semi-axes m and Km. It is clear that the frequency spectrum is 
very similar to that of horizontally polarized shear waves. 

For completeness, we also summarize the frequency equations for the 
boundary conditions ut = 0 and T22 = 0 at x2 = ±h: 

Symmetric equivoluminal modes: 

A2 = 0 ; Q2 =n2 + £\ n 

Antisymmetric equivoluminal modes: 

Al = 0 ; Q2 =n2 + £2, n 

Symmetric dilatational modes: 

B, = 0 ; Q2 =K2(m2 + £2), 

Antisymmetric dilatational modes: 

B2 = 0 ; Q2 = K2(m2 + £2), 

6.8. The Rayleigh-Lamb frequency spectrum 

The relations between the frequencies and the wave numbers expressed by 
the Rayleigh-Lamb frequency equations yield an infinite number of branches 
for an infinite number of symmetric and antisymmetric modes. The sym-
metric modes are usually termed the longitudinal modes because the average 
displacement over the thickness is in the longitudinal direction. For the 
antisymmetric modes, the average displacement is in the transverse direction, 
and these modes are generally termed the flexural modes. 

It is again convenient to introduce the dimensionless frequency Q and the 
dimensionless wave number £ by 

_ 2hco _ 2kh 

ncT n 

The frequency equation for the longitudinal modes may then be rewritten as 

t a n | > ( f l 2 - a * ] = _ 4£2(flV-c2)*(fl2-a* (6 n ) 

t a n [ i n ( a V - 5 2 ) * ] (<22-2£2)2 

1, 3, 5, . . . (6.74) 

0, 2, 4, 6,. . . (6.75) 

m = 1,3,5,... (6.76) 

m =0,2,4,6,.. . (6.77) 
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while for the flexural modes we have 

tan[ f r ( f l 2 -g 2 )*] _ (Q1-l?)1
 (619) 

tan Hn(Q2lK2 - £2)*] 4£2(G2//c2 - £2)*(G2 - ?f ' 

If the frequency equations are written in this form it is apparent that only 
one material parameter represented by K needs to be specified to compute 
a system of curves showing Q as functions of £. The material constant 
K — CLICT

 m a v be expressed in terms of Poisson's ratio v by 

r2(i-v)"i* 
K = . — . 

L l - 2 v J 

A frequency spectrum for in-plane motions of a layer thus displays the 
branches of the longitudinal and flexural modes for a specific value of 
Poisson's ratio. 

Although the Rayleigh-Lamb equations look rather simple, it is not 
possible to write analytical expressions for the branches. To obtain detailed 
and precise numerical information, the roots of eqs. (6.78) and (6.79) must 
be computed on a digital computer. In rough outline the most commonly 
used numerical technique is to choose a value of the frequency Q, and then 
scan in the domain of wave numbers for values of £ at which the expressions 
(6.78) and (6.79) change signs. For real-valued £, this is quite straight-
forward and extensive numerical results are available. The wave number £ 
may, however, also be imaginary or complex, and for these cases numerical 
information is less readily available. Without actual numerical computation 
of the roots it is, however, quite possible to examine the frequency spectrum 
and to discuss its most important features. 

In analyzing the Rayleigh-Lamb frequency equations the dimensionless 
frequency Q is taken as real and positive. The dimensionless wave number 
£ may be real, but analogously to the frequency spectrum of SH-waves in a 
layer, imaginary wave numbers should also be expected. It will become 
evident later in this section that for motion in plane strain we should also 
expect complex wave numbers. Real-valued wave numbers correspond to 
time-harmonic waves that are not attenuated while propagating in the 
.*!-direction. Imaginary values of £, give displacements in the form of sums 
of exponentials. Complex wave numbers result in products of exponentials 
and trigonometric functions. In physical terms, imaginary and complex 
wave numbers correspond to standing waves with decaying amplitudes as 
xx increases. 
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It is informative to investigate the limiting values of Q for very small 
and very large values of £. In particular, an examination of £ <C 1, i.e., 
kh<^\n is of interest. Since k = 2n/A, the condition £ <C 1 corresponds to 
the, for practical applications, most common case of a layer thickness 2h 
which is much smaller than half the wavelength. 

For real-valued £, there are three ranges in the D-^-plane in which the 
radicals in eqs. (6.78) and (6.79) are of different character: £ > Q, 
Q > £ > Q/K, and Q/K > £ > 0. We first consider the range £ > Q, 
where the two radicals in (6.78) and (6.79) are both purely imaginary and 
the trigonometric functions become hyperbolic tangents. For small values 
of £, we now assume the following expansion for Q: 

Q = QlZ + ±Q2£
2 + . . . . (6.80) 

The expansion does not include a constant term because the expansion is 
within the region £ > Q. Upon substituting (6.80) into the frequency equa-
tion for flexural waves, eq. (6.79), we find, after expanding the hyperbolic 
tangents as well as the radicals, whereby a sufficient number of terms must 
be retained, 

Q, =0, Q2 = 2n [ H i - 1 ) 1 . 
L3 \ K2'J 

Thus, for £ <C 1 we may write 

a - •"* 

It will be shown in a later section that (6.81) is the frequency found from 
the Lagrange-Germain plate theory for flexural motions, which indicates 
that the classical plate theory can be used to describe wave motions provided 
that the wavelength is much larger than the thickness of the plate. If the 
expansion (6.80) is substituted into the frequency equation for longitudinal 
motions, eq. (6.78), no solutions can be obtained in the range t, > Q. 

In the region f > Q, the left-hand sides of both (6.78) and (6.79) approach 
unity as ^ increases beyond bounds. For very large values of £, these equa-
tions then reduce to 

(Q2-2Z2)2-4Z2(Z2-Q2lK2)\?;2-Q2)t = 0. 

This equation is recognized as the frequency equation for Rayleigh surface 
waves, which was derived earlier in the previous chapter. The asymptotic 
behavior of the frequency as the wave number increases is intuitively very 
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acceptable because for very short waves the frequency spectrum of the elastic 
layer should include the frequency of surface motions in a half-space. 

We next consider the range Q > £ > Q/K, where one of the radicals is 
imaginary and the other one is real. It can be checked that for large values 
of £ the solutions of the two frequency equations asymptotically approach 
the line Q = f. 

For <̂  < 1, we obtain from (6.78), by a limiting process, 

Q = 2 ( ^ ) V (6-82) 

The frequency equation (6.79) does not yield a solution near <£ = 0 in the 
range Q/K < £ < Q. It will be shown in the sequel that (6.82) is also the 
frequency according to the elementary Poisson theory for extensional 
motions of a plate. The exact curve relating the frequency and the wave 
number for this lowest longitudinal mode later crosses the line Q = £ and 
asymptotically approaches Q = (cR/cT)^ as £ increases, where cR is the 
velocity of Rayleigh surface waves. 

In the region 0 < ^ < Q/K, there are no asymptotic limits for large <!;. 
For small values of £, we find that the frequency equation is satisfied for 
symmetric motions if 

sin (\nQ) = 0 or cos (inO/ic) = 0, (6.83a, b) 

and for antisymmetric motions if 

sin (inQlK) = 0 or cos (inQ) = 0. (6.84a, b) 

These equations yield the frequencies for waves of infinitely long wave-
lengths, i.e., for motions that are independent of the ^-coordinate. We 
can, of course, study these motions directly by writing out the expressions 
for the displacements and the stresses. It is then found that the displacements 
in the xr and x2-directions are not coupled. We have either dilatational 
motions (wt = 0, u2 ¥= 0), or equivoluminal motions (ut # 0, u2 = 0). 
The frequency equations (6.83a, b) and (6.84a, b) then immediately follow 
from the expressions for the stresses and the conditions that the boundaries 
are free of tractions. In the limit of vanishing £, the dimensionless frequencies 
Q may thus be written as follows: 

Symmetric dilatational modes: 

Q = Km, m = 1, 3, 5 , . . . (6.83) 
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Antisymmetric dilatational modes: 

Q =Km, m = 0, 2, 4, 6, . . . (6.84) 

Symmetric equivoluminal modes: 

Q = n, n = 0, 2, 4, 6,. . . (6.85) 

Antisymmetric equivoluminal modes: 

Q =n, « = 1,3, 5 , . . . . (6.86) 

The dilatational motions for m ^ 0 and the equivoluminal motions for 
n # 0 are also termed thickness stretch and thickness shear motions, 
respectively. It is noted that the limiting frequencies coincide with the cor-
responding limiting frequencies for the layer with mixed boundary conditions, 
as obtained from (6.76), (6.77), (6.70) and (6.71), respectively. 

Much more can be said about the frequencies for real and imaginary 
values of the wave numbers. We shall just summarize some of the salient 
results, which are due mostly to Mindlin.9 It is of interest that it can be 
shown that the branches for the layer with mixed boundary conditions, as 
defined by eqs. (6.76), (6.77), (6.70) and (6.71), form bounds for the curves 
of the layer with free boundaries, for real as well as for imaginary wave 
numbers. Over a finite interval a curve of the Rayleigh-Lamb frequency 
spectrum is confined between two of these bounds, but then it must cross one 
of them. The crossings take place at successive intersections of bounds 
m even with n even, and m odd with n odd. At these intersections the cor-
responding modes satisfy both mixed and traction-free boundary con-
ditions. Furthermore, the frequencies at £ = 0 are known, and informa-
tion on the slopes and the curvatures at <J = 0 can easily be obtained. 
It is also known that the two lowest modes, whose behavior for ^ <^l 
is given by (6.81) and (6.82), approach Q = (cR/cT)^ as £ is real and in-
creases. All the other modes approach Q = £ as £ is real and increasing. 
In addition, the slopes and the curvatures at the points where the bounds are 
crossed can be computed. Altogether, the foregoing information is sufficient 
to sketch the branches for real and imaginary values of £ on the gridwork 
of bounds. 

For real-valued wavenumbers the branches for the four lowest longitudinal 
modes governed by eq. (6.78) have been plotted in figure 6.10. Analogous 
branches computed for the flexural modes from eq. (6.79) have been plotted 

9 R. D. Mindlin, see fn. 7, p. 224. 
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Fig. 6.10. Branches for the four lowest longitudinal modes; v = 0.25. 

in figure 6.11. The curves were taken from a report by Potter and Leed-
ham. * ° An observation which would be particularly obvious if a large number 
of branches were shown is that a line Q = const intersects only a finite 
number of curves for real and imaginary £. Since we would expect an in-
finite number of wavenumbers for any value of the frequency, it is to be 
expected that there is an infinite number of branches with complex wave-
numbers. The existence of these branches can easily be checked for very 
small values of Q. Let us consider longitudinal modes and rewrite eq. 
(6.78) as 

F(Q, £) = 0, (6.87) 

where 

f ( n n - tan[fr(Q*-£2)*] ^ ( O V - a ^ - ^ , 6 8 f n 

' t a n f X f l V - a * ] (Q2-2£2)2 ' ^ ' ' 
10 D. S. Potter and C. D. Leedham, Normalized numerical solutions for Rayleigh 

frequency equation. Santa Barbara, Calif., GM Defense Research Laboratories, TR 66-57. 
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Fig. 6.11. Branches for the four lowest flexural modes; v = 0.25. 

For small values of Q we write 

F(Q, 0 = F^) + F^)Q + F2^)Q2+ . (6.89) 

In view of (6.87), we have F0(£) = 0. Also, since F(Q, £) is a function of 
G2, a solution of (6.87) intersects the plane Q = 0 at a right angle, which 
implies F^) = 0. For very small values of Q the first term of the expansion 
(6.89) is thus quadratic. The points at which a curve satisfying eq. (6.87) 
intersects the plane Q = 0 then follows from the equation 

F2(t) = 0. 

According to eq. (6.89), the function F2(£) can be computed as 

F(a, 0 

(6.90) 

F2(0 = lim 
fl-0 Q2 
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where F(Q9 £) is defined by eq. (6.88). By applying FHdpital's rule we can 
obtain F2{£>), whereupon (6.90) yields 

sinh(7r£) + 7i£ = 0. 

The solutions of this equation are the intersections of the curves defined by 
(6.87) with the plane Q = 0. In a completely analogous manner we find for 
the flexural modes 

sinh (n^ — nc, = 0. 

If we write £ = Ci + /£2, w e obtain the following system of simultaneous 
equations for ^ and £2

 : 

cos (7rc2) = T ^ / s i n ( 7 ^ ) . 
cosh ( 7 ^ ) = +7rc;2/sinh (7rc2), 

where the minus and the plus signs apply to longitudinal and flexural 
modes, respectively. Since this set of equations possesses an infinite number 
of solutions, it is now clear that the frequency spectrum will contain an 
infinite number of modes with complex wave numbers. 

It is evident that detailed information on the behavior of the curves for 
complex £ and Q > 0 can be gathered only by actual numerical computa-
tions. Analytically it is also possible, however, to determine the intersection 
points with the planes £t = 0 and £2 = 0. This can be done on the basis 
of the observation that £ occurs in the frequency equation in £ to the 
second power. The negative of a solution for c, as well as its complex 
conjugate, thus also satisfies the frequency equation, which implies that at 
the points of intersections the curves must be normal to the planes ^ = 0 
and £2 — 0> respectively. As a consequence, the derivative of F(Q, £) with 
respect to £ must vanish, i.e., dF/d£2 = 0 and dF/d^ = 0 at £t = 0 and 
£2 = 0, respectively. We have also 

dF 3Q dF „ 

and thus in both cases the intersection points are located at points where 
dQ/d£ = 0. Since the additional condition is still F(Q, £) = 0, the inter-
section points of the curves for complex values of £ with the planes £x = 0 
and £2 = 0 are defined by 

F(Q, 0 = 0, - = 0. (6.91) 
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Eqs. (6.91) define the extreme values of the frequency curves. For real-
valued wave numbers the minimums defined by eq. (6.91) were earlier termed 
the cut-off frequencies. For symmetric motions a few curves, including one 
with complex wave numbers, have been sketched in figure 6.12. Numerical 
information on the frequencies for imaginary and complex-valued wave-
numbers can be found in the previously cited report by Potter and Leedham. 

•>2 

Fig. 6.12. Symmetric modes with complex wavenumbers. 

To trace a particular branch we start at the point where the frequency Q 
is zero. Except for the two lowest modes, whose behavior at small values of 
Q is given by eqs. (6.81) and (6.82), respectively, this means that we start 
with a complex wave number. We choose ^ > 0 and £2 > 0, so that the 
amplitude decays as xx increases. For the branch shown in figure 6.12, the 
mode is nonpropagating at small frequencies and decays more slowly as 
Q increases. At the point defined by the cut-off frequency, where the wave 
number becomes real-valued, the mode is converted into a propagating 
mode as we proceed along the curve for which real £ increases as Q increases. 
The group velocity vanishes for complex wave numbers and, in choosing 
the branch as described above, the group velocity is always positive for the 
part of the branch with real wave numbers. In figure 6.12, the branch is 
shown by a heavy line and indicated by LD(1). The terminology LD(1) 
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indicates that we consider a symmetric mode which, for real-valued wave 
numbers larger than the wave number corresponding to the cut-off frequency, 
follows the curve which intersects <J = 0 at the frequency of the first dilata-
tional mode as given by eq. (6.83). It should be emphasized that a solution 
curve in the plane of Q and real £ is thus not necessarily part of a single 
branch. For example, for real £, the dashed part in figure 6.12 does not 
belong to the LD(1) branch. In general, the LD(r) branch is the branch 
which in the plane of real wave numbers runs completely or in part along 
the curve that intersects £ = 0 at the frequency of the rth purely dilata-
tional mode. In a completely analogous manner the mode defined by 
LE(r) is associated with the rth purely equivoluminal mode. The anti-
symmetric or flexural modes are labeled FD(r) and FE(r), and they are 
defined in a completely equivalent manner as the LD(r) and LE(r) modes. 
This labeling system does not hold for the two lowest modes whose branches 
come out of the origin of the £2-£-plane, and which are completely defined 
by real-valued wave numbers. For small values of f and Q the branches of 
these modes are represented by (6.82) and (6.81) for the longitudinal and 
the flexural modes, respectively. Although some authors call these modes the 
first longitudinal and flexural modes, we will denote them by the more 
consistent terminology of zeroth modes, L(0) and F(0). Often these two 
modes are referred to as the flexural and the longitudinal mode. 

Consistent with the scheme of selecting the branches such that the group 
velocity does not change sign along a branch, the dashed part which would 
appear to be the lower end of the LD(1) branch (see figure 6.12) is to be 
considered part of the branch which emanates from the point £2=0 , 
£i > 0, but £2 < 0. This branch decays toward decreasing xl9 and fol-
lowing the dashed line, via a brief detour (not shown) in the plane of purely 
imaginary (negative) <!;, it becomes a mode propagating in the negative in-
direction. Over a short range of frequencies in between the cut-off frequency 
and the frequency of the first purely dilatational mode, the energy propagates 
in the negative xx-direction but the phase velocity is positive. A similar 
situation develops when we start at Q = 0, ^ < 0 and £2 > 0. In con-
sistently following a curve such that the group velocity is either zero or 
positive, we define the branch LE(1), which is indicated by a solid line in 
figure 6.12. For real-valued but negative wave numbers this branch includes 
a range of frequencies where the group velocity is positive but the phase 
velocity is negative. Such wave motions carry energy in one direction but 
appear to propagate in the other direction. The wave troughs and crests 
appear to move against the energy flux. This "backward-wave" transmission 
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was investigated experimentally and theoretically by Meitzler.11 

We will return to the Rayleigh-Lamb frequency spectrum in our discus-
sion of the forced motions of an elastic layer. 

6.9. Waves in a rod of circular cross section 

In cylindrical coordinates the equations governing the motions of a homo-
geneous, isotropic, linearly elastic medium are given in section 2.13. To these 
equations we now seek solutions which represent time-harmonic wave 
motions propagating in the axial direction along a circular cylindrical rod. 

The displacement equations of motion may be written as 

r2 dO ' l - 2 v dr c\ dt1 V*tt-4-±^+ - 1 - ^ = 4 ^ (6.92) 

v 2 du 1 1 dA 1 d2v 
— + - - — + = -r —■ 
r2 r2 dO l - 2 v r dO cl dt2 

V 2 „ - JL + ^ ^ + _ i _ i ^ = JL ^ (6.93) 

T-,I I dA I d2w ,, n.s 

V2w+ = (6.94) 
l - 2 v 3z c\ dt2 

where V2 is the Laplacian 

y.il + l £ + 44 + i l , (6.95) 
5r2 r dr r2 d02 3z2 

and the dilatation A is defined as 

du 1 /dt; \ dw ,, _., 4 = r + ~^+u + r - (6-96) 
dr r \d0 / dz 

The pertinent stress-strain relations are 
rr = /lJ+2/z— (6.97) 

dr 

11 A. H. Meitzler, "Backward-wave transmission of stress pulses in elastic cylinders 
and plates", / . Acoust. Soc. Am. 38 (1965) 835. 



Ch. 6, §6 .9 . ] WAVES IN A ROD OF CIRCULAR CROSS SECTION 237 

As discussed in chapter 2, the displacements w, v and w may be expressed 
in terms of potentials <p and ij/. In cylindrical coordinates the expressions 
are stated by eqs. (2.132)-(2.134). The scalar potential cp and the component 
\j/z of the vector potential satisfy the following uncoupled wave equations 

(6.100) 

(6.101) 

(6.102) 

(6.103) 

In addition, the components of the vector potential must satisfy a con-
straint condition, for example V • \j/ = 0 . 

We consider an infinitely long cylinder with a solid circular cross section 
of radius a. If the cylindrical surface is free of tractions the conditions at 
r = a are 

Tr = o, rre = 0, rrz = 0. (6.104a, b, c) 

Let us first consider the scalar potential cp(r, 6, z, t). A wave propagating 
in the positive z-direction is of the form 

cp = <Z>(r)<9(#) exp [i(kz-(ot)]9 

where, in view of the finite cross-sectional dimensions of the rod, we have 
assumed a separation-of-variables type of solution in r and 6. Eq. (6.100) 
yields the following two equations for $(r) and 0(9): 

equations for \j/r and \//9 

vyr-

vV*-

vV 

vVz 

1 d2q> 

~ cl 8t2 

- L8^ 
c\ dt2 

are coupled 

r2 

r 

1_ dij/g _ 

r2 36 

2 # r _ 

r2 Hd ~ 

1 

4 
1 

4 

dt2 

dt2 

d 2 ^ 1 d ^ /co2
 f 9 \ , n2 

dr2 r dr 

d20 

d0 

fe-lA 4 - ^ 4 = 0 (6.105) 

+ n 2 0 = O. (6.106) 

The solutions of the equation for 0(6) are sines and cosines of argument 
nQ. Since the solutions should be continuous functions of 6, with continuous 
derivatives, n can only be zero or an integer. The equation for $(r) yields 
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ordinary Bessel functions as solutions. For a solid cylinder the field quan-
tities should be finite at the center of the cylinder, and only Bessel functions 
of the first kind thus should be retained. The expression for the scalar 
potential then emerges as 

(p = [Al cos (n9) + A2 sin (nO)]J„(pr) exp [i(kz — (ot)]9 (6.107) 

where /„ ( ) is the Bessel function of the first kind of order n, and where 
p was defined in eq. (6.63a) as 

The wave equation governing \j/z can be treated in the same manner. The 
solution can be written as 

\j/z = [Bi cos (n9) + B2 sin (n9)]Jn(qr) exp [i(lcz - cot)], (6.108) 

where q is defined as 

cT 

We now turn to the equations governing \j/r and i//0. These equations are 
somewhat more difficult to deal with because they are coupled. It is, however, 
evident that i//r and i//e also contain trigonometric functions of 9. Moreover, 
the form of the coupling in eqs. (6.102) and (6.103) indicates that a sine-
dependence on 9 in \j/r is consistent with a cosine-dependence on 9 in \j/09 

and vice-versa. Thus we can consider the pair 

xlfr = wr(r) sin (n0) exp [i(fcz-arf)] (6.109) 

xl/9 = ye(f) cos (n&) exp [i(/cz-co*)]. (6.110) 

The equations for w
r(r) and w

e{r) are then obtained from (6.102) and 
(6.103) as 

Al-Uf 1 AW 1 m 2 

dr r dr r c T 

TIT + - ^ + ^ ( - n 2 n + 2 n f r - < P e ) - f c 2 n + ^ * . = 0. 
dr r dr r cj. 

In a convenient manner these two equations can be solved simultaneously. 
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First we subtract to obtain an equation for *Fr—Wd, which can easily be 
solved as 

Tr->Pe = 2C2Jn+l(qr). (6.111) 

Upon adding the two equations, we can solve for x¥r + Ye as 

^ r + n = 2C1Jn_1(<?r). (6.112) 

The corresponding expressions for xFr and *Fe are 

V, = C.J^M^ + CzJ^Mr) (6.H3) 

n = Q JH-i(qr)-C2Jn + l(qr). (6.114) 

The scalar potential and the three components of the vector potential 
have now been determined in terms of four arbitrary constants. 

The displacement vector is, however, specified in terms of three constants 
and there are, moreover, only three boundary conditions to provide us with 
three homogeneous equations. The required additional condition is provided 
by the condition V • \j/ = 0. The latter condition is, however, somewhat 
arbitrary, and since it yields an awkward equation it is often replaced by the 
simpler condition12, 

Vr= - n , (6.H5) 

which implies Cx = 0. 
On the basis of the foregoing discussion we may then consider the fol-

lowing set of potentials 

cp = AxJn(pr)co^ (nO)exp [i(kz — a>t)] (6.116) 

<Az = BxJn(qr) sin (nO) exp [i(kz-cot)] (6.117) 

^r = C2/w + i(?r)sin(/!0)exp [i(kz-(ot)] (6.118) 

^e = -~C2J„+i(qr) cos (n9) exp [i(kz-cot)]. (6.119) 

These expressions can be employed to compute the stresses in terms of the 
potentials. The boundary conditions (6.104a, b, c) then yield three homo-
geneous equations for the three constants AX,B± and C2. The requirement 
that the determinant of the coefficients vanishes provides us with the fre-
quency equation which relates co, n and k. The frequency equation is stated 
in the article by Meeker and Meitzler.13 

12 T. R. Meeker and A. H. Meitzler, see fn. 8, p. 224. 
13 See fn. 12 above. 
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As an alternative to eqs. (6.116)—(6.119) the following analogous set 
of potentials may be considered 

<P = A2^n(Pr) sin (n9) exp [i(kz-cot)] (6.120) 

\\tz = B2Jn(qr) cos (n6) exp [i(kz-a)t)] (6.121) 

\j/r = CJn + l(qr) cos (w0) exp [i(kz-cot)] (6.122) 

(A0 = -CJn+1(qr) sin (n0) exp [/(fcz-cwf)]- (6.123) 

The analysis of wave motion in a hollow circular cylindrical rod can be 
carried out in a completely analogous manner. In the solutions of the Bessel 
equations we must now retain the Bessel functions of the second kind. Thus 
instead of (6.116) we have 

cp = [A1Jn(pr) + A2Yn(pr)] cos (n6) exp [i(kz-cot)]. 

The expressions for \j/z, \j/r and \j/e are modified in an analogous manner. The 
corresponding expressions for the stresses are now in terms of six arbitrary 
constants. If the stresses vanish at the inner as well as the outer radius of 
the rod, the boundary conditions yield six homogeneous equations for the 
six constants. The requirement that the determinant of the coefficients must 
vanish yields the frequency equation. For details of the analysis and for 
numerical information we refer to the work of Armenakas et al.14 

6.10. The frequency spectrum of the circular rod of solid cross section 

A reasonably complete examination of the transcendental equation relating 
the frequency co, the axial wavenumber k and the circumferential order 
number n requires a rather extensive effort of numerical computation. For 
every choice of the integer n and the real-valued wavenumber k an infinite 
number of roots of the frequency equation can be found, which represent 
the frequencies of an infinite number of modes of wave propagation in the 
rod. Moreover, for a complete investigation of the frequency spectrum it is 
necessary to consider imaginary and complex-valued wavenumbers as well. 

Some insight in the structure of the frequency spectrum can be gained 
by examining the motions in the limit of vanishing wavenumber. The wave-
number becomes smaller as the wavelength increases and the limit k -+ 0 
thus corresponds to infinite wavelength, i.e., to motions which are indepen-

14 A. E. Armenakas, D. C. Gazis and G. Herrmann, Free vibrations of circular cylin-
drical shells. New York, Pergamon Press (1969). 
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dent of the axial coordinate z. Inspection of (6.92)-(6.99) reveals that for 
motions that are independent of z the displacements u(r, 9, t) and v(r, 0, t) 
remain coupled. The axial displacement w(r, 9, t) uncouples, however, from 
the other displacement components. For infinite wavelength we thus have 
uncoupled motions in plane strain and axial shear. If the motions are not 
only independent of z but also independent of #, the displacements w(r, t) 
and v(r, t) become uncoupled, to describe radial dilatational and circum-
ferential shear motions, respectively. The results for vanishing wavenumber 
can be extended to small values of &, as shown by Achenbach and Fang.15 

By means of an asymptotic analysis these authors determined higher-order 
derivatives dcojdk at k = 0 for all branches in the real co-/:-plane. 

Motions which are independent of 9, but do depend on z may be separated 
in torsional motions involving v(r, z, t) only, and longitudinal motions 
involving w(r, z, t) and w(r, z, t). For motions which depend on both z 
and 9 we will examine in some detail the case n = 1 which corresponds 
to flexural waves. 

6.10.1. Torsional waves 

Torsional waves involve a circumferential displacement only which is in-
dependent of 9. The governing equation follows from (6.93) as 

d2v 1 dv v d2v 1 d2v ,. 4^A. 
+ + = (6.124) 

dr2 r dr r2 dz2 c\ dt2 

The displacement may be written as 
v(r, z,t) = - B2Jl(qr)exp [i(kz - cot)']. (6.125) 

From the three boundary conditions (6.104a, b, c) only the condition 
rr0 at r = a is nontrivial. This condition yields the frequency equation in 
the form 

(qa)J0(qa)^2Jl(qa) = 0. (6.126) 

Eq. (6.126) is a transcendental equation whose roots have been tabulated.16 

The first three roots are ^ a = 5.136, q2a = 8.417 and q3a = 11.62. It is 

15 J. D. Achenbach and S. J. Fang, Journal of the Acoustical Society of America 47 
(1970) 1282. 

16 Cf. Handbook of mathematical functions, ed. by M. Abramowitz and I. A. Stegun. 
Washington, National Bureau of Standards (1964), table 9.7, p. 414. 
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noted that q = 0 is also a solution of the frequency equation. By taking 
the limit q -» 0 of eq. (6.125) we find 

v = iB2rexp [i(kz-cot)]. (6.127) 

This displacement represents the well-known lowest torsional mode. In 
the lowest mode the displacement is proportional to the radius, and the 
motion is thus a rotation of each cross-section of the cylinder as a whole 
about its center. 

Since q = 0 implies that the phase velocity equals cT, the lowest torsional 
mode is not dispersive. The higher torsional modes are dispersive with 
frequencies which follow from the definition of q as 

(°f)2 = (qna)2 + (ka)\ (6.128) 

where qna are the solutions of (6.126). It is noted that given a real-valued 
frequency the wavenumber may be real-valued or imaginary. Just as for 
the case of SH-waves in a layer, the branches are hyperboles for real-valued 
k and circles for imaginary values of the wavenumbers. 

As pointed out by, among others, Redwood17, the lowest torsional mode 
can be used in delay lines when undistorted pulse propagation is required. 
This mode requires a special sort of excitation, with the amplitude of the 
displacement proportional to the radius, but such an excitation is practicable. 
Even if the excitation takes some other form, the additional modes will be 
evanescent if the frequency and the radius are adjusted so that the waveguide 
is operating below the cut-off frequency of the second mode. 

6.10.2. Longitudinal waves 

Longitudinal waves are axially symmetric waves characterized by the 
presence of displacement components in the radial and axial directions. The 
governing equations follow from eqs. (6.92)-(6.94). It is, however, con-
venient to employ the displacement potentials, which follow from (6.116) 
and (6.119) as 

(p = AJ0(pr)exp [i(kz — cot)] 

i//0 = CJx(qr)exp [i(kz — cot)]. 

The corresponding radial and axial displacements are obtained from 
(2.132) and (2.134) as 

17 M. Redwood, Mechanical waveguides. New York, Pergamon Press (1960), p. 148. 
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u = {-pAJl(pr)-ikCJl(qr)}exp[i(kz-a>t)'] (6.129) 

w = {ikA J0(pr) + qCJ0(qr)} exp [i(kz - cot)]. (6.130) 

At the cylindrical surface (r = a) the stresses must be zero. Substituting 
eqs. (6.129) and (6.130) into Tr, and setting the resulting expression equal 
to zero at r = a, we find 

-i(q2-k2)Jo(pa)+ P-JM 
a 

A + 
ik 

-ikqj0(qa)+ — J\{qa) 
a 

C = 0. 

A second equation comes from the condition that xrz vanishes at r = a, 

[-likpJ\(pa)]A-(q2-k2)J\{qa)C = 0. 

The requirement that the determinant of the coefficients must vanish yields 
the frequency equation as 

2 i ( « 2 + k 2 Vi(pf lViM-(« 2 -k 2 )V 0 (pf l )J i fef l ) 

-Ak2pqJl{pa)J0{qa) = 0, (6.131) 

which is known as the Pochhammer frequency equation. 
Eq. (6.131) appears to relate five quantities oo (or c), k, a, cL and cT. Just 

Fig. 6.13. Dimensionless frequencies for longitudinal modes; v = 0.30. 
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Fig. 6.14. Dimensionless phase velocity for longitudinal modes; v = 0.29. 

as in the case of the Rayleigh-Lamb frequency equation for the layer, a 
choice of appropriate dimensionless quantities reduces the number, however, 
to three. The three variables in dimensionless form are Poisson's ratio v 
(or the constant K), the dimensionless frequency a>facT (or the dimensionless 
phase velocity c/cT) and the dimensionless wavenumber ka. A rather 
detailed discussion of the frequency spectrum of longitudinal modes, in-
cluding real, imaginary and complex branches was given by Onoe et al.18 

For real-valued wavenumbers numerical results for the frequency 
spectrum are included in the work of Armenakas et al.19 

18 M. Onoe, H. D. McNiven and R. D. Mindlin, Journal of Applied Mechanics 
28 (1962) 729. 

19 A. E. Armenakas, D. C. Gazis and G. Herrmann, see fn. 14, p. 240. 
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Some numerical values for real-valued wavenumbers are displayed in 
figures 6.13-6.15. For Poisson's ratio v = 0.31, the dimensionless frequencies 
are shown in figure 6.13, after the results of Armenakas et al. For v = 0.29 
(steel), figure 6.14 shows the dimensionless phase velocity. The numerical 
data plotted in figure 6.14 are after a paper by Davies.20 Davies also pre-
sented curves showing the variation of the group velocity with frequency, 
and these curves are reproduced in figure 6.15. 

The lowest longitudinal mode is the most important mode from the 
practical point of view. At very small and very large values of ka the fre-
quencies or the phase velocities can be computed by taking appropriate 
expansions of the Bessel functions in eq. (6.131) in the same manner as was 
discussed in section 6.8 for the layer. For small values of ka (ka < 1) we 
find 

coa = co^k^ + co^ka)3+ 0[(kafl (6.132) 
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Fig. 6.15. Dimensionless group velocity for longitudinal modes; v = 0.29. 

20 R. M. Davies, Philosophical Transactions of the Royal Society A240 (1948) 375. 
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where 

, - j O V . 
In these expressions E is Young's modulus. The expression for the phase 
velocity corresponding to eq. (6.132) is 

c = ^ )* [ l - i v 2 ( f c f l )
2 ] + 0[(fcfl)*]. (6.135) 

In the limit as (fctf) -► 0 the phase velocity thus becomes equal to (E/p)*, 
which is called the bar velocity and which is the value found from the 
simplest theory of rods. 

As (ka) -* oo the phase velocity approaches from below the velocity 
of Rayleigh waves. At some intermediate wavenumber the phase velocity 
has a minimum value slightly less than cR. As can be seen from figure 
6.15, the group velocity of the lowest mode shows a pronounced minimum 
for an intermediate value of ka. 

6.10.3. Flexural waves 

It remains to examine wave motions that do depend on the circumferential 
angle 0 through the trigonometric functions shown in eqs. (6.116)—(6.123). 
Of the circumferential modes the family defined by n = 1 is the most im-
portant. Let us thus examine potentials of the form 

cp = AJ^pr) cos (6) exp [i(kz — a>t)] 

\j/z = BJx(qr) sin (0) exp [i(kz — cot)] 

\j/r = CJ2{qr) sin (6) exp [i(kz — a>t)] 

\J/Q = —CJ2(qr) cos (6) exp [i(kz — cot)]. 

By the use of (2.132)—(2.134) the displacements are obtained as 

u = U(r) cos (0) exp [i(kz-cot)] (6.136) 

v = V{r) sin (6) exp [i{kz-cot)\ (6.137) 

w = W{r) cos (9) exp [i(kz-<Dt)]9 (6.138) 
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where 

U(r) = A^Jl{pr) + -J1(qr)+ikCJ2(qr) 
or r 

V{r) = - - J ^ + ikCJ^qr)-!!?- Jt(qr) 
r or 

W(r) = ikAJ.ipr)- C-^\.rJ2(qr)-]- -J2(qr). 
r or r 

To illustrate the motions represented by "these displacement distributions 
we choose the (^z)-plane (the vertical plane) as the plane from which 9 is 
measured, as shown in figure 6.16. The (xz)-plane is termed the horizontal 
plane. It now follows from (6.137) that for points in the vertical plane the 

^x 

Fig. 6.16. Cross section of rod. 

displacement component v vanishes, so that these points remain in the 
vertical plane. In the horizontal plane (9 = ±n/2) the displacement 
components u and w vanish. Points in the horizontal plane thus perform 
purely vertical oscillations, since in the (*z)-plane v points in the >>-direction. 
These observations suggest the terminology flexural waves for the motions 
defined by eqs. (6.136)—(6.138). Indeed, it can further be checked that w 
is odd in y, and the displacement component in the ^-direction is even in y. 
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To determine the frequency equation the displacement (6.136)—(6.138) 
must be substituted into the expressions for the stresses, and rr, rrz and xrQ 

must subsequently be set equal to zero at r = a. This leads to a system of 
three homogeneous equations for A, B and C. The requirement that the 
determinant of the coefficients must vanish yields the frequency equation. 
This frequency equation was examined in considerable detail by Pao and 
Mindlin.21 Numerical computations on the frequency spectrum were car-
ried out by Armenakas et al.22 Some typical curves showing the dimensionless 
frequency versus the dimensionless wavenumber are shown in figure 6.17. 
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Fig. 6.17. Dimensionless frequencies for flexural modes; v = 0.30. 

Of particular interest is the lowest flexural mode. Either by employing 
expansions of the Bessel functions in the frequency equation, or more 
efficiently by the asymptotic method of the previously cited paper by 
Achenbach and Fang, it can be shown that for small values of ka(ka <C 1) 
we may write 

coa = 1 (lA±l»\\kay + 0[(kan (6.139) 
cT 2 \ A + fj, i 

As ka increases the phase velocity of the lowest mode approaches the 
velocity of Rayleigh waves. For the lowest flexural mode the phase velocity, 

2 1 Y. H. Pao and R. D. Mindlin, Journal of Applied Mechanics 27 (1960) 513. 
22 A. E. Armenakas, D. C. Gazis and G. Herrmann, see fn. 14, p. 240. 
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as well as the group velocity, is shown in figure 6.18. The numerical results 
displayed in figure 6.18 are after the work of Davies.23 
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2n 

Fig. 6.18. Phase velocity and group velocity for the lowest flexural mode; 0.29. 

Families of flexural modes of higher circumferential orders have also been 
investigated. For specific information and references we refer to the 
previously cited article by Meeker and Meitzler and to the book by 
Armenakas et al. 

6.11. Approximate theories for rods 

The exact treatment of harmonic wave motions in an elastic circular cylinder 
is already rather complicated. For a cylinder with other than a circular or 
an elliptical cross section it becomes impossible to carry out an exact 
analysis. Even for a strip of rectangular cross section whose lateral surfaces 
are free of tractions it is not possible to analyze general harmonic wave 
motions rigorously within the context of the linear theory of elasticity.24 

It is for that reason that several models have been proposed which provide 
an approximate description of wave motions in rods of rather arbitrary 
cross section.25 In this section we review the models that are commonly 

2 3 R. M. Davies, see fn. 20, p. 245. 
2 4 Some special cases which are amenable to a rigorous analysis are reviewed in the 

paper by Meeker and Meitzler, see fn. 8, p. 224. 
25 For a survey see: W. A. Green, in: Progress in solid mechanics, Vol. 1, ed. by R. A. 

Hill and I. N. Sneddon. Amsterdam, North-Holland Publishing Company (1960), p. 225. 
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used. These models are based on a priori assumptions with regard to the 
deformation of the cross-sectional area of the rod. The assumptions simplify 
the description of the kinematics to such an extent that the wave motions 
can be described by one-dimensional approximate theories. For the prop-
agation of time-harmonic waves it was found that the approximate theories 
can adequately account for the dispersive behavior of the lowest axisym-
metric and flexural modes over a limited but significant range of wave-
numbers and frequencies. In chapter 8 we will comment on the applicability 
of the approximate theories for transient motions. 

The governing equations can be obtained either by using variational 
methods or by straightforward momentum considerations of an element of 
the rod. The latter have the advantage that the physical concepts are con-
veyed more clearly. For the more complicated theories it is, however, easier 
to employ the assumed displacement distributions to compute the cor-
responding kinetic and strain energies for an element of the rod, whereupon 
Hamilton's principle can be applied to obtain the governing equations. 
Since an abundance of literature on the derivation of the approximate 
theories is already available we will present only a brief derivation of the 
equations for the Timoshenko model, and we will state the governing 
equations for some other models. 

6.ILL Extensional motions 

In extensional wave motions the dominant component of the displacement 
is in the longitudinal direction. Based on the assumption that the (arbitrary) 
cross-sectional area of the rod remains plane, it was shown in section 1.5 
that consideration of the forces acting on an element leads to the equation 

(6.140) 
dx2 cb dt2 ' 

where 

c2
b = - . (6.141) 

P 

Eq. (6.140) predicts that harmonic waves are not dispersive. 
For a rod of circular cross section Mindlin and McNiven26 derived a 

system of one-dimensional equations which takes into account the coupling 
between longitudinal axial shear and radial modes. The spectrum of fre-
quencies for real, imaginary and complex wavenumbers was explored in 

26 R. D. Mindlin and H. D. McNiven, Journal of Applied Mechanics 27 (1960) 145. 
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\pA! K 

detail and compared with the corresponding branches from the exact 
spectrum. 

Several other approximate theories which can describe the effect of 
dispersion are discussed in the previously cited paper by W. A. Green. 

6.11.2. Torsional motions 

In the approximate theory it is assumed that transverse sections remain 
plane and that the motion consists of a rotation of the sections about the 
axis. This leads to a wave equation for the angle of rotation with a propaga-
tion velocity 

,£ 
c ' ^ 

\PA) 

Here K is the radius of gyration of a cross section of the rod about its axis, 
A is the cross-sectional area and C is the torsional rigidity of the rod. For a 
circular cylindrical rod c reduces to (/x/p)*- As shown in section 6.10, this is 
the exact result for the lowest mode of torsional wave propagation in a 
circular cylinder. 

An approximate dynamical theory of torsion for rods of noncircular cross 
section which includes the effects of both the warping and the in-plane 
motions was developed by Bleustein and Stanley.27 The approximation is 
based on expansions of the displacements together with a truncation 
procedure which retains only the torsional, contour-shear and warping 
motions. 

6.11.3. Flexural motions - Bernoulli-Euler model 

In the simplest theory of flexural motions of rods of arbitrary but uniform 
cross section with a plane of symmetry it is assumed that the dominant 
displacement component is parallel to the plane of symmetry. It is also as-
sumed that the deflections are small and that cross-sectional areas remain 
plane and normal to the neutral axis. For a beam which is free of lateral 
loading the equation of motion becomes 

dt2 pAdx* ^ ' 

where w is the deflection, / is the second moment of the cross-sectional area 
about the neutral axis and A is the cross-sectional area. Substituting a 

27 J. L. Bleustein and R. M. Stanley, International Journal of Solids and Structures 6 
(1970) 569. 
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harmonic wave, we find for the phase velocity 

Thus the phase velocity is proportional to the wavenumber, which suggests 
that (6.144) cannot be correct for large wavenumbers (short waves). For a 
circular cylindrical rod, (6.144) becomes 

- £ © -
4-

(6.145) 
91 

The frequency according to (6.145) is 

(6.146) -mw 
It can be checked that (6.146) agrees with the asymptotic expression (6.139), 
which was obtained as a limitcase from the exact frequency equation. 

6.11.4. Flexural motions - Timoshenko model 

By taking into account shear deformation in the description of the flexural 
motion of a rod we obtain a model which yields more satisfactory results 
for shorter wavelengths. In this model it is still assumed that plane 
sections remain plane; it is, however, not assumed that plane sections 
remain normal to the neutral plane. After deformation the neutral axis has 

(p(x,t) 

w(x,t) 

X 

Fig. 6.19. Timoshenko beam. 

been rotated through the small angle dwjdx, while the cross section has been 
rotated through the angle cp, as depicted in figure 6.19. The shearing angle 
y is the net decrease in angle 
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y dx 
-<p. (6.145) 

The bending moment M acting over the cross section is related to cp 

by the well-known relation 

M = - El 
dcp 

dx 

The relation between the shear force Q and the angle y is 

Q = KfiAy, 

(6.146) 

(6.147) 

where K is a numerical factor which reflects the fact that the beam is not in a 
state of uniform shear, but that (6.146) represents a relation between the 
resultant shear force and some kind of average shear angle. The factor K 
depends on the cross-sectional shape and on the rationale adopted in the 
averaging process. Fortunately there is not very much spread in the values of 
K obtained by different averaging processes. The factor does, however, 
depend noticeably on the shape of the cross section. A table of shear coeffi-
cients is included in a paper by Mindlin and Deresiewicz.28 

By employing (6.146) and (6.147) the strain energy of a finite segment 
of a Timoshenko beam can be computed as 

The corresponding kinetic energy is 

dx. (6.148) 

(6.149) 

Subsequently Hamilton's principle and the Euler equations (2.74) can be 
employed to obtain the following set of governing equations for a homo-
geneous beam: 

d_ /dvv __ \ 

dx \dx ) 

EI8^2+KM(--<P) = PI 
dx2 \dx ! 

d2w 

1?' 

(6.150) 

(6.151) 

2 8 R. D. Mindlin and H. Deresiewicz, Proceedings Second National Congress of Applied 
Mechanics, ASME (1954). 
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Since there are two degrees of freedom this set of equations describes two 
modes of motion. The corresponding frequencies, phase velocities and group 
velocities, as well as the character of the motions, are discussed in the book 
by Crandall et al.29 

For a circular rod it was found that the lowest mode generally provides 
a very good approximation to the phase velocity. The phase velocity of the 
second mode agrees less well with the exact result. Often the second mode is 
discarded by ignoring rotatory inertia. This simplifies the equation and it 
does not appreciably affect the results for the lowest mode. Curves comparing 
the branches according to the Bernoulli-Euler model, the Timoshenko model 
and the exact theory can be found in many places in the literature.30 

6.12. Approximate theories for plates 

The analysis of free and forced harmonic motions of elastic layers of in-
finite extent does not present essential difficulties. As was shown in sections 
6.7 and 6.8, the free motions of an elastic layer can take place in an infinite 
number of modes whose frequencies are governed by the Rayleigh-Lamb 
frequency equation. Forced motions will be considered in chapter 8. In a 
plate of finite dimensions, with free or clamped edges, each of these modes 
(or its overtones) couples, however, with all the others (or their overtones), 
leading to an extraordinarily complex spectrum. These complications have 
motivated the formulation of approximate theories to describe the motions 
of plates. In these theories the system of field equations governing the three-
dimensional elastic continuum of the layer is reduced to a set of two-
dimensional equations for field quantities defined in the mid-plane of the 
layer. The reduction from three- to two-dimensional equations is achieved 
by making certain kinematical assumptions with regard to the deformation 
of the cross-sectional area, such as the Kirchhoff assumption. In a general 
approach which was developed by Mindlin31, the displacement components 

29 S. H. Crandall, D. C. Karnopp, E. F. Kurtz and D. C. Pridmore-Brown, Dynamics 
of mechanical and electromechanical systems. New York, McGraw-Hill Book Co. (1968), 
p. 360. 

30 Cf. Y. C. Fung, Foundations of solid mechanics. Englewood Cliffs, N.J., Prentice-Hall 
(1965), p. 325. 

31 R. D. Mindlin, An introduction to the mathematical theory of the vibrations of elastic 
plates. Fort Monmouth, N.J., U.S. Army Signal Corps Eng. Lab. (1955). It appears that 
this monograph is not readily available. The approach is, however, also discussed in 
R. D. Mindlin, Quarterly of Applied Mathematics 19 (1961) 51; while the general tech-
niques are also displayed in the book by Tiersten: H. Tiersten, Linear piezoelectric plate 
vibrations. New York, Plenum Press (1969), p. 141. 
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are expanded in an infinite series of powers of the thickness coordinate. 
This series is substituted in the equations of motion from the theory of elas-
ticity. The resulting equations are subsequently integrated across the thick-
ness of the layer. Upon introduction of the boundary conditions on the 
tractions, the three-dimensional equations of elasticity are in this manner 
converted into an infinite series of two-dimensional equations in the in-
plane coordinates. The system is then truncated to produce the approximate 
equations. 

The truncation of the series expansions implies in physical terms that 
only a finite number of modes will be desoribed. The approximate theories 
yield, nevertheless, very good results for the frequencies and the phase 
velocities over a substantial range of wavenumbers. This is due to the fact 
that the higher modes do not greatly affect the spectrum at lower frequencies. 

6.12.1. Flexural motions - classical theory 

The classical theory of the bending of plates is based on the hypothesis that 
every straight line in the plate which was originally perpendicular to the 
middle surface of the plate remains straight after deformation and perpen-
dicular to the deflected middle surface. In terms of an (x, y, z)-coordinate 
system, where the x- and j^-axes are in the plane of the plate, the equation 
governing bending of a plate of uniform thickness 2h is 

?w +2 jSv ^ iph ajw = 

dx* dx2dy2 dy2 D dt2 

where w(x, y, t) is the transverse displacement and D is the flexural rigidity 

8E/i3 

12( l -v 2 ) 

For a derivation of (6.152) we refer to the book by Fung.32 Eq. (6.152) can 
also be obtained as a limitcase of Mindlin's more general approach.33 

By considering a harmonic wave of the form 

Ul = Aei{kx-ot\ (6.154) 

D = 7Z7A . (6.153) 

we find 

= k2h (6.155) 
_3p(l-v2)J 

32 Y. C. Fung, Foundations of solid mechanics. EnglewoocT Cliffs, N.J., Prentice-Hall 
(1965), p. 456. 

33 See p. 6.14 of the previously cited monograph by Mindlin. 
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This expression agrees with eq. (6.81) which was derived from the Rayleigh-
Lamb frequency equation by considering long waves (small values of k). 
The classical theory thus is applicable for long waves. 

6.12.2. Effects of transverse shear and rotary inertia 

These effects can be accounted for by extending the classical plate theory 
in a manner which is completely analogous to the extension of the Bernoulli-
Euler model to the Timoshenko model for beams. A plate theory for elastic 
isotropic plates which includes transverse shear and rotary inertia was 
presented by Mindlin.34 For flexural motions the displacement components 
are expressed in the forms 

u = -zij/x(x,y9t) (6.156) 

v = -zij/y(x,y,t) (6.157) 

w = w(x,y,t), (6.158) 

where \jfx and \j/y are the local rotations in the x- and j-directions, respec-
tively, of lines normal to the mid-plane before deformation. These rotations 
are analogous to the rotation <p shown in figure 6.19. For a plate of thick-
ness 2h, these displacement expressions lead to the following system of 
governing equations: 

\D 

\D 

'( i-v)vV,+(i+v)A(^ + #A 
dx \dx dy I 

(i-,)vv,+(i+v)-i^+^yi 
dy \ dx dy / J 

-2KlihU-d^\ = %Pllld!h (6.160) 
V dy) 12 dt2 

lKixh / v a w _ *b - **l\ = 2ph ̂  , (6.161) 
\ dx dy) or 

where 

dx2 dy2 

R. D. Mindlin, Journal of Applied Mechanics 18 (1951) 31. 
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In eqs. (6.159)—(6.161), K is a numerical factor (correction coefficient) 
which is introduced to account for the fact that the shear stresses are not 
constant over the thickness as the simple kinematic relations would really 
imply. The correction coefficient is chosen so that the frequency of the lowest 
thickness shear mode computed from (6.159)—(6.161) yields the same result 
as given by (6.86) for the exact theory. Setting 

ij/y = w = 0, \l/x = eio>\ (6.162) 

we obtain from (6.159) 

— ( * ) * * ■ ( 6 i 6 3 ) 

According to (6.86) the exact result is 

a) — — cT. (6.164) 
2h V ' 

Eqs. (6.163) and (6.164) will agree if 

K = - . (6.165) 
12 

Plots showing a comparison of the phase velocities for the lowest mode 
of harmonic waves according to the classical theory, eqs. (6.159)—(6.161), 
and the exact theory of sections 6.7 and 6.8 are also shown in Mindlin's 
paper. It is found that eqs. (6.159)—(6.161) yield very good results for 
frequencies up to about 20 % higher than the frequency of the thickness 
shear mode, eq. (6.164). 

6.12.3. Extensional motions 

In the elementary Poisson theory for the stretching of a plate of uniform 
thickness a state of generalized plane stress is assumed. By integration 
the governing equations follow from eqs. (2.60) and (2.53) as 

d2u 1-v d2u 1 + v d2v (l-v2)p d2u ,,.^\ 
—- + + = v — — r (6.166) 
dx2 2 dy2 2 dxdy E dt2 

d2v 1-v d2v 1+v d2u _(l-v2)p d2v 

W2 + '^d72^~^dxTy==~~E~~ ~b\2' (6'167) 

Considering a harmonic wave of the form 

u = Aeiikx'a,\ v = 0, (6.168) 
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we obtain 

CO = — . 

P (1 -v 2 ) 

Thus, this theory cannot describe dispersion. Eq. (6.169) agrees however 
with eq. (6.82) which was obtained for long waves from the Rayleigh-
Lamb frequency equation. 

A theory which goes well beyond the elementary theory was presented 
by Mindlin and Medick.35 Their theory takes into account the coupling 
between extensional symmetric thickness-stretch and thickness-shear modes. 
The spectrum of frequencies for real, imaginary, and complex wavenumbers 
in an infinite plate was explored in detail and compared with the corresponding 
branches of the Rayleigh-Lamb spectrum. 

6.13. Problems 

6.1. An elastic layer of thickness 2h is referred to a rectangular coordinate 
system. The xx and x3 axes are placed in the midplane of the layer. Examine 
the wave motion which is described by 

\j/2 = A cos qx2 sin lx3e
ik{xi~ct). 

Determine q from the condition that the surfaces x2 = ±h are free of 
tractions. What is the relation between the phase velocity d and the wave-
numbers k and /? Sketch the displacement distributions for the lowest three 
modes. 

6.2. In section 5.7 it was noted that an SV-wave incident under an angle of 
incidence 90 = 45° on a traction-free surface is reflected as an SV-wave 
only. This observation, in conjunction with the idea of constructive inter-
ference which was discussed in section 6.2, can be used to construct simple 
modes of motion of an elastic layer over a discrete spectrum of wavelengths. 

(1) What is the phase velocity of these modes? 
(2) What is the velocity of energy transmission? 
(3) Show that the frequencies are given by 

— = Jl — , where n = 1, 2, 3, . . . 

35 R. D. Mindlin and M. A. Medick, Journal of Applied Mechanics 26 (1959) 561. 

(6.169) 
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(4) Do these motions belong to the families of longitudinal or flexural 
waves, or both? 

(5) Sketch the displacement distributions for a few of the modes. 
These modes are known as the Lame modes. Do the Lame modes apply 

to a strip ( — a ^ x3 ^ a, —h fg x2 ^ h, — oo < xl < oo) which is free 
of surface tractions? 

6.3. The analysis of motions in a layer can easily be extended beyond the 
case of plane strain. Consider, for example, wave motions that are described 
by 

(p = B cos px2 cos lx3 sin k{xi — ct) 

\J/l = Cl sin qx2 sin lx3 sin k(xt — ct) 

\j/ 3 = Ck sin qx2 cos Ix3 cos k(xi — ct). 

What are the planes of symmetry for these motions? Determine the stresses 
T2 2> T2i a n d ?2 3> and show that the frequency equation for a layer free of 
surface tractions at x2 — ±h is given by 

tan (ph) = _ (k2 + l2-q2)2 

tan (4/1) 4pq(k2 + l2) 

where 

p2 + l2 + k2 = ^ 

q2
 + l2 + k2=^. 

6.4. We consider standing waves in an elastic layer bounded by traction-
free surfaces at x2 = ±h. Let 

cp = — AC, cos £xx cos ax2 cos C*3 sin cot 

\jji = BC, cos fxj sin fix2 sin (jt3 sin cot 

i//3 = — B£ sin ^x{ cos /for2 cos (x3 sin a;/. 

These give modes which are symmetric with respect to the three coordinate 
planes. Show that the conditions of vanishing tractions at x2 = ±h require 

B _ C(c2 + C2-/),2)cosa/i _ 2a( sin ah 

A ~ 2/?(£2 + C2)cos/?/z " ( / ? 2 - c 2 - C 2 ) s i n ^ ' 
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Choose a and /? as 

a = — and 6 = — 
2/z 2fc 

respectively, and compute the corresponding frequencies. 
Consider in addition the horizontally polarized shear motions defined by 

^2 = [Ci C sin rjx1 cos ax2 sin (x3 + C2( sin ^ cos /to2 sin (*3]sin cot. 

Check that the surfaces x2 = ±h are free of tractions if a and /? are chosen 
as stated previously. 

Now compute the tractions on xx = ±a. First determine the specific 
values of £ and r\ for which the shear stresses vanish at xt = ±a. Proceed 
to compute the specific ratios of a/h for which the normal stresses vanish 
at Xj = ±a. 

The results of this problem give an exact solution of the equations of 
the theory of elasticity for a family of modes in a strip of infinite length and 
certain specific ratios of width to depth. 

6.5. A sandwich construction consists of three layers: a core and two cover-
sheets, as shown in the figure. Investigate the propagation of horizontally 

°l 1 
h 

1*2 

"\ 
■f 

a 
_ ' 

* 1 

VB,PB 

v,p 

^PB 

polarized shear waves in the sandwich, i.e., consider displacement solutions 
of the forms 

n3 = f(*2y*(*i"cf)-

Determine the frequency equation. What are the limiting frequencies for 
kh < 1 and kh > 1? 

6.6. Determine the frequency equation for the propagation of torsional 
waves in a hollow circular cylinder of inner radius a and outer radius b. 

6.7. Axial shear motions of a circular cylinder are defined by the following 
displacement distribution: 



Ch. 6, §6.13.] PROBLEMS 261 

w = W(r)eineeicot. 

Consider a solid circular cylinder of radius a and determine the frequency 
equation. 

6.8. The Pochhammer frequency equation for longitudinal waves of a rod 
is given by eq. (6.131). Show that for the lowest mode the phase velocity 
approaches from below the velocity of Rayleigh waves as ka increases 
beyond bounds. 

6.9. Derive the equations of motion for the homogeneous Timoshenko 
beam, eqs. (6.150) and (6.151), by considerations based on the balances of 
linear and angular momentums of an element of the beam. 

6.10. Employ the Mindlin plate equations, eqs. (6.159)—(6.161), to examine 
the propagation of straight crested waves. Neglect rotatory inertia and 
compute the dimensionless frequency Q = 2hco/ncT as a function of the 
dimensionless wavenumber c, = 2kh/n. For v = 0.25 the corresponding 
branch of the exact frequency spectrum is shown in figure 6.11. Plot the 
frequencies according to the Mindlin theory, the classical plate theory and 
the theory of elasticity in one graph, and estimate the wavelengths for which 
the approximate frequencies differ by about 5 % from the exact frequencies. 



CHAPTER 7 

FORCED MOTIONS OF A HALF-SPACE 

7.1. Integral transform techniques 

The dynamic response of elastic bodies to time-varying external loads can 
be investigated in an efficient manner by the use of integral transform 
techniques. 

The integral transform fT(£) of a function f(x) defined in an interval 
(xl9 oo) is an expression of the form 

f T (0 = Pf(x)K(x, Qdx, Zi £ Z < oo, (7.1) 

where xx and ^ are real numbers, and K(x, <!;) is called the kernel of the 
transformation. Provided that the function f(x) satisfies appropriate 
conditions, we can express f(x) in terms of its integral transform by using an 
inversion formula of the general form 

f (x) = f °°f r({)M(x, «)d{. (7.2) 

Here, Af(x, £) is a suitable function defined in the region xt < x < oo, 
£x < <J < oo, and is called the kernel of the inverse transform. 

The definition of an integral transform can be made more general by 
letting the kernel K depend on a complex parameter ( varying over some 
region D of the complex plane. Eq. (7.1) is then replaced by 

f T(f) = f °°f (x)K(x, C)dx C e D. (7.3) 
J Xi 

In this case, the inversion formula takes the form 

/(x) = -^f / r (OM(x,C)dC, (7.4) 
ZniJr 

where M(x, C) is the kernel of the inverse transform, which is defined for 
all x in the interval (xl 5 oo). The complex variable £ is in the region D, 
while r is a suitable path of integration contained in D. 

262 
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Integral transform techniques are very useful in solving partial differential 
equations. The basic idea is to select an appropriate kernel K so that ap-
plication of the transform to an equation for f yields a simpler equation 
for fr, with one less independent variable. If the reduced equation for fT 

can be solved, the solution f can be expressed in terms of the inversion 
integral, which must then be evaluated. 

To operate effectively with integral transforms some knowledge of complex 
variable theory is required. We will summarize the definitions and theorems 
that are needed in the sequel. Generally Greek symbols will be used to denote 
complex variables, e.g., ( = £i -h/(2 • If to each point £ in a certain region R 
there correspond one or more complex numbers, denoted by x-> t n e n w e 

write x = f((), anc* we say that x is a function of the complex variable £. The 
function x = f (0 is analytic at the point ( when it is single-valued and dif-
ferentiate at this point. The function f(£) is said to be regular in a region D 
if it is analytic at every point of D. We say that f(f) is an analytic function 
in a region D if f(() is analytic at every point of a region except for a certain 
number of exceptional points, which are called singularities. An analytic 
function which is regular in every finite region of the C-plane is called an 
entire function. 

Of great importance is Cauchy's theorem, which leads directly to the 
residue theorem which was stated in section 1.9. We also recall Jordan's 
lemma, which was also stated in section 1.9. 

An integral transform as defined by eq. (7.3) is essentially an integral of 
the form 

f r (C)= f flr(x, C)dx, (7.5) 
J a 

where g(x, () is a function of the complex variable ( and the real variable x. 
The variable ( will be assumed to lie inside a region D, i.e., the boundary of 
D, if any, is excluded. 

We now state a theorem for the conditions under which f r (Q as defined 
by (7.5) is regular. This theorem is a simplification to integrals over a real-
valued variable of a theorem stated by Noble1: 

Theorem 7.1: Let g(x, Q = f(x)K(x, () satisfy the conditions 
(1) K(x, C) is a continuous function of the complex variable ( and the 

real variable x, where ( lies inside the region Z), and x lies in the closed 
interval [a, b], 

1 B. Noble, Methods based on the Wiener-Hopf technique. New York, Pergamon Press 
(1958), p. 11. 
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(2) K(x, C) is a regular function of ( in D for every x in [a, b], 
(3) f(x) has only a finite number of finite discontinuities in [a, b] and a 

finite number of maxima and minima on any finite subinterval of [a, b], 
(4) f(x) is bounded except at a finite number of points. If x0 is such a 

point, so that g(x, () -> oo as x -* x 0 , then 

#(x, £)dx = lim #(x, C)dx 
Ja d->oJ[a,b-6-\ 

exists, where the notation [a, b — S] denotes the interval [a, b] apart from a 
small length <5 on both sides of x0, and lim (S -» 0) denotes the limit as 
this excluded length tends to zero. The limit must be approached uniformly 
when C lies in any closed domain D' within D. 

(5) If the range of integration goes to (oo, oo) then conditions (1) and 
(2) must be satisfied for any bounded part of the range of integration. The 
infinite integral f T(() must be uniformly convergent when C lies in any closed 
domain D' within D. 

Then f r(C) defined by (7.5) is a regular function of £ in D. 
In the next two sections we briefly summarize the most commonly used 

integral transforms. 

7.2. Exponential transforms 

Integral transforms are based on the Fourier integral theorem. For a real 
function f(x) defined in the interval ( — oo, oo) of the real variable x, the 
Fourier integral theorem may be stated as 

f(x) = A f°° d£ P l(u)e*{u-x)du. (7.6) 
2 7 W - oo J - oo 

If f(x) has a jump discontinuity at the point x = xl9 the left-hand side should 
at x = x1 be replaced by the sum 

*[f(*i+ 0 ) 4 - ^ - 0 ) ] . 

A heuristic derivation of (7.6) can be found in section 1.8. The Fourier in-
tegral theorem is valid provided that the function f(x) satisfies certain 
conditions. The theorem is easiest to prove if f(x) is piecewise smooth and 
if |f(x)| is integrable from —oo to +oo.2 Proofs of the Fourier integral 

2 For a proof see G. F. Carrier, M. Krook and C. E. Pearson, Functions of a complex 
variable. New York, McGraw-Hill Book Co. (1966), p.305. 
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theorem for functions satisfying less restrictive conditions were presented 
by Titchmarsh.3 

7.2.1. Exponential Fourier transform 

The Fourier integral theorem suggests the definition of ^J fC*) ] , the 
exponential Fourier transform of f(x), as 

f*(?) = ^ £ [ f (x ) ] = r e'«*f(x)<b 
J — oo 

with inverse transform 

f(x) = ^ ' [ f *m = e-^f*(c)dc. 

(7.7) 

(7.8) 

It is actually immaterial which of the transform operations is conducted 
with the negative exponent and where the factor 1/2TT is placed. As an al-
ternative to (7.7) and (7.8) we can thus also define the exponential Fourier 
transform as 

with the inversion 

I* 30 

■ * ( « ) = 

J - oc 

2 n J -

e-'ixt(x)dx, 

e''«*f*(c)dc. 

(7.9) 

(7.10) 

The transform pairs (7.7), (7.8) or (7.9), (7.10) play an important role in 
solving a wide variety of problems in elastic wave propagation. 

The transform of a derivative is related in a simple manner to the trans-
form of the function itself. Let us confine our attention to functions t'(x) 
which vanish as |x| -> oo. By employing the definition (7.7), the Fourier 
transform of df/dx is then given by 

"df" 

.dx. 
eK — dx. 

o dx 

By an integration by parts, 

"df 
> j 

Ldx. 
= [^*f(x)]*:?x-i{ f°° el*xf(x)dx. 

J — 00 

3 E. C. Titchmarsh, Introduction to the theory of Fourier transforms, 2nd ed. London, 
Oxford University Press (1948), p. 16. 
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LdbcJ 
£ | - ^ = - i « f * ( 0 . 

Similarly, assuming that all derivatives of f(x) up to the (n— l)st vanish at 
±oo, we find 

^[£]-(-i«-r*«). (7.11) 

As an example we consider the exponential Fourier transform of the 
Gaussian function 

^2\ 

f(x) = f0exp(- y 

/ ^ 

f° / 
y / 

"̂ x 

o \ 
" \ 

\ Ve 

Fig. 7.1. The Gaussian function. 

This function has the form shown in figure 7.1. Its shape is characterized by 
the central height f0 and the width parameter a. Its transform is 

^xe-x2'a2dx 

dx. 

f*(0 = f0 f" e* 
J — oo 

( ^2 2 \ r*co 

This integral can be evaluated by employing the standard integral 

exp(-s 2 )ds = Jn, (7.12) 

- ( ; - * " ' ) ' 

/ : 

with s = x/o—iiZo. We obtain 

f*(0 = W * e x p ( - £ V / 4 ) . (7.13) 
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The transform is again a Gaussian function, but now with width parameter 
2/(7, which is inversely related to the width parameter of the transformed 
function. We see that a tall and narrow pulse gives rise to a low and wide 
pulse in the transformation variable. 

The Gaussian function can very conveniently be employed to introduce 
the Dirac delta function. The delta function was introduced in section 3.3. 
According to (7.12), the area under the curve denned by the Gaussian func-
tion is f0o\/7c. If we choose f0 = IfcTyfn, the area becomes unity. Suppose we 
consider a sequence of functions 

Ux) = — T e x P ( - ^ | > 

with decreasing values of <r„, and thus increasing values of the central height. 
The limit of this sequence as on -> 0 defines the Dirac delta function. This 
limit has the value zero, except when x = 0, but its integral over an interval 
which includes x — 0 is unity. If f0 = 1/ov'rc, the Fourier transform of the 
delta function is unity, as can be seen from (7.13). 

7.2.2. Two-sided Laplace transform 

The two-sided Laplace transform, which is a slight modification of the 
exponential Fourier transform, will often be used in the sequel. Let us return 
to the Fourier integral theorem (7.6) and let us assume that the theorem 
holds for a function of the form g(x) — f(*) exp ( — £x). Upon substitution 
of g{x) into (7.6), the integral theorem may be expressed in the form 

f(x) = — f 1 + , <VdC f °° <TCMf(u)du, (7.14) 
2lliJ Ci-iw J -oo 

where £ = Ci+^2-
Eq. (7.14) suggests the following definition of the two-sided Laplace 

transform of f(x): 

f*(f) = (" eS
xf(x)dx (7.15) 

J — oo 

with the inverse transform 

f(x) = J - P'+'Vf*(C)dC. (7.16) 

For x = JCJ the left-hand side of (7.16) should be replaced by 

i[f(x1+0) + f (^ 1 -0 ) ] , 

if f(x) suffers a discontinuity at the point x = xx. 
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Note that we use the same notation f *(() to indicate the two-sided Laplace 
transform and the exponential Fourier transform. This will not give rise to 
confusion because it will always be clearly stated which transform is actually 
used. 

To determine the domain of regularity of f*(Q, we consider a function 
f(x) which satisfies the conditions (3) and (4) of theorem 7.1. The function 
exp ( — £.*) obviously satisfies the conditions (1) and (2). Now suppose that 
|f(x)| < A exp ( d - x ) f o r x -► -f-oo,and |f(x)| < i?exp (Ci+x)forx-> — oo, 
then f*(C) as given by (7.15) is uniformly convergent for Ci- < <^(0<( i + > 
which implies that condition (5) is satisfied. In view of these observations it 
follows from the theorem that f*(C) is a regular function of ( provided 
d - < # ( C ) < C i + -

A very useful property of the two-sided Laplace transform is the con-
volution theorem. An integral of the form 

h(x) = I fc(x-!4)f(ti)dii (7.17) 
J — oo 

is called the convolution of k(x) and f(x). It can be shown that 

h(x) = I fc(u)f(x-u)dii. (7.18) 
J — 00 

The convolution theorem states 

f°° e^xh(x)dx = /c*(C)f*(0> (7-19) 
J — oo 

where &*(() and f*(£) are the two-sided Laplace transforms of k{x) and 
f(x), respectively. Conversely, the inverse two-sided Laplace transform of 
k*f* is the function h(x) as given by (7.17) or (7.18). 

7.2.3. One-sided Laplace transform 

The one-sided Laplace transform which is frequently used for initial value 
problems with time t as the independent variable is defined as 

f(p) = i f [ f ( 0 ] = f " f ( ^ - " d t . (7.20) 
Jo 

It is customary to use p as the transform parameter for the one-sided 
Laplace transform. If the integral of eq. (7.20) converges for p = pi, then 
it also converges for any value of/? satisfying &(p) > &(Pi)- In general, 
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the function f(p) is a regular function of the complex variable p for 
£%{p) > &(Pi). The inverse Laplace transform follows from (7.16) as 

f(0 = ^ - ' [ f ( p ) ] = - ^ r"°i(pydP, (7.21) 
2711*1 y-iao 

where 31 {y) > 3t{px). Thus the path of integration in eq. (7.21) can be 
any vertical line to the right of all singularities of f (/>). As in the case of the 
exponential Fourier transform, the left-hand side of (7.21) should be 
replaced by 

i[f(r + 0) + f ( / -0) ] 

at a point of discontinuity of f(t). 
In later applications we will employ the one-sided Laplace transform 

without ever having to involve the inversion integral (7.21). In those cases 
p may be considered as real. 

The Laplace transforms of the derivatives of a function can be obtained 
by integrations by part 

se 

<e 

df 

At 

d 2 r 

.df2 

= Pf(p)-f(0+) (7.22) 

= p 2 f (p) - />f (0+)- f ' (0+) (7.23) 

etc., 

where by f'(0 + ) and f(0 + ) we mean the limits of df/dt and f(/), respec-
tively, as / -> 0 with t > 0. 

We also quote from certain well-known results concerning asymptotic 
relations, known as Abelian theorems, between functions and their Laplace 
transforms. If f(p) is related to f(f) by (7.20), then, if for - 1 < a < 0 

f(t)~Ata for r - > 0 + , (7.24) 
then 

f(p) - ^ ( a + l j p " " " 1 for p -+ oo, (7.25) 

where p tends to infinity along paths in the right half-plane, 3t{p) > 0. 

7.3. Other integral transforms 

In this section we summarize some of the integral transforms whose kernel 
are not exponential functions. 
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7.3.1. Fourier sine transform 

For conditions on f(x) under which the Fourier integral theorem is valid, 
the sine transform is defined as 

fs(£) = JFs[f(x)] = ! °°f(x) sin cxdx, (7.26) 
Jo 

with inverse transform 

f(x) = ^ [ f 5 ^ ) ] = I f "f stf) sin Sxdi;. (7.27) 
71J 0 

7.3.2. Fourier cosine transform 

Analogously to (7.26) and (7.27), we have 

fc(£) = ,Fc[f(x)] = I f(x)cos£xd;c (7.28) 
Jo 

f(x) = ^c ' [ f c ( 0 ] = - P f C(«) cos 5xd§. (7.29) 
^ J 0 

7.3.3. Hankel transform 

Let the real function f(r) be defined in the interval (0, oo). Under rather 
weak restrictions on the behavior of f(r) we can, analogously to the Fourier 
integral theorem, state HankeFs integral theorem 

f(r) = r . / v ({r)£df f V ) J v ( f r ) r d r , (7.30) 
Jo Jo 

where Jv(£r) is the Bessel function of the first kind of order v > - \ . If 
f (r) has a jump discontinuity at the point r = c, the left-hand side should 
be replaced by 

±[f(c+0) + f(c-0)] . 

The Hankel transform of a function is defined as 

fHv(£) = ^v[ f ( r ) ] = pf(r)Jv(c>)rdr. (7.31) 
Jo 

By virtue of eq. (7.30), the inverse is given by 

f(r) = Jf;1[(HXO'] = P f Wv(C>K<i£- (7-32) 
Jo 
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7.3.4. Mellin transform 

Let f(r) be a real function defined in the interval (0, oo) such that both 
integrals 

I r ^ ' ^ f ^ l d r and | V 2 - 1 ^ ) ^ 
Jo J I 

are finite for suitably chosen real numbers ax and a2. Then, the Mellin 
transform of f(r) is defined as 

fM(p)=P°f (ry~ Mr, 
Jo 

wherep = cr + rr is any complex number in the strip al < Rep < G2- The 
inversion is given by the formula 

fW = ~ r 'VoOr-'dp, (7.33) 
ZlllJ y-ioo 

where o± < y < a2. 

7.4. Asymptotic expansions of integrals 

7.4.7. General considerations 

The application of integral transform techniques to wave propagation 
problems yields expressions for the field variables that are of the general 
form 

I(X) = j F(0e-}!a)dC, (7.34) 

where f is a path in the complex C-plane and the parameter X may be 
considered as real-valued and positive. Expressed in its real and imaginary 
parts, the function f(() is 

f(0=9(e>l) + iKZ>l)> (7.35) 
where 

C =Z + iri. (7.36) 

It is often impossible to reduce these integrals to closed-form expressions 
by such analytical methods as contour integration. For that reason we will 
discuss ways to develop asymptotic expansions for integrals of the type 
(7.34). 

To define the idea of an asymptotic expansion we consider a function 
for large values of a parameter; say we consider I(X) for large values of A. 
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The function I{X) is now said to have the asymptotic expansion 

1(A) ~ SN(A) = 1 2 , X -> oo (7.37) 
n = 0 A 

if for fixed N 
lim X\l{X) - SN(/)] = 0. (7.38) 
A->oo 

The asymptotic character of the expansion is indicated by the use of the 
~ symbol. An alternative way of writing (7.37) is 

' w - . l . f : + 0 ( i^ ) - *—• <739) 

It should be noted that for fixed X the summation SN(X) usually diverges as 
N increases. Nevertheless, if the limit (7.38) holds, the difference between 
I(X) and SN(X) can be made arbitrarily small by taking X large enough, and 
SN(X) can be used as an approximation to I(X). 

We will first consider two special cases of (7.34). 

7.4.2. Watson's lemma 

An asymptotic expansion of the type defined by (7.39) can easily be found 
for an integral of the form 

V V 0 ( W (7.40) I(X) = [ 
Jo 

The result is known as Watson's lemma. It may be stated as follows: 
Suppose that in some interval (0, ^ ) the function #(£) can be written as 

g(0 = 0o + 0i £ + 02C2+ • • • 9NiN + RN+i(£)> 
where N is some nonnegative integer and where some constant C exists 
such that 

|**+1({)| < czN+1 

for <* in (0, ^ ) . Also, \i is real and \i > — 1, and constants K and b exist so 
that |#(£)| < Kexp (b£) in (0, a). Then as X -> oo, 

n = 0 A \ A / 

where T( ) is the gamma function. The proof of this statement of Watson's 
lemma can be found in the book by Carrier et al.5 

5 G. F. Carrier, M. Krook and C. E. Pearson, Functions of a complex variable. New 
York, McGraw-Hill Book Co. (1966), p. 253. 
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7.4.3. Fourier integrals 

Some useful asymptotic expansions of integrals of the form 

\belMm (-42) 
J a 

are given by Erdelyi.6 It is assumed that (a, b) is a real interval and g(£) 
is an integrable function so that (7.42) exists for all real x. 

Of particular interest are the expansions for the case that the integrand 
has a singularity of a simple type at one end point of the interval. Let us 
consider the following integral: 

/(*) = f V ^ - a ) * - y c ) < k " - (7.43) 
J a 

It can now be stated that if g(£) is N times continuously differentiate for 
a ^ £ ^ b, g(n)(b) = 0 for n = 0, 1, . . ., N-\, and 0 < \i < 1, then 

I(x) = - 4 N ( J C ) + 0 ( X ~ N ) , as x->oo, (7.44) 

where 

4,0c) =Y r(n + V) e W ( i . + M - 2 ) ^ ( i . ) ( f l ) ; c - n - ^ i x a # ( 7 . 4 5 ) 

n = 0 72 ! 

The proof is given in the book by Erdelyi (p. 48). 
Asymptotic expansions of Fourier-type integrals are also discussed in 

the book by Carrier et al.7 

In the preceding special cases the path of integration was along the real 
axis. Let us now return to the form of the integral as it is stated by (7.34), and 
let us consider a rather general method of constructing asymptotic expan-
sions for integrals in the complex plane. 

7.4.4. The saddle point method 

In the classical presentation of the saddle point method a path of "steepest 
descent" passing over.the saddle point(s) of the function f(C) is found, and 
contour integration is employed to effect the change of contour from F 
to the path of steepest descent. The classical approach will be discussed in the 
next section. 

An alternative and perhaps simpler version of the saddle point method 

6 A. Erd&yi, Asymptotic expansions. New York, Dover Publications, Inc. (1956), p. 46. 
7 Loc. cit.y p. 255. 
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was presented by van der Waerden.8 In van der Waerden's version an 
asymptotic expansion of (7.34) is obtained by carrying out the following 
operations: 

(1) Introduce ^f(C) or (if X is real) f(() as a new variable. 
(2) Draw the contour C in the f-plane. This is easy since the function f 

is given on the contour. 
(3) Determine the branch points and the poles of the functions occurring 

in the integral in the f-plane. 
(4) Expand the integrand in a power series in the neighborhood of every 

branch point and every pole. 
(5) Integrate term by term. 

The branch points correspond to the saddle points of the classical pre-
sentation. Only those branch points and poles lying to the right of the 
contour C in the f-plane need be considered. As a further simplification, 
those branch points or poles which lie more to the right than others may be 
neglected. 

The method of van der Waerden is particularly useful if a pole is located 
close to the saddle point. For details we refer to the cited paper. 

7.5. The methods of stationary phase and steepest descent 

These two methods have been used in numerous wave propagation problems. 
The two methods are related in that they both involve concentrating the 
integration in the vicinity of the stationary point of the exponent appearing 
in integrals of the form (7.34). 

7.5.1. Stationary-phase approximation 

The stationary-phase approximation is usually employed if the path of in-
tegration is along the real axis and if the exponent is imaginary, i.e., if 
(7.34) is of the form 

I(t) = (bF(tyh™dS9 (7.46) 
J a 

where / is the large parameter and h(£) is taken in the form 

fc(0 = c o ( £ ) - y . (7-47) 

8 B. L. van der Waerden, Applied Scientific Research B2 (1950) 33. 
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Eq. (7.46) is the type of representation that is obtained for a traveling pulse 
by Fourier transform methods. If the medium is not dispersive, co = c£9 

where c is a constant, and the integral is a function of ct—x, so that the 
pulse does not change shape as it propagates. If there is dispersion, i.e., if 
c = c(£), it is usually impossible to evaluate (7.46) exactly. The alternatives 
then are a numerical evaluation or an approximate analytical evaluation. 
With the availability of electronic computers it has become feasible to 
evaluate integrals of the form (7.46) by numerical methods.9 It is, however, 
also possible to employ a quite accurate analytical approximation which is 
known as the stationary phase approximation and which is due to Stokes 
and Kelvin. The approximation can be used for eq. (7.46) when t is large. 

The integral (7.46) may also be written in the form 

/ = f F(£){cos [rfctf)] + i sin |>(£)]}<i«. (7.48) 
J a 

Fig. 7.2. Point of stationary phase. 

Assuming that F{£) is a relatively slowly varying function, the approximate 
evaluation of (7.48) rests on the observation that for large t the trigonometric 

9 Numerical methods were discussed by L M. Longman, Proceedings Cambridge 
Philosophical Society 52 (1956) 764. 
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functions are very rapidly oscillating, with a self-cancelling effect on the 
integral. This is illustrated in figure 7.2. Only when the phase h(£) varies 
slowly will there be an appreciable contribution to the integral. In particular, 
if there is a point of stationary phase defined by a root of dh(£)[d£ = 0, it 
is reasonable to argue that the positive and negative loops tend to be 
mutually canceling except near the point(s) of stationary phase. 

For eq. (7.46), the point of stationary phase £s is obtained from dh/d£ = 0, 

Thus £'s depends on x and /. At the point of stationary phase we have 
x/t = dco/d£9 i.e., the point propagates with the group velocity cg. Since 
/ is positive, the integrand of (7.46) will have points of stationary phase for 
positive x only if dco/d^ > 0. 

By virtue of the foregoing arguments eq. (7.46) may be approximated by 

+ E 
MHSY 

h, 
df 

(7.53) 

/ = F(Q elth™dS, (7.50) 

where £ = £s is the point of stationary phase and 8 is a small number. To 
approximate (7.50) further, we expand h{£) about £ = £s 

h(0 = A0 + tf-WAi+i(£-O2*2+ • • •> (7.51) 

where 
h0 = h(Z)\^a (7.52) 

dnh 

Since hx — 0, eq. (7.50) can be written in the form 

/ = eihotF(Q f * Vl(«-W2fc2'd& (7.54) 

where we limit ourselves for the present time to second-order terms. Once 
again using the argument that the contributions from values of £, not in the 
immediate vicinity of £s are mutually cancelling, the limits of integration 
are extended to ± oo, so that (7.54) becomes 

/ = eihotF(Q ^ eiih2t*2dZ. (7.55) 
J — oo 
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To evaluate (7.55) we use the following formulas: 

["sin (ia!;2)dl; = f°°cos(ia^)d^ = \ (*)*, 
Jo Jo 2 \aJ 

and thus 

Applying this result to (7.55), we find 

1 = F(Q 
2n 

• ' 1 *2 

J(h0t±K/4-) 

(7.56) 

(7.57) 

where + and — apply for h2 > 0 and h2 < 0, respectively. If (7.49) can 
be solved explicitly for £5, eq. (7.57) yields an asymptotic representation of 
the integral (7.46), valid for large values of t. 

Near points where h2 = 0, that is near a stationary point of the group 
velocity, the approximation provided by (7.54) breaks down. A sufficient 
degree of accuracy can usually be secured by following the same procedure 
but including third-order terms in (7.51). Rather than expanding around the 
point of stationary phase, we compute the value £> = £sg from the condition 

— = — = ^ = 0 
dc2 ~ dc2 " d£ ~~ * 

(7.58) 

and we employ the expansion 

th(q) = th(t;sg) + (Q-$sg)b + tt-i;sg)
3a, 

where 

b = t — 
dC «=«., 

lttfh 
0 = * ' , . 3 

« = «.«. 

Instead of (7.54) we then have 

/ = e»'««)'F({J | °° ei{H+ai3)di. (7.59) 
J — oo 

This integral is recognized as the Airy function. Using the definition10 

10 Handbook of mathematical functions, ed. by M. Abramowitz and I. A. Stegun. 
Washington, National Bureau of Standards (1964), p. 446. 
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(3a)-*nAi[±(3a)-*b'] = | °°cos [af3±&£]d{, (7.60) 
Jo 

we see that for ab > 0 we may write 

l = , « ^ F ( g ^ L Ail3-*\af*\b\l (7.61) 
ON)* 

while for ab < 0 we have 

j = ^(Wrf(f i ) 27c i 4 , [ . 3 - * , f l f * , 6 | ] B ( 7 > 6 2 ) 

(3|air 
Graphs as well as tables of the Airy function can be found elsewhere.10 

For positive argument the Airy function is monotonically decreasing. For 
negative values of the argument the Airy function is oscillatory with a 
pronounced maximum at 3~*|a|~*|6| = 1. Thus for values of x and t 
corresponding to stationary values of the group velocity a conspicuously 
large amplitude wave is propagated. Since the Airy function is of the order 
of magnitude of unity, the amplitude is proportional to |a|"*, that is to 
x~* approximately, since x ~ tcg(£sg). On the other hand, it follows from 
(7.57) that wave groups corresponding to the point of stationary phase are 
proportional to x~*. Thus, as the dispersive wave travels outward the 
relative importance of solutions corresponding to dcg/d£, = 0 increases. 

Some other interesting points related to the solutions (7.61) and (7.62) 
are brought out in the book by Tolstoy and Clay.11 

If F(£) has a pole on the real axis, an additional contribution to the 
integral may occur. Another special case arises if a pole of the integrand 
and a point of stationary phase coincide. This case comes up in section 8.5. 

For a formal discussion of other special cases we refer to the book by 
Erdelyi12 and to the paper by Eckart.13 

7.5.2. Steepest-descent approximation 

For the purpose of introducing the steepest-descent approximation let us 
first consider the case that the integration in eq. (7.34) is along the real axis 

/(A) = f F(£)«T*«>d{. (7.63) 
J a 

11 I. Tolstoy and C. S. Clay, Ocean acoustics. New York, McGraw-Hill Book Co. 
(1966), p. 42. 

1 2 A. Erd&yi, Asymptotic expansions. New York, Dover Publications, Inc. (1956), p. 51. 
1 3 C. Eckart, Reviews of Modern Physics 20 (1948) 399. 
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If the function g{£) is real valued and positive, an approximate evaluation 
of the integral is based on the observation that for large X the exponential 
exp [—Xg(£)\ is relatively small except in the vicinity of the point where 
g(£) shows a minimum (see figure 7.3). The major contribution then comes 
from the part of the path where the integrand shows a steep peak. 

Fig. 7.3. Behavior of the integrand. 

Let us now examine the integral of eq. (7.34) in the complex plane, 

J(A)= f F(C>T"f(0dC. (7.64) 

It is assumed that f(() and F(£) are analytic functions of £ in a domain 
containing the path of integration. It is also assumed that these functions are 
independent of X. We will summarize the classical presentation of the saddle 
point approximation as it can be found in several treatises.14 

In terms of its real and imaginary parts the function f (£) is written 

{(0=g(Z,r1) + ih(Z,r1). (7.65) 

The integrand in (7.64) then assumes the form 

When X is large a small change of h(£, rj) due to a small change of £ will 
produce rapid oscillations of the trigonometric functions. If a path is now 
chosen along which /*(£, rj) is constant, the rapid oscillations disappear and 

14 E.g., H. Jeffreys and B. C. Jeffreys, Methods of mathematical physics, 2nd ed. 
Cambridge, University Press (1950), p. 503. 
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the most quickly varying part of the integrand is exp [ — A#(£, rj)]. Then, 
just as was discussed in the context of eq. (7.63), the main contribution to the 
integral will come from the neighborhood of the point(s) C = Cs, where 
#(£, Y\) is smallest. It will be shown in the sequel that the path through 
C = Cs defined by h = constant is in fact the path along which #(£, rj) 
changes most rapidly (the path of steepest descent), so that the requirement 
of concentrating the largest values of #(£, rj) to the shortest possible segment 
of the integration path is optimized along the path h = constant. The idea of 
the steepest descent approximation thus is to deform the path of integration 
in the (-plane into a contour on which /*(£, rj) is constant and which passes 
through the point ( = £s, where g(£, r\) is stationary. 

The point ( = (s is determined from the condition that 

^ = d-° ^ 0, (7.66) 
di dti 

which shows that the tangent plane at the surface #(£, tj) is horizontal at 
C = Cs. If this point were an absolute minimum (maximum), we would have 

^ 4 > 0 ( < 0 ) and -9- > 0 ( < 0). 

The function g{£,, ti) is, however, harmonic, i.e., 

—7 + —% = 0, 

se dn
2 

and the point ( = (s thus is neither an absolute maximum nor an absolute 
minimum, but must be a saddle point, as shown in figure 7.4. 

gU\i)k 

- I 

Fig. 7.4. The saddle point. 

By the Cauchy-Riemann conditions we have 

dg dh dg ch 
(7.67a, b) 

dc, dr\ drj dc, 
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These results, together with (7.66), show that the position of the saddle 
point can be determined from the condition 

^ = 0 at C = CS. (7.68) 

It will now be verified that the path along which h = constant is the path 
of steepest descent. At a position defined by ( = ( we consider a local 
coordinate s in a direction defined by the angle 6 with the positive £-axis. 
Then 

dg 

Us 
= g% cos 0 + g,j sin 6, 

c=c 
where 

dg dg 
0s = — ! > 9tt = 

c=c 
If dgjds is to be a maximum for variable 0, we must have 

— g^ sin 0 + gn cos 0 = 0. 

By using the Cauchy-Riemann conditions, (7.67), this expression is rewritten 

as 

— hn sin 9-h^ cos 9 = 
dh 

as 
= 0. 

Since C is arbitrary, h must be constant along the path of steepest descent. 
The saddle points link the 'Valleys" and the "ridges" on the surface 

g(£, Y\). The curves h = constant will go either up a ridge or down a valley, 
since these are the directions of greatest change. The ones of most interest 

Fig. 7.5. Saddle point and path of steepest descent AB. 
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to us are those going along a ridge. These are the paths of steepest 
descent for which the neighborhood of the saddle point produces the most 
significant contribution. 

A sketch of the saddle point and the path of steepest descent is shown in 
figure 7.5. In employing the method of steepest descent it is assumed that 
the path of integration F is deformed into paths of steepest descent running 
along the rims of the hills. 

Along the path of steepest descent we expand f(() in a Taylor series 

f(0 = f0+(C-Qf1+KC-Cs)2f2+..-, 
where 

~ — \ 
d r 

Keeping only second-order terms, we have, since fx = 0 by eq. (7.68), 

f(0-fo = KC-Q%, (7.69) 

where the right-hand side is real because /*(£, rj) is constant. The right-
hand side is also positive because we are on the path of steepest descent. 
Thus we introduce the real variable t by 

KC-Q% = t\ (7.70) 

whereupon (7.64) becomes 

/ ~ < T A f ° f F(0e~xt2(^dt. 
J ra dt 

Since the exponential decays very rapidly, this integral may be rewritten as 

J -e- t f»F(C.)f+V^^d«, (7.71) 
J -e df 

provided that F(C) is not singular in the vicinity of £ = (s. Writing 

C-Cs = reie\ (7.72) 

we conclude from (7.70) that 

arg[±f2e2 i 0*]=O, (7.73) 

which yields 6S. It also follows that 

r = *|if2|-* (7.74) 
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Substituting (7.74) into (7.72), d^/dt can be computed and (7.71) may be 
written as 

/ ~ e - " ° F i r > ~ l e-xt2dt. 
Iif2 

The limits of integration are now extended to ±oo, and in first approx-
imation we find 

The steepest descent approximation is valid for large values off. 
In the complex plane, integrals of the type (7.64) can also be represented 

by the stationary-phase approximation. In fact, the stationary-phase and 
steepest-descent approximations are nearly equivalent. If one wishes to use 
the stationary-phase idea, the integration through the saddle point should 
be taken along a path for which #(£, t]) is constant. 

In section 7.6 we will present an application of the steepest-descent ap-
proximation to a wave propagation problem. An application to the problem 
of wave motion generated in a half-space by a buried line-source is given by 
Newlands.15 

7.6. Half-space subjected to antiplane surface disturbances 

The exponential Fourier transform can conveniently be used to determine 
the dynamic response of a half-space y ^ 0 to surface disturbances of the 
form (at y = 0) 

xn = nT(xy°'. 

Since the external excitation is independent of the z-coordinate, the problem 
is two-dimensional in the coordinates x and y. The distribution of shear 
tractions generates an antiplane shear motion in the half-space, which is 
governed by 

^ a iw a i8 |_w ( 7 7 6 ) 

dx2 dy2 c2 dt2 V ' 

where w(x, y, t) is the displacement in the z-direction. 
If the surface tractions have been operating for a long time it is reasonable 

to assume that a steady state has been reached. Under that assumption we 
15 M. Newlands, Philosophical Transactions of the Royal Society {London) A245 (1952) 

213. 
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may consider displacements of the form 

w(x, y, t) = w(x, yy w f . (7.77) 

The governing equation for w(x, y) follows from (7.76) as 

d2w d2w 

3 ? ~d~y 
2 + - + ^ w = 0, (7.78) 

where 

kT = - . (7.79) 
cT 

The boundary condition at y = 0 reduces, to 

r = T ( 4 (7.80) 

7.6.1. Exact solution 

By applying the exponential Fourier transform according to the definition 
given by eq. (7.7), eq. (7.78) becomes an ordinary differential equation, 

6y 

while the boundary condition assumes the form 

..* 

2 _ (^_4 ) W * = 0, (7.81) 

^ = 7-(«). (7.82) 

In eqs. (7.81) and (7.82), £ is the Fourier transform parameter. 
The general solution of (7.81) is 

**(<, JO = A^)cxpl(e-k^y-] + B(Oexp[-(e-k2
T^yl 

where A{£) and Z?(£) are as yet unknown functions of £. The condition 
at y = 0 is not enough to determine both /*(£) and B{£). The additional 
requirement is that w(x,y) be bounded as y -► oo, which implies that 
vt>*(£, >>) cannot grow exponentially as j ; -> oo. Since A{£) and £(<!;) do not 
depend on y, the only way to avoid such an exponential growth is to set the 
coefficient of the growing exponential term equal to zero. 

The radicals in the exponents are made single-valued by choosing branch 
cuts emanating from the branch points £ = ±kT. We shall choose the 
branches such that J ^ 2 - k])* is nonnegative on the real £-axis. The desired 
behavior at the limit y -+ oo then requires that we set A(£) = 0. The func-
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tion B(£) can then be determined from the boundary condition (7.82). We 
find 

*(i,y)= -
T*(C) -(t2-kT

2)±y 

(c2-/4)* 
According to (7.8), the inverse transform is 

V(X,y) = _ ± r _4^*) «,-«*-« 2-kT2)ty£e 

(7.83) 

(7.84) 

The major task of the analysis consists of .the evaluation of the integral 
in eq. (7.84). Since the branch points are located on the path of integration 
it is necessary to describe in more detail the choice of the branch cuts. For 

Fig. 7.6. Branch points for a complex frequency. 

that purpose it is simpler to consider first a forcing term with a complex 
frequency 

co = col + ia>2-

For positive co29 the motion exponentially decays with increasing time. 
The branch points now are located at 

£ = ± 
a>l + ico2 

as shown in figure 7.6. The location of the branch points for co2 ^ 0 in-
dicates that in the limit of vanishing a>2 the path of integration should be 

*T 

Fig. 7.7. Path in the £-plane. 
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chosen as depicted in figure 7.7, where the appropriate branch cuts are also 
shown. We choose (£2-k%)* positive for 9l{g) > kTi J(£) = 0 - . 

To carry out an exact evaluation of (7.84) a specific choice must be made 
for T(x). The simplest choice is T(x) = d(x), which yields T*(£) = 1. The 
integral then reduces to 

i poo -iSx-(z2-kT
2)h 

i*-*--*)-. «»-*»» d(- (7'85) 

As a first step we introduce 

x — r cos 9, y = r sin 9, (7.86a, b) 

whereupon (7.85) assumes the form 

w(*> y) = - — 
2nJ -

oc - ir[§ cos 0- i ($ 2 - fcT 2 )*s in0] 

«2-*J)* 
-<«. (7.87) 

An elegant way of evaluating this integral is to seek a curve in the complex 
£-plane along which the exponent assumes a simple form, for example, the 
simple form exp ( — irs). To achieve this simplification we seek a contour 
in the £-plane defined by 

s = f cos0- i (£ 2 - fcr )*s in0 . 

Eq. (7.88) can be solved for £ to yield 

f± = scos0±i(s2 - fc j )*s in0. 

(7.88) 

(7.89) 

In the £-plane eq. (7.89) describes a hyperbola as shown in figure 7.8 by 
Cx and C2. If *?(€±) — 0 we have s = kT, and the vertex of the hyperbola 
is thus defined by £ = A:T cos 0. The modulus of £ increases as ^ increases. 

Fig. 7.8. Change of contour in the £-plane. 
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The asymptotes of the hyperbola are evidently defined by 

l i m ^ ) = + s i n ^ = + t a n 0 

5-00 ^ ( f ± ) COS0 

The real variable s increases from s = kT to oo as we move out along the 
branches of the hyperbola. For 0 7* 0, the vertex of the hyperbola is located 
in between the origin and the branch point at kT; the vertex and the branch 
point coincide for 0 = 0 . 

The change of path of integration from the real axis to the hyperbola 
is very simple. In changing from Lx to Ct and L2 to C2, respectively (see 
figure 7.8) no poles or branch cuts are crossed. The complementary in-
tegrations along the circular contours R± and R2 vanish as \£\ -*• 00. Thus 

( £ i - 4 ) - ± ^ e-'"ds. (7.90) 
ds 2nJkT os 

By employing (7.89) we find 

dJ± = 

"ds + — 
In 

= cos 0 4-
is sin 8 

ds ~ {s2-k2
Tf 

(7.91) 

Also 

and thus 

{i\-k2
Tf = - ( s 2 - ^ ) * c o s 6-issin 0 (7.92) 

({i -k2
Tf = (s2 - feJ)* cos 9 - is sin 9, (7.93) 

l l i (£2
± _ # ) - * = T , * . (7.94) 

Substituting the result (7.94) into the integrals in eq. (7.90), we obtain 

7lJkT(s — KTY 

By introducing s = kTu the integral becomes 

"(x, > > ) = - - ; V - ^ d " - (7-96) 
71 J l (ll - 1 ) * 

Apart from a multiplying constant the integral in (7.96) is a well-known 
representation of the Hankel function of the second kind, see eq. (4.71). 
It can be verified that w(x, y) may be written as 

Mx, y) = ±iH(
0
2\kTr). (7.97) 
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7.6.2. Asymptotic representation 

An asymptotic representation of w(x, y) can be obtained in a convenient 
manner by taking the first term of the expansion (7.44). Thus we rewrite 
(7.95) in the form 

where 

= _ i | Y're(S-fcr)~*0(s)ds. 
nJkr 

g(s) = 

According to (7.44), we can write 

w ~ — , as r -> oo, 
71 

where, according to (7.45), 

Al = r(i)«**' (*"2 )(2fcT)-*(-r)-^" t t T r . 

Thus 

W ^ ! g-*(*rr- i t /4 ) 

(2nkT r)± 

7.6 J . Steepest-descent approximation 

(7.98) 

An approximate evaluation of (7.84) provides an instructive exercise in the 
application of the method of steepest descent. First we introduce the polar 
coordinates 

x = r cos 9, y = r sin 6. 

Eq. (7.84) may then be written as 

W(r, 6) = - 1 f °° - p £ L e-<OdC, (7.99) 
2 T J _ C 0 ( < S

2 - / C 2 - ) * 

where 

f ( 0 = i£ cos 0 + (C2 - /c2-)* sin 9. (7.100) 

By differentiation of (7.100) it is found that the position of the saddle 
point follows from 

icosfl+ C,S1"f = 0 . (7.101) 
(C2-#)* 



Ch. 7, § 7.7.] LAMB'S PROBLEM FOR A TIME-HARMONIC LINE LOAD 289 

Eq. (7.101) can hold for a point on the real axis in the range — kT < C < kT, 
where, consistent with the branch cuts shown in figure 7.7, we have 

( C 2 - # ) = *(*£-C2)* (7.102) 

After substitution of (7.102) into (7.101) it can easily be verified that the 
solution of (7.101) is 

Cs = kT cos 9 (0^9^ n). 

At the saddle point we subsequently find 

fo = ik, "f2 

From (7.73) it follows that 

29s-
 U = 0, 

2 

By the use of (7.75) the approximation for w(r, 9) can now be written as 

w ( r , 9) = l—- T*(kT cos 0)e-iikrr-*f*\ (7.103) 
(2nkTr)~ 

For the special case r*(( ) = 1, eq. (7.103) agrees with (7.98). 
It is an instructive exercise to determine at least roughly the course of the 

path of steepest descent elsewhere in the £-plane. 

7.7. Lamb's problem for a time-harmonic line load 

One of the contributions of lasting significance in the area of wave propaga-
tion in elastic solids is the article entitled "On the propagation of tremors 
over the surface of an elastic solid", by H. Lamb.16 In this work, Lamb 
investigated the wave motion generated at the surface of an elastic half-
space by the application of concentrated loads at the surface or inside the 
half-space. Most fully discussed were the surface motions generated by a 
line load and a point load applied normally to the surface. Both loads of 
harmonic time dependence and impulsive loads were considered. In recent 
years the methods and solutions in Lamb's paper have been cast in a some-
what more elegant form and more detailed computations have been carried 
out, particularly for loads of arbitrary time dependence. These modifications, 

16 H. Lamb, Philosophical Transactions of the Royal Society (London) A203 (1904) 1. 

I 

kT sin2 9 
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which mainly concern the transient dynamic response of an elastic half-
space, will be discussed in section 7.11. It is, however, of interest to discuss 
the surface motion generated by a time-harmonic line load applied normal 
to the surface. This problem, which was solved by Lamb in almost complete 
detail, is one of the classical problems in elastic wave propagation. The 
boundary conditions for the problem are (at y = 0) 

Ty = -QS(x)ei0it (7.104) 

ryx = 0. (7.105) 

7.7.7. Equations governing a state of plane strain 

A line load which is applied normal to the free surface of an elastic half-
space along a line coincident with the z-axis generates a deformation in 
plane strain. It is expedient to employ the decomposition of the displacement 
vector discussed in chapter 2. For the case of plane strain the displacement 
vector and the V-operator are in the (xy)-plane and consequently the vector 
potential ^ is directed normal to the (xy)-plane; we write \jf = ij/k. The 
displacement components u(x9 y, t) and v(x, y91) may then be written as 

u = d± + * (7.106) 
dx dy 

"T-T- (7-107) 

dy ox 

provided that cp and \j/ satisfy the following two-dimensional wave equations 

d2q> . d2cp _ 2 v
2(P 

dx'2 "*" ~3p ~ SL ~dt 

£ + £-*£. (7..09, 
ox dy or 

where sL and ̂ r are wave slownesses defined by 

sL = — , sT = — . (7.110a, b) 

The relevant components of the stress tensor are 

« (d2q> d2cp\ „ (d2q> d2\j/ \ , . 1 i n 

T. = A - f + TZ) + 2 / i ^ + ~ (7.1H) 
\dx2 dy2/ \ox2 dxdy! 

T ^ - * 1 Z ^ 
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\dx2 dy2) \8y2 dxdyj :dy) 

\ dxdy 8x dy 1 

(7.112) 

(7.113) 

7.7.2. Steady-state solution 

Assuming that a steady state has been reached, the potentials may be ex-
pressed in the forms 

cp(x, y, t) = <p(x, y)ei<ot (7.114) 

il*(x, y, t) = iftx, y)eia", (7.115) 

where (p(x, y) and \J/(x,y) satisfy the equations 

d2<p d2q> 
, , + r r +kl<P = 0 
ox2 ay2 

1/ 

and kL and kT are defined as 

aV V̂ 
ox 

+ —7 +fer^ = °> 

(7.116) 

(7.117) 

(7.118a, b) kL = sLa>, kT = sTco. 

In the expressions for the displacements and the stresses the term exp (icot) 
appears as a multiplier. In the sequel this exponential term is omitted. The 
formulae (7.111)—(7.113) then give the stresses 

r ,2 ,d2P , d V 1 

L ov <3xcv 

= /* -k\(p-

dyi 

,d2cp 

:oy. 

. 2 1 ^ - 2 - ^ - " 
cbc2 dxdjd 

?*v = M 

- 2 r ■ r
2 i !^_fc|^-2 . 
. ox dy dx 

(7.119) 

(7.120) 

(7.121) 

The problem is solved by applying the exponential Fourier transform over 
x. The appropriate expressions for q>* and \j/* then follow from (7.116) and 
(7.117) as 

<p* = <£(?) exp [-(c2-kf)*y] (7.122) 

y*=9"«)exp[-(«2- fcJ)V]. (7-123) 
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The radicals in the exponents are made single-valued by choosing branch 
cuts emanating from the branch points £ = ±kL and £ = ±kT, respec-
tively. The choice of the branch cuts relative to the path of integration is 
dictated by the same arguments that were used in the previous section. 
Thus we first take a complex valued frequency a> = coi + ico2, with positive 
imaginary part co2. In the limit a>2 -► 0 we arrive at the branch cuts shown 
in figure 7.9. The radicals (£2 —&£)* and (^2 — k\)^ are taken as real and 
positive for «/(£) = 0" and Si(^) > kL and 0t(j£) > kT, respectively. 

kL kT kR 

Fig. 7.9. Branch cuts for Lamb's problem. 

Substituting (7.122) and (7.123) into the Fourier transforms of (7.120) 
and (7.121), and employing the boundary conditions (7.104) and (7.105), we 
arrive at the following equations for <P(£) and Y(£): 

(2£2-k>)<P-2iZ(Z2-k2
Tf¥ = 

2iZ(Z2-k2
Lf<P + (2Z2-k2

T)V = 0. 

Q 

The solutions are 

4> = 

!F = 

2£2-k2
T Q 

no * 
im2-k2

Lf Q 

where 

F(O = (2e-k2
Ty-H\e-kim2-k2

T) l\i 

(7.124) 

(7.125) 

(7.126) 

(7.127) 

(7.128) 

At this stage, exponential Fourier transforms of the displacements and 
the stresses have been obtained. The next step is the evaluation of the in-
version integrals. 
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The exponential Fourier transforms of the displacements can be obtained 
from (7.106) and (7.107) as 

w * = _ ^ * _ ( £ * _ f c 2 j t y * (7.129) 

v* = - ( ^ - / c £ ) V + ^ * . (7.130) 

By application of the inversion integral of the exponential Fourier transform 
the displacements then follow as 

« = ( / . L + / . T ) ^ (7-131) 
H 

v = (U + IvT)^, (7-132) 

where 

/uL = i - P ° PZ2-kT>e-itx-K>-k,.i>i,d£ (7.133) 

I = — L f °° ^ ~ ^ r ) (£ ~ ^ L ) ^Hx-a^-kT^h^K rj J34^ 

271J -o 

1 f ° 
7rJ_ 

(£ ~ ^ L ) (2^ - ^ T ) e-iix-(^-k^)iy^ (7.135) 
27iJ-<x, F(<) 

' ^ " ^ c-^*-({ ,-*TI)^de (7 136) 

The path of integration in the £-plane is indicated in figure 7.9. The poles 
are located at the roots of the equation 

no = o-
This equation was examined in our study of Rayleigh waves along the free 
surface of an elastic half-space. It was found in section 5.11 that there are 
two real roots which may be written as £ = ±kR, where kR = co/cR, 
and cR is the velocity of Rayleigh waves. Since the poles are located on the 
path of integration the path must be indented as shown in figure 7.9. 

Attempts to evaluate the integrals in eqs. (7.133)—(7.136) by suitable 
contour integrations in the complex £-plane have met with only moderate 
success. The best that apparently can be achieved is to replace the integration 
along the real axis by integrals around the branch cuts plus contributions 
from the poles. For the special case of y = 0, i.e., for the displacements at 
the surface of the half-space, such computations were carried out by 
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Lamb17, who also presented asymptotic representations for the branch-
line integrals. These computations require subsequent changes of the con-
tours of integration as well as the introduction of new variables. Lamb's 
computations were reproduced in the book by Ewing et al.18, and in the 
book by B&th.19 Here we state the results from Lamb's original paper 
( a t j = 0 ) : 

zjJ(cot-kRx) , ^ / Z \ / i KL\ * 
u= - ~Hel((0t-KRX)+ 

(fcrx)* 

*klk2
T(k2

T-k2
L)± tel(wr-*tX-*/4) 

and 

li W I k\) 
- ? /2\*kjfcrv,vr ,.L, „ ,7 1 3 ? ) 

li \nl (k2
T-2k2

L)3 {kLxf 

?2 | T | * (\- M\ iei(cot"kTX'1 

ix W \ k\) {kTxf 

2/i W (/cr-2/ci)2 (fcLx)* ' 

ff = _ fcn[2fci-fc|"2(fcj-fc£)*(fcl-fc|)*] ( ? 1 3 9 ) 

K = - fer(fc£-fci)* (7#140) 

where 

In (7.139) and (7.140), 

$ = *R 

Clearly the first terms in (7.137) and (7.138) represent surface waves. In 
the two-dimensional case these waves do not suffer geometrical attenuation 
as the distance x from the disturbance increases. The remaining terms in 
(7.137) and (7.138) are cylindrical body waves which decay with increasing 
x as x~*. Some additional remarks on the solutions may be found in Lamb's 
original paper or in the cited books by Ewing et al. and B&th. 

It would seem that it should also be possible to write out approximate 
expressions for the displacements for y # 0 by the methods that were 

17 H. Lamb, loc. cit. 
18 W. M. Ewing, W. S. Jardetzky and F. Press, Elastic waves in layered media. New 

York, McGraw-Hill Book Co. (1957), p. 44. 
19 M. Bath, Mathematical aspects of seismology. Amsterdam, Elsevier Publishing Co. 

(1968), p. 343. 
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employed in the previous section. On the other hand this may not be worth 
the effort since an exact closed form solution for arbitrary time dependence 
of the surface excitation will be presented in section 7.11. 

7.8. Suddenly applied line load in an unbounded medium 

Conceptually the transient wave motion generated by a load of arbitrary 
time dependence can be expressed as a superposition integral over the 
response to a corresponding time-harmonic load. It is, however, generally 
more efficient to analyze the transient problem separately by employing 
Laplace transform techniques. This will be illustrated by the example of a 
suddenly applied line load in an unbounded medium. 

Employing a right-handed (x, y, z)-coordinate system, the concentrated 
line load may be represented by the following distribution of body forces: 

F =jQS(x)5(y)[(t), (7.141) 

where f (t) vanishes for t < 0. Since the applied load is independent of z, 
and since there are no boundaries, the displacement in the z-direction as 
well as the derivatives of all field variables with respect to z vanish identically. 

Fig. 7.10. Line load in an unbounded medium. 

The response of the unbounded medium to the line load is antisymmetric 
with respect to the plane y = 0. As a consequence the normal stress zy 

vanishes in the plane y = 0, at least for x ^ 0. For the same reason the 
displacement in the ^-direction also vanishes in the plane y = 0. In view of 
these observations the problem of the suddenly applied line load in an un-
bounded medium can be reformulated as a boundary value problem for a 
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half-space y ^ 0, with the following boundary conditions at y = 0: 

T , ( X , 0 , 0 = -±6S(*)f(0 (7-142) 

M(x,0,f) = 0. (7.143) 

Since the medium is initially undisturbed, the initial conditions are 

u(x, y, 0) = v(x, y, 0) = 0 (7.144) 

u(x9y,0) = v(x,y,0) = 0. (7.145) 

The governing equations are stated by eqs. (7.106)—(7.113). The solution 
of the problem at hand is obtained by applying the one-sided Laplace 
transform over time and the two-sided Laplace transform over the spatial 
coordinate x. These transforms are defined in section 7.2. Upon application 
of the integral transforms eqs. (7.108) and (7.109) reduce to the following 
ordinary differential equations: 

d V -(sip2-?)** = 0 (7.146) 
dy 2 

2 , T * 

,2 d - ( s ^ - W - O , (7.147) 
dy 

where p and ( are the variables of the one-sided and the two-sided Laplace 
transforms, respectively. Solutions with the proper behavior for large 
positive values of y are 

</>* = <P(p,Qe-(SL2p2^2)h (7.148) 

$* = ^(p,C>"(s r2p2"C2) iy , (7.149) 

provided that the branches are chosen such that the radicals have positive 
real parts. 

Upon applying the Laplace transforms to eqs. (7.106) and (7.112) we 
obtain 

u* = ( ? * - ( 5 j p 2 - f 2 ) y (7.150) 

f,* = /i[sJpV-2CV* + 2C(sJp2-C2)V]. (7.151) 

Substituting (7.148) and (7.149) into (7.150) and (7.151), and employing 
the boundary conditions (7.142) and (7.143) yields 

0 = _ 1 _2_ ~fiE) (7.152) 
2 fisr p2 
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^ = _ 1 2 _ f _ W C ( 7 1 5 3 ) 

Let us consider the displacement in the x-direction in some detail. From 
(7.150) we obtain 

2^ST - * _ _ Cf(p) f -(s^p>-^)±y _C-(ST2P2-Z2)±y\ (7 154) 

Q P2 

The remaining task is to evaluate the inverse transforms of this expression. 
For the first term of (7.154), inversion of the two-sided Laplace transform 
requires evaluation of the following integral: 

IL = — -A e^e-(^
2p2-^yd^ (7 1 5 5 ) 

2ni p J^i-ioo 

where —sLp < Ci < sLp. By taking the path of integration along the 
imaginary axis and by introducing the substitution £ = /£, eq. (7.155) can 
be rewritten as 

1L = — f "cos (£x)e-{s2 + SL2p2)iydc. (7.156) 
up Jo 

The integral in eq. (7.156) can be looked up in a table of cosine trans-
forms20, and we find 

IL=~ lK^Lpr\ (7.157) 
np r 

where 
r2 =x2+y\ (7.158) 

and Kx{ ) is the modified Bessel function of the second kind. The inverse 
Laplace transform of (7.157) can be obtained from a table of Laplace 
transforms.21 We find 

h = ~ L
2{t2-slr2fH(t-sLr). (7.159) 

n r 
The second term in (7.154) can be treated in the same manner. The 

integral corresponding to (7.155) is 

1 i K i + t o o 

IT = — -A e;*e-(*r>P>-l>>iydi-_ (7 16Q) 
2ni p Jci-ioo 

20 Tables of integral transforms, ed. by A. ErdSlyi et al., Vol. 1. New York, McGraw-Hill 
Book Co. (1953), p. 16, No. 26. 

21 Tables of integral transforms, loc. cit., p. 277, No. 11. 
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Analogously to (7.159), the inverse Laplace transform of IT is 

IT = - y-(t2-s2
Tr2)*H(t-sTr). (7.161) 

n r2 

If f (t) is a Dirac delta function the one-sided Laplace transform f (p) 
is unity. The displacement u(x, y, t) then follows from (7.154) as 

= - ^ \L
2{t2s2

Lr2?H{t-sLr)- y-2(t
2-s2r2m-sTr) 

ox lr2 r2 
(7.162) 

For a f (/) of a more general form the convolution theorem of one-sided 
Laplace transforms can be used to determine the corresponding displace-
ment u(x, y9 i). 

7.9. The Cagniard-de Hoop method 

In the previous section the inverse transforms were obtained by evaluating 
the two inversion integrals one at a time. This process was aided consider-
ably by the availability of the results in tables of integral transforms. By 
inspecting eq. (7.155), the intermediate result (7.157) and the expression 
(7.159), it becomes apparent that the intermediate result (7.157) is more 
complicated than the final expression for IL. This suggests that there might 
be a more efficient method of obtaining IL directly from its double transform 
by inverting the two transforms in one operation, and not one at a time. 
Lamb was aware of this possibility, but the method was formally proposed 
within the context of the application of Laplace transforms by Cagniard, 
and in modified form by de Hoop.22 The Cagniard-de Hoop method is based 
on the following elementary property of the one-sided Laplace transform: 

JSf"1 { fVp'f(f)d/} = f(t)/f(f-*i). (7.163) 

To display the Cagniard-de Hoop scheme we return to the problem 
discussed in the previous section. Let us introduce the following sub-
stitution in the expression for JL, eq. (7.155), 

C =/"?, (7-164) 

2 2 A. T. de Hoop, Applied Scientific Research B8 (1960) 349. 
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where /?, which is the variable of the one-sided Laplace transform, is as-
sumed real and positive. The result can be written as 

1 1 f'71+ia 

2ui p" rji-ioo 

y-p\.(sL2-ti2)h- nx"dri, (7.165) 

where — sL < r\1 < sL. The idea of the Cagniard-de Hoop method is to 
deform the path of integration in the jy-plane in such a manner that the 
inverse Laplace transform of the integral along the new path of integration 
can be obtained by inspection, analogously to (7.163). 

The desired path of integration in the ?/-plane is obviously defined by the 
equation 

(ti-i2)*y-ix = '• 
Eq. (7.166) can be solved for rj to yield 

*?L±(r>0>O = - - c o s 0 ± i 
r 

It1 \* 
i I — -s2

L\ sin0, 

where the positive square root is taken. In eq. (7.167), 

and 
r2 = x2 + y2, 

tan0 = 

(7.166) 

(7.167) 

(7.168) 

(7.169) 

where 0 ^ 9 ^ n. In the 77-plane, eq. (7.167) describes a hyperbola, as 
shown in figure 7.11. If <^(rjL±) = 0, we have / = sLr9 and the vertex of 

v \ 

~SL 

\-V 

_J_V\ 

\fW 

h 
ft(v) 

Fig. 7.11. Cagniard-de Hoop contour. 

the hyperbola is thus defined by rj = — sLcos0. Since the modulus \rjL±\ 
becomes larger as / increases, the asymptote of the hyperbola is evidently 
defined by 



300 FORCED MOTIONS OF A HALF-SPACE [Ch. 7, § 7.9. 

&(>lL±) COS 9 
(7.170) 

The variable t apparently increases from sLr to oo as we move out along 
the hyperbola. We note that for 0 < 9 < n the vertex of the hyperbola is 
located on the real axis between the branch points at — sL and +sL. 

It is noted that the change of contour is very similar to the one introduced 
in section 7.6 for the simplification of certain integrals. It should also be 
mentioned that for the special case of y — 0 and within the context of 
exponential Fourier transforms the basic idea of the approach, which is 
based on the substitution ( = pq, eq. (7.164), was in fact included in Lamb's 
paper.23 

The transition to the Cagniard contour defined by rjL± is very simple in 
this case because no poles and branch points are crossed. Along the Cagniard 
contour we now introduce t as the new variable, which leads to 

p 2ni 

From (7.167) we find 

dt 

- r i ^ c - ' t t + r i ^ e - ' * ] . (7.171.) 
.Joo \ 3t I JsLr \ dt I J 

cos 9 

r *-CH' sin 0, 

and eq. (7.171) may thus be written 

/ L = -
1 sintf 

Since 

(7.172) 

(7.173) 

the inverse Laplace transform of IL may be expressed as 

sin 9 
IT■ = 

nr O-^'-^M*"' ' -* <™> 
According to eq. (7.169), sin 9 = y/r, and (7.174) can thus also be written 

as 

h = -li(t
2-slri)*H(t-sLr). 

71 /' 

(7.175) 

2 3 H. Lamb, loz. cit., p. 22. 
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In a similar manner we can determine 

iT = ̂ -i (— i p1+lVe-(^2-^dc). 

The appropriate Cagniard contour in the complex >/-plane is now defined by 

^ r ± ( r , 0, r) = — cos 0+ i 
r fe-°rf™°-

The result is 

i r = - 4 ( « 2 - 4 r 2 ) * H ( r - S r r ) . 
7T r 

(7.177) 

For the special case f(p) = 1, the displacement u(x9y,t) then follows 
from (7.154) as 

Q dx 

By substituting (7.175) and (7.177) we recover eq. (7.162). 

(7.178) 

7.10. Some observations on the solution for the line load 

By carrying out the differentiations in eq. (7.162) the displacement in the 
horizontal direction is obtained as 

2nfis 

Q 
Z u(x, y , t) = X4 

xy 
~~2 

T ( < " ^ T + si H(t-sLr) 

2{S-s\ry+ 

if-sir1)* 1 

H(t-sTr) S2T 

{t2s2
Tr2)\ 

(7.179) 

Eq. (7.179) agrees with the solution worked out by different methods by 
Eason et al.24 Expressions for the displacement in the ^-direction and for 
the stresses can be found in the paper by Eason et al. 

The expression (7.179) shows that disturbances are propagated out-
ward with the velocities cL and cT. The wave fronts are circles centered 
at the point of application of the load, and radii cLt and cTt, respectively. 
At the wave fronts the displacement shows algebraic singularities. This is 
due to the representation of the impulsive force by the idealized Dirac 

2 4 G. Eason, J. Fulton and I. N. Sneddon, Philosophical Transactions of the Royal 
Society {London) A248 (1956) 575. 
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delta function. Near the point of application of the load we find for large-
valued t 

u(x, y, t) 
2 2 

xy sT-sL 

Thus the displacement decreases with time. This is intuitively very acceptable 
since the load varies with time as a Dirac delta function. 

If the concentrated line load varies with time as a Heaviside step function, 
the displacement u(x, y, t) can be obtained by integration of (7.179). The 
result is 

2 „ 4 
2TI\XK r 

Q*y 

o 

I LPL-rtf- K-l- -r2V 
(sL \sl 1 sL \ST I 

r > 

— < r < — 
SL 

r < 

where 

CT SL 

According to the previously cited paper by Eason et al., the displacement in 
the j-direction is 

2„2 4nfiK r 

r ^ -

L<r<L ('-mBi+'H-f; +GMT 
(*-^;{6-r-"S-")V''*'C6*(p-'ri 

LsTr \slr2 i J 

Substitution of these results into the stress-strain relation yields 
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27CKV 

Q* 

0 r > -

sL \s£ / r" sL \ v J \si I sT sL 

Kt 

t 
r < — . 

S£ / J Sj 

It is noted that the displacements now are continuous at the wavefronts. 
If we let / tend to infinity, we find that 

2{K2-\)y2' 

2nr K L r 

in agreement with the expressions obtained from equilibrium theory. 

7.11. Transient waves in a half-space 

A study of transient waves in a half-space generated by a normal line load 
was included in Lamb's paper.25 By applying Fourier superposition Lamb 
presented explicit expressions for the field variables at the surface of the 
half-space for a line load of arbitrary time dependence. 

In this section we will employ the Cagniard-de Hoop scheme to de-
termine the stresses at any point in the medium due to a surface excitation 
at y — 0 of the form 

zy = -Qd(x)f(t) (7.180) 

hx = 0. (7.181) 

The equations governing the dynamic response of the elastic half-space 
are stated by eqs. (7.106)—(7.113). The half-space is initially at rest, and the 
initial conditions thus are given by eqs. (7.144) and (7.145). We will seek 
expressions for the field variables by applying the one-sided Laplace trans-
form over time and the two-sided Laplace transform over x. In anticipation 

25 H. Lamb, see fn. 16, p. 289. 
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of the use of the Cagniard-de Hoop method the following form of the two-
sided Laplace transform is used 

f\pn) = T e-"»f(x)dx. (7.182) 
J — oo 

The inverse transform is 

/ » f J l + l O O 

f{x) = - ^ e»*f*(pn)dn. (7.183) 
2.711 J tji - i oo 

These definitions imply that the substitution ( = prj, see eq. (7.164), is 
introduced within the definition of the two-sided Laplace transform. This 
leads to an appreciable simplification of the algebra. 

In the half-space y ^ 0 the appropriate expressions for <p* and ip* now 
are of the forms 

y* = *(p, rj)e-pyu (7.184) 

$*■= Y(p,rj)e-pyTy, (7.185) 

where 

lL = {sl-ri2)\ yT = (s2
T-r,2)\ (7.186) 

The corresponding transforms of the displacements and the stresses are 

u* = pw*-pyT$* (7.187) 

v* = -pyL<j>*-p,rf* (7.188) 

% = HpWr-2sl + 2n2)cp* - 2 i , y T ^ ] (7.189) 

f; = np\{s2
T-2n

2)<p* + 2r,yTr^ (7-190) 

C = W2[-2m^ + (4-V)n- (7-191) 

The boundary conditions (7.180) and (7.181) yield the following expres-
sions for 4>{p, r\) and ^(p, r\): 

Q f(p) s2
T-2r,2 

ti p2 R(n) 
<p(p,,,) = - « ^ ^ L (7.192) 

6 f(p) 2wL 

where 

y ( p . ? ) - - ^ - ^ ^ » (7-193) 
u P

z R(n) 

R(t,) = (s2-2t1
2)2 + 4r,2yLyT. (7.194) 
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To exemplify the remaining manipulations we will consider the inversion 
of f* in some detail. The inversion formula for the two-sided Laplace 
transform, eq. (7.183), leads to the expression 

*, = ~QpKp)(h + h\ (7-195) 
where 

IniJtu-iv R(rj) 

IT = — r i + t°° 4r]2yLyT
 eP(nx-yTy) (7.197) 

2niJrn-ioo R(rj) 

In both (7.196) and (7.197) we have —sL<rjl< sL. The equation R(*i) = 0 
is recognized as the equation for the slowness of Rayleigh surface waves 
along the free surface of an elastic half-space, see eq. (5.96) of section 5.11. 
Thus we know that R(rj) = 0 has two real roots at rj = ± sR, where sR = l/cR. 

For the integrals (7.196) and (7.197) there is now a slight complication 
in the application of the Cagniard-de Hoop method because the radicals 
yL and yT are not appearing in separate terms. Nevertheless the method 
still works very well. It is noted that the integrands have the following 
singularities in the complex 77-plane: branch points at rj = ±sL and 
rj — ±sT, and simple poles at r\ = ±sR. 

It is clear that the path defined by (7.167) casts the integrand of (7.196) 
in the desired form 

*/ .si 

GL(r,e, t)e~ptdt, (7.198) 

where 

GL(r, 0, t) = 
1 

n - R(ri) -

drj L + l (7.199) 
at 

where we have taken into account the symmetry of the path of integration 
with respect to the real axis. For the integrand of IT we need the path 
defined by (7.176). Now, depending on the value of 6 the vertex rj = —sT 

cos 9 of the hyperbola defined by Y\T± may or may not be located in between 
the branch points r\ = ±sL. If 6 lies in the range 

cos"1 (sJsT) g 0 s* 71 - c o s " 1 (sL/sT) (7.200) 

the situation shown in figure 7.12a prevails, and the inverse transform can 
be written out as before. If 9 < cos"1 {sLfsT) or n ^ 9 > n — cos"1 (sL/sT) 
we have to include the integral around the branch cut. For 0 < 9 < cos"1 
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(sL/sT) the contour is shown in figure 7.12b. 

7h,\ 

[Ch.7,§7.11. 

(a) cos~ \sLfsT) ^ 0 ^ (b) 6 < cos"1 (sJsT) 
71 — COS"1 (sLfsT) 

Fig. 7.12. Contours in the ??-plane. 

Since the deformation is symmetrical with respect to x = 0, we need 
to consider only the range 0 ^ 0 ^TT/2. The additional path around the 
branch cut then consists of a circle of radius e(e -* 0) centered at 77 = — sL, 
and two segments represented by 

r\TL = cos 0 + 
r (*-3-— I sin 0 + ie. (7.201) 

The range of t is found by equating rjLT to — sL and — .sy cos 0, respectively, 
and we find 

tTL^ t ^ s r r, (7.202) 
where 

tTL = sLr cos 0 + r(sj-s2
Lf sin 0. (7.203) 

The integral IT can then be converted into 

where 

h = Gr t (r , 0, ^ " " d f + Gr(r, 9, t)e-"'dt, 

n IL R(fi) J 

*00 

(7.204) 

(7.205) 

(7.206) 

By the use of the simple rule (7.163) the inverse Laplace transforms of 
(7.198) and (7.204) follow by inspection. Let us now return to eq. (7.195) 
and write out expressions for the stresses ry(x, y, i) due to the application 
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of a line load of magnitude g f (/). In view of the symmetry with respect to 
j c = 0 w e need to consider only the range 0 ^ 9 ^ n/2, but we have to 
distinguish between the ranges 0 ^ 9 ^ cos"1 (sLfsT) and cos"1 (sJsT) 
^ 9 = n/2. The results are 

ty(x, y, t) = -Q[(T,)L + (ty)TL4-(Ty)r]. (7.207) 

In the various time ranges the functions (Tr)L, (Tr)rL and (T},)r are shown 
in table 7.1. 

The pattern of wavefronts is shown in figure 7.13 for x ^ 0. At a time 
t after application of the line load the first term yields a disturbance in the 
region r <cLt. In the range 0 ^ 9 g cos" 1(sL/sT) the second term yields a 
disturbance in the shaded area. The wave motions in the shaded area are 

aun 

Fig. 7.13. Pattern of wavefronts. 

called "head waves", and they are generated because the longitudinal wave 
cannot satisfy the boundary conditions of vanishing stresses at the free 
surface. At position (x, y) the arrival time of the wavefront of the head 
wave corresponds to a longitudinal wave traveling the distance 
x—y[(sT/sL)2 — 1]"* with velocity cL, and a transverse wave traveling the 
additional distance .y [1 — (SL/ST)2]~*

 w ^ h velocity cT, as shown by arrows 
in figure 7.13. 

As 9 decreases to zero (or increases to n) the influence of the pole at 
rj = sR becomes more pronounced. For 9=0 the hyperbolic paths fold 
around the branch cuts, and the pole then gives rise to a singularity which 
propagates along the free surface (and only along the surface) with the 
velocity of Rayleigh surface waves. 

For an impulsive line load, i.e., a load applied as a (5-function in time, 
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numerical results were presented by Forrestal et al.26 Some of the results 
obtained by these authors are shown in figures 7.14 and 7.15. Note that the 
horizontal displacement vanishes after the transverse wave has arrived, 
except for a (5-function propagating with the velocity of Rayleigh waves. 
The vertical displacement shows an infinite discontinuity propagating with 
the velocity of Rayleigh waves. 

1.5 
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Fig. 7.14. Horizontal displacement at the free surface. 
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Fig. 7.15. Vertical displacement at the free surface. 

2 6 M. J. Forrestal, L. E. Fugelso, G. L. Neidhardt and R. A. Felder, Proceedings 
Engineering Mechanics Division Specialty Conference, ASCE (1966), p. 719. 
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7.12. Normal point load on a half-space 

The first formulation and solution of this problem is due to Lamb27, who 
synthesized the solution for the pulse from the one for a point load of 
harmonic time dependence. Here we prefer, however, to employ integral 
transform techniques. In this section we reproduce the expressions for the 
displacements at the free surface which were derived by Pekeris.28 The 
details are worked out for the vertical displacement and for the special 
case of a load which varies in time as a Heaviside step function. By linear 
superposition over time the solution can of course be employed to determine 
the response for any other time dependence of the surface load. 

7.12.1. Method of solution 

We consider an homogeneous isotropic half-space z ^ 0, whose free 
surface is subjected to a concentrated normal load of magnitude QH(t). 
The wave motion generated by the point load is axially symmetric, and it is 
thus convenient to employ a system of cylindrical coordinates (see figure 
7.16). 

QH(t) 

z 

Fig. 7.16. Point load on half-space. 

The boundary conditions at z = 0 may then be expressed as 

rrz = 0 

2nr 

(7.208) 

(7.209) 

where we have used that in cylindrical coordinates the delta function 
S(x)d(y) may be expressed as S(r)/2nr. 

For an axially symmetric motion the vector potential ty has a component 
\j/0 only. For convenience of notation we write \jf rather than i//e. The scalar 
potential q> and the single component of the vector potential depend on r, 

27 H. Lamb, fn. 16, p. 289. 
28 C. L. Pekeris, Proceedings of the National Academy of Sciences (USA) 41 (1955) 469. 
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z, and t only. By employing the formulas of section 2.13 the decomposition 
of the displacement vector may then be written as 

u = ^ - ^ (7.210) 
dr dz 

w = ^ + i« ( 7 2 U ) 

dz r dr 

The two potentials satisfy the following wave equations: 

d2(j) 1 dcj) d2(j). 1 d2(j) 

dr2 r dr dz2 c2
L dt2 

(7.212) 

a V 1 df d2\l/ xjj __ 1 d2i// 

dr2 r dr dz2 r2 c% dt 2 + - 7 + 7 T - l = l T I ' (7-213) 

The relevant stress-displacement relations are 

T2 = (A + 2M) — + --±-J (7.214) 
dz r dr 

( du dw\ 

~dz + ~d~r)' 
(7.215) 

The formulation of the problem is completed by a statement of the initial 
conditions. If the half-space is at rest prior to t = 0, we have for r2 + z2 > 0 

cp(r, z, 0) = <p(r, z, 0) = tfr(r, z, 0) = i£(r, z, 0) = 0. (7.216) 

The appropriate integral transforms for the problem stated by (7.208)-
(7.216) are the one-sided Laplace transform with respect to time, and the 
Hankel transform with respect to the radial variable r. 

After application of the Laplace transform, (7.212) and (7.213) reduce to 

*!f + i*? + < ! f , L 2 e (7.217) 
dr r dr dz cL 

8!? + i a £ + a V _ E , £ ^ (7-218) 
dr r dr dz r c T 

As discussed in section 7.3, the Hankel transform of order n of a function 
f(r) is defined as 

Jo 
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where /„({/*) is the ordinary Bessel function of order n. The inverse transform 
is 

f(r) = I" f"(S)JH(Sr)<dZ. (7.219) 
Jo 

In the present problem the Hankel transform of order zero must be applied 
to cp, and the Hankel transform of order unity to xjj. After integration by 
parts, (7.217) and (7.218) then reduce to the following ordinary differential 
equations: 

J 2 - H 0 
d * -a2cpH0 = 0 (7.220) 
dz 2 

2TH1 d2$ 
dz2 

-/?2i?H1 = 0. (7.221) 

Ineqs. (7.220) and (7.221), 
« = (Z2+s2

Lp2)\ fi = (Z2 + s2
Tp2)*, (7.222a, b) 

where as usual .s*L = l/cL and sT = \[cT. Solutions of (7.220) and (7.221) 
which show the appropriate behavior for large values of z are 

cpH0 = <*>({, p)e~*\ i?H1 = ¥>(£, p)e-». (7.223a, b) 

Application of the Laplace and Hankel transforms to the displacements 
and the stresses yields 

_H0 = d^_ +^Hl ( 7 2 2 4 ) 

dz 

uHi = - £ £ * < > - * ^ (7>225) 

dz 

*f° = M { ( 4 P 2 + 2 4 ^ H O + 2 C ^ } (7.226) 

f"1 = - „ {2£ ^ + ( s ^ 2 + 2c2)^1) . (7.227) 

The boundary conditions at z = 0, eqs. (7.208) and (7.209), are transformed 
into 

Tf ° = _ 9L 1 (7.228) 
271 p 

T?/ = 0. (7.229) 
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If the expressions for cpH0 and \j/H1
9 (7.223a) and (7.223b), are now used in 

conjunction with (7.226) and (7.227), the boundary conditions (7.228) and 
(7.229) yield the following equations for #(£, p) and W(£9 p): 

(s£/>2+2$2)*-2/tf¥ = -9L\\ 
2n \x p 

-2«£*+(sJp2+2{2)2» = 0. 

The solutions of this system are 

<p = _ Q i 1 s rP 2 + 2^2 

2K H p DH(£, p) 

y= -Q\ i_M_, 

(7.230) 

(7.231) 
2TI ii p DH(f, p) 

where 
DH(Z> P) = ( 4 P2 + 2i2)2 - 4 { V (7.232) 

By means of eqs. (7.222)-(7.225), (7.230) and (7.231), the Laplace-
Hankel transforms of the displacements may be written as 

wH0 = 9L - [(2£2 + s2/72Ka z-2£2e-^] — - (7.233) 
2;r fi DH p 

« f f l = ^ - [(2^2 + 52p2>"a z-2a^- / ? 2] -i- - . (7.234) 
27C p . DH p 

7.12.2. Normal displacement at z = 0 

Let us consider the displacements at the surface z = 0 in some detail. We 
begin by employing (7.219) to write out the inverse Hankel transforms, and 
then we proceed to introduce the substitution 

£ =pq> 
The results are 

w(r, 0, p) = £ £l f °° ^ ± ^ J0(Pr,r)dr, (7.235) 

* . o „ ) . « ! |"VK+V-2(,,^i)W+,?)>] 
2TI / J 0 #0?) 

where D(t}) is defined as 
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D(t,) = ( V + 5j)2-4flV+52)V + sJ)*. 
By the substitution ir\ for Y\ this expression becomes just the same as the 
corresponding denominator for the line load, which is given by eq. (7.194). 
The roots of D{r\) = 0 follow immediately from the roots of the Rayleigh 
equation which were discussed in section 5.11, i.e., 

i 
n = ± isR = ± —, 

where cR is the velocity of Rayleigh waves. 
The next step consists in evaluating the inverse Laplace transform by 

means of the Cagniard-de Hoop scheme. Here the details will be worked 
out for the vertical displacement only. In the inversion procedure we employ 
the following representation for the Bessel function / 0 ( * ) : 

2 f00 eixs 

n Ji (s — Yy 

This representation was earlier stated in chapter 4, prior to eq. (4.71). The 
Laplace transform of the vertical surface displacement can then be written 

K FJ n2 ii Jo D(rj) ' J i ( s 2 - l ) ^ 

In the upper half of the complex ^/-plane we have a pole at rj — isK, and we 
have branch points at rj = isL and rj = isT, respectively (see figure 7.17). 

isT 

isL 

0 
Fig. 7.17. 77-plane. 

Let us effect a change of contour from the real axis to the contour indicated 
by r in figure 7.17. The contour r consists of the imaginary axis plus three 
indentations around the points isLi isT and isR, respectively. It is easily 
seen that the integrations around the branch points isL and isT vanish as 
we shrink the indentations. The integration around the pole r\ — isK also 
vanishes, because the contribution to the integral is real-valued. Thus we 

B 
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only need to consider integrations along parts of the imaginary axis, the 
only complication being that the principal part must be taken for integrals 
across rj = isR. 

Since we are left only with an integration along the imaginary axis, we 
introduce the substitution r\ = iv, to obtain 

O si r°° f00 e~~pvrs 

vv(r, 0, p) = - 4 -I J \ m(iv)v dv — ds, 
n fi Jo Ji (s — ly 

where 
m(rj) = — — . 

D(n) 
It is now recognized that the second integral is of the form of a Laplace 
transform. Indeed, it is easily concluded that 

1 e-Pvrs H(t-vr) 
as — ( s *_ l )* (c-v2r2f 

Since the Laplace transform parameter does not appear in the first integral 
we may write 

W(r,0,t)=-%Slsr-pp-a, (7.237) 
7i2 ix Jo (t2-v2r2y 

Let us now examine m{r\) at various intervals along the imaginary axis 
in the f/-plane. We immediately find that m(rj) is real along OA. Thus, in 
view of (7.237) it is concluded that w(r, 0, t) = 0 if t/r < sL, or t < sLr. 
Along AB (see figure 7.17) we have 

m(iv) = ^ — . 
V ^ (s2

T-2v2)2+4iv2(v2-s2
L)\s2

T-v2f 

On the remaining part of the imaginary axis (v > sT) we have 

m(iv) = — . 
1 ^ (s2

T-2v2f-4v2(v2-sl)\v2-s2
T)± 

The foregoing results show that at a fixed position on the free surface, 
defined by a value of the radius r, the vertical displacement is expressed in a 
different form in three different time intervals. We have 

t ^ sLr w(r,0, t) = 0 

sLr^t^sTr w ( r , ( U ) = - % ~ ?i (-) 

O s2 

sTr^ t w ( r , ( U ) = ~—2 - Fi(sT) + F2 Q 
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where 
/t\ r''*v2-sins2T-2v2)2(t2-v2i*r* 

1 \rl JsL (s}-2v2)* + 16v\v2-sl)(si-v2) 

F M P r v(v2-sint2-v2r2y± 
2 \rJ J ST (s2

T - 2v2)2 - 4v\v2 - s 2 ) V - s2
T)± ' 

Here the symbol P indicates that the principal value of the integral must 
be taken. 

7.12.3. Special case X = \i 

For the special case X = \i we have c\ = 3c\, or sT — 3sl. The roots of 
D(rj) = 0 can now be expressed explicitly as 

^ = ± ^ ( 3 + 73)*. 

In terms of the dimensionless time 

_ t 

sTr 

the displacement at the surface of the half-space can then be written as 

T < — : W(T) = 0 
V3 

1 ^ i / x 2 1 3 
— ^ T < 1: W(T) = - ¥- - -
V3 n \i r 

where 

l g r : w(t) = - ^ - - [ G , ( T ) + G 2 (T)] , 
n H r 

G W - p f s ( 5 2 - ^ ( l - 2 s 2 ) 2 d s 
1V J I / V 3 ( T 2 - S 2 ) * ( 3 - 2 4 S 2 + 5 6 S 4 - 3 2 S 6 ) 

G M = P P s V - l ) W - ^ 
' J t (T2 - s2)*(3 - 24s2 + 56s4 - 32s6) ' 

In this form the solution was obtained by Pekeris29, who also further 
evaluated the integrals. According to Pekeris the vertical displacement can 
be expressed as 

19 C. L. Pekeris, fn. 28, p. 310. 
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T < W(T) = 0 

— < T < 1: 

V3 

V3 (3V3 + 5)̂  (3V3-5)* 

(7.238) 

(7.239) 
32n^r\ (T 2 -* )* (̂  + iV3-t2)* (T2 + iV3-|)*J 

1 £ t < K3 + V3)* w(r) = "f - - (6- ^ 3 / t 5 ) U (7'240) 

16TT IZ r I (4 + A J 3 - ' r W 

r ^ i ( 3 + V3)* ^ ) = ^ 1 1 (7.241) 

In these expressions T = i(3 + v'3)* *s ^ e ^ m e of arrival of the disturbance 
which travels with the velocity of Rayleigh waves. This disturbance is 
usually called the Rayleigh wave. 

The vertical displacement {nfirjQ)w{x) is plotted versus T in figure 7.18. 

-0.6 I-

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

I P S R 
t M 

0.4 0.8 1.2 1.6 2.0 

Fig. 7.18. Vertical displacement at the free surface according to eqs. (7.238)-(7.241). 
P denotes arrival time of the longitudinal wave, S of the transverse wave, and R of the 

Rayleigh wave. (After Pekeris.) 

For a fixed value of r this figure shows the displacement as a function of 
time. We see that the first disturbance arrives at / = rjcL. At t = r/cT the 
displacement shows a discontinuity in the slope of H>(T). The displacement 
becomes infinite at / = r/cR, where cR is the velocity of Rayleigh waves. For 
/ > r/cR the displacement remains constant and equal to the static solution. 
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Although the evaluation of the integrals is somewhat more complicated, 
the radial displacement can be computed in a similar manner. The expres-
sions can be found in the previously cited paper by Pekeris. The propagation 
of transient waves generated by a normal point load which is suddenly 
applied and then moves rectihnearly at a constant speed along the surface 
was investigated by Gakenheimer and Miklowitz.30 The displacements are 
derived for the interior of the half-space and for all load speeds. For the 
limitcase of zero load velocity, which corresponds to the problem discussed 
in this section, curves showing the displacements in the interior of the half-
space were presented by Gakenheimer.31 

The wave motion generated in a half-space by a tangential point load was 
treated by Chao.32 

7.13. Surface waves generated by a normal point load 

The expressions for the normal displacement, eqs. (7.238)-(7.241), show 
that the largest disturbances at the free surface arrive with the velocity of 
Rayleigh waves. The expressions also show a geometrical attenuation with 
increasing r. In view of these results it is to be expected that at a large dis-
tance from the point of application of the load only the disturbances ar-
riving with the velocity of surface waves will be of appreciable magnitude. 
This is well confirmed by experiments and seismological experience. 

Analytically the Rayleigh wave effects correspond to the contributions 
from certain poles in the integrands of the inversion integrals. These con-
tributions are generally not difficult to extract from the integral representa-
tion of the complete solution. Thus, it may very well be possible to find a 
simple expression for the surface wave for cases that closed-form expressions 
for the complete solution are not attainable. 

For the dynamic response of a half-space to a point load we will examine 
the displacements and the stresses corresponding to the surface wave. These 
surface wave effects were investigated by Chao et al.33 

By employing eqs. (7.233) and (7.234) and the formal inversion integrals, 
which are defined by eqs. (7.21) and (7.32), the displacements may be 
written as 

3 0 D. C. Gakenheimer and J. Miklowitz, Journal of Applied Mechanics 36 (1969) 505. 
31 D. C. Gakenheimer, Journal of Applied Mechanics 37 (1970) 522. 
32 C. C. Chao, Journal of Applied Mechanics 11 (1960) 559. 
3 3 C. C. Chao, H. H. Bleich and J. Sackman, Journal of Applied Mechanics 

28 (1961) 300. 
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i (Z~\*A*\ r h ; 2 , 2 h - « z 0*2 -/Jz-, a o t d p 

47T2/i/ 

w = 
47C2/i1' 

v 0 J E-ico Dfj 

/* 00 /• £ + i 00 1 

J,(«r)§2dd [(2^ + s^ 2 ) e - a z -2 a ^ - " I ] ^ - e ' " 
•'O J e - i o o D w 

(7.242) 

dp 

(7.243) 

In the complex /7-plane poles are located at the zeros of the equation 
DH = 0. This equation has two zeros corresponding to Rayleigh waves. For 
the special case X = [i, when c2

L = 3c2-, these roots can be written out 
explicitly: 

p = ± — , where y = ±(3 + \ / 3 ) * 
sTy 

By computing the residues in the standard manner the contributions from 
the Rayleigh poles in the p-plane can now easily be determined. Let us just 
illustrate the computations by considering the term 

IniJO Je-ico VH 

*TP ) e-«z + Pt&P 

The contributions from the Rayleigh poles are 

h = f Vo(fr) 
Jo 

a(2£2 + s 2 p 2 )^_ g z + p/ 

pdDH/dp 

+ 
/*00 

Jo ^J° (^ ) 

Some simple computations show that 

dDH 

dpJ 

d£ 
p = +iZ/sTY 

q(2£2+s2p2) 

- pSD„ldp 

8£4 

-<xz + pt d£. 
P= -iZ/STY 

p= ±iZ/sry y2V3 
We introduce 

m — z + i (:>'-»*]• 
where T = t/sTr. The integral then becomes 

•2 i W % 2 . 

4y Jo 
d£. 
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The integral over the Bessel function can be evaluated34 and we obtain 

h = 
(3y2 - !)*(! -2y 2 ) 1 

4y r L( l -m 2 ) 2U 

This result agrees with what was derived by Chao et al. 
The second term in (7.242) as well as the two terms in (7.243) can be 

evaluated similarly. In this manner the contributions from the surface 
disturbance to w(r, z, t) and w(r, z, t) were obtained by Chao et al. as 

t i Q ( 3y 2 - l )* A l - 2 y 2 , 2y2 

n\xr 8y 
J \-2t 

(m2-l)* ' {n2-\f 
(7.244) 

Tifir 8 
1 -

( m 2 - l ) * J 

+ 2 ( y 2 - l ) ^ ( 7
2 - ^ 1 -

(n2-l)^J 
(7.245) 

where n = (l/y)[T + /(z/r)(y2-1)*]. 
Since only the Rayleigh phase is being considered, these expressions are 

applied only to shallow depths (z/r <C 1) and to values of the time near the 
arrival time of the Rayleigh wave (T = y). Using these restrictions Chao 
et al. simplified (7.244) and (7.245) to the final form 

w = X 1 ( y 2 - i ) M [ ( l - 2 y 2 ) Z r } + 2y2Z2^] (7.246) 

u = K 1 y ^ [ ( l - 2 y 2 ) Z r i + 2 ( y 2 - l ) V - i ) % " i ] ^ (7.247) 
where 

Zi = 

z, = 

Itfi 8^2 l)'/ \rz. 

~r(x-y)
+i(y>-W 

Z 

r ( r -y ) 

From these expressions for the displacements, expressions for the stress 
components may be derived by routine differentiations; where z / r « l , 
and T = y are used again. Here we list just r2(r, z, /); the other stress 
components can be found in the article by Chao et al. 

3 4 See N. W. McLachlan, Bessel functions for engineers. London, Oxford University 
Press (1934), p. 160, nr. 44. 
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rz = K 2 ( 2 7
2 - l ) 2 ^ [ Z r * - Z 2 - * ] ( (7.248) 

where 

K, = 
n 16^/2 \y ©ere 

It is noted that the expressions for the displacements and the stress are in 
terms of a single parameter, the nondimensional time T. In figure 7.19 the 
stress TZ is shown as a function of r(x — y)/z. 

10 H 102 r'2 z~2rz/a 

Fig. 7.19. Surface effect. 

As can be seen from (7.246)-(7.248), the surface effects attenuate with 
distance from the point of application as r~*, as opposed to the other 
components of the solution which decay as r"1 . The physical explanation 
is that the surface effects are essentially cylindrical waves, while the body 
waves are essentially spherical waves. The difference in geometrical at-
tenuation is the reason why at a large distance from the point of applica-
tion the surface effects form the major part of the propagating disturbance. 

7.14. Problems 

7.1. The wave motion generated in an initially undisturbed elastic half-
space by the application of a spatially uniform surface pressure p{t) was 
analyzed in section 1.3. Re-derive the solution by applying the one-sided 
Laplace transform with respect to time. 

7.2. A spherical cavity in an unbounded elastic medium is rapidly pres-
surized. The governing equations are stated in section 4.3. Obtain the 
solution for the potential <p(r9.t) by applying the one-sided Laplace trans-
form with respect to time. 

7.3. An unbounded medium is subjected to a time-harmonic concentrated 



322 FORCED MOTIONS OF A HALF-SPACE [Ch. 7, §7.14. 

line load which may be represented by 

F = jQS(x)S(y) sin cot. 

Examine the steady-state displacement response by employing the exponential 
Fourier transform over the coordinate x. 

(a) Evaluate the inversion integrals rigorously. 
(b) Employ the method of steepest descent to obtain approximations 

for the integrals. 

7.4. Suppose an unbounded elastic medium is subjected to an antiplane 
line load. The line load generates horizontally polarized shear motion of 
the medium. The motion is governed by 

d2w d2w _, . c / .r/ x 1 d2w 
TY+—2 +5(x)S(y){(t) = ~2—2, 
ox oy Cj dt 

where f (t) determines the strength of the line source as a function of time; 
it is assumed that f (/) = 0 for / < 0. It is further assumed that the medium 
is at rest prior to / = 0. 

Determine w(x, y, t) by means of the Cagniard-de Hoop method. 

7.5. An elastic half-space is subjected to a uniform pressure distribution 
over half of its surface, i.e., 

y = 0 h= -QH(x)((t) 

T = T = 0 

Determine the displacement component v on the surface y = 0 for x < 0. 

1 

l l l l l . 
V 

7.6. A quarter-space is subjected to a concentrated point load which is 
applied at a distance a from the edge. The boundary conditions on the 
surface x = 0 are 

Tvz = T\:V = 0 and u = 0. 
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The Poisson's ratio of the material is v 
displacement at x = 0, y = 0. 

0.25. Determine the vertical 

a 
^ 

♦y 

7.7. An initially undisturbed unbounded medium is subjected to a point 
load. State the problem in cylindrical coordinates and use the Hankel 
transform and the one-sided Laplace transform to determine the displace-
ment in the radial direction. Invert the transforms by means of the 
Cagniard-de Hoop method. Check the result with the expression stated 
in problem 3.3. 

7.8. A circular cylindrical hole of radius a in an unbounded medium is 
subjected to shear tractions in the plane z = 0. The shear tractions are 
uniformly distributed along the circumference. The boundary conditions 
at r = a are 

zrQ = T0S(z)H(t) 
Trr = Xrz = 0. 

Prior to time / = 0 the medium is at rest. 

(a) Show that the wave motion involves the circumferential displacement 
v(r, z, t) only. 

(b) Write the equation governing v(r, z, /) and solve the problem by 
application of integral transform techniques. 
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7.9. The surface of a circular cylindrical cavity of radius a in an unbounded 
medium is subjected to an antiplane shear load which is independent of the 
axial coordinate. The boundary conditions are (r = a) 

Tr2 = T0S(0)H(t) 

Trr = Trd = 0. 

The medium is initially at rest. Find expressions for the axial displacement 
w(r, 0, t). 

Hint: Note the symmetry with respect to the plane 0 = 0 . Restate the 
problem for the domain — n ^ 0 ^ n and relate the problem to a problem 
for the region — oo < 0 < oo. 

7.10. Consider two quarter-spaces of distinct solids which are perfectly 
joined along a common boundary defined by x = 0. The surface y = 0 is 
subjected to surface tractions of the forms 

x ^ 0 

x > 0 
t „ = TxH{i) 

hz = T2H(t). 

/ / / / / / / / r \ \ \ \ \ v \ \ 
A 
A 
A 

*?,/< / ' 2 - / < 2 

Define 

y 

(cT)2 t 
m = 

(cr)i ^1 

^ i 

and show that the interface stress at x = 0 is given by 
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0 < rj <; m: 

n xxz , l + ( l - w 2 ) * c(a2-b2) ( . b + mrj . b-mr]) 
- — = -c In —^ -— + ——. ^ - arcsin + arcsin -
2 Tl r] 2b(m2-b2y\ m + brj m-brj) 

. , m + (m2 — rj2)^ ckia2 — b2) ( . mb + ti . mb — ri 
+ ck In — —- {arcsin h arcsin 

Y\ 2b{\-b2y\ m + brj m-brj 
m ^ rj :g 1: 

7r TX, , l + f l - w 2 ) * c (a 2 -b 2 ) ( . b-mn . b + mw 
-- — = — c In — -^— — -'- (arcsin —arcsin 2 7\ r] 2b(m2-b2f\ brj-m br\ + m 

where 

2 km2 — n , ? fc2w2—1 fc — n T2 

a2 = , b2 = — , c = - — , n = - . 
/c-n / c 2 - l / c 2 - l 7\ 

Examine the singularity at rj = 0. 



CHAPTER 8 

TRANSIENT WAVES IN LAYERS AND RODS 

8.1. General considerations 

The simplicity and elegance of the analysis of transient waves in unbounded 
media does not extend to bodies of finite dimensions. The complications 
are caused by the reflections of the wave motion at the bounding surfaces. 
For horizontally polarized shear waves reflections can still be analyzed in a 
simple manner on the basis of considerations of symmetry or antisymmetry 
with respect to the reflecting surface. It is, however, implicit in the discussion 
of section 3.11 that symmetry considerations are of no use for the reflection 
of more general types of wave motions, except if the physically less realistic 
mixed conditions are assumed to hold at the reflecting surface. Consequently 
it is rather complicated to determine the transient wave motion in simple 
waveguides such as layers and rods where a myriad of reflections take place. 
Simple closed form expressions for the field variables generally can be 
obtained only for short times, or for long times and at large distances of 
the external disturbances, or for any time but then only near the wavefront 
separating the disturbed from the undisturbed part of the layer. The short-
time solutions are obtained by tracing a few of the reflections. For the long-
time and far-field solutions it is assumed that a steady-state pattern has been 
established across the cross section of the waveguide. Within the context 
of transient motion in plane strain of a layer the near- and far-field solutions 
were recently reviewed by Miklowitz.1 

In this section we will consider transient waves in a layer and in a rod. 
It is instructive to start with an analysis of two-dimensional antiplane 
shear motions in a layer. For shear waves the expressions for the field 
variables, which are simple in form, provide some interesting insights in the 
forced motions of waveguides. In subsequent sections we consider the more 
complicated cases of wave motions in plane strain in a layer and axially 
symmetric wave motions in a rod. 

1 J. Miklowitz, in: Wave propagation in solids, ed. by J. Miklowitz. American Society 
of Mechanical Engineers (1969), p. 44. 

326 
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8.2. Forced shear motions of a layer 

In an (x, y9 ^-coordinate system a semi-infinite layer occupies the domain 
defined by x ^ 0, -h <; y ^ h, and - o o < z < oo. The geometry is 

Fig. 8.1. Semi-infinite layer. 

shown in figure 8.1. We consider a layer which is free of tractions on the 
faces of the layer, i.e., 

dw 
at y = ±h 

dy 
(8.1) 

Prior to the application of external disturbances the layer is at rest 

w(x, y, 0) = vv(x, y, 0) = 0 for x > 0. 

Suppose that the semi-infinite layer is subjected at x = 0 to time-varying 
shear tractions (at x = 0): 

dw 
rxz = fi- = roof (0, 

OX 

(8.2) 

where f (/) = 0 for / < 0. 
The dynamic response of the layer can be computed from the response 

of an unbounded medium by invoking symmetry considerations, as dis-
cussed in section 3.11 and illustrated in figure 3.3 for the case of a line load. 
In that manner the field variables are obtained as infinite series, each 
higher-order term representing a reflected wave. Only for very small times, 
or very close to the wavefront separating the disturbed from the undisturbed 
part of the layer, will the series consist of a small and therefore manageable 
number of terms. 
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Alternatively the field variables can be expressed as a superposition of 
terms which show a trigonometric dependence on the thickness coordinate 
y, and which are selected to satisfy the boundary conditions on the faces 
y = ±h. These superpositions imply the assumption that a stationary 
pattern has been established across the thickness of the layer. The super-
positions can be obtained by superposing modes of wave propagation for 
a time-harmonic excitation, or by application of integral transform tech-
niques. As a preliminary it is instructive to examine the steady-state response 
of the layer. 

8.2.1. Steady-state harmonic motions 

The results of chapter 6 show that a rather special external disturbance must 
be applied to produce a specific single mode of wave propagation in a wave-
guide. Consider, for example, a symmetric mode of horizontally polarized 
shear motion in a layer, 

wn = An cos ir^\ e xP [i(fen*-<*>')]> (8-3) 

where n = 0, 2, 4, . . ., and 

/c„ = ®'- © 
2-1 ± 

(8.4) 

It is evident that (8.3) can represent the steady-state wave motion generated 
in a semi-infinite layer* ^ 0 by a displacement applied at x = 0, of harmonic 
time-dependence with frequency co, and distributed across the thickness as 
cos {nnyjlh). Whether this particular mode propagates unattenuated or is 
evanescent depends on whether k is real or imaginary, which in turn depends 
on the forcing frequency, the mode number n and the parameters cT and h, 
as can be seen from eq. (8.4). If the externally applied displacement is time-
harmonic, but distributed across the layer thickness in a manner which does 
not coincide with any of the trigonometric mode functions, an infinite 
number of modes is excited simultaneously. The relative amplitudes of each 
mode can be determined by a simple Fourier analysis. 

Let us consider the case that T(y) is symmetric with respect to y = 0, 
but otherwise arbitrary. It is then to be expected that the traveling wave 
can be expressed by a summation over the symmetric modes 

w(x, y,t)= £ An cos l^f] exp [i(knx-cot)]9 (8.5) 
n = 0 ,2 ,4 , . . . , \ 2H I 
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where An is the amplitude of each mode and kn is defined by (8.4). Thus 
given co, the wavenumber of each mode, which may be real or imaginary, 
can be computed from (8.4). The larger the forcing frequency, the more 
propagating modes are excited. 

The solution (8.5) clearly satisfies the condition (8.1) that the surfaces 
y — ± h are free of tractions. The expression for xxz corresponding to (8.5) 
may be written as 

?X2(x, y,t)= £ Bn cos ( ^ ) exp (XM-cof ) ] . (8.6) 
11 = 0 , 2 . 4 , . . . , \2h / 

Thus, we find that (8.2) is satisfied if 

roo- i B^os(~)- (8-7) 
11 = 0 , 2 , 4 , . . . , \2h / 

To determine the coefficients Bn both sides of this equation are multiplied 
by cos (mny/2n), where m is an integer, and both sides are subsequently 
integrated between y = —h and y = +h. Employing the orthogonality 
of the trigonometric functions, we find 

Bo = 7 \T(y)dy (8.8) 

Bn = j CT(y) cos (n-^\ dy, n = 2, 4 , . . . , (8.9) 
hJo \ I n 1 

where the symmetry with respect to y = 0 has also been employed. For 
the special case T(y) = T0 the integrals in (8.9) vanish. Only the lowest 
mode is then generated, and B0 — T0. 

As an example we consider 

m- h J 
To, (8.10) 

where /? ^ a. The coefficients are obtained as 

Bo = (a-i/0ro 

Bn = ( - ) jS70 n = 2, 6, 10,. . 

£rt = 0 n = 4, 8, 12, . . 

The relative importance of the higher modes depends to some extent on 
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the ratio a//?. If a//? > 1, we have B0 > iPT0, and BJB0 is smaller than 
2(4/nn)2. 

8.2.2. Transient motions 

One way of determining the transient motion is based on the representation 
of the function f(t) appearing in eq. (8.1) by a Fourier integral. Analogously 
to the examples treated in sections 1.9 and 4.3 the induced wave motion 
then takes the form of a summation over integrals, where the frequency o 
is the integration variable. Although these integrals can be evaluated we will 
not pursue that approach. Here a somewhat more direct approach is 
employed, whereby at the outset the displacement is assumed in the form 

w(x,y,t) = £ WH(x,t) cos ( ^ ) . (8.11) 
11 = 0 , 2 , 4 , . . . . \2h / 

This expression satisfies the boundary conditions (8.1) at y = ±h. Sub-
stitution of the series (8.11) into the governing equation for horizontally 
polarized shear motion shows that Wn(x, t) must satisfy the partial dif-
ferential equation 

^_( - )V„ = i ^ . (8.12) 
dx2 \2hJ " 4 dt2 K ' 

Let us now apply the one-sided Laplace transform over time t, to obtain 

d2Wn [if) + (5) ] "■ - °' (8'I3) 
dx2 

Assuming that T(y) can be represented by 

T(y)= £ * n c o s ( ^ ) , (8.14) 
« = 0 , 2 , 4 , . . . f \ 2/2 / 

the solution of eq. (8.13) which displays the appropriate behavior at x = 0 
and x -+ 00 is 

Wn(x, p) = - C r f " f ( ^ *-<'a+*»a>*<*/*r>, (8.15) 

where 

«* = n - ^ . (8-16) 
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In a table of Laplace transforms2 the inverse of 

-(p2+an)±(x/cT) 

331 

(P2+<) 2\i 

can be found as 

Jo :K)«-
0 when 0 < t < — 

cT 

2 \ * 1 
when t > 

In view of the convolution theorem for one-sided Laplace transforms 
Wn(x, t) can thus be written as 

Wm ;(*, o = - c-±Bn P fit-s)j0 \(s2- x~)\n] ds. 

For the special case of an impulsively applied stress, when 

f (0 = 5(t), 

the displacement for / > x/cT may be expressed as 

w(x, y> t) = - - X B„J0 lit
2- M flJ cos te). 

/ i n = 0,2,4 L\ CT/ J \ 2/l / 

This solution shows that the displacement pulse is subjected to dispersion. 
At the wavefront, where t = x/cT, the magnitude remains unchanged. Due 
to the unrealistic nature of the forcing function the displacement is dis-
continuous, with a jump of magnitude 

8.3. Transient in-plane motion of a layer 

For the study of impact phenomena in layers it is of great interest to in-
vestigate the transient waves generated in a layer by the application of a 
normal line load of rapid time variation. The geometry is shown in figure 
8.2. If the line load is independent of the z-coordinate, the induced wave 

2 Tables of integral transforms, ed. by A. Erd&yi et al., Vol. 1. New York, McGraw-Hill 
Book Co. (1953), p. 248, No. 24. 
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motion is in plane strain. The governing equations then are the same as 
those used in section 7.7 for the investigation of waves generated in a half-
space by a line load. 

' QHt) 

y\ 

Fig. 8.2. Line load on a layer. 

8.3.1. Method of solution 

As the problem is depicted in figure 8.2 the boundary conditions are 

at y = +A: zy = -Qf(t)6(x)9 xyx = 0 (8.17) 

at y = -h\ zy = 0, xyx = 0. (8.18) 

Rather than work with the boundary conditions (8.17) and (8.18), we 
decompose the problem into two separate problems with inhomogeneous 
boundary conditions on both y — +h and y = —h. The decomposition is 
indicated in figure 8.3. It is clear that the problem depicted in figure 8.3(A) 
is antisymmetric with respect to y = 0, while the problem of figure 8.3(B) 
is symmetric with respect to y = 0. 

QUt) 2Qf(f) i \QHt) 

-f 'U 

"1 " l ^ 7 

(A) 

(t) 

(B) 

Fig. 8.3. Decomposition into antisymmetric and symmetric problems. 

The respective boundary conditions are 
Antisymmetric problem, figure 8.3(A): 

y = +h: zy = -iQf(t)d(x), 

y = -h: x, = lQf(t)5(x), 

Tyx = 0 (8.19) 

(8.20) 
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Symmetric problem, figure 8.3(B): 

y = +h: T, = -iQf(t)d(x), T „ = 0 (8.21) 

y = -h: xy = -$Qf(t)S{x), xTX = 0. (8.22) 

Since the layer is at rest prior to time / = 0, the initial conditions are 

<p(x, y, 0) = <p(x, y, 0) = i//(x, y, 0) = ij/(x, y, 0) = 0. (8.23) 

The two problems are solved by applying integral transform techniques. 
We apply the one-sided Laplace transform with respect to time and the 
exponential Fourier transform with respect to the variable JC. These trans-
forms are defined by eqs. (7.20) and (7.7), respectively. Denoting the 
Laplace-Fourier transforms of q>(x9 y, t) and i//(x, y, t) by <p*(£, y, p) 
and {j/*(£9y,p)9 respectively, we find from (7.108) and (7.109) 

^ - « 2 + ^ 2 ) < P * = 0 
dy2 

^ - ( £ 2 + 4 P 2 ) ^ = O, 
dy2 

where p is the Laplace transform parameter and £ is the parameter of the 
exponential Fourier transform. For a layer appropriate solutions of these 
equations are 

<p*(£, y, p) = Ax sinh (ay) + A2 cosh (ay) (8.24) 

$*(S,y>p) = * i sinh (fty) + B2 cosh {fiy\ (8.25) 
wherein 

a = (i2 + s2
L p

2)\ P = (e + s2
T p

2)\ (8.26a, b) 

The expressions for <p*(£, y,p) and *?*(<!;, y,p) show some obvious similar-
ities with the expressions for the potentials <P(x2) and *F(x2) which appear 
in the study of free time-harmonic wave motion of a layer, see eqs. (6.61) 
and (6.62). 

For the solution of the antisymmetric problem we obviously need the 
terms of (p* and ip* which correspond to antisymmetric motions. These are 

y* = A1 sinh (ay), \p* = B2 cosh {fiy). (8.27a, b) 

Upon application of the Laplace and the exponential Fourier transforms 
to eqs. (7.112), (7.113), (8.19) and (8.20), we find that the boundary con-
ditions (8.19) and (8.20) are satisfied if 
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[A(-{2 + a2) + 2ii(x2]A1 sinh (aft) + 2//i<Jj852 sinh (fih) = -$Qj(p) 

-2i^<xA1 cosh (<xh)+(£2 + p2)B2 cosh (0A) = 0. 

The solutions for Al and B2 are 

i i = . l Q (£2 + /?2)cosh(/?ft) / ( r f 

2 /i Dfl 

= _ 1 Q 2ifr cosh (aft) , . . 
2 2 /i Dfl 

where 

Da = (j32 + £2)2 sinh (aft) cosh (ph)-4£2 a/? sinh (/?ft) cosh (aft). (8.28) 

For the symmetric problem defined by (8.21) and (8.22) the appropriate 
expressions for <p* and \//* are 

q>* = A2 cosh (ay), $* = B1 sinh (/?y). 

The symmetric boundary conditions yield 

[^(-^2 + a2) + 2/za2)]^2cosh(aft) + 2/>^51cosh(^ft) = -tQf(p) 

-2i£<xA2 sinh (aft) + (^2+i?2)^1 sinh {fih) = 0. 

The solutions of these equations are 

A2mt_iQ{?+r)**vh)m (8.29) 
2 ix Ds 

^ = ^ l g 2 ^ a sinh (af t ) / ( p ) ? ( g 3 Q ) 

2 \i Ds 

where 

Ds = (£2 + j32)2 sinh (fih) cosh (aft)-4£2a/? sinh (aft) cosh (fih). (8.31) 

We will work out some of the details of the inversion process for the 
longitudinal stress xx at the free surface y = +h. By employing (7.111) the 
Laplace-Fourier transform of xx is obtained as 

dy 
Aty — +h we have 

Antisymmetric problem: 

*,*- -wm.p)J(p)ii>JLz.p)> 
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where 

Na(e,p) = (£2 + £2)2sinh(afc) cosh (/?/*) +4£2a/? cosh (ah) sinh (fih)9 (8.32) 

and Da(£9 p) is defined by eq. (8.28). 
Symmetric problem: 

*,* = -$QNS(Z, P)J{P)IDS(Z, P), 
where 

Ns(£, p) = {£2 + P2Y cosh (ah) sinh (/?&) +4£2a£ sinh (aft) cosh (fih). 

8.3.2. Inversion of the transforms 

By the use of the inversion integrals defined by eqs. (7.8) and (7.21) of 
chapter 7, formal representations for the stress component TX(X9 y9 t) can 
be written as: 

Antisymmetric problem: 

^.-^f-e-^r-^LzVdi, (8.33) 
8ft J J - o o Jy-ioo Da(£, p) 

Symmetric problem: 

t x . _ 4 . r e - « . d € r - ^ r t ^ d p . (8.34) 

In both (8.33) and (8.34) we have used 

I(P) = 1, 
which corresponds to 

/(o = m 
where 5(r) is the Dirac delta function. Thus from now on we consider the 
case that the loads are applied impulsively. Stresses generated by loads 
varying in a more general fashion can be determined by the use of the super-
position principle. 

It is relatively simple to evaluate the integrals in the /7-plane. Inspection 
of the terms in (8.33) and (8.34) shows that the integrands are even in a 
and p. Consequently the integrands do not have branch points, even though 
the radicals a and p are themselves multivalued. The absence of branch 
points renders the evaluation of the integrals by contour integration in the 
/?-plane a rather straightforward matter. By closing the contour in the left-
half plane it follows that the integral along the path defined by M(p) = y 
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is equal to 2ni times the sum of the residues, since the integral along the 
closing contour in the left-half plane vanishes as \p\ increases beyond 
bounds. The positions of the poles in the complex /?-plane are the zeros of 
Da(£,p) and Ds(£, p) in eqs. (8.33) and (8.34), respectively. 

By introducing the substitution 

P = ico, 

we find that the equations Da(£, p) = 0 and Ds(£, p) = 0 become 

(£2-q2)2 sin (ph) cos (qh) + 4£2pq sin (qh) cos (ph) = 0 (8.35) 

and 

(£2 - q2)2 sin (qh) cos (ph) + 4£2pq sin (ph) cos (qh) = 0, (8.36) 

respectively, where 

2 U>2 *2 2 0>2 *2 
p = — -Q , q = -j - c • 

cL cT 

Eqs. (8.35) and (8.36) are recognized as the Rayleigh-Lamb frequency 
equations, which were earlier presented in chapter 6 as eqs. (6.69) and 
(6.68), respectively. These equations and the corresponding frequency 
spectrum were examined in some detail as part of the study of straight-
crested time-harmonic waves in a layer. Thus we know that for every value 
of £, there is an infinite number of solutions for a>„, corresponding to the 
frequency of each mode for the wavenumber that is considered. The im-
plications of these results for the evaluation of the integrals in the /?-plane 
are that we have an infinite number of poles located on the imaginary axis at 

pn = ±icon9 

where con are the roots of the Rayleigh-Lamb frequency equation, with £ 
as a variable. The poles are all simple poles and the residues can be de-
termined by employing a well-established formula. For the antisymmetric 
problem the resulting expression for rx(x, h, t) is 

t x _ _ f i f V « . £ [ r i ^ l +\£!L] U. (8.37) 

A completely analogous expression can be derived from (8.34) for the stress 
TX of the symmetric problem. 

The further evaluation of (8.37) is still a major task which will be carried 
out by approximation. 
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8.3.3. Application of the method of stationary phase 

An exact analytical evaluation of the integral (8.37) representing TX as a 
function of x and t does not appear to be possible. The two alternatives are 
numerical integration or approximate evaluation of the integral by one of 
the methods discussed in chapter 7. By the use of an electronic computer 
numerical evaluation is very well feasible although it requires a rather 
extensive programming effort and also considerable computer time. If one 
wishes to have detailed information on TX(X, h, t) over the whole range of 
time, numerical integration is, however, a necessity. If, on the other hand, it 
is sufficient to know the stress at relatively large values of time, a simple 
approximation can be obtained by employing the method of stationary 
phase. 

Since p'^DJdp and Na are clearly even functions of/?, eq. (8.37) can be 
written as 

2n*J - o o n = : 

sin (a)n t) 

2nJ -oo n = l COn .dDJdp. 
(8.38) 

At p = iton the Rayleigh-Lamb frequency equation Da(ico, £,) = 0 holds, 
and it follows from eqs. (8.32) and (8.28) that Na may then be written as 

[ N J , = ±ta. = [2(^2 + ^)2sinh(a/i)cosh()?A)]p=±ton. 

By carrying out the differentiation of Da with respect to p it is subsequently 
found that 

1 dDa = M(p, Q 1 

pNa dp p2+e c2
L

9 

where M(p9 £) is a dimensionless function defined by 

M(P t) - 1 (w2+(^)2 *1 m2Hthf +2K2 
ah sinh(2<xfc) 0h s inh(2^) 

In this expression K is cL/cT. The dimensionless stress (h2/QcL)xx may then 
be expressed in the form 
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(8.40) 

(8.41) 

Wl(£/z) = °^ - — £h (8.42) 
cL cLt 

w^h) = ^ + — £h. (8.43) 

The integrals (8.40) and (8.41) are suitable for evaluation by the method 
of stationary phase, which was discussed in section 7.5. 

Let us consider the integral in eq. (8.40). According to the stat ionary 
phase approximation, for large values of cLt/h the major contr ibut ion to 
the integral (8.40) occurs in the vicinity of £ = £s, where £s satisfies the 
stationary phase condition 

^ i = 0. (8.44) 

Assuming that there is one such value of £, the approximation to the integral 
Iln follows from eq. (7.57) as 

'.. = (-V \cLt! Lw'/fe/O-

Here cons is a>„ at £, = S,s, and 

*2( f t / i ) 2 -K, f t /c r ) 2 CL ,-sn(,,o 

Mto»s.O o,«/' 
etf-(x.r) ( g 4 5 ) 

*"(Z,h) = 
d2

Wl(«fc) (8.46) 

S„(X,t) = (cLtlh)Wl(Z,h). (8.47) 

In obtaining the approximation it is assumed that w"(£sh) > 0, a n d also 
that cLt/h is large, so that the expansion of w^h) discussed in section 7.5 
need not be taken beyond the term containing w"(E,sh). 

The stationary phase condition (8.44) takes the form 

~ = cgn, (8.48) 



Ch. 8, § 8.3.] TRANSIENT IN-PLANE MOTION IN A LAYER 339 

where cgn = dcojdt was earlier defined as the group velocity of the nth 
mode. At a given point we find from (8.48) at each time a value of £s; 
thus £5 = £s(x, t). The quantity £s is sometimes called the local wavenumber 
of the disturbance. This terminology can be motivated by differentiating 

Sn(x, t) = t(QH[Sa(x, t)]-xta(x, t) 

with respect to x and /, respectively. Using (8.48), we obtain 

dx dt 

For the various modes the group velocities may be computed from the 
frequency spectrum by the use of finite difference formulas. For the first 
four antisymmetric modes the curves showing the variation of the dimension-
less group velocity with £h are shown in figure 8.4. These curves, which were 
computed for a value of Poisson's ratio of approximately 0.29, are from a 
paper by Jones3, in which the antisymmetric transient motion of a layer is 
investigated. 

c 07 
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Fig. 8.4. Group velocities for the first four antisymmetric modes, v — 0.29. 

For all modes the group velocity is zero at f/* = 0. As ^h increases, the 
group velocity of the lowest mode, labeled n = 0 in the figure, approaches 
the velocity of Rayleigh surface waves. The group velocities of the higher 
modes approach the velocity cT as fy increases. 

3 R. P. N. Jones, Quarterly Journal of Mechanics and Applied Mathematics XVII 
(1964) 401. 



340 TRANSIENT WAVES IN LAYERS AND RODS [Ch. 8, § 8.3. 

In writing the approximation of Iln in the form (8.45) it is tacitly taken 
into account that the function M(icon, £) does not have zeros for real values 
of £. If there were zeros the integrand of (8.40) would have poles on the 
path of integration and additional contributions would come from the 
vicinities of the poles. The denominator of (8.40) would vanish if 
dDjico, £)/dcQ were zero at any point of the a> versus £ curves which com-
prise the frequency spectrum of the layer. This does, however, not occur for 
— oo < £h < oo, as can be shown by the following argument, which is 
similar to that presented by Skalak4 in the treatment of an analogous 
problem for a rod. Along any branch of the frequency spectrum dDa(ko, £)/ 
ds1 = 0, if j t is the direction along the branch. If at any point on a curve 
defined by Da(ico, £) = 0, dDa(ico, £)fda> were also zero, then dDJds would 
vanish for any direction £ through this point, provided the curve Djico, £) 
= 0 does not have a tangent parallel to the a>-axis at this point. The condition 
dDJds = 0 means that the function Da(ico, £) is either a maximum, a 
minimum or a saddle point. If it is a maximum or a minimum, a curve 
Da = 0 could not pass through it. If it were a saddle point, there would 
be two curves Da(ico, £) = 0 passing through it. Inspection of the frequency 
spectrum shows, however, that the branches do not cross. Also, for real-
valued £ there is no point where a con versus £ curve is parallel to the co-axis. 
Hence there are no points on the con versus f curves at which dDa(ia>9 €)/dco 
vanishes. In the paper by Jones, where a solution is obtained by direct mode 
superposition another argument is used, based on the observation that the 
denominator is proportional to a kinetic energy function, which is necessarily 
positive. 

Returning to the stationary phase condition (8.48) it is noted that for 
any value of xjcLt the value of £sh can immediately be determined from the 
curves of figure 8.4. Over a range of values of xfcLt there is more than one 
root of (8.48). In this range there will be a contribution of the form (8.45) 
for each root, and the complete solution is obtained by summation. 

The assumptions made in the derivation of (8.45) are satisfied in the 
region 0 < x < 0.37cLt. Since the group velocity is odd in £h, the stationary 
point of w2(£h) is located at £ = — £s, and the integral I2n can be evaluated 
in just the same manner as Iln. The stress is then obtained as 

(w~) T* = V (—)*£ t± <ttsh)r±Gns sin Usx-constT *) , (8.49) 
\QcLJ 2n \cLt) n=i \ 4/ 

4 R. Skalak, Journal of Applied Mechanics 24 (1957) 59. 



Ch. 8, §8.3.] TRANSIENT IN-PLANE MOTION OF A LAYER 341 

where the alternative sign applies if d2confd<;2 is negative, and where 

Gns = 2(Zsh)2-((onshlcT)2 cL ^ 

M(ia>ns,£s) a)nsh
9 

cons = a)n at £ = cs . 

For each mode the local wavelength 2n/^s of the disturbance decreases with 
increase of x/cLt. When x = 0.37 cLt the values of ^sh in the lowest (fun-
damental) mode is 0.45, corresponding to a wavelength of approximately 
seven times the depth of the layer. 

In the region x > 0.65 cLt approximately, there is no value of £h satis-
fying the stationary phase condition and the stress TX at >> = -f h is therefore 
zero, to the order of accuracy implicit in the approximation. It is evident 
that the stresses cannot be identically zero throughout the whole of this 
region, since disturbances are propagated with the velocity cL, the velocity 
of longitudinal waves. Consequently we should expect the disturbance in 
the layer to extend as far as x = cLt. The stationary phase approximation 
indicates, however, that the stresses in the region 0.65 cLt < x < cLt are 
of order smaller than (cLt/h)~*. 

Consider finally the region 0.37 cLt < x < 0.65 cLt. It is noted from 
figure 8.4 that in this region there are values of £h for which the group 
velocity is stationary, so that wt(£sh) = 0, and the approximation (8.45) 
breaks down. From figure 8.4 we observe that for the higher modes the 
group velocity shows both a maximum and a minimum for finite values 
of £h. The derivative dCg/dS, vanishes for all modes as £h increases beyond 
bounds. It can now be shown that for the points dcg[d^ at finite values of 
£h a stationary phase approximation in the form of Airy integrals can be 
obtained by the use of a modified expansion for ^i(^sh) in the vicinity of 
I = £s. For transient antisymmetric motion of a layer the appropriate 
expressions were worked out in the previously cited paper by Jones. The 
most noteworthy feature of these contributions is that the stress varies as 
(cLt/h)~*9 as opposed to the contributions represented by (8.49) which 
vary as (cLt/h)~*. Thus at large values of the time the "Airy phase" be-
comes predominant. Finally, the contributions at x = cRt and x = cTt 
are also discussed by Jones. 

In the discussion presented here we have included the contributions of 
the higher modes. Actual computations show, however, that especially 
in the region 0 < x < 0.37 cLt the major part of the response arises from 
the fundamental mode. 

The approximate plate theories of section 6.12 have been used extensively 
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for transient problems of the type discussed in this section. There are of 
course definite ranges of x and / beyond which the approximate theories are 
not valid. For a discussion we refer to a paper by Nigul.5 

8.4. The point load on a layer 

The application of a normal point load generates axially symmetric wave 
motions in a layer. In the same manner as for a line load, the total response 
of the layer can conveniently be considered as the superposition of the 
responses to an antisymmetric and a symmetric pair of loads, respectively, 
as sketched in figure 8.3. 

lQH(t) 

iQH(t) 

Fig. 8.5. Point load on a layer. 

We choose a system of cylindrical coordinates with the z-axis coinciding 
with the direction of the load; i.e., normal to the faces of the layer, and with 
the origin in the midplane of the layer. The field variables are axially sym-
metric. The expressions relating the displacements and the potentials then 
follow from the equations of section 2.13 of chapter 2. In the present section 
the analysis of the symmetric problem is outlined. The geometry is shown in 
figure 8.5. Let us consider the case that the load is suddenly applied and 
thereafter maintained at a constant value, so that the boundary conditions 
may be expressed as 

T, = -iQH(t) 

= 0, 
Inr 

5 U. Nigul, International Journal of Solids and Structures 4 (1969) 607. 
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where we have used the representation of the Dirac delta function in polar 
coordinates. A further condition is that the displacements and the stresses, 
hence the potentials vanish at infinity (r -> oo). Since the layer is at rest 
prior to t = 0 the initial conditions are 

cp(r, z, 0) = <p(r, z, 0) = ^(r, z, 0) = i/r(r, z, 0) = 0. 

The symmetric problem defined above was treated by Miklowitz.6 The 
most efficient method of solution is again by the use of integral transform 
techniques. In addition to the one-sided Laplace transform with respect to 
time, Hankel transforms with respect to the radius r should be employed for 
this problem with axial symmetry. These transforms and their inverses are 
defined by eqs. (7.20), (7.21) and (7.31), (7.32), respectively. By application 
of these transforms the equations governing the Laplace-Hankel transforms 
of the displacement potentials reduce to simple ordinary differential 
equations of the second order. Their solutions are exactly of the same 
forms as (8.24) and (8.25). Using the terms of these expressions cor-
responding to symmetric deformations of the layer, we can subsequently 
employ the boundary conditions to solve for the unknown constants. In 
this manner expressions analogous to (8.29) and (8.30) are obtained. 

By the use of the inversion integrals defined by eqs. (7.21) and (7.32) of 
chapter 7 a formal representation of, for example, the radial displacement 
w(r, z, t) can be written as 

«(r, z, 0 = -L f V i ( W r,X Uf*,P} eP'dP- (8-5°) 
ZTllJ 0 •/y-ioo pDs(Q, p) 

In this expression Us(£, z, p) is a rather complicated function of the Hankel 
transform variable £, the Laplace transform variable/? and the coordinate z. 
It is noteworthy that the denominator is just the same as for the line-load 
problem, i.e., Ds(£,p) is given by eq. (8.31). 

Just as for the line-load problem the evaluation of the integral in the 
complex /7-plane is simple. Since there are no branch points in the /7-plane 
the integral reduces to 2ni times the sum of the residues of the poles located 
in the half-plane 3${p) < y. We find 

6 J. Miklowitz, Journal of Applied Mechanics 29 (1962) 53. 
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«(r, z, 0 - f W ) [ lim ^UJ8p 

/*00 00 / 

•>0 n = l I 

-3Ds/dpJ 

r ep'C/ 

d£ 

pdDJdp. + 
e"'Us 

LpdDjdpJp=-tl 

■ d & 

(8.51) 

where a>„ are the roots of the Rayleigh-Lamb frequency equation for sym-
metric modes, D5(£, ico) = 0. 

A further evaluation of the integrals in (8.51) can be achieved by ap-
proximate methods. Miklowitz first replaces the Bessel function by the 
leading term of its asymptotic expansion for large rjh and then proceeds to 
approximate the resulting integrals by the method of stationary phase. For 
details we refer to the previously cited paper by Miklowitz. As main result 
of the analysis it is found that the head of the propagating disturbance is 
composed predominantly of the low-frequency long waves from the lowest 
mode of symmetric wave transmission. 

8.5. Impact of a rod 

In engineering applications, for example in machinery, it is often required 
to transmit a signal from one position to another. Very often the transmis-
sion is accomplished via a cylindrical rod. In such cases it may be necessary 
to take into account wave propagation effects if the signal varies rapidly 
in time. The most elementary theory capable of describing the propagation 
of longitudinal pulses in a rod is governed by the equation 

dz2 " 

d2 

dt 
(8.52) 

Here w is the axial displacement; p and E are the mass density and Young's 
modulus, respectively. Eq. (8.52), which was derived earlier, is based on 
the assumption of a one-dimensional state of stress in the rod. 

Since (8.52) is a simple one-dimensional wave equation, it predicts that 
a pulse does not change shape as it propagates along the rod. Several years 
ago it was, however, already shown experimentally by Davies7 that this 
prediction proves to be true only if the external disturbance producing the 
puke is applied relatively slowly. If the disturbance is applied rapidly the 
resulting pulse shows dispersion. This observation, which was subsequently 

7 R. M. Davies, Philosophical Transactions of the Royal Society A240 (1948) 375. 
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verified by other experimentalists, has motivated analytical investigations of 
transient axially symmetric wave propagation in a circular cylindrical rod 
by the use of the equations of the theory of elasticity. 

Several investigators have examined the response of a semi-infinite 
circular rod of radius a to prescribed conditions at the end surface z = 0. 
General methods of solutions for arbitrary end conditions still are being 
investigated.8 For the axially symmetric case a solution can, however, be 
obtained by integral transform methods if the conditions at z = 0 are 
specified by mixed conditions. Here we will discuss the case that a constant 
pressure is suddenly applied, while the points in the plane z = 0 are re-
strained from motion in the radial direction. The solution to this problem 
was presented by Folk et al.9 

We choose a system of cylindrical coordinates with the z-axis coinciding 
with the axis of the cylinder. The expressions relating the radial displacement 
w(r, z, t) and the axial displacement w(r, z, t) to the displacement potentials 
follow from section 2.13 as 

«-**-*+ (8.53) 
dr dz 

"-r + ^fW' (8-54) 

dz r or 

respectively, where the single component of the vector potential is denoted 
by iff rather than by \j/e. The potentials must satisfy the following wave equa-
tions 

W - I ff (8.55) 
c2

L dt2 

r2^ c\ dt2 w-V = 4^' (8-56) 
where 

V 2 = ^ + ^ + ^ 2 . (8.57) 
dr2 r dr dz1 

8 See J. Miklowitz, loc. cit.t p. 
9 R. Folk, G. Fox, C. A. Shook and C. W. Curtis, Journal of the Acoustical Society of 

America 30 (1958) 552. 
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The pertinent components of the stress tensor are 

Tr = ffl2<p + 2ii-
'dcp 

Jr ~dz. 

?rz = I* 
d (dcp dij/' 

Ldz \dr 
I3! -dA) + A 
\dr dz/ dr 

'do 1 d , , " 
— + - - (rip) 
.dz r dr 

TZ = XV2(p + 2fi — 
dz 

d(p 1 3 , . ' -f 4- - - W) 
.dz r or 

(8.58) 

(8.59) 

(8.60) 

Solutions to these equations must satisfy boundary conditions at the end 
of the rod and at the lateral surface. We have 

at z = 0, O ^ r ^ a 

at r = a, z ^ 0 

xz(r, 0, 0 = -PH(t) 

u(r, 0, t) = 0 

zr(a, z,t) = 0 

xrz(a, z, t) = 0. 

(8.61) 

(8.62) 

(8.63) 

(8.64) 

A further condition is that the displacements and the stresses, hence the 
potentials vanish at infinity (z -* oo). Since the rod is at rest prior to time 
/ = 0 the initial conditions are 

<p(r9 z, 0) = 0(r, z, 0) = ^(r9 z, 0) = ^(r, z, 0) = 0. (8.65) 

Boundary conditions on the potentials at the face z = 0 can easily be 
extracted from (8.61) and (8.62). From (8.62) and (8.53) it is concluded 
that at z = 0 

dcp __ # 

dr dz 
(8.66) 

Using this relation to eliminate ip in the expression for xz, see eq. (8.60), 
we obtain from (8.61) at z = 0 

(k + 2fi)V2(p = -PH{t), 

where V2 is defined by (8.57). Since cp satisfies the wave equation (8.55), we 
can also write (at z = 0) 

pep = -PH{t). (8.67) 

In view of this result (8.66) reduces to 

# 
dz 

0. (8.68) 
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Eqs. (8.67) and (8.68) provide boundary conditions at z = 0 on the poten-
tials cp(r, z, t) and \//(r, z, i). 

8.5.1. Exact formulation 

Integral transform techniques are again the appropriate method of solution 
for the problem stated by eqs. (8.53)-(8.60), (8.63)-(8.65) and (8.67)-(8.68). 
For the present semi-infinite domain (z ^ 0) Fourier sine and cosine trans-
forms are used with respect to z. These transforms were defined by eqs. 
(7.26) and (7.28) of chapter 7 as 

sine transform: fs(0 = f(z) sin (£z)dz 
Jo 

cosine transform: fc(0= / (z) cos (£z)dz. 
Jo 

The form of the boundary conditions (8.67) and (8.68) suggests the use 
of a cosine transform for \j/ and a sine transform for cp. In addition the one-
sided Laplace transform is used to eliminate the dependence on the time t. 

Upon applying the integral transforms to the wave equations (8.55) and 
(8.56), whereby the initial conditions (8.65) and the boundary conditions 
(8.67) and (8.68) must be taken into account, these wave equations reduce to 

d V 1 d<p5
 2_s P £ 

dr r dr p p 
+ _ JL + a 2 r = - \ (8.69) 

ff+i«+^.i)p,0, (,70) 
dr2 r dr \ r2J 

where 

a2 = - L2 -?, P2=-4 -i2. (8.71a, b) 
cL cT 

Solutions of (8.69) and (8.70) that are bounded at the center of the rod are 

^s = AJ0(«r)+ 4 - - 3 (8-72) 
a P P 

$c = BJtfr). (8.73) 

The conditions that remain to be satisfied are that the stress components 
xr and rrz vanish at the cylindrical surface defined by r = a. Applying the 
Laplace transform and the Fourier sine transform to eq. (8.58), and em-
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ploying (8.72) and (8.73) we obtain at r = a 

a 
-082-£2yoM+2-^M 

a 

A + 2 
a 

B 

A P { 

X + 2\i \i pa2 

Similarly an application of the Laplace transform and the Fourier cosine 
transform to eq. (8.59) yields at r = a 

2*SJx(*a)A + {p2-Z2)Ji{pa)B = 0. 

The solutions of these equations are 

X + 2fi fi p a2 D 

2A P 1 i2 J^oca) 

A = -

B = 
A + 2fi \i p a D 

(8.74) 

(8.75) 

where 

D =^(p2 + e)Ji(xa)J1(l}a)-(p2-e)2M*a)Ji(M 

- 4 a ^ V 1 ( a a ) / 0 ( ^ ) . (8.76) 

The particle velocity in the axial direction, 

V(r> z- 0 = T ' ot 

will be considered in some detail. In terms of the displacement potentials, 
V follows from (8.54) as 

V dz \dt/ r dr\ dt) 

Application of the Fourier cosine transform and the Laplace transform 
results in 

Fc = ^ l 
P P 

+^+--Wc), 

which can be rewritten as 

Fc = c P 1 

r dr 

A P ? N 

P P2 + Z2cl X + 2n n a1 D 
(8.77) 
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where 

N = ( jS2"^2) / 0(ar) / 1(^)-2aj3/0( iSr) /1(aa) (8.78) 

and D is defined by eq. (8.76). 

8.5.2. Inversion of the transforms 

The inversion of the transforms is again the major task of the analysis. 
Formally, inverting the Laplace transform yields the result 

< Py + iao 

Vc = — V°e"dp. (8.79) 
27liJ y-ioo 

Just as for the response of a layer to line loads and point loads the integra-
tion in the complex /7-plane can be carried out by applying Cauchy's residue 
theorem. The path of integration is closed by a semicircle of infinite radius 
about the origin in the left-half plane. 

If the numerator and the denominator of eq. (8.77) are each multiplied 
by P and the various Bessel functions are replaced by their respective in-
finite series, it is found that only even powers of a and p appear. Hence there 
are no branch points in the complex /?-plane in spite of the fact that a and p 
are radicals. On the infinite semicircle the various Bessel functions may be 
replaced by their asymptotic forms for large arguments. In the limit it is 
then found that the integral over the infinite semicircle vanishes. In view 
of these observations the original integral is equal to 2ni times the sum of 
the residues in the left-half plane. 

Both terms of (8.77) have poles atp = ±i£cL. It can, however, be verified 
that the residues of these poles cancel each other. The remaining poles are 
at the points of the /7-plane where the function D(p, £) defined by (8.76) 
vanishes. By means of the substitution 

P = iu, 

the equation D(p9 £) = 0 is cast in a form which is identical to the frequency 
equation of longitudinal motions of a rod, which was given by eq. (6.131). 
Consequently for any value of f the integrand of eq. (8.79) has an infinite 
number of poles along the imaginary axis in the /7-plane, at positions defined 
by p = ia>„, where the functions con(0

 a r e the circular frequencies of 
longitudinal waves in a rod. The contributions from these poles yield the 
following expression for Vc: 
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Vc = - - V - £ 2 i{ 2 M l l K, 0 sin (co„ 0, (8.80) 
A + 2/i jU n=l 

where 
1 JV 

M „ K , £ ) = 
.a' 3D/dp. 

(8.81) 

This function is even in £. 
By applying the inversion integral for Fourier cosine transforms we find 

2 P °° 
Z / „ , (8.82) 

A + lfl \i n = 1 

where 

J„ = - - f ° V M * K 0 sin (©„ 0 cos (£z)d£. (8.83) 
7T *>0 

As in the problems for the layer the integrals in (8.82) cannot be evaluated 
rigorously by analytical means. A very satisfactory approximation can, 
however, be obtained by the method of stationary phase. 

8.5.3. Evaluation of the particle velocity for large time 

The integrals appearing in (8.82) may be cast in the form 

'• - - / 
^ 2 M „ ( c o n , ^ [ ^ z " a ) n ° - ^ z + W n t ) K . (8.84) 

o 

For large values of a dimensionless time such as cLtfa an approximate 
evaluation can be carried out by the method of stationary phase. As was 
shown in section 8.3, the resulting contributions of the various branches 
of the frequency spectrum will be at most of order (cLt/a)~*, except at 
positions x/cLt of stationary group velocity, where the contributions are of 
order (cLt/a)~*. 

Additional contributions to In may come from poles on the real £-axis. 
It can, however, be shown by an argument of the type presented in section 
8.3 that 3D I dp cannot have zeros for real-valued £. For the rod the argument 
of nonvanishing 3D/dp is given by Skalak.10 A vanishing value of dD/dp is, 
however, not the only potential cause for a pole on the £-axis. In the present 
problem it so happens that for the contribution of the lowest mode cox is 
proportional to £ in the vicinity of { = 0. The presence of the term a2 in 

R. Skalak, Journal of Applied Mechanics 24 (1957) 59. 
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the denominator then causes a simple pole at <̂  = 0. An additional compli-
cation is that for the lowest mode the point £ = 0 is a point of stationary 
phase. Moreover, the group velocity is stationary at £ = 0. These circum-
stances combine to yield a contribution which predominates the other con-
tributions since it does not decay in time. This contribution will now be 
computed in a manner which follows by and large the previously cited work 
of Skalak. 

According to eq. (6.135) of chapter 6, for small values of £ the frequency 
of the lowest longitudinal mode is 

co, = c^-y?', (8.85) 

where cb is the bar velocity 

cb = (Elp)K (8.86) 

and y is defined as 

y = }v2cba
2. (8.87) 

Substituting OJ{ = cbQ in M1(col, c), the following limit can be derived: 

l i m ^ 3 M 1 ( ^ i , 0 = - - - . (8.88) 
s-o 2 X cb 

The essential contribution to It can now be obtained by limiting the range 
of integration of (8.84) to £ < e, where £ is a small number 

Ix = - - * cJtj f + * i [ e ' « x - « i o „ ^ + « i o - | d ^ (8 8 9 ) 
71 X Cb Jo £ 

The upper limits of these integrals are next again extended to oo because the 
integrals so added are of order (cLt/a)~*. If subsequently just the first term 
of (8.85) is substituted, i.e. CDX = c6£, the integrals can be evaluated, with 
as result the solution according to the elementary theory 

V(zit) = - -H(cbt-z). (8.90) 
cb P 

A better approximation is obtained by employing eq. (8.85) for col. The 
result may be written as 

X cb 
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j , = i f°° s in[£(2-c f t / ) + y |Vl ^ 

[Ch. 8, § 8.5. 

= i r°° 

7rJ0 

/ 2 = A f s i n [ - g ( z + c>Q + yg3<] d ^ ; 

By a change of the variable of integration these integrals become 

J i = i p s i n [ g W / 3 ] d > ? 

7T JO 7/ 

^ _ l p s i n C ^ ^ ^ ] 

nJ0 >/ 
d?7, 

(8.91) 

(8.92) 

where 

4i 
z-cht 

4l 
z + cht 

(3yt)* ' ~ (3yr)* 

In the forms (8.91) and (8.92) the integrals are recognized as integrals of 
Airy's integral Ai(q) 

1 f °° 
Ai(q) = ~\ cos (qri + i]313)drj. 

nJ o 
We obtain 

J{ = PUi(s)ds + i 
J o 

r?2 
J2 = Ai(s)ds + £, 

Jo 

where the terms ^ enter as the values of Jl and / 2 for qt = 0 and #2 = 0, 
respectively. For large values of t the integrals approach -J-, and the 
elementary solution V = P/pcb is obtained. 

1.2 

0.8 

0.4 

0 

!^u}>i^|^KyK^ 

u 
"Elementary 
theory 

- 2 4 - 1 6 - 8 0 4 7 / ( 7 O 3 

Fig. 8.6. Particle velocity near z = cbt. 
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For small values of t the integrals vanish. Thus, the results show that some 
distance ahead and some distance behind the wavefront z = cbt the im-
proved approximation agrees with the elementary theory. Numerical results 
are shown in figure 8.6. 

In the natural coordinates z and t the wave form shown in figure 8.6, 
gradually spreads out around the wavefront z = cbt. 

8.6. Problems 

8.1. Suppose that a thin rod of length / is fixed at the end x = 0 and that 
a force P(t) acts at the other end. Assume that the wave motion of the rod 
is governed by the equation 

d2u 1 d2u t 2 E 
— = — — , where cb = - . 
dx2 cb dt2 p 

It is also assumed that the rod is undisturbed prior to time t = 0. 
Show that the one-sided Laplace transform u(x,p) can be expressed in 

the form 

_, , F(p) cb e
px/Cb-e-px,Cb 

V J EA p e
pl,Cb + e-plfCb 

Invert the transform by employing the expansion 

= l — e~2pl/Cb + e~*pl/Cb — 
1 + e ■2pl/cb 

What is the physical interpretation of the terms? 
An alternative method is to evaluate the inverse Laplace transform of 

1 sinh px/cb 

p cosh pl/cb 

by contour integration in the complex /7-plane. What is the form of u(x91) 
which is obtained in that manner? What is the physical interpretation of 
the solution? 

8.2. The system of equations governing the motions of a Timoshenko beam 
is given by eqs. (6.150) and (6.151) of chapter 6. Derive the expressions 
defining the characteristics and determine the differential equations along 
the characteristic curves. 

8.3. A semi-infinite circular cylindrical rod (0 ^ z < 00) of radius a is 
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subjected to a prescribed displacement distribution over the cross section 
at z = 0. The prescribed displacement distribution is of the form 

r2 

v(r, 0, i) = — sin cot, 
a 

where v is the circumferential displacement. The lateral surface is free of 
tractions. Determine the steady-state displacement response of the rod. 

8.4. The semi-infinite rod of problem 8.3 is now subjected to the following 
axially symmetric boundary conditions at z — 0: 

rz(r, 0, t) = T0 sin cot 

w(r, 0, i) = 0. 

Determine the steady-state displacement response. 

8.5. An elastic layer of thickness 2h is subjected to a suddenly applied anti-
plane line load. Choose the coordinate system as shown in the figure. The 
boundary conditions then are 

y = 0 ryz = TQ5(x)H(t) 

y = -2h zyz = 0. 

The layer is at rest prior to time t = 0. 

2h 

Apply the one-sided Laplace transform with respect to time and the two-
sided Laplace transform with respect to x to obtain vv*. Observe that the 
Cagniard-de Hoop method cannot be applied directly. For large enough 
values of p the exponentials appearing in the denominator of w* can, 
however, be removed by using the same type of expansion as in problem 
8.1. Invert the resulting sum of exponentials term by term by means of the 
Cagniard-de Hoop scheme. What is the physical significance of the terms? 

8.6. The solution as suggested by problem 8.5 is not suitable for large values 
of time. Reexamine the problem in a coordinate system whose origin is in 
the midplane of the layer. Split the problem up in a symmetric and an anti-
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n 

'4 

symmetric problem. Find an expression for the transformed displacement 
by applying the one-sided Laplace transform with respect to time, and the 
exponential Fourier transform with respect to x. Invert the Laplace trans-
form by contour integration. Consider the contribution from the lowest 
mode and evaluate the integral which determines the inverse of the ex-
ponential Fourier transform. 

8.7. A semi-infinite three-layered sandwich construction is subjected to a 
uniform antiplane shear traction at x = 0, i.e., at x = 0 TXZ = T0H(t). 

oi 
© 
o 

h\ o| 
_ 0| 

"o 
h\ O 

o 
o 
o 

A 

1 P A 

X 
— 

il,f> 

I I s , f>8 

The surfaces at y = ±(a + h) are free of tractions. Use the results of 
problem 6.5 to investigate the wave motion in the layer. In particular find 
an expression for large values of x for the interface stress zyz at y = ±h. 

8.8. Consider a circular cylindrical rod of radius a and infinite length, whose 
cylindrical surface is loaded by a distribution of circumferential tractions 
which is independent of 9. As an idealization we assume that the tractions are 
applied as a line load. Also the load is suddenly applied and then maintained 
at a constant level. The boundary condition may be expressed as 

at r = A rre = T5(z)H(t) rrz = rrr = 0. 

The rod is at rest prior to time t = 0. 
(a) Express the transient response of the rod in terms of a summation 

over integrals. The first term of the summation can easily be worked out, 
and this should be done. The remaining terms in the summation may be left 
in the form of integrals. 
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(b) Now suppose that the rod is of finite length, \z\ < I. In what time 
interval is the solution of (a) valid for the finite rod? If the rod is clamped 
at z = +/, how can you use the result of (a) to determine the solution at 
any time? 

8.9. A rod of radius a and infinite length is loaded by a ring load of normal 
surface tractions: 

r = a: \z\ < b xrr = %0H(t) 

\Z\ >b Trr = 0 

— oo < z < oo Trz = zrd = 0. 

Determine an expression for the particle velocity vv(r, z, /) for large values 
of z. 

8.10. A semi-infinite elastic layer of thickness 2h is free of tractions on the 
lateral surfaces y = ±h. The cross section at x = 0 is subjected to the fol-
lowing boundary conditions: 

TX(0, y,z9t) = T0S(z)H(t) 

v(0, y, z, t) = w(0, y, z, /) = 0. 

The layer is at rest prior to time / = 0. Determine the particle velocity 
u(x, y, 0, t) for large values of x. 



CHAPTER 9 

DIFFRACTION OF WAVES BY A SLIT 

9.1. Mixed boundary-value problems 

In general terms a mixed boundary-value problem is a problem for which 
the boundary conditions are of different types on complementary parts of 
the boundary. For example, for a body B with boundary S an elastodynamic 
mixed boundary-value problem is defined by the conditions 

ut = Ut(x9t) on St (9.1) 

and 

Tjinj^tfatt) on S-St. (9.2) 

Mixed boundary-value problems usually are exceedingly difficult to solve. 
The standard techniques of elastic wave analysis which were employed in the 
preceding chapters cannot be applied directly. It is, in fact, necessary to 
call upon another class of methods of applied mathematics, which may be 
classified as methods to solve integral equations. To exemplify, let us as-
sume that the elastic fields inside a body due to both normal and tangential 
point loads on the surface S are known. The displacement solutions of the 
mixed boundary-value problem defined by eqs. (9.1) and (9.2) can then be 
expressed in the form of integrals over the known tractions tt(x9 t) on 
S— Sl9 and over the unknown tractions acting on the part Sl9 where the 
displacement field is prescribed. It is evident that the integral representations 
and the boundary condition (9.1) provide us with a set of integral equations 
for the unknown tractions acting on St. If it is possible to solve this set of 
integral equations the thus obtained surface tractions can be substituted 
in the integral representations of the solution. 

With the exception of the simplest cases it is, unfortunately, rather dif-
ficult to solve the type of integral equations appearing in elastodynamic 
mixed boundary-value problems. When the body is a half-space and the 
complementary parts of the boundary, Sl and S—Sl9 are half-planes, the 
system of integral equations can in some cases be solved by means of in-
tegral transform techniques in conjunction with an application of the 

357 
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Wiener-Hopf technique. For these cases it is, however, often more efficient 
to apply integral transforms directly to the boundary conditions and the 
governing equations. 

Examples of physical situations which lead to the formulation of mixed 
boundary-value problems of elastodynamics are rapid indentation of a 
body and diffraction of elastic waves by cracks. In this chapter we will 
direct most of the attention toward the analysis of the diffraction of plane 
transient waves by semi-infinite cracks. These problems are amenable to 
treatment by the Wiener-Hopf technique. For a discussion of diffraction 
by cylindrical and spherical cavities we refer to the monograph by Mow 
and Pao.1 

9.2. Antiplane shear motions 

The simplest elastodynamic mixed boundary-value problems are concerned 
with two-dimensional horizontally polarized shear motions of a half-space. 
These motions are governed by the two-dimensional wave equation, which 
for the present purpose is written in the form 

d2w d2w d2w /0i „x 

+ T~2 = Tl • (9-3) 

where 
dx2 dy2 ds2 

cTU cT=(^Y. (9.4) 

In eq. (9.3), w(x, y, s) is the displacement normal to the (*y)-plane. The 
nonvanishing stresses are 

* « = ]" — > a n d hz = V — • (9-5 a> b ) 

ox dy 

The following boundary conditions are considered: 

y = 0, x < 0: xyz = T(JC, S) (9.6) 

y = 0, x ^ 0: w = 0. (9.7) 
These boundary conditions apply if the surface of a half-space is prevented 
from motion over half of the surface and is subjected to tractions over the 
other half. It is assumed that the half-space is at rest prior to t = 0. 

1 C.-C. Mow and Y.-H. Pao, The diffraction of elastic waves and dynamic stress concen-
trations. Report R-482-PR, The Rand Corporation (1971). 



Ch. 9, §9.2.] ANTIPLANE SHEAR MOTIONS 359 

In this section the problem defined by eqs. (9.3)-(9.7) is solved by em-
ploying the Green's function for the Neumann boundary conditions. We 
first compute the displacement at time / and position x, y for the case that 
the antiplane shear traction on the boundary y = 0 is independent of z 
and behaves as a delta function at position x = x0 and time s — s0. This 
displacement field is called the Green's function G(x — x0, y; s — s0). 

9.2.1. Green's function 

The Green's function is the solution of eq. (9.3) with homogeneous initial 
conditions, and a boundary condition of the form 

y = 0: Tyz = \x — = d(x-x0)d(s-s0). 
dy 

(9.8) 

The boundary condition (9.8) represents a concentrated impulsive anti-
plane shear load applied at time s = s0 at position x = x0. For a half-
space which is initially at rest, the displacement wave generated by (9.8) can 
easily be worked out as 

G(x-x0,y;s-s0) - i - H{(s-s0)-l(x-x0)
2
 + y2]% (9.9) 

npiR 

where H{ } is the Heaviside step function and R is defined as 

R = l(s-s0)
2-(x-xoy-y2f. (9.10) 

Eq. (9.9) shows that a cylindrical wave emanates from x = JC0, 7 = 0 . The 
wave front is shown in figure 9.1. A position x,y is reached when 
[(x — xQ)2+y2]^ = s — s0. Conversely, at time s = s we can define a region 
of dependence for the position 3c, y as a circle with radius s — s0 centered at 
x, y. At time s = s, external disturbances applied at s = s0 affect the field 
variables at x, y only if they were applied inside the circle. It is now easily 

Fig. 9.1. Cylindrical shear wave. 
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seen that in more general terms the domain of dependence in the time-
space domain for prescribed 3c, y and s is a cone defined by 

( S - s ) - [ ( x - x ) 2 + (j7-.y)2]* ^ °> s^s^O. 

The cone is shown in figure 9.2. 

(9.11) 

Fig. 9.2. Cone in time-space domain. 

If the surface y = 0 is subjected to a distribution of surface tractions of 
the form 

y = 0, Tyz = r(x,sl (9-12) 

linear superposition can be employed to write the displacement in the half-
space y ^ 0 in the form 

1 f CT(X0,S0) ( . I f CT(X0, 

nuj AJ R 
dx0 ds0 , (9.13) 

where R is defined by eq. (9.10). It follows from the previous discussion that 
A is the area in the (xs)-plane which falls inside the cone (9.11). For y > 0, 
the intersection of the cone and the (xy)-plane is a hyperbola. In figure 9.3, 

Fig. 9.3. Projection of cone on the xs-plane. 

we show the projection of the cone on the (xs)-plane, as well as the inter-
section of the cone and the (xs)-plane. The integration in eq. (9.13) is over 
the shaded area. The integral may be written as 



Ch. 9, §9.2.] ANTIPLANE SHEAR MOTIONS 361 

(X,y,s)=-±-\ d s 0 | T i ^ i ^ d x 0 . (9. 14) 
x-[(s-so)2-y2l± 

Let us consider the special case that the surface traction is uniformly 
distributed over the shaded area, say T(X, S) = z0f(s). The integral over 
x0 then reduces to n, and we find 

i r~y 

w(x, y, s) = - - /(s0)ds0 • 
(9.15) 

This is just a plane wave solution. Indeed, as far as position x, y at time s 
is concerned, the motion is nothing but a plane wave propagating into the 
medium. 

A second example is concerned with a surface traction of the form 

xyz = H(-x)f(s). 

Suppose the x-coordinate of the point at which we wish to compute the 
displacement is positive. The arrangement then is as shown in figure 9.3, 
and the displacement may be written as 

1 Cs~r f° 
w(x, y,s) = f(s0)ds0 

n/^J0 Jx_[( 

dxo 

s-so)2-?2]* ^ 

where 
r2 = x2+y2. (9.16) 

The integration over x0 can easily be worked out to yield 

*>(*,* s) = - r ^ i n " 1 [jr; J - T T i l - ^ ) / ( 5 o ) ^ o . (9.17) 

If the surface disturbance varies with time as a Dirac delta function, 
f(t) = T0<5(/), the displacement can, of course, be written out without 
further integration. Also introducing polar coordinates through 

x = r cos 0, and y = r sin 9, 

where r is defined by (9.16), and employing the relation s — cTt, we find 
in that case 

njj, 

r cos 9 

.(4f2-r2sin20)*J 2 
l\H(cTt-r). (9.18) 

This expression is valid in the range 0 ^ 9 ^ in. Clearly the displacement 
wave is a cylindrical wave. It may be checked that in the domain $n ^ 9 ^ n 
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there is also a cylindrical wave as well as a plane wave. The pattern of wave 
fronts is shown in figure 9.4. The cylindrical wave is generated because the 
surface traction is discontinuous. 

Fig. 9.4. Pattern of wave fronts for r(xy 0, t) = r0H(-x)f(t). 

The displacement (9.18) can be employed to compute the shear stress 
xez = (fi/r)dw/dO. The result is 

cT ( 4 f 2 - r 2 ) * sin 6 
0 ^ 9 ^ i r c : — = -

7i Cjt2-r2 sin2 
H(cTt-r). (9.19) 

The stress shows a square-root singularity at the wavefront as 0 approaches 
in. 

9.2.2. The mixed boundary-value problem 

Now we return to the mixed conditions (9.6) and (9.7). Since the stress-
distribution for y = 0, x ^ 0 is unknown, the superposition integral (9.13) 

Fig. 9.5. Domain of influence in the 0cs)-plane. 
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cannot be applied directly to express the displacement. The integral does, 
however, provide us with an integral equation to solve for the unknown 
stresses in the region y = 0, x ^ 0. 

For y = 0, the region of integration A in eq. (9.13) reduces to a triangular 
region because the vertex of the cone is in the (xy)-plane. The triangular 
region is indicated by dashed lines in figure 9.5. Suppose the unknown 
stresses for x ^ 0 are denoted by 

y = 0, x g; 0: xyz = <j(x, s). (9.20) 

The condition (9.7) that the displacement vanishes for y = 0, x ^ 0 and 
s ^ 0 then yields the following integral equation for G{X, S): 

s = > 0 , 3 c £ 0 : f f < y ) d * d s
 + f f <7(xs)dsd, 

_ JAJ [ ( S - S ) 2 - ( X - X ) 2 ] * JAJ [ ( S - S ) 2 - ( 3 C - X ) 2 ] * 
(9.21) 

The regions At and A2 are indicated in figure 9.5. It is a priori presumed 
that the line s = x, which represents the wave front of the cylindrical wave, 
separates the disturbed from the undisturbed part of the upper half of the 
(xs)-plane. 

The integral equation (9.21) can be solved in a surprisingly simple manner 
by introducing the following characteristic coordinates in the (xy)-plane: 

'-'■%■ " - T 2 - ( 9 ' 2 2 a ' b ) 

The denominators in (9.21) then reduce to 

{s-sf-(x-x)2 = 2 t f - O ( * - » 0 , (9-23) 

which has the advantage that the variables are separated. We consider a 
point x, s, or | , fj, as indicated in figure 9.5. By introducing (9.22a, b) and 
(9.23) into (9.21), the integral equation (9.21) can be rewritten as 

f« <% f4 tfciQdq ft dg fo{t;,ti)dn = r 9 2 4 , 

J0tf-«)*J_C (*-*)* J0(f-«)*J« (*-*)* ' 
where T(^, >J) follows from (9.6). Eq. (9.24) is evidently satisfied if 

figfcifldi^ f^tfdr, (925) 

h (fi-r,)* J-{(fj-r,)* * 

The right-hand side of (9.25) is known. Eq. (9.25) is recognized as an in-
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tegral equation for <x(£, rj) of the Abel type. This class of integral equations 
can be solved analytically. Upon multiplication of both sides by (£ — fj)~* 
and integration over rj, we have 

By interchanging orders of integration and evaluating integrals we find 

^ > = - i - ^ f *-^^>-V (9.26) 

Eq. (9.26) expresses the stress in the region £ ̂  77, which corresponds to 
0 ^ x ^ cTt in the physical variables. 

Let us investigate in some detail the case that the applied traction is 
uniform in x and constant in time: 

T(X, S) = T0H(S), or T(£, rj) = r0. (9.27) 

The integral in (9.26) can then be evaluated to yield 

In terms of the coordinates x and s, the stress is 

This expression applies of course for x ^ s. It should be noted that the 
stress shows a square-root singularity at x = 0. For very small x we have 

,(x, 0 ~ - *» (£l£)*. (9.29) 

If the complete displacement solution is desired, (9.28) together with 
(9.27) must be substituted into the integral representation (9.13), and the 
integrals must be evaluated. 

The boundary conditions (9.27) and (9.7) are also pertinent to two 
problems of horizontally polarized wave motion in an unbounded medium 
due to the presence of a semi-infinite slit. The first of these is concerned 
with the transient waves generated by the sudden opening of a semi-infinite 
crack in an unbounded medium which is in a state of antiplane shear. The 
second problem concerns the diffraction by a semi-infinite slit of a plane 
wave whose wavefront is parallel to the slit. 
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In this section, a method was discussed to solve two-dimensional mixed 
boundary-value problems when the conditions are prescribed on semi-
infinite parts of the boundary. It can be shown that this method can be 
extended to cases when boundary conditions are prescribed on finite parts 
of the boundary. There are, however, complications for two-dimensional 
problems with in-plane motions. We will, therefore, also discuss an alter-
native method to treat mixed boundary-value problems, which is known as 
the Wiener-Hopf technique. 

9.3. The Wiener-Hopf technique 

This ingenious scheme was devised to solve integral equations of the general 
form 

/ (* )+ rk(x-ri)f(ri)dri = g(x), for 0 ^ x < oo, (9.30) 
Jo 

where the kernel k(x) is defined in the interval — oo < x < oo. The function 
g(x) is defined for 0 ^ x < oo, but g(x) is undefined for — oo < x < 0. 
The function f{x) is identically zero for — oo < x < 0, and f(x) is to be 
determined in the range 0 ^ x < oo. 

In the method of solution the two-sided Laplace transform, which was 
discussed in section 7.2, is used. Particularly instrumental in solving (9.30) 
is the convolution theorem which states that 

r e~ixdx !°° k(x-r,)f(n)dn = k*f*, (9.31) 
J — oo J — oo 

where /:*(£) and/*(C) are the two-sided Laplace transforms of k(x) and 
f(x), respectively. 

The following definitions are now introduced: 

/+(*) = ( n W X ~ n ( 9 J 2 > 
10 x < 0 

h_(x) = ( ° X = ° (9.33) 
V I h(x) x < 0. 

Eq. (9.30) would not be difficult to solve if the integral equation were 
defined over the whole range of x, i.e., — oo < x < oo. For this reason it 
appears opportune to extend the range of x and to rewrite (9.30) as 

f+(x)+ ^ k(x-r,)f+{r,)dr, = g + {x) + h_(x). (9.34) 
v — 00 
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It is noted that for x g; 0, eq. (9.34) just reduces to (9.30). For x < 0, we 
have 

P fc(x-i,)/+O0 = h.(x). (9.35) 
J — oo 

The price that was paid for extending the range of x comes in the form 
of the appearance of another unknown function, /*_(*). Formally, eq. 
(9.34) can, however, be solved immediately by application of the two-
sided Laplace transform, provided that k(x) and the other functions satisfy 
some rather weak conditions. 

Suppose that a real number y can be found such that k(x) Qxp(-yx) 
is absolutely integrable for — oo < JC < oo. It is also assumed that 
f+(x) exp ( — yjc) and g+(x) exp ( — yx) are absolutely integrable over 
0 < x<oo and, finally, that h_(x) exp ( — yx) is absolutely integrable over 
— oo < x < 0. We then define the transforms 

k*(C) = f °° e-^
xk(x)dx (9.36) 

•> — oo 

/*(C) = fV ? y + (x )dx (9.37) 
Jo 

g*+(0 = f V ^ + ( x ) d x (9.38) 

/i!(0 = f e-c*/j_(x)dx. (9.39) 
J — oo 

On the basis of the discussion of section 7.2, we conclude that k*(C) is 
regular for 9t{£) = y. Furthermore,/* (() and g *(f) are regular for @(Q > y, 
and h*_ is regular for ^(C) < y. Furthermore, by virtue of the convolution 
theorem it follows from (9.34) that 

/ * + * * / ; = ?:+** (9.40) 

on the line ^(( ) = y. It would seem that very little progress has been made, 
because /** depends on/*, as is clear from (9.35). By means of the Wiener-
Hopf method it is, however, possible to solve for/* without explicit know-
ledge of A*. 

We assume that 1+&*(() does not have roots on 0l(£) = y.2 Under 
certain weak conditions, which will be touched upon in the next section, 

2 If there are roots, they can be factored out on both sides of eq. (9.40). 
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1 + &*(() can be factored, i.e., 1 +/:*(£) can be written as 

1 + fc* = m%ml, (9.41) 

where m* and (m* ) _ 1 are bounded on 0t(J^) — y, and regular for ^ ( ( ) > y, 
while ml and ( m l ) " 1 are also bounded on ^ ( 0 = y, but regular on 
&(0 < y. Eq- (9.40) can then be rewritten as 

m%ft = 4 + —* ■ (9-42) 
m_ m_ 

Subsequently the term g%/ml can generally be J/?/I7 w/? in the following 
manner: 

4 = "*+"*> (9-43) 
m_ 

where «* is regular in ^(C) > y and n*_ is regular in ^?(() < y. Substitution 
of (9.43) into (9.42) yields 

m* f * - n * = ^ +n* on # ( 0 = y. (9.44) 

ra_ 

Now, we define the functions 

4 ( £ ) = m*+f+*-n*+ (9.45) 
and 

e*_(C)=%+n*. (9.46) 

Then, e* ( 0 is regular in ^?(0 > y and el ( 0 is regular in ^ ( 0 < y, while 
on <^(0 = y the functions e% ( 0 and e t ( 0 are continuous and equal to 
each other. On the basis of a theorem of functional analysis3, e% ( 0 may then 
be considered as the analytic continuation of el ( 0 , and vice versa. The 
functions e* ( 0 and el ( 0 thus represent one and the same entire function 
e*(0 (a function which is regular everywhere in the £-plane). In the next 
step, Liouville's theorem is employed, which states: If e*(0 is entire and 
|e*(0| is bounded for all values of £ in the complex plane, then e*(0 must 
be a constant. To determine the actual value of the constant it is necessary 
to determine the value of either e% ( 0 or el ( 0 at one particular value of 
£. Often it can be shown that e*(0 = o(X) for |C| -► oo; then it follows from 

3 E. C. Titchmarsh, The theory of functions, 2nd ed. Oxford, Oxford University Press 
(1950), p. 157. 
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Liouville's theorem that e*(() = 0, and we find from (9.45) 

/m = 4 • (9-47> 
m + 

The function/(x) can subsequently be obtained by the use of the inversion 
integral of the two-sided Laplace transform. 

Let us summarize the various steps leading to the solution of an integral 
equation of the type (9.30): 

(1) Extend the range of definition of the integral equation to 
— 00 < X < 0 0 . 

(2) Apply the two-sided Laplace transform. 
(3) Determine the line of juncture (often there is a strip of overlap). 
(4) Carry out the factorization 

l + /c* = m * m* , 
and rewrite 

m*+/: = i± + ^ 
m_ ra_ 

(5) Split up the term 

and observe that 
h* 

m+f++n+ = —- +n_ 
mL 

= entire function. 

(6) Apply Liouville's theorem to conclude 

entire function = C 
(7) Determine C from the behavior of f(x) at small x. This behavior 

can usually be gleaned from physical considerations. 
(8) Evaluate the inverse transform. 

The factorization generally is the most difficult part of the procedure. 
It may be worthwhile to emphasize that in the present exposition of the 

Wiener-Hopf technique it is not necessary that the two half-planes of 
regularity overlap. All that is required is that the two half-planes border 
along the line M(Q = y. It should also be noted that the entire function 
need not be bounded, but may be 0(C*) as |C| -» oo. An extension of 
Liouville's theorem may then be invoked to conclude that the function is a 
constant. 
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9.4. The decomposition of a function 

The difficult task in most applications of the Wiener-Hopf technique is 
the factoring and splitting of functions into components which are regular 
in adjoining half-planes. Generally only the very simplest problems allow 
an identification by inspection of the factors and the terms in eqs. (9.41) 
and (9.42), respectively. It is, therefore, necessary to devise a general method 
for carrying out the required decomposition of functions. 

9.4.1. General procedure 

Under rather general conditions the splitting 

L(C) = M O + M 0 (9.48) 

can be carried out by means of an integration in the complex C-plane. 
We do not require that the equality hold in a strip, but rather just along a 
straight line ^ ( ( ) = y, which forms the intersection of the two half-planes.4 

Let us consider the function L(() satisfying 

L(C) = 0( |Cr p ) for ICI — oo, (9.49) 

where p > 0, and let us define the functions 

L+(C) = - -L T '°° ^ 1 dz for # ( 0 > y (9.50) 
2niJy-ioo z - C 

and 

L.(C) = - ^ r i 0 ° ^ d z for # ( 0 < y . (9.51) 

It is assumed that L(z) is such that these integrals are absolutely convergent 
provided <^(() ^ y. By considering closed contours in the half-planes 
0l{z) > y and 0t{z) < y, respectively, and employing eq. (9.49) and 
Jordan's lemma, it becomes apparent that L+(Q and £-(£) are regular for 
^(C) > y and ^(C) < y, respectively. 

For a point C0 = 7 + icoo on @t(£) = y, we have by definition 

L+(C0) = limL+(C), (9.52) 

4 In this we follow by and large a report by A. T. de Hoop, Wiener-Hopf Techniek 
(in Dutch). Technological University of Delft (1963). 
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where C approaches C0 in the right half-plane, and 

L_(Co) = l imL.(C), (9.53) 
C-Co 

where C approaches Co in the left half-plane. We will now prove that 

L(Co) = MCoHMCo). (9-54) 
The proof is provided by an actual evaluation of the limits in (9.52) and 

(9.53). If Qt <co0 < Q2, then 

MCo) = _ JL r+ah m dz_ _L hm r+Uh m dz 
2niJy-io0 z - C o 2nit;^oJy+iQl z-C 

_j_piMdz. (9.55) 
2niJ +iQlz- Co 

Furthermore, 

A-.i™ r+ i n 2^)dz=- J - r t i 0 ! M ^ o ) d z 
Ini Z-+Z0J y+ini z — C 2niJ7+iai z — Co 

f C-CoJy + ffli ^—C 
(9.56) 

2TH c-CoJy+ifll z - C 

The second integral on the right-hand side can, however, be written as 

_ m m r*"■ j t , w w_ _L, p M d2, (9.57) 

if C approaches Co in ^ e right half-plane. The symbol P indicates that 
we must take the Cauchy principal value of the integral. By substituting 
(9.56) and (9.57) into (9.55) and letting Qt and Q2 approach co0, we obtain 

L+(C0) = iL(Co)- , - P ^ f dz. (9.58) 
2ni J y-too z — Co 

In an analogous manner we can show that 

L.(Co) = iL(C0)+ - ^ H ^ / dz. (9.59) 
2ni Jy-foo z-Co 

These two equations are special cases of the formulas of Plemelj. An ad-
dition of the two equations yields (9.54). 

On ^(C) = y we next consider the decomposition 

K(0 = *+(0MC), (9-6°) 
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where K(C) does not have zeros on ^ ( 0 = y. We write 

In K(Q = In A+(C) + ln tf_(C), (9.61) 

and we observe that, provided that K+ and AL have no zeros in their half-
planes of regularity, each of In K+ and In AT_ is itself regular in the cor-
responding domain. Thus, assuming that In K satisfies (9.49), the decom-
position of #(() as a product is equivalent to the decomposition of In A'as a 
sum. 

An approximate manner of determining the factors, which does not 
require integrations in the complex plane, was developed by Koiter.5 In 
this method the function K(Q is replaced by a much simpler function 
A'((), which shows the same general characteristics as K(C) but which can 
be factored with little effort. 

9.4.2. Example: the Rayleigh function 

In applications of the Wiener-Hopf technique to elastodynamic problems 
the Rayleigh function 

R(Q = (4-2C2)2+4C2(5i-C2)*(4-C2)* (9.62) 

has to be factored on a line or in a strip in the complex (-plane. The function 
In R(Q does, however, not satisfy the condition (9.49). For that reason we 
consider instead of R(Q 

K(Q =V T " ^ l,Y \L~% V } (9.63) 
(4-2C2)2+4C2(si-C2)*(4-t2)* 

2(5|-si)(4-C2) 

The function A(() is nowhere zero, while 

A(C) = l+6>(r2) as K l - oo . 
Now, 

and 

In A+ = - — f y + '°° *±M£ dz for <*({) > y (9.64) 
2niJy-iaa z - ( 

In A_ = — P+"° l l ^ dz for #(Q < y. (9.65) 
2niJy-ia0 z-£ 

5 W. T. Koiter, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, 
Series B57 (1954) p. 558. 
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The logarithms are made single-valued by introducing branch cuts along 
J{z) = 0, sL < \8t(z)\ < sT, as shown in figure 9.6, and taking the 

sfU) 

z=l 

*~Wz) 

Fig. 9.6. Branch cuts for In K(z). 

principal value of the integral. If ( is not a real number the contours in 
(9.64) and (9.65) may be deformed into the loops r + and T_ around the 
branch cuts. We find 

1 CST 

\nK+(0 = - - tan"1 

nJar 

4z2(z2-s2
Ly(s2

T-zyi dz_ 

J z + t' 2 \ 2 ( s r - 2 z 2 ) 
(9.66) 

while K.(C) follows from the relation AL(f) = ^ + ( ~ C ) . 
When the point C approaches the branch cuts in the z-plane from above 

or below, the path T + or T_ must be indented below or above C- The in-
tegrals defining K+ or AT_ then become singular and we may resort to 
principal values. The integrals defining K+ and K- are, however, obviously 
never singular simultaneously. Thus we may calculate these exceptional 
cases without resorting to principal values by employing 

K±(0 
_ * (C) 

where we choose in the denominator the /^-function which is not defined 
by a singular integral. 

9.5. Diffraction of a horizontally polarized shear wave 

The wave motion generated when a plane wave is diffracted by an obstacle 
of vanishing thickness and semi-infinite extent can be analyzed in an 
elegant fashion by employing integral transforms together with the Wiener-
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Hopf technique and the Cagniard-de Hoop method. In this section we will 
investigate the diffraction of a plane horizontally polarized shear wave by a 
semi-infinite slit. The incident displacement wave is of the form 

wl(x, y, i) = G(t — sTx cos a — sTy sin a), 
where 

G(t) = H(t) !'g(s)ds 
Jo 

(9.67) 

(9.68) 

In eq. (9.68), H{ ) denotes the Heaviside step function, a is the angle of 
the normal to the wavefront and the jc-axis; and sT = \/cT is the slowness 
of transverse waves. The position of the wavefront prior to time t = 0 is 
shown in figure 9.7. Here the angle a is restricted to the range 

0 < a < - . 

Disturbed X Undisturbed 

Fig. 9.7. Incident SH-wave. 

The wavefront strikes the tip of the slit at time / = 0. The pattern of dif-
fracted waves is, of course, two-dimensional in nature, since both the in-
cident wave and the diffracting slit are independent of the z-coordinate. 

If there were no slit at y = 0, x > 0, the incident wave would give rise 
to the following shear stress in the plane y = 0: 

TyZ = — JIST sin a g(t — sTx cos <x)H(t — sTx cos a). (9.69) 

The solution to the diffraction problem is now obtained by superimposing 
on the incident wave the wave motion which is generated in an initially un-
disturbed medium by shear tractions that are equal and opposite to (9.69) 
and that are applied on both sides of the slit y = ±0, x > 0. Through the 
superposition the surface of the slit is rendered free of tractions. Since the 
shear tractions are equal but opposite on the two sides of the slit, the in-
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duced wave motion is antisymmetric with respect to the plane y = 0, and 
the displacement in the z-direction thus vanishes for y = 0, x ^ 0. Con-
sidering the half-plane y ^ 0, the superimposed wave motion must then 
satisfy the following conditions at y = 0 : 

x > 0 xyz = \isT sin a g(t — sTx cos a)H(t — sTx cos a) (9.70) 

x ^ 0 vv = 0. (9.71) 

The governing partial differential equation is 

d2w d2w 2 d2w 

dx2 By2 T dt2 + 7 1 = 4 T . , (9.72) 

while the initial conditions are 

w(x, y, 0) = VV(JC, t, 0) = 0. 

Eqs. (9.70)-(9.72) define a mixed boundary-value problem. 
The boundary conditions (9.70) and (9.71) may be recast in the form 

(y = 0, — oo < x < oo) 

Ty2 = T_+T + (9.73) 

w = w+, (9.74) 

where we employ the notation defined by (9.32) and (9.33), and where 

T+ = pisT sin a g{t — sTx cos ot)H(t — sTx cos <x)H(x). (9.75) 

Upon application of the one-sided Laplace transform with respect to time, 
see eq. (7.20), and the two-sided Laplace transform with respect to x, see 
eq. (7.15), eq. (9.72) reduces to an ordinary differential equation. For 
y ^ 0 the pertinent solution of that equation is 

vv* = A(p, Qe'(ST2p2^2)h, (9.76) 

where A(p, () is to be determined. The boundary conditions (9.73) and 
(9.74) transform into 

_* _* . -* 
T. = f * + f * (9.77) 

vv* = vv* , (9.78) 

where we find from (9.75) that 

C + sTpcos a 

fisTg(p) sin a ^ ^ 
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From (9.76) and (9.78) it follows that A(p, £) = vv* , whereupon sub-
stitution into (9.77) yields 

- j i ( s J p 2 - C 2 M = f*_ + f * . (9.80) 

It is apparent that (9.80) is analogous to (9.40). 
The usual Wiener-Hopf manipulations readily lead to an expression for 

A{p, £). First we make an observation on the analytic behavior off* in 
the (-plane. For the boundary conditions (9.70) and (9.71) the plane 
y — 0, x < 0 is undisturbed until sufficient time has passed for a cylindrical 
wave propagating with slowness sT to arrive. Considering then ryz(x, 0, t) 
for some Xi < 0, its Laplace transform over time can be written as 

U * i > 0, p) = f <TP'T,Z(*I > 0, t)dt 
Jti 

= e~pn I e-psTyz(xl, 0, s + f^ds, (9.81) 
Jo 

where tx = - ^ X i is the time at which the first disturbance reaches the 
position y = 0, x = x} < 0. From (9.81) it follows that xyz has the 
asymptotic behavior 

fyz(x, 0, p) ~ epSTX as x -» - oo. (9.82) 

In view of (9.73) this also represents the asymptotic behavior of f_. It 
follows that f* is regular in the half-plane 0t{l) < sTp. With regard to 
the points on y = 0, x > 0, it is apparent that a particle at position y — 0, 
x = x2 > 0 is undisturbed until time f2 = srjc2

 c o s a- Thus, vv + is 
0(exp — psTxcos a), which implies that vv* isregularfor ^ ( ( ) > — sTpcos a. 
Returning to (9.80) it is next noted that the factoring of (sTp2 — C2)* is 
trivial. The factors are (sTp-C)* and (sTp + C)*, which are regular in the 
half-planes ( < sTp and ( > — sTp, respectively. Eq. (9.80) may then be 
rewritten as 

-n(sTPH?*l = - ^ — + — ^ — . (9.83) 

From (9.79) it follows that f* is regular for ^ ( ( ) > — sTp cos a, and it 
is thus necessary to split the second term on the right-hand side of (9.83), 
since the radical in the denominator is regular for ^(C) < sTp. The splitting 
can be performed as 

s r p ( l + c o s a ) _ (STP~0* 1 

(C + *T P C O S a )(5r P ~~ 0* C + ST P c°s a (s r p - £)* 
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The first term on the right-hand side is regular for £ < sTp, except for the 
pole at ( = — sTp cos a. This pole can, however, be removed by writing 

(STP-Q* = (sTp-Z)*-(sTp)*(l+cos*)* + ( s r P )*( l+cosa)* 

£ + sT p cos a £ + 5 r p cos a £ -f sT p cos a 

Eq. (9.83) can now be rearranged in the following manner: 

-Msrp+OM- ^f(p)s in\ ' 
(STP)*(l+cosa)* C + sTjp cos a 

psTg(p) since 

s r p ( l+cos a) 

■(srP-0*-(sTP)*(l+cosa)* + 

£ + sTp cos a (srP"~C)*-

f* 
• , n , - (9-84) 

The left-hand side of (9.84) is regular for M(Q > — sTp cos a, while the 
right-hand side is regular for ^(C) < sTp. Because of the equality in the 
strip of overlap both sides of eq̂  (9.65) represent one and the same bounded 
entire function, say e(Q. In view of Liouville's theorem, e(£) is a constant. 
The magnitude of the constant can be obtained from order conditions on 
e(C) as |C| -► oo, which in turn are obtained from order conditions on the 
dependent field variables in the vicinity of x = 0. It is well known that 
the stress may show a singularity of the square root variety near x = 0, 
see for example eq. (9.29). Referring to the boundary condition (9.73) we 
find that this result implies that f _(*) = 0(\x\~*) as x -> 0". By virtue of 
an Abelian theorem for one-sided Laplace transforms, see eqs. (7.24) and 
(7.25), it is then concluded that f* is 0( |C|_ i ) as |(| -> oo. As a consequence 
the entire function e(() vanishes identically and we can solve for vv* from 
the left-hand side of eq. (9.84). Since A(£,p) = vv* , we find 

4C. P) - - I f — H r^nRFZ 1' <9'85) 

p*(l + cos ccy (sT p + ; ) (C + $T P C O S a ) 
By the use of the inversion integral for the two-sided Laplace transform, 

eq. (7.16), VV(JC, y, p) may be expressed as 

vv = - gM W(x, y, p), (9.86) 
P 

where 

W = ±- $TP S m " I e~— dC (9.87) 
2ni ( l+cosa)*JC l_ i 0 0 (sTp + Q*(£ + sTp cos a) 



Ch. 9, § 9.5.] DIFFRACTION OF A HORIZONTALLY POLARIZED SHEAR WAVE 377 

Eq. (9.87) is valid for y ^ 0. The path of integration ^(C) = Ci is restricted 
to the strip — sTp cos a < Ci < sTp. It follows from the convolution 
theorem for the one-sided Laplace transform that w(x, y, t) can be expressed 
as a convolution integral of W(x, y, t) and the inverse Laplace transform 

ofg(p)lp. 
To invert the one-sided Laplace transform (9.87) the Cagniard-de Hoop 

method is used. Thus, following the steps discussed in section 7.9 we first 
introduce the substitution £ = prj, whereupon (9.87) becomes 

W = — sTsmcc -1 diy. (9.88) 
2ni ( l + c o s a ) * . / ^ - ^ (sT + rj)*(ri + sT cos a) 

The singularities in the 77-plane are a simple pole at rj = — jy cos a and 
branch points at r\ — ±sT. Next we deform the path of integration from 
01(Y\) — rjl to a path along which the integral can be recognized as a 
one-sided Laplace transform. The appropriate path is given by eq. 
(7.176) as 

t /t2 \ * 
- cos 6±i I— -ST\ sin0, (9.89) rjT± = cos 
r 

where r and 9 are defined by eqs. (7.168) and (7.169), respectively. When 
sTr < t < 00, eq. (9.89) represents a hyperbola whose point of inter-
section with the real axis is always located in between the branch points 
rj — —sT and rj = -f$r. Therefore, no difficulties arise in connection with the 
branch cuts. On the other hand the contribution of the pole r\ = — sT cos a 
has to be taken into account for values of 6 in the region 0 ^ 9 < a. The 
contribution from the pole is 

pJ7 _ e - PST(X cos a + y sin a) /g Q Q \ 

From (9.86) and (9.90) the inverse Laplace transform of the corresponding 
displacement wave is 

rt — STX cos a — sxy sin a 

w(x, yt t) = -H(t-sTx cos a — sTy sin a) g(v)dv. (9.91) 
Jo 

Eq. (9.91) is a plane wave of the same form as the incident wave. It 
cancels the incident wave in the shadow zone 0 S 9 < a. 

The integral along the path defined by eq. (9.89) represents a cylindrical 
wave. Since the contour defined by eq. (9.89) is symmetric with respect to 
the real axis, and since p and t are both real, the cylindrical wave can be 
rewritten as 
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r = l 4sin_a r e - * j \ *£+}* } d r 

7u (1+cos a ) t J S r r l(sT + rjT+y(rjT+ + sT cos a)) 

By using the relation 

1 drjT+ _ i 

(4-^+)* ~dT " 02-sJr2)*' 
Eq. (9.92) can be further simplified to 

wc = i _4«n« r * z _ *( j f izWL) d , 
7T ( 1 + c o s ocyJSTr(t—Sjr)2 \rjT++sT cos a) 

and thus 

n , y, 0 = 1 ^ ^ f * ( (ST-^)i I H0-.Tr). 
7T ( r — 5Tr )T l?/r+-}-sr cos aj 

Upon substitution of (9.89) this expression reduces to 

W'(x, y, t) = - 1 (5X_f ( s i "K«^) + »**(« + ») ) 
7r \ 2 / U — 5 r r cos (a — 9) t — sTr cos (a + 0)J 

x H ( t - s r r ) 

(9.93) 

(9.94) 

where 0 i£ 9 ^ n. In view of (9.86) and (9.68) the corresponding dis-
placement is 

w\x, y, t) = - | G(t-s)Wc(x, y, s)ds, (9.95) 
J ST? 

where G(t) is defined by eq. (9.68). Eq. (9.95) is called the diffracted wave. 
For 0 ^ 9 <; 7u the complete solution of the diffraction problem can now 
be expressed as 

0 ^ 9 < a w(x, y, t) = w\x, y, t) 

a < 9 ^ n w(x, y, t) = wl'(x, y, f) + wd(x, y, f), 

where wl and wd are defined by eqs. (9.67) and (9.95), respectively. The 
solutions in the domain n ^ 9 g lit can be obtained in the same manner. 
For a time t ^ 0 the pattern of wavefronts is shown in figure 9.8. 

It is of interest to examine the stress singularities in the vicinity of the 
tip of the crack. The singularities come from the diffracted wave, which is 
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Fig. 9.8. Pattern of wavefronts for diffraction of an SH-wave by a slit. 

given by eq. (9.95). By considering the limit as r -► 0 the shear stress rdz 

becomes6 

T" = " T* = " (? )^ c o s K« + A)-cos H«~ W ) . (9-96) 

where 

F(0 = i f ^ ( ! z l ) z ^ ) d T _ ^ ) . (9.97) 

It is noted that the stresses are of order r "* for small values of r. 
The appearance of a stress singularity has implications from the point of 

view of fracture mechanics. It is generally assumed that the magnitude of 
the stress intensity factor is a criterion for extension of a crack. In the expres-
sion for the stress in the vicinity of the tip of a crack of length 2a, the stress-
intensity factor K is defined as 

K = lim (™ 

6 Details of the computation can be found in G. H. Handelman and L. A. Rubenfeld, 
Journal of Applied Mechanics 36 (1969) 873. 

|Ttel 
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Now let us consider the case when the function g(v) in eq. (9.68) is of the 
form 

g(v) = - c r , 

which corresponds to an incident step-stress wave. The function F(t) then 
is of the form 

F(t)= - 2 - ° f ± c r , 

and the stress intensity factor for eq. (9.96) becomes 

K = 2T0 {
C-^-\ [cosi(a + 0 ) - c o s i ( a - 0 ) ] . 

XlnaJ 

This stress intensity factor increases with time. If the crack is of finite length 
2a, the stress intensity factor increases until a wave diffracted from the 
opposite crack tip arrives. It is of interest that for the case of a step-
stress wave the dynamic stress intensity factor shows an overshoot of 
4/7r — 1 as compared to the stress intensity factor of the corresponding static 
problem.7 It is, therefore, conceivable that there are cases for which ex-
tension of a crack does not occur under a gradually applied system of loads, 
but where the material does indeed fracture when the same system of loads 
is rapidly applied and gives rise to waves. 

9.6. Diffraction of a longitudinal wave 

9.6.1. Formulation 

The diffraction of a plane longitudinal wave by a semi-infinite slit is another 
problem that can conveniently be investigated by using integral transforms 
together with the Wiener-Hopf technique and the Cagniard-de Hoop method. 
Let the incident wave be represented by 

ul(x, y, t) — G(t — sLx cos a — sLy sin a) cos a (9.98) 

v'(x, y, t) = G(t — sLx cos oc-sLy sin a) sin a, (9.99) 
where 

G(t) = H{t) [g{s)ds. (9.100) 
Jo 

7 For details we refer to J. D. Achenbach, International Journal of Engineering Science 
8 (1970) 947. 



Ch. 9, §9.6.] DIFFRACTION OF A LONGITUDINAL WAVE 381 

In eq. (9.100), H{ ) denotes the Heaviside step function, a is the angle of 
the normal to the wavefront and the x-axis, and sL — \\cL is the slowness 
of longitudinal waves. We restrict the angle a to the range 

0 : g a < ^ , 
2 

The position of the wavefront prior to time t = 0 is as shown in figure 9.7. 
It can easily be verified that the wave motion generated by the diffraction 

of the longitudinal wave consists of the superposition of the incident wave 
and the solutions to two boundary-initial value problems which are sym-
metric and antisymmetric, respectively, with respect to the plane y = 0. 
The two problems are: 

Symmetric problem: 

y = 0: x > 0 ry = (A. + 2fism2 oi)sLH(t — sLxcosa)g(t — sLx cos a) (9.101) 

x ^ 0 v = 0 (9.102) 

- o o < x < oo ryx = 0 (9.103) 

Antisymmetric problem: 

y = 0: x > 0 xyx = /zsL sin 2a H(t-sLx cos (x)g(t-sLx cos a) (9.104) 

x ^ 0 u = 0 (9.105) 

- o o < x < oo zy = 0. (9.106) 

Indeed, the superposition of (9.101), (9.103), (9.104) and (9.106) on the 
corresponding stresses due to the incident wave renders the surface y = 0, 
x > 0 free of tractions. The initial conditions for the problems defined by 
(9.101)-(9.106)are 

w(x, y9 0) = u(x, y9 0) = v(x, y, 0) = v(x9 y, 0) = 0. (9.107) 

The symmetric and antisymmetric boundary-initial value problems are 
two-dimensional in nature. The problems are formulated and solved by 
using the displacement potentials q> and \j/. The pertinent equations are 
stated by eqs. (7.106)-(7.113) of section 7.7. The solutions to the transient 
problems are again obtained by applying the one-sided Laplace transform 
over time and the two-sided Laplace transform over the spatial variable x. 
Since the transforms will be inverted by means of the Cagniard-de Hoop 
method, we employ the pair of two-sided Laplace transforms stated by 
eqs. (7.182) and (7.183) of section 7.11. In the half-space y ^ 0 the ap-
propriate expressions for >̂* and $?* then are 
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cp* = <P(P>ti)e-py,-y (9.108) 

#* = Y(p,t1)e-pyTy, (9.109) 
where 

n = (si-f2)*, y2r = {sl-n'f- (9.noa, b) 
The corresponding transforms of the displacements and the stresses are 
given by eqs. (7.187)-(7.191) of section 7.11. 

9.6.2. Application of the Wiener-Hopf technique 

As a first step toward the solution of the symmetric and antisymmetric 
problems we define boundary conditions at >> = 0 over the whole range of x 
by introducing pairs of unknown functions Ty_,v+ and TX3,_, U+, respec-
tively. Upon applying the one-sided Laplace transform with respect to time 
and the two-sided Laplace transform with respect to x, the boundary con-
ditions (9.101)—(9.103) then lead to the equations 

y = 0, — oo < x < oo: 

where f*+ follows from (9.101) as 

ty — Ty_ + T y + 

V = V + 

f* = 0 

(9.111) 

(9.112) 

(9.113) 

f* = (A+ 2/J sin2 a)sL g(p) (9.114) 
rj + sL cos a p 

Similarly the boundary conditions (9.104)-(9.106) result in the equations 

y 

where 

Tyx+ — 

< 0 0 : TyX = Tyx. 

u* = u* 

x* = 0, 

fxsL sin 2a g(p) 

rj + sL cos a p 

■ + Tyx + (9.115) 

(9.116) 

(9.117) 

(9.118) 

By arguments that are completely analogous to those presented in the 
previous section we conclude that f*_ and f*x_ are regular in the half-
plane 9t(r\) < sL, while v% and u* are regular in the half-plane 
8%{Y\) > -sLcos a. 

Employing eqs. (9.108) and (9.109) in conjunction with the boundary 
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conditions (9.111 )-(9.113) we obtain three equations for the four unknowns 
^s(A *?)> YsiP* *?)> **- a n d v%, where the subscript s is used for the sym-
metric problem. Eqs. (9.112) and (9.113) yield <Ps(p, rj) and Ys(p, rj) in the 
forms 

* , ( P , * ) = -S^£v*+ (9.119) -* 
r 

PSTJL 

nP>ri)= - ^ v l , (9.120) 
psT 

whereupon the remaining equation reduces to the following Wiener-Hopf 
type equation relating f*_ and v% : 

2 w sf-s| rf-sl m_* = _*_ + _*+ ^ ( 9 U 1 ) 

where 

m = - ( ^ ; f ? 2 +
2 y / L ( t r ( > y ) • (9-122) 

2(sl-sl)(ri2-s2
R) 

The numerator of this expression is recognized as the function R(q) for the 
slowness of Rayleigh surface waves, see eq. (5.96) of chapter 5. The roots 
of the equation R(t]) = 0 are sR — ±lfcR9 where cR is the velocity of 
Rayleigh waves. 

In the same manner eqs. (9.115)—(9.117) lead to three equations for the 
four unknowns <Pa(p, rj), ¥a{p, q), f*x_ and u* , where the subscripts a are 
employed to label the antisymmetric problem. The functions <?>a(p9 q) and 
Ya(P> *l) a r e subsequently expressed in terms of w* as 

* . ( * * ) = ^ u l (9.123) 
psT 

V.(P,*)= - S l ^ u l , (9.124) 
psTyT 

whereupon the remaining eq. (9.115) relates w* and f*x_ by 

o 2 _ c 2 „ 2 _ ~ 2 

T SL 1 

sT yT 

2W
 5JLJL *_J* K(r,)u% = f*,_ +f;x+ , (9.125) 

where K{r\) is defined by eq. (9.122). 
The Wiener-Hopf equations (9.121) and (9.125) hold in the strip defined 
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by — sL cos a < 8&{r\) < sL. As a first step in determining the solutions to 
these equations K(rj) is factored as 

K{t,) = K+(t,) • X_(IJ) , (9.126) 

where ^+(77) and its reciprocal are regular for &(rj) > — sL, and K_{r\) 
and its reciprocal are regular for Si(r\) < sL. Explicit expressions for 
K+{r\) and K_(rj) are derived in section 9.4. Also factoring yL(t]) as 

y t ( 0 = yL+•?! . - , (9-127) 
where 

VL+ = & + *)*, U- = (SL-»»)*. (9-128a, b) 

Eq. (9.121) may be rewritten as 

2 ^ i z i ^ K + o * + = n-$-
s\ 

+ 
-* 

(9.129) 
7L+ (ly-sj ,)^- (rj-sR)K. 

It remains to split the term yL_f*+/A:_. By employing (9.114) we write 

-* 
yL- *y+ 

(rj-sR)K. 

(A + 2/isin2a)5L g(p) 

r\ + sL cos a p 
JL-

.(r}-sR)K_ 
-L 

+ 
where 

L = 

(A + 2^sin2a)sL g(p) 

q + sL cos a p 
U (9.130) 

(9.131) 
tj= — SJL cos a (rj-sR)K_(ri)\ 

Thus, L is independent of r\. Eq. (9.129) may now be expressed in the form 

«2 
of 7L+ 

-* 
7/ -h 5L COS a p 

(/l + 2/jsin2a)sL g(p) 

77 4- sL cos a p 
VL-

- 0 ? - * * ) * -
(9.132) 

The left-hand side of this equation is regular for 0t(r\) > — sL cos a, while 
the right-hand side is regular for 2%(Y\) < sL. 

Similarly, eq. (9.125) may be expressed in the form 
2 2 

_ Sj — SL t] + SR _* 
2/xp——- K+ul si 

WL
 s i n 2 a 9(P)M = ?r-V-

7T + r\ 4- sL cos a p 

M5L sin 2a #(p) 

77 4- 5L cos a p 
+ 

fo-5|l)K-

-M (9.133) 
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(9.134) 
tj = — SL COS a 

where 

M = yr-00 
(n-sR)K.(rj)\ 

The usual reasoning now leads to the solutions 

_* = /i + 2/isin2a sLsT g(p) yL+ L _1_ 1 3 

2/i Sj —s^ p2 n + sR Y\ + sL cos a A^ + 

_* _ 5L5^sin2a g(p) yT+ M 1 
2 2 2 • ( 9 1 3 6 ) 

2(sT — sL) p *7 + sR >/ + sLcosa £ + 

The four functions <£s, f,, #fl and *Ffl subsequently follow from eqs. (9.119), 
(9.120), (9.123) and (9.124), respectively. 

9.6.3. Inversion of transforms 

The transforms can be inverted by means of the Cagniard-de Hoop method. 
We will carry out some of the manipulations to obtain the stress component 

The transform of the stress is 

* ;= ( * , * ) . + (?,•).. (9-137) 

where subscripts s and a refer to the symmetric and the antisymmetric 
problems, respectively. By employing eqs. (7.190), (9.108), (9.109), (9.119) 
and (9.120), we can write 

(t*)s = * - } lALse-p^ + AT5e-p^l (9.138) 
P 

where 

(4-2,;2)2 p2 . 
S2T7L g(p) 

(9.139) 

^ = _ 4 X / l J L _ , * . (9.140) 
sT g(P) 

The corresponding expression for the antisymmetric problem is 

( f ; ) a = * ) [ALae-p^ + ATae-pml (9.141) 
P 

where 

^=2fcV)^u*+ (9.142) 
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A T a = - A L a . (9.143) 

A formal application of the inversion integral for the two-sided Laplace 
transform, eq. (7.183), yields ry(x, y, p) in the form 

f, = wipKh + Ir), (9-144) 
where 

h = ^ " fl , 0 ° ( 4 + 4 > " P ( w " ^ (9.145) 
2 T T I J I | 1 - 1 - 0 0 

IT = J- r + ,<0(/lr, + > l T . K P ( w " ' x ) d ^ (9-146) 
2TTI . /„._,■„, » 7 i - i o o 

Following the usual steps of the Cagniard-de Hoop scheme we seek 
contours in the complex f/-plane along which the exponentials in the in-
tegrand take the form exp (—pt). As shown in section 7.11, such contours 
are given by 

i It2 \± 
rj = i7L±(r,e,f) = - - c o s 0 ± n - -s2

L\ sin 6 (9.147) 

for the integral in eq. (9.145), where sLr ^ / < oo, and 

t It1 \* 
n = nT±(r, 6,t) = - - cos 0±i I— -5^1 sinO (9.148) 

for the integral in eq. (9.146), where sTr ^ t < oo. Eqs. (9.147) and (9.148) 
each define one branch of two distinct hyperbolae. The contours denned by 
rjL± and r]T± are discussed in some detail in section 7.11. 

An examination of eqs. (9.139), (9.140), (9.142) and (9.143) reveals that 
the functions ALs, ATs, ALa and ATa asymptotically behave as C~* as 
|C| -► oo. Thus by the residue theorem and Jordan's lemma we can replace 
the inversion integrals in (9.145) and (9.146) by the integrals along the hyper-
bolic paths t]L± and r\T±, respectively, plus the residues due to any poles 
crossed in the changes of the paths of integration. 

Let us first consider the integral in eq. (9.145). Since the point of inter-
section of the hyperbola (9.147) with the real axis is always located between 
t] = — sL and r\ = sL, no difficulties arise in connection with the branch 
cuts. In changing the path of integration the contribution of the pole at 
rj = —sL cos a must be taken into account when cos 6 > cos a, i.e., when 
9 < aifO ^ 6 ^ n. We have 

h= rDL(r,Q,t)e-ptdt + RL, (9.149) 
^ sir 



C h . 9, § 9.6.] DIFFRACTION OF A LONGITUDINAL WAVE 387 

where 

DL = - J kALs + ALal=^ ^ ± ) , (9.150) 
n \ ot ) 

and the contribution from the pole, RL, is 

9 < a: RL = [(^ + sLcosa)(^Ls + ̂ ) ] 7 = _ s , c o s a e - ^ ^ s i n a + - ° - ) (9.151) 

6 > a: RL = 0. (9.152) 

Now we turn to the integral in eq. (9.146), and we encounter the same 
difficulty as in section 7.11, in that the vertex rj = —sT cos 9 of the hyperbola 
defined by rjT± may or may not be located in between the branch points 
Y\ = ±sL. Since the functions defined by eqs. (9.138)—(9.143) are regular 
in the right-half planes we need be concerned only with the branch cuts in 
the left half-plane. This implies that for cos" 1(sL/sT) g 9 g 0 the branch 
cut emanating from r\ = sL must be encircled. We find ( O ! g 0 ^ cos"1 

{SJST))'. 

IT = I TDTL(r, 9, t)e~ptdt+ J Dr(r, 9, t)e~ptdt + RT, (9.153) 

where7rL is defined by eq. (7.203), and 

D T L - I ' {lArs + Aral-^ ^ } (9.154) 

DT = i J \\ATt + Ar.\-n. % 4 , (9-155) 

T \ ot ) 

and the contribution from the pole is 

9 < a: RT = [fr +s L cos a ) ( ^ s + ̂ J ^ (9.156) 
9 > a: RT = 0. 
A little algebra leads to the result that the sum of the contributions (9.151) 
and (9.156) is 

R = R +R = ^ "*" ̂  S m a ^ L n~ps**^ysin g "*" *cosg) (9 151) I - 2 

For 6 ^ cos_1(5t/jT) we have 

IT = j £>r(r, 9, t)e-
p'dt, (9.158) 

where DT is defined by eq. (9.155). 
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The inverse one-sided Laplace transforms of eqs. (9.150), (9.154), (9.155), 
(9.157) and (9.158) can now be obtained by inspection. In view of eq. 
(9.144) the stresses xy are subsequently obtained as convolution integrals 
over these results and the function g(t). Eq. (9.150) leads to a diffracted 
longitudinal wave, while (9.155) and (9.158) lead to diffracted transverse 
waves. Just as in section 7.11, eq. (9.155) is a head wave. Finally, eq. (9.157) 
cancels out the incident wave in the shadow of the slit. The corresponding 
results for y ^ 0 can be obtained by minor modifications. The pattern of 
wavefronts is shown in figure 9.9. 

Fig. 9.9. Diffraction of a longitudinal wave by a slit. 1 = incident longit udinal wave. 
2 = reflected longitudinal wave. 3 == reflected transverse wave. 4 = head waves. 5 = 

diffracted transverse wave. 6 = diffracted longitudinal wave. 

For short times the analysis can be extended to diffraction by a crack of 
finite length. The computations were carried out by Thau and Lu.8 The 
stresses at the crack tip are again singular, and for a step-stress wave the 
stress-intensity factor shows a dynamic overshoot of about 30 % over the 
corresponding static factor. 

9.7. Problems 

9.1. An unbounded elastic medium contains a semi-infinite slit in the plane 

8 S. A. Thau and T.-H. Lu, International Journal of Solids and Structures 7 (1971) 731. 
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defined by x > 0,y = ±0 , —oo < z < oo. The faces of the slit are sub-
jected to uniform antiplane surface tractions over the strip 0 < x ^ a, i.e., 

0 < x ^ a, y = ±0 : 

a < x < oo, y = ±0 : 

0 < x < oo, y = ±0: 

The medium is at rest prior to time t = 0 
Use the method of Green's functions to derive an integral equation for 

the shear stress xyz in the plane y = 0. Solve the integral equation. De-
termine the stress singularity for small values.of \x\. 

9.2. An elastic half-space is clamped over y = 0, x ^ 0, and free of surface 
tractions over y = 0, x > 0. A pair of incident and reflected plane transient 

/-Clamped Free-^ 

yt 

Undisturbed 

waves propagates along the free surface, as shown in the figure. The in-
cident displacement wave is horizontally polarized and is of the general 
form 

PcTt + x sin a + y cos a 

wfa, y, t) = H(cTt + x sin <x + y cos a) g(v)dv. 
Jo 

This expression represents the displacement in region A. 
(a) Determine the displacement in region B. 
(b) The system of waves reaches the point x = 0, y = 0 at time t = 0. 

For t > 0 compute the stress ryz in the plane y = 0 by the method of 
Green's functions. 

(c) Determine the stress singularity in the plane y = 0. 

9.3. In the domain 0 ^ x < oo a function f(x) satisfies the following 
integral equation: 

/ (x) + 4 I ^""''/(lOdif = e~x, 0 ^ x < oo. 
Jo 

Solve for/(x) by applying the Wiener-Hopf technique. 

t0 if (0 

Ty = Tyx = 0. 
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9.4. An unbounded elastic medium contains a rigid semi-infinite screen 
which prevents displacement in any direction over the domain x ^ 0, 
j> = 0, — co < z < co. A horizontally polarized shear wave of the form 
eq. (9.67) strikes the screen at time t = 0. Determine w(x, y, t) by applying 
integral transform techniques. 

9.5. Examine the diffraction of a plane SV-wave by a semi-infinite slit. 
The wavefront of the incident wave is parallel to the slit, i.e., the incident 
wave is defined by 

u\x, y, t) =. G(t-sTy), t/ = w' = 0, 
where 

G(t) = H(t) ftg(s)ds. 
Jo 

Determine the shear stress xyx in the plane of the slit. 



CHAPTER 10 

THERMAL AND VISCOELASTIC EFFECTS, AND EFFECTS OF 
ANISOTROPY AND NONLINEARITY 

10.1. Thermal effects 

Most materials undergo appreciable changes of volume when subjected to 
variations of the temperature. If the thermal expansions or contractions 
are not freely admitted, temperature variations give rise to thermal stresses. 
Conversely a change of volume is attended by a change of the temperature. 
When a given element is compressed or dilated, these volume changes are 
accompanied by heating and cooling, respectively. The study of the in-
fluence of the temperature of an elastic solid upon the distribution of stress 
and strain, and of the inverse effect of the deformation upon the temperature 
distribution is the subject of the theory of thermoelasticity. 

The first effect, that of the temperature on the stresses, can be accounted 
for by modifying Hooke's law. The classical argument for the modification 
proceeds as follows1: Consider an isotropic elastic solid in an arbitrary 
state of stress, and let a small element be detached from its surroundings 
and subjected to a temperature change T—T0, where T0 is the reference 
temperature. The additional straining of the element is given by 

(«y ) r -« (T - ro )^ y , (10.1) 

where a is the coefficient of linear thermal expansion. It follows that if the 
distribution of strain in the heated solid is efj- then the strain produced by the 
mechanical forces is eij—(eij)T9 and this tensor should replace e0- in Hooke's 
law. This leads to the following modification of eq. (2.28): 

*y = i*» 5ij + lv*u " <M + 2JO(T - T0)SU. (10.2) 

On the basis of intuitive arguments it is less simple to account for the 
effect of the deformation on the temperature in the equation governing the 
temperature distribution. Although it is plausible that a term proportional 

1 P. Chadwick, "Thermoelasticity, the dynamic theory", in: Progress in solid mechanics, 
Vol. 1, ed. by I. N. Sneddon and R. Hill. Amsterdam, North-Holland Publishing Co. 
(1960). 
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to the time rate of change of the dilatation should be included in the heat 
conduction equation, the form of the proportionality factor is not obvious. 
In any case it is more satisfactory to derive the equations governing the 
mechanical and thermal disturbances by a more fundamental approach 
based on thermodynamic considerations. Such a derivation is presented in 
the book by Boley and Weiner.2 By employing an expansion of the free 
energy in terms of the temperature change and the principal invariants of 
the strain tensor, it is found that the stress is related to the strain and the 
variation in temperature by eq. (10.2), while the temperature is governed by 

KTmm = p c K t + (3ë + 2ì)áÃï6«. (10.3) 

Here K is the thermal conductivity of the solid and cv is the specific heat at 
constant deformation. In deriving (10.3) it is assumed that Fourier's law 
of heat conduction holds and that T-T0 <C T0. Since eqs. (10.2) and (10.3) 
are based on an expansion from the reference state defined by the temperature 
distribution T0, the material constants appearing in these equations are 
essentially isothermal constants. Eqs. (10.2) and (10.3) are supplemented 
by the equation of motion 

*ij.j + pfi = put, (10.4) 

and appropriate boundary and initial conditions. The complete system of 
equations defines the coupled thermoelastic theory. Substituting the stress-
strain-temperature relation into the equation of motion we obtain in vector 
notation 

(ë + ì)\V · if + ìí2Ì - á(3ë + 2ì)\(Ô - Ã0) 4- pf = 'ñË. (10.5) 

10.2. Coupled thermoelastic theory 

The coupling of the deformation and the temperature through the coupling 
term in eq. (10.3) does have some interesting implications for the propaga-
tion of waves. Let us start with an examination of harmonic waves. 

10.2.1. Time-harmonic plane waves 

A plane displacement wave of harmonic time dependence propagating with 
phase velocity c in a direction defined by the propagation vector p is rep-
resented by 

u = Ad exp [ik(x · p-ct)]9 (10.6) 
2 B. A. Boley and J. H. Weiner, Theory of thermal stresses. New York, John Wiley and 

Sons, Inc. (1960), p. 27. 
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where k is the wavenumber and d is a unit vector denning the direction of 
motion. If the deformation affects the thermal state of the medium, a 
displacement wave is accompanied by a temperature wave, which is a scalar 
quantity, and which may be assumed of the form 

T-T0 = Bexp[ik(x' p-ct)~]. (10.7) 

Substituting (10.6) and (10.7) into the displacement equation of motion 
(10.5) and into the equation governing the temperature field (10.3), we 
obtain 

^-pc2)k2Ad + (X + ß){p · d)k2Ap + a.{M + 2ß)ikBp = 0 

á(32 + 2ì)(ñ · d)T0k
2cA + (Kk2 - pcvikc) = 0. 

By eliminating B we obtain 

(ì-ñ£
2)Ü + (ë + ì)(ñ ■ d)p+ (^MLJ)E1P = 0. (10.8) 

c + ikKv 

In eq. (10.8), we have introduced the dimensionless thermoelastic coupling 
constant å, which is defined as 

8 = ( 3 A + 2 , ) V T 0 

(ë + 2ì)ñ<í 

Also, the constant êí, which is defined as 

êí = — , (10.10) 
pcv 

is the thermal diffusivity at constant deformation. For a number of 
materials the magnitude of å is shown in table 10.1. It is noted that å is much 
smaller than unity. Nevertheless the coupling effect cannot always be ignored. 

TABLE 10.1 

Coupling constant at 20 °C 
(after Chadwick) 

Coupling 
Constant e 

Aluminum 
Copper 
Iron 
Lead 

3.56X10"2 

1.68 Xl0" 2 

2.97 X l 0 - 2 

7.33 X l 0 - 2 
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Eq. (10.8) is equivalent to eq. (4.5) of chapter 4. Since p and d are two 
different unit vectors, eq. (10.8) can be satisfied in two ways only: 

either d — ±p, or p · d = 0. 

10.2.2. Transverse waves 

if d Ö ±p, both terms in (10.8) have to vanish independently. This implies 

pd = 0 and c = i^\ . (10.11) 

Eqs. (10.11) define transverse waves. The noteworthy observation is that 
transverse waves do not interact with the temperature field. 

10.2.3. Longitudinal waves 

If d = +/>, we have dp — ± 1 , and eq. (10.8) becomes 

ë + 2ì-ñï2+ Ø±¢å = o. (10.12) 
c + ikKv 

This rather complicated equation shows that the phase velocity depends 
on k, which means that thermoelastic waves are dispersive. Since the solution 
for c of (10.12) generally is complex-valued, coupled thermoelastic waves 
also suffer attenuation. If we consider the wavenumber k as the variable, the 
limit cases for k -► 0 and k -► oo are 

lime = (l + e)*cL (10.13) 
k-*0 

lime = cL. (10.14) 

Since the elastic constants ë, ì and p are isothermal constants, it can be 
concluded that strictly speaking longitudinal waves propagate with the phase 
cL only if the wavelength approaches zero. If the wavelength increases 
beyond bounds the phase velocity is given by eq. (10.13). For very long 
waves the propagation of harmonic waves is essentially an adiabatic 
process, and the phase velocity depends on adiabatic material constants. 
On physical grounds the limitcases were explained by Deresiewicz.3 The gist 
of the explanation is that heat is produced and consumed over a wavelength 

3 H. Deresiewicz, Journal of the Acoustical Society of America 29 (1957) 204. 
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and that thermal equilibrium is established rapidly when the wavelength is 
short and slowly when the wavelength is large. 

A rather detailed examination of eq. (10.12) was carried out in the 
previously cited article by Chadwick. Following Chadwick we introduce 
the following dimensionless quantities 

î = ^ (10.15) 
ù 

÷ = ^æ, where ù* = cl. (10.16) 
ù êí 

Eq. (10.12) then becomes 

(æ2-÷2)(÷ + ßî2) + åî2÷=0. (10.17) 

For the case of most physical interest the frequency is presumed known 

and the wavenumber is to be computed. When ÷ is regarded as a real 

constant, eq. (10.17) is a quartic in î with roots ±îß and ±î2. Exact 

expressions as well as expansions for small values of å and/or small values 

of ÷ are given by Chadwick. Let us write 

where vx and v2 are phase velocities and ql and q2 are attenuation con-
stants. Expansions for these quantities are 

»2 

These results show that the roots ±îã represent modified elastic waves while 
±î2 represent modified thermal waves. 

It is noted that q^ is an increasing function of ÷, but it can be shown that 
ql approaches a finite value as ÷ increases beyond bounds. It is, however, 

= cL 
1 + 

ù 

2(1 +X2) 
2 

+0(å2) 

å÷ 
-2(1+÷2) 

= cL{2Xf 

-0(å2) 
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evident that the wave motion may be significantly attenuated at high 
frequencies. In the lower scale of frequencies the coupling between a 
longitudinal wave and the accompanying thermal disturbance is, however, 
weak. 

In summary, for plane time-harmonic waves the coupling between the 
thermal and mechanical fields affects the essentially mechanical waves in 
that these waves become dispersed and attenuated. 

10.2A. Transient waves 

The coupling between mechanical and thermal disturbances is also of some 
importance in problems of transient wave propagation. To display the effect 
of the coupling we will examine a one-dimensional initial boundary value 
problem. The influence of thermoelastic coupling should be most pronounced 
when the external excitation is of a mechanical nature, because in that case 
the deformation is purely mechanical if the coupling effect is neglected. 

In a one-dimensional geometry the coupled thermoelastic equations 
reduce to 

dx2 ë + 2ì dx c\ dt2 

<?T = PCydT + (3ë + 2ì)áÔ0 d2u 

dx2 K dt K dxdt' 

We will consider a half-space x ^ 0 which is initially at rest and at a uniform 
temperature 

u(x9 0) = ý(÷, 0) = 0; T(x, 0) = T0. (10.20) 

At time t = 0 the surface x — 0 is subjected to a uniform stress, while 
the temperature is maintained at the reference temperature 

ô÷(0,Þ = ~ô0Ç(Þ (10.21) 

Ô(0,Þ = Ô0. (10.22) 

Solutions of problems of transient wave propagation in coupled thermo-
elastjcity are usually sought by means of integral transform techniques. 
Unfortunately it is generally rather cumbersome to obtain inverse trans-
forms. In many cases it is necessary to resort to approximate methods. A 
number of problems for the half-space were solved by Boley and Tollins.4 

4 B. A. Boley and I. S. Tollins, Journal of Applied Mechanics 29 (1962) 637. 
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In figure 10.1 we have sketched the stress ô÷(÷9 t) for the problem defined 
by eqs. (10.18)-(10.22) as a function of x/cLt and for a specific time /. The 
solid line indicates the isothermal solution which is obtained from the un-
coupled theory. The most notable feature of the solution which does in-
clude the effect of coupling is that the wavefront propagating with velocity 

\ 
\ 

1 _ * _ 
cLt 

Fig. 10.1. Longitudinal stress. uncoupled theory. coupled theory. 

cL is preceded by a disturbance which (in theory) extends to infinity. This 
disturbance is generated by the thermal field which is due to conduction of 
heat produced by the deformation behind the wavefront x/cLt = 1. Since 
heat conduction according to Fourier's law is a diffusion process the thermal 
field instantaneously extends to infinity and thus causes a (very small) 
deformation which precedes the wavefront. If the surface pressure is sud-
denly applied a discontinuity of decreasing magnitude propagates with 
the velocity of longitudinal waves. In figure 10.1 we have also shown the 
corresponding uncoupled field. The thermal coupling thus causes a precursor 
effect and a damping effect. 

By employing the analytical techniques of chapter 4 to determine the 
magnitude of a propagating discontinuity it can easily be shown that the 
stress jump at x = cLt is of the form 

[ô,] = -He-*cdlKv)\ (10.23) 

where å is the coupling constant and êõ is the diffusivity at constant de-
formation. For a derivation of (10.23) we refer to the book by Parkus.5 

5 H. Parkus, Thermoelasticity, Blaisdell Publishing Co. (1968), p. 101. 
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For most materials the exponent is a relatively large number and the dis-
continuity is damped out over a very short distance. 

10.2.5. Second sound 

The classical theory of the conduction of heat rests upon the hypothesis 
that the flux of heat is proportional to the gradient of the temperature 
distribution. As a consequence of this hypothesis, which is known as Fourier's 
law, the temperature distribution in a body is governed by a parabolic 
partial differential equation, which predicts that the application of a thermal 
disturbance in a finite region of a body instantaneously affects all points 
of the body. This behavior, which implies an "infinite speed of propagation" 
of thermal disturbances, has been reason to doubt the validity of Fourier's 
law for initial value problems and short times, and it has motivated proposals 
to modify Fourier's law to a relation of the type 

qt + rq^-K — , (10.24) 
dxi 

where qt is the heat flux. Through this equation the temperature distribution 
is governed by a partial differential equation of the hyperbolic type, and heat 
conduction is described as a wave propagation phenomenon. Often the 
term "second sound" is used in referring to these thermal waves. 

The implications of propagation of thermal effects on the initial-boundary 
value problem defined by (10.20)-(10.22) were examined by Achenbach.6 

If the transport of heat is governed by the modified Fourier's law (10.24) 
the application of a mechanical or a thermal disturbance in a one-dimensional 
geometry gives rise to two wavefronts. The speed of the fast wavefront 
is greater than the larger of cL and cn where cL and ct are the speeds of 
mechanical and thermal wavefronts if thermomechanical coupling is ignored. 
The speed of the slow wavefront is less than the smaller of cL and ct. For 
ctIcL < 0+å)*> where å is the coupling constant, the slow wave is es-
sentially thermal and the fast wave is essentially mechanical. For ct/cL > 
(1 +å)* the opposite is the case and the fast and slow waves are essentially 
thermal and mechanical, respectively. If the externally applied disturbance 
is discontinuous in time, the temperature is discontinuous at the wave-
fronts unless Fourier's classical law of heat conduction is satisfied. The dis-
continuities in the mechanical and the thermal fields decay exponentially, 

6 J. D. Achenbach, Journal of the Mechanics and Physics of Solids 16 (1968) 273. 
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where the attenuation is faster at the wavefronts of the essentially thermal 
waves. 

10.3. Uncoupled thermoelastic theory 

If the thermal and mechanical fields are independent of time, the coupling 
in the heat equation between the temperature and the deformation vanishes. 
Even for fields that do vary with time, the coupling term is often neglected, 
so that eq. (10.3) reduces to 

KTmm = pcvt, (10.25) 

By neglecting the influence of the deformation on the temperature field the 
temperature distribution can be solved first from eq. (10.25), whereupon 
the then known temperature field enters eq. (10.5) effectively as a body 
force. If the temperature variation is sufficiently rapid it may induce wave 
propagation effects. These thermally induced waves can be analyzed by 
the techniques discussed in chapter 3 for motions generated by distributions 
of body forces. 

According to the uncoupled theory the thermal state is not affected in 
the event that the external disturbances are purely mechanical in nature. 
The temperature terms in eqs. (10.2) and (10.5) vanish and the analysis is 
purely isothermal. The theory and methods discussed in this book are 
pertinent to this case. It follows from the preceding section that a strictly 
isothermal analysis is, however, an approximation, because the heat 
generated by deformation is neglected. 

10.4. The linearly viscoelastic solid 

In this section we investigate the propagation of waves in a class of materials 
for which loads and deformations are linearly related, but for which the 
deformation depends not only on the present magnitude of the loads but 
also on the history of the loading process. These materials are called linearly 
viscoelastic.7 For a more specific description of viscoelastic behavior it is 
convenient to examine the simple case of one-dimensional longitudinal 
stress. 

10.4.1. Viscoelastic behavior 

Let us consider an infinitesimal element of a material, and let us suppose that 
we instantaneously place the element in a state of homogeneous longitudinal 

7 The theory is discussed by R. M. Christensen, Theory of viscoelasticity. New York, 
Academic Press (1971). 
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stress defined by ô÷ Ö 0, xy = ô2 == 0. In a perfectly elastic element the stress 
ô÷ instantaneously gives rise to strains, in particular to a homogeneous 
extensional strain of magnitude å÷ = ô÷/Å, where E is the extensional, or 
Young's, modulus. In an element of a viscoelastic material the instantaneous 
response will, however, be followed by an additional strain which increases 
with time. This phenomenon, which is called creep, is characteristic of 
viscoelastic materials. The extensional strain response to a homogeneous 
longitudinal stress of unit magnitude is called the creep function JE{t). The 
creep function is sketched in figure 10.2. Conversely, if the element is in-
stantaneously placed in a state of extensional strain å÷, combined with 

JE (01 

t 

Fig. 10.2. Creep function. 

GE(t) I 

t 

Fig. 10.3. Relaxation function. 
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xy = ô2 = 0, the instantaneous stress response is followed by a decrease 
of the stress level. This phenomenon is called relaxation. The longitudinal 
stress response to a strain å÷ of unit magnitude is termed the relaxation 
function GE(t). The relaxation function is sketched in figure 10.3. By virtue 
of the linearity of the process the longitudinal stress due to an extensional 
strain of arbitrary time dependence may then be expressed as a superposition 
integral over GE{t) and å÷(Þ, 

ô÷(ß) = sx(0)GE(t-to)+ Ã G £ ( i - s ) ^ d s , (10.26) 
Jt0

 + as 

where it is assumed that the process starts at time t = t0. Eq. (10.26) can 
also be written in the form 

ô÷(Þ = GE(0)ex(t) + Ã GE(t-s)sx(s)ds, (10.27) 

where a prime denotes a derivative with respect to the argument. Eqs. 
(10.26) and (10.27) show one way of representing linear viscoelastic con-
stitutive behavior for the case of one-dimensional stress. A more compact 
way of writing (10.26) is 

ô , ( ß ) = Ã ó £ ( ß - 5 ) á å ÷ . (10.28) 

10.4.2. Constitutive equations in three dimensions 

In an isotropic elastic solid the mechanical behavior can be completely 
described by two elastic constants. As shown in section 2.4 a convenient 
choice consists of the shear modulus ì and the bulk modulus B. The ad-
vantage of using these |constants is that they have definite physical inter-
pretations, and that they can be measured. In terms of ì and B the elastic 
stress-strain relations are 

Sij = 2ìâß]9 \xkk = Bskk9 (10.29a, b) 

where the stress deviatior s^- and the strain deviatior etj are defined by eqs. 
(2.32) and (2.33), respectively. In analogy to eq. (10.28) the viscoelastic 
relations corresponding to eqs. (10.29a, b) may be written in the forms 

stJ = 2 i'Gs(t-s)deu (10.30) 
-¼ 

ô« = 3 i'GB(t-s)dekk, (10.31) 
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where Gs(t) and GB(t) are the relaxation functions in shear and in bulk, 
respectively. The corresponding relation between ô/7· and å0· is 

*u = *ij f lGB(tshiGs(t-sftaekk + 2 f Gs( i-s)de„. (10.32) 
Jo Jo 

10.4.3. Complex modulus 

Suppose that the strain history is specified as a harmonic function of time, 
so that the strain deviator may be written as 

e.. = e*ei(0t 
C I J *IJ C 

Assuming that a steady state has been reached the stress deviator is also 
time-harmonic with frequency ù. The stress deviator may then be written 
in the form 

su = 2Gj(a>)eiy»f, (10.33) 

where the complex modulus G*(a>) is a complex function of the frequency. 
We write 

or 

where 

and 

Gl? = GK<D) + iGi'(o>), (10.34) 

G | = \G^\ei(ps, (10.35) 

IGJI = { [ G » ] 2 + [Gs(co)]2}^ (10.36) 

^(o;) = t a n - 1 ^ . (10.37) 
Gs(ö>) 

It follows that the stress and strain are out of phase, which implies that 
energy is dissipated during the steady-state oscillations. It can be shown 
that the real and imaginary parts of the complex modulus can be expressed 
in terms of the relaxation function.8 

For steady-state time-harmonic oscillations eq. (10.32) becomes 

<l = iy[G5(e»)-4Gs(o))K + 2GS(coK;, (10.38) 

where 

t y = t y eiM, ey = å*· e"*. (10.30a, b) 

8 The expressions are given in the previously cited book by Christensen. 
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10.5. Waves in viscoelastic solids 

Viscoelasticity affects the propagation of waves in a rather significant 
manner. It is shown in this section that time-harmonic waves in an un-
bounded medium are subjected to dispersion and attenuation due to the 
viscoelastic constitutive behavior. A pronounced effect on transient waves is 
damping in the vicinity of the wavefront. We will restrict the attention to 
isothermal wave propagation. 

10.5.1. Time-harmonic waves 

It has been stated several times that a time-harmonic displacement wave is 
of the form 

u = Ad exp [i(kx · ñ-ùÞ]9 (10.40) 

where ù is the frequency, k is the wavenumber and p and d are unit vectors 
in the directions of propagation and motion, respectively. Substituting 
(10.40) into eq. (10.38), and subsequently substituting (10.38) and (10.40) 
into the equation of motion Tijtj = pii,·, we obtain in vector notation 

[G|(a>)/c2-pW
2]d + [G*(c0) + | G s » ] / c 2 ( p · d)p = 0. (10.41) 

This equation, which is the equivalent for a viscoelastic solid of eq. (4.5), 
again can be satisfied in two ways only, 

either d = ±p, or p · d = 0. 

In eq. (10.41) either k or ù can be considered as the real-valued independent 
variable. Considering the wavenumber k as the independent variable, the 
phase velocity c = ù/k can be computed from eq. (10.41). Evidently c 
must come out as a complex number, 

c = Ci(k) + ic2(k). (10.42) 

The dependence of c1 on k indicates that viscoelastic waves are dispersive, 
while the presence of the imaginary term c2(k) shows that the amplitude 
decreases as k increases. In the remainder of this section we will, however, 
choose to consider the physically more realistic case when a forcing frequency 
is taken at the real-valued independent variable and k is to be computed. 

10.5.2, Longitudinal waves 

lid = ±p we obtain from eq. (10.41) 

P k = 
LG*(O>)+$G;H. 

ù. (10.43) 
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Evidently k is complex, which implies that the amplitude decreases with 
increasing x. The attenuation rate clearly depends on the frequency. 

10.5.3. Transverse waves 

If p - d = 0, we have 

k = ù. (10.44) 

Thus, transverse waves are also attenuated. 

10.5.4. Transient waves 

The proper statement of the dynamic problem for a viscoelastic body is 
provided by the equations of section 2.5, except that Hooke's law, eq. 
(2.40), must be replaced by the viscoelastic stress-strain relation, which is 
given by eq. (10.32). For the type of boundary conditions stated in section 
3.2 the initial-boundary value problem can in a formal manner be solved 
without difficulty, by employing the one-sided Laplace transform over 
time. It is rather simple to obtain the Laplace transform of the solution 
of any viscoelastic problem provided that the Laplace transform of the 
solution of the corresponding elastic problem is available. A simple relation 
between the Laplace transforms exists by virtue of the form of viscoelastic 
constitutive laws, which contain convolution integrals, and by virtue of the 
property that the one-sided Laplace transform of a Riemann convolution 
of two functions is given by the product of the Laplace transforms of the two 
functions. 

By applying the one-sided Laplace transform to eq. (10.32) it follows 
that ztj and å0· are related by 

TU = d^pGzip) -hGs(p)Tskk + 2pGs(p)eij, (10.45) 

where p is the Laplace transform parameter. The Laplace transform of the 
corresponding elastic stress-strain relation is 

*u = StjlB-Tli]*kk + 2l*u · (10.46) 

Since the other governing equations are exactly the same for the elastic 
and the viscoelastic problems, it now follows that the Laplace transform 
of the viscoelastic solution can be obtained from the Laplace transform of 
the corresponding elastic solution by 

replacing B by pGB(p) 

replacing ì by pGs(p). 
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By the corresponding elastic solution we mean the solution to the problem 
for an elastic body of the same dimensions which is subjected to the same 
initial conditions, body forces and boundary conditions as the viscoelastic 
body. The relation between the Laplace transforms of the corresponding 
elastic and viscoelastic solutions is called the elastic-viscoelastic cor-
respondence principle. 

Although the Laplace transforms of the viscoelastic solutions can be 
obtained in a simple manner, this provides us with little more than rather 
formal expressions for the field variables in the form of complex inversion 
integrals. Usually it is difficult to evaluate these integrals. It appears that it 
is possible to invert the transforms in a relatively simple manner only for the 
rather special case that the relaxation functions in bulk and in shear show 
the same time dependence. For details we refer to an article by Chao and 
Achenbach.9 

As an example of the analysis of a transient viscoelastic problem we 
examine the propagation of longitudinal waves in a thin rod defined by 
x ^ 0. The rod is originally at rest, i.e., 

u(x,0) =þ (÷ ,0 ) = 0, (10.47) 

where u(x, t) is the displacement in the x-direction. At time / = 0 a stress 
ô0 is suddenly applied at x = 0, 

ô÷(0,Þ = -ô0Ç(Þ. (10.48) 

According to the elementary rod theory the equation of motion for the 
corresponding elastic problem is 

d2u 1 d2u , ÉÅã 
- 2

= 17i ' w h e r e cb = I - · 
dx2 c; or \pl 

It can be verified that the Laplace transform of the elastic stress is 

xx(x,p) = -x±e~pxlc\ (10.49) 
P 

By virtue of the correspondence principle the Laplace transform of the 
viscoelastic displacement is of the form 

U*, P)--***?[-ff^Q. (10-50) 
9 C. C. Chao and J. D. Achenbach, in: Stress waves in inelastic solids, ed. by H. Kolsky 

and W. Prager. Berlin, Springer-Verlag (1964), p. 222. 
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For the simplest viscoelastic model solid the relaxation function is of the 
form 

GE(t) = E0e-at. (10.51) 

Thus, E0 defines the instantaneous value of GE(t) at / = 0. The Laplace 
transform of (10.51) is 

GE(p)= E° 
p-\-cc 

Substituting (10.52) into (10.50) yields 

*,(*, P) = - - e x p 1-(ñ2 + *ñ)*(ÖÚ)1 
P 

where 

(10.52) 

(10.53) 

(10.54) 

The inversion of (10.53) by way of contour integration is not a trivial task. 
Fortunately ô÷(÷, t) can be obtained with the aid of a table of Laplace 
transforms. For t > x/c% the result is 

ô÷(÷, t) = áô0
 l l , v ' * \ J J e *asds 

-xQe-^XICb°\ (10.55) 

while ô÷(*, /) = 0 for / < x/c%. In eq. (10.55) 7t( ) is the modified Bessel 
function of the first kind of order one. It is of interest to note that the speed 
of the wavefront depends only on the magnitude of the relaxation function 
at time t = 0. The stress is discontinuous at the wavefront, but the jump 

Fig. 10.4. Stress waves in a viscoelastic rod. viscoelastic stress. elastic stress. 
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decays exponentially. For various values of time eq. (10.55) is sketched in 
figure 10.4, where the elastic solution for a solid with Young's modulus E0 

is also shown. 

10.5.5. Propagation of discontinuities 

There are not many viscoelastic materials whose relaxation function in 
one-dimensional longitudinal stress can with some degree of accuracy 
be represented by the single exponential given by eq. (10.51). Experimental 
measurements generally require the sum of several exponentials with dif-
ferent exponents for an acceptable curvefitting. If the relaxation function is 
represented by a summation of exponentials it becomes, however, diffi-
cult to carry out the inversion of the Laplace transform given by eq. (10.50), 
at least by analytical methods. It is therefore worthwhile to explore alter-
native methods of analysis for problems of transient wave propagation in 
viscoelastic solids. One such method is based on the computation of mag-
nitudes of propagating discontinuities; it can be used for any analytical 
form that the relaxation function may have. This method allows us to 
compute the field variables in the vicinity of the wavefront. 

Let us return to the problem defined by eqs. (10.47), (10.48), (10.27), 
and the equation of motion 

d i v a2« 
dx P dt2 (10.56) 

and let us assume that a wavefront propagates with a velocity c, whose 
magnitude still is to be determined. According to eq. (4.83) the possible 
jumps in ô÷ and du/dt are related by 

OJ = -pc 
du 

.dt. 

It follows from (10.27) that [ô÷] and [du/dx] are related by 

~du' 
[*,] = G£(0) 

Idx. 

(10.57) 

(10.58) 

Since the displacement is continuous the kinematical condition of com-
patibility, eq. (4.87) yields 

(10.59) 
[dii] 

Jt. 
== — c 

[dul 

-3x_ 
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Combining (10.57), (10.58) and (10.59) we find 

~GE(oy 
c = ch = 

L p J 
(10.60) 

This result states in general terms what was already observed for a special 
case, namely, the velocity of the wavefront in the rod is governed by the 
initial value of the relaxation function. 

In a similar manner it can be shown10 that the wavefronts of longitudinal 
and transverse waves propagate with velocities {Gß(0)+yGs(0)}*/p* and 
{GS(0)/P}*5 respectively. 

Now let us examine the magnitude of the propagating jump in the particle 
velocity. According to the kinematical condition of compatibility we have 

do 
dr !>»] = 

,dt_ 
+ c 

_dx_ 

By differentiating (10.27) once with respect to t we obtain 

f G£'(r-s)^ds. 
J t0 + OX 

^ = G £ ( 0 ) ^ + G E ( 0 ) ^ + 
dt dtdx dx 

The corresponding relation between discontinuities is 

.dt] 
= C£(0) 

d2u~ 

{.dtdx. 
+ GE(0) 

du 

.ixJ 

According to the equation of motion (10.56) we have 

.dx. 

'd2u 

M2} 

(10.61) 

(10.62) 

(10.63) 

(10.64) 

Writing the kinematical condition of compatibility for dujdt yields 

df 

du 

idt. 

rd2u 
.dt2 + c 

d2u 

.dx dt] 

or, in view of eqs. (10.57) and (10.64) 

do 
dt 

[ô,] = -c 
.dx. 

-pc 
d2u 

Idx dt. 

(10.65) 

(10.66) 

The discontinuities [dxjdx], \d2u\dxdt\ and [du/dx] can subsequently be 

10 E.g. K. C. Valanis, Journal of Mathematical Physics 44, (1965) 227. 
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eliminated from eqs. (10.58), (10.61), (10.63) and (10.66), whereupon the 
following ordinary differential equation for [ô÷] is obtained 

^>[tj_!£(o) o. (1067) 
di 2 G(0) 

In view of the initial condition given by eq. (10.48) the appropriate solution 
of this equation is 

"I GX0) 1 

L.2 G(0) J ' 

This is the value of the stress at the wavefront as the wavefront travels 
through the rod. Since the position of the wavefront is defined by x = c%t, 
eq. (10.68) can also be written as 

bx] = - t 0 e x p (10.68) 

[ô] = - r 0 e x p 1 G'(0) x 
(10.69) 

L.2 G(0) c°J 

In this form the result agrees with what follows for a special case from eq. 
(10.55). 

It is possible to extend the preceding analysis to the computation of the 
magnitudes of propagating discontinuities of the temporal derivatives of 
the stress. Such an extension makes it feasible to construct a Taylor expan-
sion for the stress at a fixed position for short times after the wavefront has 
passed. For a detailed discussion we refer to a note by Achenbach and 
Reddy.11 

An important constitutive theory which can describe the inelastic effects 
that are typical for crystalline materials is the theory of plasticity. The 
propagation of plastic waves is, however, a field of research by itself and it 
will not be discussed here. For a treatment of the main problems considered 
in the theory of dynamic deformation of plastic materials we refer to the 
book by Critescu.12 

10.6. Waves in anisotropic materials 

It was stated in section 2.4 that for a homogeneous elastic medium the 
general linear relations between the components of the stress tensor and 
the components of the strain tensor are 

ô,, = Cv we„ , (10.70) 

11 J. D. Achenbach and D. P. Reddy, Zeitschrift für angewandte Mathematik und 
Physik 18 (1967) 141. 

12 N. Critescu, Dynamic plasticity. Amsterdam, North-Holland Publishing Co. (1968). 
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where the constants Cijkl satisfy the relations 

Cijkl — Cjikl = Cklij = Qjlfc» 

so that only 21 of the 81 components of the tensor Cijkl are independent. 
The tensor Cijkl is positive definite in the sense that 

CykIfyfW ^ 0 

for all symmetric fl7 where the equality is satisfied only when f/y. = 0. Sub-
stitution of (10.70) into the stress-equation of motion yields 

Cimukilj =püi. (10.71) 

In the preceding chapters we have investigated waves in isotropic solids 
for which there are only two independent elastic constants. In the present 
section we will comment briefly on wave propagation in anisotropic 
materials. This subject has a lengthy history, with some of the first con-
tributions dating back to the middle of the 19th century. In recent years 
interest has been revived because of interest in the areas of seismology, 
ultrasonics and the interaction between deformation and electromagnetic 
fields. For a review of waves in anisotropic media we refer to an article by 
Musgrave.13 

Of particular interest are the results of Synge14 for time-harmonic 
waves propagating in a general anisotropic medium. Let us consider the 
components of a plane harmonic displacement wave in the form (4.18), i.e., 

um = Adm exp [i(o{xpqp-t% (10.72) 

where ù is the (real-valued) angular frequency and qx are the components 
of the slowness vector. Upon substitution of (10.72) into the displacement 
equation of motion (10.71) we obtain 

{Cijklqjqi-pdik)dk = 0, (10.73) 

where Sik is the Kronecker delta. Eq. (10.73) is an equation for the com-
ponents dk. For a nontrivial solution the determinant of the coefficients of 
dk must vanish, which gives 

det\Cijklqjqi-pöik\ = 0 . (10.74) 

13 M. J. P. Musgrave, in Progress in solid mechanics, Vol. II, ed. by I. N. Sneddon and 
R. Hill. Amsterdam, North-Holland Publishing Company (1961), p. 61. 

1 4 J. L. Synge, Journal of Mathematical Physics 35 (1957) 323. 
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In section 4.2 the components of the slowness vector were defined as 

qj=Pj/c, (10.75) 

where pt are the components of the vector which defines the direction of 
propagation and c is the phase velocity. If we let 

rik = CijklPjph (10.76) 

Eq. (10.74) can be rewritten as 

d e t | r i Ä - p c 2 ^ | = 0 . (10.77) 

The constants rik are known as the Christoffel stiffnesses. If the components 
Pj are given, eq. (10.77) describes three velocity sheets in the space spanned 
up by pj. 

From the properties of the Cijkl it follows that rik is a symmetric and 
positive definite matrix. That is, 

rik = rki9 rikdtdk ^ 0 for all dt. 

It follows that all of the eigenvalues of Ãik are real and positive and their 
corresponding eigenvectors are orthogonal. The physical interpretation of 
these observations is that for a given direction of wave propagation defined 
by Pi there will be three phase velocities, cl9 cn and cm, and the three cor-
responding displacement vectors will be orthogonal. Contrary to the 
isotropic case the displacements are, however, neither truly longitudinal 
nor truly transverse in character. 

For further details on wave propagation in anisotropic media we refer to 
the literature on the subject. Some aspects of a formal elastodynamic theory 
for anisotropic solids were discussed by Wheeler.15 A more detailed discus-
sion of slowness surfaces can be found in the previously cited papers by 
Synge and Musgrave. Both of these authors have also discussed the reflection 
of waves at plane surfaces and surface waves at the surface of an anisotropic 
half-space. Transient problems including the Green's function for an infinite 
medium and Lamb's problem for a half-space were discussed in a review 
article by Kraut.16 Transient anisotropic waves in bounded elastic media 
were studied by Scott.17 

15 L. T. Wheeler, Quarterly of Applied Mathematics XXVIII (1970) 91. 
16 E. A. Kraut, Reviews of Geophysics 1 (1963) 401. 
17 R. A. Scott, in: Wave propagation in solids, ed. by J. Miklowitz. The American 

Society of Mechanical Engineers (1969), p. 71. 
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10.7. A problem of transient nonlinear wave propagation 

The analysis of the propagation of waves of finite strain in elastic materials 
requires the surmounting of some difficult mathematical obstacles. Perhaps 
for that reason it has not been until quite recently that a substantial body of 
results on nonlinear dynamic elasticity has become available. The work on 
the propagation of nonlinear elastic waves can roughly be divided into four 
categories, namely: (1) studies of propagating singular surfaces, (2) simple 
wave solutions of boundary-initial value problems, (3) studies of propagat-
ing steady-state shocks, and (4) the analysis of periodic waves by means of 
asymptotic methods. A treatment of selected problems of nonlinear dynamic 
elasticity can be found in the book by Bland.18 

Some peculiarly nonlinear effects such as the steepening of the head of 
a pulse and the subsequent formation of shocks can be exhibited by an 
analysis of the simplest one-dimensional nonlinear example. In section 1.2 
we derived the equations governing the one-dimensional motion of an 
elastic continuum in the material description. Let us define F(X, t) as 
the displacement gradient 

F = — . (10.78) 
dX 

Following eq. (1.22) the relation between the stress T(X, t) and defor-
mation gradient F(X, t) is taken in the form 

T(X, t) = <?{F). (10.79) 

Representative curves for <Sf(F) are sketched in figure 10.5. It will be shown 
in the sequel that the wave propagation response is very different for convex 

< 0 

Concave 

Fig. 10.5. Nonlinear relation between the stress and the deformation gradient. 

18 D. R. Bland, Nonlinear dynamic elasticity, Blaisdell Publishing Company (1969). 
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and concave stress-deformation-gradient curves. For rubbery-type of 
materials, for which nonlinear elasticity applies, the relation between the 
stress and the deformation gradient is generally concave. 

According to eqs. (1.23) and (1.24) the equation of motion may be written 
as 

d2U _ d2U 

Ix~2 ~ ºÇ2 c 2 ^ = ^ > 0°·80) 
where 

C ( F ) = ( i d - ^ ) " . (10.81) 

Let us consider a half-space X §: 0 which, prior to time t = 0, is in a state 
of homogeneous deformation defined by a displacement gradient F 0 , i.e., 

t < 0: F = F0. (10.82) 

At time t — 0 the surface of the half-space is subjected to a spatially uniform 
particle velocity: 

t ^ 0, X = 0: V(0, t) = /(f) , (10.83) 

where/(0) = 0. The linearized counterpart of this problem can immediately 
be solved by the method of section 1.3. 

The problem as formulated by eqs. (10.80)-(10.83) can be treated by 
the method of characteristics which was already mentioned in section 4.7. 
Eq. (10.80) can be rewritten as 

^ _ c 2 ^ = 0, (10.84) 
dt È× 

while it follows from eq. (10.78) that 

^ - d± = 0. (10.85) 
dX dt 

[n these equations V(X, t) is the particle velocity in the material description. 
Following the development of section 4.7 the characteristic curves in the 
(3ft)-plane are easily obtained as 

— = ±C(F). (10.86) 
at 

The lines in the (A7)-plane defined by (10.86) are referred to as the C+ 

and the C~ characteristics, respectively. Following the usual procedure 
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we introduce new coordinates î and ç such that 

î = constant along C+ curves (10.87) 

ç = constant along C~ curves. (10.88) 

These definitions of î and ç imply that 

and 

äË = C(F)— along C+ (10.89) 
äç äç 

^ * = _ C ( F ) — along C". (10.90) 
Üî äî 

in the next step we multiply eq. (10.85) by + C and — C, respectively, and 
we add the respective products to eq. (10.84) to obtain 

p + c ? _ n . c ( ^ + c 3 I ) = o (10.91) 
\dt dXI \dt dXI 

( ^ _ C ^ + c ( ^ - C ^ = 0 , (10.92) 
\dt dXI \dt dXI 

and 

respectively. Combining (10.91) with (10.89), and (10.92) with (10.90) yields 

and 

dJL -C(F) — = 0 along C+(£ = const) (10.93) 
äç äç 

ä¥ ÖF 
— +C(F)— = 0 along 0'(ç = const), (10.94) 
äî äî 

respectively. It is now convenient to introduce the quantity 

Ö(F) = f C(F)dF, (10.95) 

whereupon eqs. (10.93) and (10.94) further simplify to 

^ _ <?2 = 0 along C+ (10.96) 
äç äç 

and 
^ + ^2 = 0 along C". (10.97) 
äî äî 
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This pair of equations is readily integrated to yield 

Ê ( î , é / ) - â ( { , é / ) = Ë ( ß ) along C+ (10.98) 

í(î9ç) + 0(î,ç)=92(ç) along C". (10.99) 

The functions g^) and g2(y) are called the Riemann invariants. 
Let us label the characteristic variables î and ç such that î = ç = t at 

X = 0. The initial conditions (10.82) and the boundary conditions (10.83) 
then yield the following conditions in the (^)-plane: 

î<ï y = o, ñ = ï (lo.ioo) 

î=ç=ß í=/(Þ=/(î). (10.101) 

It now immediately follows from (10.99) and (10.100) that ñ2(ç) = 0, 
while (10.98) and (10.101) subsequently yield g^) = 2/(î). The solutions 
for í(î9 ç) and Q(£, ç) thus are 

V=f($) (10.102) 

Q = ß C(F)dF = - / ( { ) . (10.103) 
J Fn 

Hence both V and Q are functions of î only, which in turn leads to the fol-
lowing conclusions: 

F = F(£) and C = C(i). (10.104a, b) 

In view of eq. (10.81) the latter of these implies that lines defined by î = 
const are straight lines. Integration of dX/dt = + C subject to the condition 
î = / at X = 0 then gives 

×=€(î)(ß-î). (10.105) 

Since /(î) = 0 for £ < 0 the characteristic line defined by î = 0 cor-
responds to the wavefront whose velocity in the material description is 
given by 

Co = C(F0) = ( 1 Ü-^\ | . (10.106) 

The speed of subsequent disturbances can be computed from the equation 
that results by rewriting eq. (10.103) in the form 

C(«) Af 
C — dC= - / ( Ö - (10.107) 

dC 
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The solution provided by eqs. (10.102) and (10.103) is called a simple 
wave solution. If û(î) can be solved from eq. (10.107), the particle velocity 
can be determined at any point in the (A7)-plane, since í(î) remains 
constant along lines î = constant. A geometrical construction is shown in 
figure 10.6. To obtain an explicit expression for the particle velocity in terms 
of X and t, the result for C(£) must be used to express î in terms of X and 
t by using eq. (10.105). 

Fig. 10.6. The C+ characteristics with the corresponding particle velocity. 

The simple wave solutions (10.102) and (10.103) are valid as long as the 
C+ characteristics do not intersect. Let us consider the case that/(<i;) in-
creases monotonically. Since C(F) > 0 it follows from eq. (10.103) that F 
decreases in magnitude. If a2£fjaF2 > 0, C(£) decreases monotonically as 
F decreases, as follows from figure 10.6; the C+ characteristics then never 
intersect and the solution as presented here is valid. If on trie other hand 
d2y/dF2 < 0, C(£) increases as F decreases and intersection occurs. In 
physical terms the latter case means that earlier disturbance are overtaken 
by subsequent disturbances. At a point of intersection of two C+ charac-
teristics the solution breaks down because the intersection implies two 
solutions of the field variables at one point in space-time. At such a point 
the solution becomes discontinuous, i.e., it is a point of shock formation. 

At points of intersection of C+ characteristics the derivatives äî/äÀ and 
äî/ä× become unbounded, or equivalently 

- = - = 0. (10.108) 
äî äî 

If these conditions hold the spatial and temporal derivatives of V and F 
increase beyond bounds, as can be seen by considering for example d V/dX = 
(Ü//Üî)(äî/ä×). The time at which a shock initiates is obtained from eq. 
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(10.105) and the conditions dt/äî = 0 and dX/äî = 0 as 

rs = minid(c)> (10.109) 
î 

where 

á è = ^ + - ^ · (lo.iio) 
dC/dg 

If the minimum of ÀÜ(î) occurs at ò = î59 the value of î5 can be computed 
from 

cog-*(£)'. 
An apparent additional condition is that ts must be larger than î5. A shock 
forms at the wavefront only if î3 = 0. Since we must have ts > î5 ^ 0, 
and since C(£) > 0 it follows from eqs. (10.109) and (10.110) that a neces-
sary condition for shock formation at t = ts is dC/Üî > 0 for æ ^ î59 

or equivalently by employing eqs. (10.81) and (10.103) 

Thus, as was already observed earlier, if f(0) = 0 and d//d^ > 0 (or 
df/dt > 0), shock formation can occur only if d2£f/dF2 < 0, i.e., if the 
stress-strain curve is concave. 

Shock formation is a typically nonlinear effect which has been observed 
experimentally in stretched natural rubber.19 

10.8. Problems 

10.1. In the uncoupled thermoelastic theory the temperature distribution 
is computed from a separate (uncoupled) equation. Suppose the temperature 
distribution T— T0 is known as a function of JC and /. Introduce displacement 
potentials in eq. (10.5) to determine a general expression for u(x, t). 

10.2. The surface of a half-space (x ^ 0) is suddenly heated to the 
temperature 7\ and then held at that temperature, i.e., we have 

T{0,t)=TlH(t). 

The half-space is initially at a uniform temperature T0. Show that the 

19 H. Kolsky, Nature 224 (1969) 1301, no. 5226. 
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solution of the heat conduction equation is 

T(x ,0 = ( T 1 - T o > r / c 
L(4icKi)*. 

+ T0, 

where erfc is the error function complement. The surface of the half-space 
remains free of tractions. Assuming that the half-space is at rest prior to 
time / = 0, determine ô÷ as a function of x and t. 

10.3. A viscoelastic half-space is subjected to a time-harmonic normal 
traction ô0 sin ùß. Express the steady-state displacement response in the 
form 

w(x, t) = Ue~ax sin (ùß-â÷) 

and determine U, a and ß in terms of the frequency and the components 
of the complex moduli. Now suppose that the normal traction at x = 0 
is an arbitrary function r(t) of time. Write ô(ß) as a superposition of 
harmonics, and express u(x, t) as a real-valued integral. 

10.4. In a transversely isotropic material the material properties are the 
same in all directions in planes that are under the same angle with an axis 
of symmetry. A transversely isotropic elastic material has five independent 

zi 

elastic constants. We consider a half-space z ^ 0 and we assume that the 
axis of symmetry coincides with the z-axis. The stress-strain relations in 
plane strain are 

. du ^dw 
ô÷ = A — + C — 

dx dz 

dx dz 

^du „ dw 
ôæ = C — +D — 

dx dz 

= E (*a + ^ . 
\dz dx! 

Examine the propagation of straight-crested surface waves. 
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10.5. In the problem discussed in section 10.7 assume that / ( / ) can be 
expanded in a Maclaurin series 

ê(ï,ß)=/(0 = Ó V»'"' 
ð = é n\ 

where /„ are constants. It is also assumed that f1 > 0. For / ^> X/C0 we 
seek the motion at an arbitrary position l a s a Taylor expansion about the 
time of arrival of the wavefront. Because the medium is at rest prior to ar-
rival of the wavefront we may write 

x = P(X, t) = F0X+ Y — It- — — 
V n = in\ \ C0 Idf. 

where the brackets denote discontinuities across the wavefront. By employing 
the relations for propagating discontinuities show that [d2P/dt2] satisfies 
the nonlinear ordinary differential equation 

Ãä2Ñº 
2p0C0 

di Lor2 + 
2S2 

cl 
^d2p^ 

dt2 0, 

where 

s = 1 — 
" n! dF" F = F0 

What is the solution of the equation? What happens at t = — Ñï^ï /Ë^? 
What is the physical meaning of 2S21 
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Abel integral equation, 363, 364 
Acceleration 

convected part, 13 
in material description, 13 
in spatial description, 13 

Amplitude 
coefficients, 38 
modulation, 216 
of harmonic wave, 30 
ratios, 175, 177, 179, 184 

Antiplane line-load 
in an unbounded medium, 107, 156 
on a half-space, 283, 359 

Antiplane shear motions, 58 
Anisotropy, 409 
Antinode, 32 
Apparent wavenumber, phase velocity, 170 
Argument, principle of, 189 
Asymptotic approximations, 271-283, 2\ 
Attenuation 

due to thermoelastic coupling, 394 
due to viscoelastic behavior, 403 

Axial shear motions, 136, 148 

Balance of 
energy, 16 
linear momentum, 15, 51 
moment of momentum, 52 

Basic singular solutions, 96, 105 
Bernoulli-Euler beam, 251 
Body forces, 51, 89 
Boundary conditions, 56, 82 
Branches of frequency spectrum, 206 

Cagniard-de Hoop method, 298-301-
Center of compression, 101 
Characteristics, method of, 148-154, 413 
Chaplygin's transformation, 154 
Circular frequency, 31 
Completeness theorem, 85 
Complex modulus, 402 
Complex notation, 32 

Continuum mechanics 
general discussion, 4 
nonlinear, in one dimension, 11-20 

Cosine transform, 270, 347 
Critical angle of incidence, 179 
Cylindrical rods 

approximate theories for, 249-254 
flexural waves in, 246-249 
impact of, 344-353 
longitudinal waves in, 242-246 
torsional waves in, 241-242 
waves in, 236-249 

Curvilinear coordinates, 68-73 

d'Alembert solution, 91 
Deformation, 11, 50 
Diffraction by a slit 

of a longitudinal wave, 380-388 
of a transverse wave, 372-380 

Dilatational wave, see Longitudinal wave 
Dirac delta function, 90 
Dispersion, 31 

anomalous, 218 
due to thermoelastic coupling, 394 
in viscoelastic media, 403, 404 
in waveguides, 203, 205 
normal, 218 

Displacement, 11, 50 
gradient, 12 
potentials, 65, 85 
representation, 85 

Divergence theorem, 50 

Elasticity, 16, 52 
Elastic constants, 54 
Elastodynamic 

solution, 93 
state, 80 
theory, 79 

Energy 
balance of, 16 

422 
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flux of, 33, 166 
identity, 59 
partition of, 181 
transport, 208 

Equations of motion 
displacement, 16, 18, 56 
in material description, 16 
in spatial description, 16 
stress, 16, 55 

Equivoluminal wave, see Transverse waves 
Euler equations, 62 
Exponential transforms, 264-269 

Fluid, ideal, 78 
Flux of energy, 33, 166, 209 
Fourier 

cosine transform, 270, 347 
exponential transform, 265, 284, 291, 333 
integrals, 39, 273 
integral theorem, 40, 264 
series, 37 
sine transform, 270, 347 

Fracture, 379 
Frequency 

circular, 31 
cut-off, 207 
equation, 205, 223 
fundamental, 33 
spectrum, 206, 226, 240 

Function 
Airy, 278 
analytic, 263 
entire, 263 
regular, 263 

Gauss' theorem, 49 
Geometrical optics, 139 
Governing equations 

linearized, 17-21, 50-59 
nonlinear, 11-17 
in cylindrical coordinates, 73-75 
in rectangular coordinates, 66-68 
in spherical coordinates, 75-77 

Green's function, 111, 359 
Group velocity, 210, 211, 216-218 
Guided waves, 202 

Half-space, subjected to 
antiplane surface disturbances 283, 358 
in-plane line load, 289, 303 
normal point load, 310 
uniform surface tractions, 21 

Hamilton's principle, 61 
Hankel transform, 270, 311, 343 
Harmonic waves, 30, 115, 124, 132, 136, 

165, 202 
Harmonics, 33 
Head wave, 307, 388 
Heat conduction, 392, 398 
Helmholtz' 

decomposition, 88 
equation, 116 
first (interior) formula, 117 
second (exterior) formula, 117 

Historical sketch, 8 
Homogeneous 

solid, 52 
solutions, 154 

Hooke's law, 53 
Huyghens' principle, 95 

Imaging, 112, 113 
Impact, 344 
Incident wave, 165, 373, 380 
Indicial notation, 47 
Inhomogeneous plane waves, 125 
Initial conditions, 56 
Integral representations, 103, 109 
Integral transforms, 262-271 
Irrotational wave, see Transverse waves 
Isotropy, 52 

Jordan's lemma, 42 

Kinematical condition of compatibility, 142 
Kinetic energy, 17, 24, 60 
Kirchhoff's formula, 102 
Kronecker delta, 48 

Lagrangian density, 61 
Lamb's problem 

for a time-harmonic line load, 289-295 
for a transient line load, 303-309 
for a transient point load, 310-321 

Laplace transform 
one-sided, 268, 296, 303, 311, 330, 333, 
347, 374, 381 
two-sided, 267, 296, 303, 365, 374, 381 

Layer 
forced harmonic motions, 327-330 
forced transient motions, 330-344 
free harmonic waves in, 203-211 (hori-

zontally polarized), 220-236 (plane 
strain) 



424 SUBJECT INDEX 

Linearized theory 
in one dimension, 17 
of elasticity, 46 

Linear momentum, 15, 51 
Line load 

on a half-space, 289, 303, 359 
on a layer, 331-342 
in an unbounded medium, 107, 108, 156, 

295-303 
Liouville's theorem, 367 
Longitudinal 

strain, 22, 57 
stress, 29, 57 

Longitudinal modes 
of a circular cylindrical rod, 242 
of a layer, 226 

Longitudinal waves 
in a half-space, 169, 172-177, 185 
in an unbounded medium, 123, 394, 403 
velocity of, 123 

Love waves, 218 

Mass density, 14, 21 
Material derivative, 13 
Material description, 11 
Mechanical impedance, 24, 28, 187 
Mellin transform, 271 
Mixed boundary conditions, 82, 173 
Mixed boundary-value problems, 357 
Mode, 32, 206 

antisymmetric, 206, 223, 225, 226 
conversion, 176 
dilatational, 225, 226 
equivoluminal, 225, 226 
flexural, 226, 246 
fundamental, 33, 341 
Lame, 259 
longitudinal, 226, 242 
of free vibration, 32 
symmetric, 206, 223, 225, 226 
torsional, 241 

Momentum 
linear, 15, 51 
moment of, 52 

Motion, 11 

Nodal point, 32 
Nonlinear continuum mechanics, 11 
Nonlinear effects, 412 
Notation 

for linearized theory, 20 
indicial, 47 

One-dimensional 
nonlinear theory, 11-20 
problems, 57 

Overtones, 33 

P-wave, see Longitudinal waves 
Particle velocity, 12, 31 
Period, 31 
Phase, 3, 30 

Airy, 341 
velocity, 3, 30 

Plane strain, 59 
Plane stress, 59 
Plane wave, 122 
Plate theories, 254-258 
Pochhammer frequency equation, 243 
Point load 

on a half-space, 310-321 
on a layer, 342-344 
in an unbounded medium, 96-100 

Polar symmetry, 128 
Potentials 

displacement, 65, 85 
retarded, 93 
scalar, 66, 85 
vector, 66, 85 

Power, 17, 24, 34-36, 60, 209 
Pressure wave, see Longitudinal waves 
Propagating discontinuity, 139 

Radial motions, 135, 152-154 
Radiation, 89, 93 
Ray, 143 
Ray-tracing, 138 
Rayleigh 

surface waves, 187-194 
equation, 189, 190, 305, 314 
function, 190, 371, 383 

Rayleigh-Lamb 
frequency equation, 224, 336 
frequency spectrum, 226-236 

Reciprocal identity, 82-85 
Reflection, 26, 165 

ofP-waves, 172-177, 185 
of SH-waves, 170, 171, 182 
of SV-waves, 177-181 

Refraction, 165 
of P-waves, 185-187 
of SH-waves, 182-185 

Representation theorems, 103, 109 
Residue theorem, 41 
Reynolds' transport theorem, 14 
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Riemann convolution, 82 
Rod, see Cylindrical rod 
Rotary shear motions, 135, 144-148 
Rotational wave, see Transverse waves 

S-wave, see Transverse waves 
SH-waves, 124, 170, 182, see also Anti-

plane 
SV-waves, 124, 177 
Saddle point method, 273 
Scabbing, 27 
Scalar potential, 85, 89, 93, 116-119 
Second sound, 398 
Shear wave, see Transverse waves 
Shock formation, 416 
Sine transform, 270, 347 
Sinusoidal waves, see Harmonic waves 
Slowness, 190 
Slowness vector, 126 
Slowness diagrams, 127, 196 
Sommerfeld radiation condition, 118 
Spalling, 27 
Spatial description, 11 
Spherical waves, 91, 128, 144 
Standing wave, 32, 171, 203 
Stationary phase approximation, 274, 337 
Steady-state response, 115, 118, 283, 291, 

328 
Steepest descent approximation, 278, 288 
Step function, 41 
Stoneley waves, 194 
Strain 

deviator, 54 
energy, 24, 55 
tensor, 50 

Stress 
deviator, 54 
equation of motion, 55 
intensity factor, 379 
tensor, 50 

Stress-strain relations, 52 
Superposition, 41, 133, 328 
Surface of discontinuity, 138 
Surface waves, 187, 318 

Thermoelasticity, 391 
Time-average, 34 
Time-rates of change, 12 

Timoshenko beam, 252 
Total energy, 24 
Total reflection, 185 
Transform methods, see Integral transforms 
Transmission, 26 
Transverse waves 

in a half-space, 169, 170, 177-181, 182 
in an unbounded medium, 123, 394, 404 
velocity of, 123 

Traveling wave, 30 

Uniqueness theorem, 80 

Variational equation of motion, 63 
Vector 

decomposition, 88 
operators, 48 
potential, 85 

Velocity of energy flux, 35, 209 
Velocities of propagation, numerical 

values, 124 
Viscoelasticity, 399-402 

Watson's lemma, 272 
Waves 

cylindrical, 94, 135, 144 
diffraction of, 372-388 
general discussion, 1-3 
in anisotropic materials, 409-411 
in fluids, 78 
in viscoelastic solids, 399-409 
in waveguides, 202-261, 326-356 
nonlinear, 18-20,412-417 
spherical, 91, 128, 144 
thermal effects on, 391-399 
with polar symmetry, 128 

Wavefront, 138 
dynamical conditions at, 140 
expansions behind, 144 
kinematical conditions at, 141 
velocity of, 143 

Wavelength, 30 
Wavenumber, 30 
Wave resistance, 24 
Weber's interior formula, 119 
Wedge, shear waves in, 157 
Wiener-Hopf technique, 365-372 


