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Abstract

Guided waves are of enormous interest in the nondestructive evaluation of thin-walled
structures and layered media. Due to their dispersive and multi-modal nature, it
is desirable to tune the waves by discriminating one mode from the others. The
objectives of this thesis are (1) to develop schemes and procedures for Lamb wave
tuning, (2) to develop tools for understanding and analyzing the mechanism of various
tuning techniques, and (3) to provide suggestions and guidelines for selecting optimum
tuning parameters.

In order to remedy the inherent problems of traditional tuning techniques using
angle wedge and comb transducers (such as the inability to tune the modes with
low phase velocities, and the inability to control the propagation direction of tuned
waves), a novel dynamic phase tuning concept using phased arrays is proposed. In
this approach, the constructive interference of desired modes is achieved by properly
adjusting the time delays. As an extension to this concept, the synthetic phase tuning
(SPT) scheme is introduced, in which the tuning effect is achieved by constructing
virtual waves. The effectiveness of SPT against other techniques is experimentally
demonstrated, which shows its feasibility.

To understand the mechanism of tuning, an analytical model is developed to study
transient waves, based on the Fourier integral transform method. The excitation
conditions for both angle wedge and array transducers are taken into account. The
surface displacements of individual modes and their temporal and spatial Fourier
spectrum are derived and used to study the tuning behavior. The analytical results
are compared with the experimental results as well as the numerical results obtained
from the finite element simulation studies.

In dealing with broadband signals, laser generated Lamb waves are investigated.
Both line and circular source loading models are developed to study the behavior
in the ablation regime. The predicted waveforms and dispersion curves are in good
agreement with the experimental results. Based on the same SPT scheme, virtually-
tuned waves are constructed by processing a set of broadband signals.

Finally, Lamb waves in a transversely isotropic composite plate are investigated.
Although the analysis is limited only to the waves propagating in the principal di-
rections, it could serve as the basis for future work on tuning of Lamb waves in
composites.

It is concluded from this thesis that the SPT method enjoys advantages over



other methods including its low operation cost, ability to tune the modes of low
phase velocities, and capability to control the propagation direction of tuned waves.
The analysis of transient waves allows us to examine various tuning scenarios. The
investigation of the tuning effectiveness enables us to select optimum modes for the
given conditions.

Thesis Supervisor: Shi-Chang Wooh
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Conventional Ultrasonic Techniques

Nondestructive evaluation (NDE) has been recognized as an indispensable and pow-

erful tool for the inspection of a broad range of structures and materials from the

aerospace industry to civil infrastructure. Among the various NDE techniques, ultra-

sonic methods are perhaps the most robust and flexible methods available. They play

an important role in the flaw detection and material characterization. In ultrasonic

testing, elastic waves are impinged into the structure and the response is measured,

using transducers made of piezoelectric material. The integrity of the structure is

then assessed by analyzing the response.

Common waves used in ultrasonic testing are bulk waves, e.g., longitudinal (L

or P) and transverse (T or S) waves [1]. In some inspection cases, Rayleigh surface

waves are also utilized.

There are two basic types of transducers commonly used in NDE: straight beam

transducers and angle wedge transducers. A straight beam transducer impinges longi-

tudinal waves at normal incidence to the material; an angle wedge transducer impinges

incident waves through a wedge to produce refracted longitudinal and transverse

waves propagating in the material.

There are three types of common operation configurations: (1) pulse-echo: a single

transducer acts as both transmitter and receiver, (2) through-transmission: a pair of
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transducers are positioned on opposite sides of each other, acting as transmitter and

receiver, respectively, (3) pitch-catch: a pair of transducers are situated on the same

side of the material, acting as transmitter and receiver, respectively.

Material flaws are typically presented in three forms: A-scan, B-scan, and C-

scan [1]. An A-scan is an amplitude-time display. A B-scan is an image representing

the cross-sectional view, which is obtained from a set of A-scans along a line. A

C-scan image shows a planar view of the material and flaws, which is obtained by

scanning over an area of interest.

Traditional ultrasonic NDE techniques have been effectively used for inspecting

bulk materials or assessing materials in the thickness direction. The primary advan-

tage of using such techniques is the easy interpretation of signals since bulk wave

signals do not change their shape as they propagate in acoustic media. As an exam-

ple, Fig. 1.1(a) shows a typical ultrasonic signal obtained from the normal incident

pulse-echo testing of an aluminum specimen, which exhibits multiple echoes traveling

back and forth in the specimen. Measuring the thickness is relatively simple so long

as the echoes are clearly separable.

However, these traditional ultrasonic techniques are limited to monitoring local

areas. It is very time consuming and cumbersome to use such techniques for inspecting

large-scale structures. Guided wave techniques are among the techniques developed

to address this problem.

1.2 Guided Wave Techniques

Guided waves refer to the waves propagating in bounded media. One of the greatest

merits of guided waves is that they can travel long distances along the plane of the

members. Hence, with guided waves, the entire thickness of the plate is interrogated,

instead of only that of a single point on the surface. This implies that guided waves

are able to interact with both surface and internal defects. Thus, a significant amount

of inspection time can be saved, thanks to the merits of guided waves.
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Figure 1.1: One typical signal of (a) longitudinal waves, where the signal comes from
the multiple reflection from an aluminum block back face, and (b) guided (Lamb)
waves, where the signal is laser-generated in an aluminum plate.
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Compared with bulk waves, guided waves provide a very attractive solution for

the assessment of large structures consisting of thin or slender members, such as

pipes, shells, membranes, rods, plate girders, slabs and even multilayered structures.

Considering the abundance of such structures, the importance of these techniques can

not be over-emphasized. Some examples of the numerous works on guided wave NDE

include the detection of defects in boiler and heat exchange pipings [2], spot welds [3],

bridge girders [4], long steel pipes [5], aircraft components [6], etc. Guided waves are

also used in determining the elastic properties of composite materials [7-12].

Lamb waves are a special form of guided waves, propagating in a solid plate

with traction-free boundaries, which result in the interference of multiple reflections

and mode conversion of longitudinal waves and transverse waves at the plate sur-

face. The wave propagation in bounded structures is governed by the well-known

Rayleigh-Lamb dispersion relations [13,14]. Understanding the complicated propa-

gation mechanism of Lamb waves is vital to their application.

Interpretation of guided wave signals is complicated by the two fundamental na-

tures of guided waves: dispersion and multi-modality. Due to the dispersion, wave

shapes change during the propagation. Furthermore, there are an infinite number

of wave modes, categorized into two different groups: (1) longitudinal plate waves

having symmetric displacements, and (2) flexural plate waves having antisymmetric

displacements with respect to the center of the plane [13,14]. For example, Fig. 1.1(b)

shows a typical ultrasonic wave propagating in a thin plate, generated and detected

by laser sources separated by a distance. The signal consists of two events: one ar-

rived directly from the generation point to the detection point on the specimen, and

the other that is reflected from a discontinuity and returned to the detection point.

The signal clearly shows that the dispersive and multi-modal nature of guided waves.

It will be difficult to analyze such signals.

In dealing with guided waves, signals of different spectral characteristics can be

used: broadband and narrowband signals. Broadband pulses contain rich information

over a wide range of frequencies [15]. However, such signals are often complicated

and difficult to analyze. This makes it unwieldy to utilize guided waves with con-
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ventional pulse-echo or pitch-catch setups, particularly for broadband transducers.

Despite these complications, there are several tools available for analyzing the dis-

persion of broadband signals, e.g., the two-dimensional Fourier transform (2-D FT)

technique [16-18], pseudo-Wigner-Ville distribution method [19], reassigned spectro-

gram method [20], and the wavelet transform method [21]. These techniques, which

manipulate the data in the transformation domain, are powerful, but they often give

erroneous results in certain frequency ranges and are also quite sensitive to the given

signal processing parameters.

On the other hand, the narrowband signal approach enables the processing of

Lamb waves directly in the time domain. In this case, the dispersion effect is reduced

and the waves may retain their shape as they propagate in the medium. However,

due to the existence of multiple modes (with different velocities) even for a single

frequency, it is mandatory to distinguish one desired mode from the coexisting modes.

This technique is called "tuning" of Lamb wave modes. With mode tuning, the pitch-

catch and pulse-echo setups may find practical applications in Lamb wave inspection.

By measuring the time-of-flight (TOF) of the tuned wave, Lamb waves can be easily

interpreted to detect flaws in structural members. Hence, investigation of tuning

techniques is important for the proper applications of Lamb waves, which is one of

the main objectives of this thesis work.

The tuning effect is normally achieved using either angle wedge transducers [13,17]

or comb transducers [13, 22]. These approaches are based on similar physical mech-

anisms, in that both of them are to enhance the mode(s) of interest and suppress

the other modes, despite that they are implemented in different ways. The angle

wedge transducer approach is simple but less capable than the comb transducer ap-

proach. However, when operated properly, angle wedge transducers may allow for

long-distance inspection of thin members.

Although these methods work in principle, their inherent limitations make it dif-

ficult to meet the requirements for effective tuning. The drawbacks of angle wedge

transducers include (1) inability to tune all the modes, (2) sensitivity to the misalign-

ment of incident angles, and (3) numerous interfaces in the wedge assembly reducing
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the inspection zone and signal transmission efficiency. The major problems associ-

ated with the comb transducer tuning are that the wave propagation direction is not

controllable and that the transducer cannot be used effectively as receiver.

1.3 Objectives

This research is motivated by the need to develop effective ultrasonic techniques

for assessing large thin-walled structures. The objectives are summarized into three

aspects:

" to develop schemes and procedures for Lamb wave tuning;

* to develop tools for understanding and analyzing the mechanism of various

tuning techniques;

* to provide suggestions and guidelines for selecting optimum tuning parameters.

1.4 Thesis Structure

This thesis consists of 10 chapters. An overview of the thesis structure is as follows:

" Chapter 1 outlines the objectives of the research. The traditional ultrasonic

NDE techniques are reviewed, and their limitations are pointed out. Then the

guided (Lamb) wave techniques are introduced. The importance of wave mode

tuning is highlighted. The problem associated with current Lamb wave tuning

techniques are briefly reviewed, followed by the objectives of the thesis. Finally,

the thesis structure is outlined.

" Chapter 2 provides the readers with the fundamentals of Lamb waves necessary

for understanding the concepts in subsequent chapters. The equations of motion

in acoustic media are reviewed. The concepts of phase and group velocities are

introduced to understand the dispersion of elastic waves. The wave propagation

in plates with free boundaries is reviewed, which gives rise to the Rayleigh-Lamb
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dispersion equations. Dispersion curves for an aluminum plate are constructed

to illustrate the dispersive and multi-modal nature of Lamb waves, from which

the significance of mode tuning is emphasized.

" Chapter 3 presents the various tuning techniques of Lamb waves. The tra-

ditional angle wedge and comb transducer tuning techniques are introduced

first. Their principles of wave mode tuning are explained, and their limitations

are summarized. In order to remedy the drawbacks, an innovative approach

- phased array tuning technique is proposed. The principle of mode tuning is

explained, the background of phased arrays is reviewed, and the phased array

system development is introduced. Experimental work is done using this new

technique. While certain wave modes have been successfully tuned, the limita-

tions of this technique are pointed out - delay circuits are expensive and the

signal bandwidth is not easy to control. This gives rise to the brief remarks

on another phase tuning technique using array transducers - synthetic phase

tuning which will be described in Chapter 4.

" Chapter 4 studies the synthetic phase tuning technique. The principle of this

technique is introduced, in which numerical time delays are provided to array

elements. The operational schemes for the synthetic phase tuning, including the

pseudo pitch-catch (PPC) and pseudo pulse-echo (PPE) setups are introduced.

The construction of virtually tuned waves is described for the PPE scheme,

including the signal generation and recording, synthetic construction of emitting

waves, synthetic construction of receiving waves, and real-time reconstruction

of synthetic signals. Experimental results on the PPE testing are obtained to

demonstrate the effectiveness of this new technique as compared to the other

tuning techniques. It is also observed that some wave modes are tuned well while

some are not. This demands a quantitative study of the transient response of

Lamb waves in a plate subject to external loadings.

* In Chapter 5, a theoretical model is developed to analyze the transient response

of an elastic plate to external loadings, using an integral transform method.
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Analytical expressions are derived for computing the Lamb wave displacements

and their 2-D FTs. The physical meaning of the overall and modal excitation

efficiencies is enunciated. The effect of loading conditions is investigated using

a Gaussian spike pulse of different bandwidths to demonstrate the possibility

of wave mode selection. Finally, the analytical results are compared with those

obtained from the finite element simulation studies, and an excellent agreement

is observed. The analytical model of transient Lamb waves described in this

chapter is the basis for quantitatively examining the angle beam transducer

tuning, array transducer tuning and laser generation of Lamb waves.

Chapter 6 examines quantitatively the tuning mechanism of angle wedge trans-

ducers, based on the analytical model in Chapter 5. The theoretical model is

applied by taking into account the excitation conditions for both straight beam

and angle wedge transducers. The tuning effect of angle wedge transducers

against straight beam transducers is theoretically demonstrated through the 2-

D FTs and waveforms. Experimental waveforms from both the straight beam

and angle wedge transducer excitation are obtained. Consistency is observed

between the experimental observations and theoretical predictions.

* Chapter 7 examines quantitatively the synthetic phase tuning technique pro-

posed and experimentally validated in Chapter 4, using the analytical model in

Chapter 5. Based on the formulation results of single element excitation, the

phase-tuned Lamb wave displacements and their 2-D FTs are derived for the

half-way tuning (array as transmitter) and full tuning (arrays as both transmit-

ter and receiver) operated in the PPC scheme, using the superposition principle.

Theoretical examples are given to illustrate the tuning effect for the half-way

tuning and full tuning in both the frequency-wavenumber domain (2-D FT)

and time domain (waveform). It is shown that the tuning effect is improved

from the half-way tuning to full tuning. Experimental waveforms are obtained,

and compared with theoretical predictions for the half-way tuning, and a good

agreement is observed.
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" Chapter 8 examines quantitatively the laser generation of (broadband) Lamb

waves. An analytical model is proposed to study the propagation of transient

waves originated from a circular source. Solutions for the wave mode displace-

ments are obtained using the Fourier and Hankel transform. The loading con-

ditions are prescribed to represent the line and circular sources. Predicted

waveforms based on the line source loading model are analyzed using the group

dispersion curves and 2-D FT of displacements. Laser-generated Lamb waves

in an aluminum plate are obtained and compared with the predicted waveforms

due to the line and circular source loadings. Also, the experimental dispersion

curves (2-D FFT) are constructed and compared with the theoretical disper-

sion curves (2-D FT). The SPT scheme is applied to a set of laser-generated

signals to construct virtually tuned waves. Excellent agreement is observed be-

tween experimental and theoretical results. It is shown that both the line and

circular source loading models are valid for lasers in the ablation regime, and

the line source model enables the link between the theoretical dispersion curves

and experimental dispersion curves. Also shown is that it is feasible to tune

laser-generated Lamb waves.

" Chapter 9 initially investigates the transient Lamb waves in transversely isotropic

composite plates. This is intended to serve as a basis for the future study of

Lamb wave tuning in composites. To help understand the principle of ultrasonic

measurement of elastic constants, the propagation of plane (bulk) waves in the

composite principal directions is reviewed first, which results in the relationship

between the wave velocities and the 3 out of totally 5 elastic constants (the

remaining 2 constants can be determined using Lamb waves). The dispersion

equations of Lamb waves in the principal directions are then introduced, and

sample dispersion curves are constructed. Using an integral transform method,

transient waves in the principal directions of composite plates subjected to ar-

bitrary external loadings are analyzed. Analytical expressions are derived for

the Lamb wave displacements and their 2-D FTs. Laser-generated Lamb waves
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in the principal directions are also obtained. It is observed that only AO and So

modes of low frequency exist. Experimental dispersion curves are also obtained

and compared with theoretical ones.

* Chapter 10 summarizes the research work and draws conclusions. Recommen-

dations are given regarding future study of Lamb wave reflection from discon-

tinuities, influence of the laser beam size, tuning of Lamb waves in composites,

etc.
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Chapter 2

Wave Propagation in Elastic Plates

2.1 Introduction

Lamb waves represent one of the types of normal or plate modes in an elastic waveg-

uide with free boundaryies. For a given plate thickness and frequency, there are

many propagation modes which are grouped into two fundamental families: sym-

metric modes and antisymmetric modes. Each mode is associated with an infinite

number of orders. This characteristic distinguishes Lamb waves from bulk waves. Be-

sides plates, other examples of waveguides include rods, cylindrical shells, and layered

elastic solids. In this research, only the plate waveguide is considered.

The mechanism of Lamb wave generation can be explained as follows [23]. A plate

is considered as a half space bounded by a second boundary parallel to the other

surface. One can imagine that longitudinal (P), vertically polarized transverse (SV)

and horizontally polarized transverse (SH) waves are reflected back and forth from

one boundary to the other. Generally, the P and SV waves undergo mode conversion

at each reflection, and progress along the plane of the plate. The neighboring parallel

boundaries are in effect guiding the waves along the plate.

The investigation of harmonic wave propagation in an elastic plate dates back to

the initial work by Rayleigh [24] and Lamb [25] over one century ago. The dispersion

relations were obtained for the symmetric and antisymmetric modes, and are often

refered to as the Rayleigh-Lamb dispersion equations. Later, Lamb investigated the

37



SH waves whose particle displacements are polarized parallel to the surface of the

plate [26]. However, the detailed analysis of the Rayleigh-Lamb dispersion relations

was not well established until the investigation work by Mindlin and his colleagues in

the 1950s [27], which included the thorough enunciation of the real, imaginary and

complex branches of the equations. Detailed theoretical and experimental work on

Rayleigh and Lamb waves was conducted by Viktorov [13]. For the problem of Lamb

wave propagation in anisotropic plates, Solie and Auld [28] introduced the partial

wave or transverse resonance technique. The investigation of Lamb wave propagation

in composites was performed by Datta [29], Nayfeh [30] and many others.

In the following, the background of Lamb waves will be introduced. The equa-

tions of motion in acoustic media are reviewed first. The concept of dispersion is

then illustrated along with those of the phase and group velocities. Afterwards, the

Rayleigh-Lamb dispersion relations are derived by applying the traction-free bound-

ary conditions to the equations of motion. Finally, the dispersion relations are in-

terpreted along with the dispersion curves. Note that this chapter only gives a brief

introduction about the wave propagation in plates. The detailed knowledge on guided

waves in elastic plates can be found in the reference books by Viktorov [13], Graff [14],

Miklowitz [23], Auld [31], Achenbach [32], and Rose [33].

2.2 Equations of Motion in Acoustic Media

The theory of elasticity for a homogeneous, isotropic elastic solid may be summarized

using the Cartesian tensor notation as the stress equations of motion, Hooke's law

and the strain-displacement relations:

-iaj,j + pfi = pli (2.1)

(Ti Akkt~ij + 2g 1-ti (2.2)

1
Eij (ui,j + uji) , (2.3)

2
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where o-i and &ij are the stress and strain tensors, and ui is the displacement vector.

p is the mass density, f is the body force per unit mass, A and p are the Lam6

constants, and 65j is the Kronecker delta defined as

for i j

for i - j
(2.4)

The displacement equations of motion are obtained by substituting the strain-

displacement relations, Eq. (2.3), into Hooke's law, Eq. (2.2), and subsequently sub-

stituting the stresses into the stress equations of motion, Eq. (2.1), as

(A + P)ujji + Pui,jj + PfA = pi , (2.5)

which are also known as Navier's equations. The equivalent vector form of this

expression is

(A + pi)VV . u + pV2 u + pf = pil . (2.6)

In the absence of body forces, the equation can be rewritten as

(A + U)VV u V2 u = pi . (2.7)

Using the vector identity

V2 u =VV U - V x V x U, (2.8)

the equation of motion can be alternatively expressed as

(A + 2up)VV - u - pV x V x u = pu . (2.9)

The equation of motion may be further represented in a simpler form. The vector

displacement u can be expressed via Helmholtz decomposition as the gradient of a
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scalar and the curl of the zero divergence vector

UV= O+V x I , and V*- 1 =0,

where 0 and xI are the scalar and vector potentials, respectively. By substituting

Eq. (2.10) into the Navier's equation of motion, Eq. (2.7), we obtain

(A + p)VV - (V+ V x T) + PV 2 (Vo+ V x T) at2
2 .

(2.11)

In view of the following identities

VV7 = V 20 ; V x V x V/i= 0 ; V -V x * = 0 ,

we have the following equation

[(A + 2p)V 25 - p a2 + V x /1, ~ P a20 (2.13)

which will be satisfied if each bracketed term vanishes. This leads to the decomposed

equations

S1 92,

c 2at 2

1 a2 I,
22II~ at2C2T=

(2.14)

(2.15)

where CL and cT are the longitudinal (primary, dilatational, compression) and trans-

verse (secondary, distortional, shear) wave velocities, respectively given as

CL
p

CT - (2.16)
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It can be seen that the components V, V/y, 0, of the vector potential 'I satisfy the

equations

1 a2 0X
V 2 ~ a .2 92j 2 y .

S CT82'

Thus, the wave equations can be written in terms of the potentials 0, V ?4y, b, / as

a2

a23

192

a2q __92

2 ay2

/>X a2V~2 +9Y2

2 + a
2 a 2

"z+ -

+ a2  1 a2

az 2 C2 at 2

aZ2a z2
y

a2 y
a2 

+ Z2

1 a2 V)
2 ci 1t 2

1 a 2

aI 2 .
2 at2

(2.18)

(2.19)

(2.20)

(2.21)

Also, from Eq. (2.10), the displacement components u, uY and uz can be related to

the potentials as

U2 = - + avz a~
ax ay az

ay ax &z

UZ a + a.b- ao_
az ax ay

(2.22)

(2.23)

(2.24)

2.3 Dispersion of Elastic Waves

The same governing equations shown above, are also be used in investigating the

propagation of waves in plates. Dispersion is one of the most important features of

Lamb waves. Thus, before we go to the detail of Lamb waves, it is worthwhile to

introduce the general concept of dispersion.

The concept of dispersion can be well explained by introducing the concepts of

phase velocity and group velocity. As we will see, these two properties play an
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important role in the context of wave dispersion, especially for the analysis of wave

propagation in an elastic plate.

2.3.1 Phase Velocity

Consider a typical harmonic wave traveling in a medium. The longitudinal displace-

ment is then expressed as

u(x, t) = A cos[k(x - ct)] = A cos(kx - wt) , (2.25)

where the amplitude A is independent of the space x and time t, and the term k(x-ct)

is the phase of the wave. For increasing values of time t, increasing values of x are

required to maintain a constant phase. The propagation velocity of this constant

phase is c, which is defined as the phase velocity'.

2.3.2 Group Velocity

In contrast to the phase velocity, group velocity is associated with the propagation

of a group of wave packets. Consider two propagating harmonic waves of the same

amplitudes but slightly different frequencies, i.e.,

ui(x, t) = Acos(kix - wit) (2.26)

u 2 (x, t) = A cos(k 2 X - W 2 t)

The superposition of the displacements yields the total displacement

u(x, t) = 2 A cos ( k k2 1- W2 t) cos ( k +k2 (J t) . (2.27)
2 2 2 2

'In the following we designate cp as the phase velocity to distinguish it from the group velocity.
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By introducing the following definitions

Ak = A = (2.28)2 '2

ki + k2 W + W2k = , + = , (2.29)2 2

Eq. (2.27) can be rewritten as

u(x, t) = 2A cos(Akx - Awt) cos(kx - wt) , (2.30)

lower frequency higher frequency

where cos(Akx - Awt) is the term containing the lower frequency and cos(kx - Wt) is

the term containing the higher frequency. As shown in Fig. 2.1, what we obtain is a

wave system oscillating at a frequency (wi +w 2)/2 which is very close to the frequency

of either component but with a maximum amplitude of 2A, modulated in space and

time by a very slowly varying envelope of frequency (wI - w2)/2 and wavenumber

(k1 - k2)/2.

Note that the higher frequency term, cos(kx-wt), propagates at the phase velocity

cp = w/k, while the lower frequency term cos(Akx - Awt) moves at a velocity, defined

as

C = w (2.31)Ak

This velocity is referred to as the group velocity, The modulation imposed on the

carrier results in the creation of groups traveling at the group velocity c9 . In the

limit, the group velocity approaches

dw
c = d (2.32)

Sdk
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Modulation envelope
(lower frequency)

Carrier wave Group
(higher frequency)

Figure 2.1: The superposition of two harmonic waves of slightly different frequencies,
w1 and w2 , forms a wave packet. The faster oscillation occurs at the average frequency
of the two components (wi + w2 )/2 and the slowly varying group envelope has a
frequency equal to half the frequency difference between the components (w1 - W2)/2.

Up to npow, the superposition of two harmonic waves are considered. However,

any number of waves with similar frequency can also be considered, in which

n

u(x, t) = A cos(kix - Lwit) ,(2.33)

where the frequency wi and wavenumber ki differ slightly from one wave to another.

From the definitions, we can obtain the following relationship

d(kcp) +dc
cga dk +kdk .(2.34)dkA

By virtue of the relationship, A = 27r/k, an alternative form of group velocity is

obtained as

c = cp - A c (2.35)
dA

2.3.3 Dispersion Relation

A medium is called dispersive if the phase velocity is frequency dependent (i.e., w/k

not constant); the dispersion relation expresses the variation of w as a function of k.

Understanding dispersion is important because it governs the change of shape of a
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pulse as it propagates through a dispersive medium. Dispersion occurs not only in

inelastic bodies but also in elastic waveguides. Figure 2.2 schematically illustrates

Wave group Same group after time t

Figure 2.2: A wave group showing the dispersion after a certain time t.

the change of the wave shape after some travel time t in a dispersive medium.

The comparison of the group velocity, and the phase velocity gives rise to three

different conditions

" Normal dispersion (c. < cp) : the carrier waves appear behind the group, travel

to the front, and disappear.

" No dispersion (c, = cP) .

" Anomalous dispersion (c. > cp) : the carrier waves appear ahead of the group,

travel to the rear, and then disappear.

The dispersion relations of these conditions are illustrated in Fig. 2.3.

2.4 Wave Propagation in an Infinitely Long Plate

Elastic waves in an infinitely long plate have the same governing equations of motion

as those in a full space, yet with free boundary conditions. In this section, the method

of displacement potentials is reviewed to obtain the solutions.

2.4.1 Rayleigh-Lamb Dispersion Equations

Consider a plane harmonic wave propagating in a homogeneous elastic plate of thick-

ness 2h and of infinite in-plane dimensions, as shown in Fig. 2.4. Since the plate is
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Cg> c, (Anomalous dispersion)

Cg = cp (No dispersion)

Cg< c, (Normal dispersion)

k

Figure 2.3: Curves illustrating dispersion: (a) a straight line representing a non-
dispersive medium, c. = cp; (b) a normal dispersion relation where cg < cp; (c) an
anomalous dispersion relation where c. > CP.

considered to be traction free, the boundary conditions would be written as

UZZ = 01 = 0 (2.36)

at the top and bottom surfaces (z ± th). In the case of plane strain in the xz plane,

we have the conditions

UY = 0 ,
a 

_

0y
0. (2.37)

Figure 2.4: Propagation of a plane harmonic wave in a plate of thickness 2h.
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The Helmholtz decomposition of the displacement vector as shown in Eq. (2.10) is

reduced to the equations

u a=
Ox

uz =
Oz

(2.38)

(2.39)+ ,xax

where the subscript y has been omitted from 4 for simplicity. Since the wave motion

in the y axis is not considered, the vector potential IF has a nonzero magnitude in

that direction.

Also, from Hooke's law, the stress components ax, ozz and uzz can be expressed

in terms of 4 and 0 as

o-z =A 2_
a2

a24\+ z2 )

92\ 0
+ Z2

OXZz = P 2L +

(O2q
+ 21 p ( 20

+ 2p Oz2

Z2)
± 24)

+ C92z0

(2.40)

(2.41)

(2.42)
'2 a2 k)

(9X2 aZ2 .-

The potentials q and 4' satisfy the two-dimensional wave equations for plane strain,

a2q$ a20$ 1 a205
OX2  19OZ 2  C2 0t2

02v) 024 V) 1 a2 4
OqX 2 + Z O 2 0Ot 2

(2.43)

(2.44)

To find the solutions to these equations, we assume that 0 and 0 are of the form,

= O(z) exp[j(kx - wt)]

4 O(z) exp[j(kx - wt)],

(2.45)

(2.46)

which represents waves standing in the z-direction and traveling in the x-direction.

Substituting Eqs. (2.45) and (2.46) into Eqs. (2.43) and (2.44), and dropping the
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factor e(kx-wt) , we obtain the resulting solutions as

A, cosh(az) + Ba sinh(az) (2.47)

Ca cosh(Oz) + D, sinh(Oz) , (2.48)

where A8, Ba, Ca, D, are arbitrary constants, k is the wavenumber and

2
2 = k2  2 - k (2.49)

CL

2 = 2 - W = k2 - k . (2.50)
CT

The constants kL and kT are the wavenumbers of longitudinal and transverse waves,

respectively given as

kL = w kT w - . (2.51)
'+ 2p p

From Eqs. (2.47) and (2.48), we can rewrite the displacement and stress compo-

nents in terms of the potentials as

d$b
U- jk# - (2.52)

u + jk' , (2.53)
dz

and

(zz = A k2o + 2 + 2p d2 + jk dz (2.54)

dq$ d 2V)
-xz -= 2jk-- k2@ - (2.55)

dz dz2

From Eqs. (2.52) and (2.53), we can observe that the motion in the x-direction is

symmetric (antisymmetric) with regard to z = 0, if ux only contains hyperbolic

cosines (sines); the displacement in the z-direction is symmetric (antisymmetric) if
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uz only contains hyperbolic sines (cosines). Thus, the modes are grouped into two

systems: symmetric and antisymmetric modes.

1. For symmetric modes, the resulting potentials, displacements, and stresses are:

# = A, cosh(az) (2.56)

'= D, sinh(z) (2.57)

UX jkA cosh(az) - #DS cosh(#z) (2.58)

UZ = A, sinh(az) + jkD, sinh(#z) (2.59)

-zz =A[(-k2 + a2)A, cosh(az)] + 2p[a 2A, cosh(az) + jk#D, cosh(#z)]

(2.60)

O-Xz= 1 [2jkaA, sinh(az) - (k2 + / 2 )Ds sinh(#z)] ; (2.61)

2. For antisymmetric modes, the resulting potentials, displacements, and stresses

are:

0= Ba sinh(az) (2.62)

=b Ca cosh(Oz) (2.63)

UX = jkBa sinh(az) - #3Ca sinh(#z) (2.64)

Uz CBa cosh(az) + jkC cosh(#z) (2.65)

Uzz A[(-k 2 + a 2 )Ba sinh(cz)] + 2p[a2Ba sinh(az) + jk3Ca sinh(#z)] (2.66)

O-Xz / [2jkaBa cosh(az) - (k 2 + 0 2 )Ca cosh(#z)] . (2.67)

The expression relating the frequency w to the wavenumber k, or so called fre-

quency equation, is now obtained from the boundary conditions, Eq. (2.36). For the

symmetric modes this yields a system of two homogeneous equations for the constants
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A, and Ds,

(k2 + /2) cosh(ceh)A, + 2jkO cosh(Oh)D, = 0 (2.68)

2jkczsinh(ah)A, - (k2 + /2) sinh(oh)D = 0 . (2.69)

Since the systems are homogeneous, the determinant of the coefficients must vanish,

which yields the frequency equation

(k2 + /2) cosh(ah) _ 2jka sinh(ah)
2jk# cosh(Oh) -(k 2 + 02) sinh(#h) '

This can be simplified as

tanh(#h) 4k 2 O#

tanh(ah) (k2 + 02)2 , (2.71)

which is the Rayleigh-Lamb frequency equation for symmetric modes in the plate.

Similarly, for the antisymmetric modes, the boundary conditions yield a system

of two homogeneous equations for the constants Ba and Ca,

(k2 + /2) sinh(ozh)Ba + 2jk/ sinh(Oh)Ca = 0 (2.72)

2jkacosh(ah)Ba - (k2 + /2) cosh(/h)Ca = 0, (2.73)

which yields the frequency equation

(k2 + /2) sinh(ah) _ 2jka cosh(a h)
2jk sinh(#h) -(k 2 + /2) cosh(/h) (

This can be further simplified as

tanh(#h) _ (k2 +0232
tanh(ah) 4k 2ao '

which is the Rayleigh-Lamb frequency equation for antisymmetric modes in the plate.

For the symmetric mode, the boundaries of the plate periodically dilate and con-

tract; these modes are, therefore, often called longitudinal; The antisymmetric modes
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Symnmetric or dilatational

L2

L3

Antisyrnmetric Of flexural

F2

Figure 2.5: Field distributions for the lowest modes on an traction-free isotropic
plate (k ~ 0), where L stands for symmetric or longitudinal modes, and F stands for

antisymmetric or flexural modes [31].

are called flexural because of the periodic flexing motion of the boundaries. Figure 2.5

shows the displacement patterns of the three lowest symmetric and antisymmetric

modes for a small value of the wavenumber k [31].

2.4.2 Analysis of Rayleigh-Lamb Frequency Equations

It can be observed from the frequency equations that there exists no known analytical

solution. This is due to the fact tha both P and SV waves exist for any given mode

owing to the mode conversion at the traction-free surfaces.

Displacements of Lamb Wave Modes

The displacements for symmetric and antisymmetric modes have been expressed in

terms of the four constants A., DS, Ba and Ca. Here we can rewrite them in a further

expression.
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1. Symmetric modes: From Eq. (2.69) we obtain the amplitude ratio

D_ 2jka sinh(ah)

A, (k2 + 2) sinh(oh)

Thus, the displacements can be expressed as

us j- cosh (az)
jk sinh (ah)

us =Aa sinh(az)
z (sinh (ah)

2a#

k2 + 2

2k 2

k2 + 32

cosh(#z) e _j(kxwt)

sinh(oh))
sinh(#z)) ej(ko-,-t)

sinh(oh))

where A is a new constant.

2. Antisymmetric modes: From Eq. (2.73) we obtain the amplitude ratio

Ca
Ba

2jka cosh (ah)

(k2 + 2 )cosh(#h)

or the displacements can be expressed as

a ,(sinh(az)jkB \ cosh (ah)

a Ba cosh(az)
2 cosh (ah)

2oz#

k2 + 32

2k2

sinh (&) e jgk_-w)

cosh(#h))

cosh(Oz) ei(kx-wt)

cosh (Oh))

where B is a new constant.

Various Regions of the Rayleigh-Lamb Equations

It is noted that the variables, ce and #, defined as

2 2 2 2 2

2 k 2 -- 2 = - (2.82)
CL Cp CL

2 C2 C2
c2= 2 = - , (2.83)

are either real or imaginary numbers, depending on the value of cp relative to CL and

CT.
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1. 0 < C < CT < CL: In this case, both a and # are real, and the frequency

equations are of the same form as before,

tanh(#h) 4k2a
tanh(ah) (k2 + 32)2

tanh(#h) (k2 + /2)2

tanh(ah) 4k 2a3

(symmetric)

(antisymmetric)

2. 0 < CT < C < CL: In this case, a is real and / is imaginary, The frequency

equations become:

tan(/h)

tanh(ah)
4a(-k 2

tan(h) (k2  _ /2)2

tanh(ah) 4a/3k 2

(symmetric)

(antisymmetric)

where / is the complex conjugate of #

- k2 .(2.88)CT

3. 0 < CT < CL < C: In this case, both a and # are imaginary. The frequency

equations are written as

tan (/h) 4dk 2

tan(4h) (k2 
- 2)2

tan(h) (k2 _ 02)2

tan(h) 4&3k2

(symmetric)

(antisymmetric)

where a and f are the complex conjugates of a and /, respectively,

2
CL

_ -k 2 .
CT
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Cutoff Frequencies

The cutoff frequencies for various wave modes are obtained by limiting the wavenum-

ber k - 0. At this limiting value, the Rayleigh-Lamb equations are reduced to:

cos(dch) sin(,ch) = 0

sin(dch) cos(ch) = 0

(symmetric)

(antisymmetric)

1. Symmetric modes:

cos(5ch) = 0,

sin(&ch) = 0,

dch = F
2

-h 
q

i3h 2

(p= 1, 3 , 5 , ... )

(q= 0, 2, 4, ... )

In view of the fact that dc = Wc/CL and /c = W,/cT in this case,

condition for the cutoff frequencies

we have the

c p7r CL

C2 CT
CT q7r

2

(p= 1, 3 , 5 , ... )

(q = 0, 2, 4, ... )

or in terms of the frequency and thickness product

PCL

2fch = 2
qcT

2

(p = 1, 3, 5,.

(q = 0, 2, 4,.

2. Antisymmetric modes:

sin(dch) = 0,

cos(&ch) = 0,

p7r
dach =2"2

t3ch = 2

(p= 0, 2 , 4 , ... )

(q = 1, 3, 5, ...
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Likewise, in view of the fact that ac w= c/cL and /c = WC/cT, the condition for

the cutoff frequencies are

rpir C LP7 CL (p =0, 2, 4,...)
= 2 CT ,(2.100)

CT (q =, 3, 5, ... )

or in terms of the frequency and thickness product

PCL (p 0, 2, 4,...) 211

2fch = 2 .(2.101)
qCT (q 1, 3, 5,. ..)

2.4.3 Dispersion Curves

From the Rayleigh-Lamb frequency equations, the relationship between the frequency

(w) and wavenumber (k) of the Lamb waves, or between the phase velocity (cp) or

group velocity (c.) and the frequency w can be detremined numerically, resulting in

the so-called dispersion curves. For a given frequency there are infinite number of

wavenumbers that satisfy the frequency relations, but only a finite number of these

wavenumbers are purely real or imaginary, while the others are complex [33]. The

behavior of the real, imaginary and complex branches of the frequency equations was

discussed by Mindlin [27]. In many cases, only the real solutions of the frequency

equations are displayed in the dispersion curves since they represent the propagating

modes. Dispersion curves are very important in analyzing Lamb waves.

Figure 2.6(a) is the dispersion curves for aluminum, showing the relationship be-

tween the phase velocity and frequency-thickness product. The solid lines represent

symmetric modes while the dashed liness represent antisymmetric modes. The dis-

persion curves reflect the aforementioned characteristics of Lamb waves: dispersion

and multi-modality. For a given mode, the phase velocity changes with the frequency-

thickness product. For a given frequency-thickness product, there exist at least two

modes, i.e., they are multi-modal. It is therefore important to take into account both

the influence of dispersion and multi-modality in analyzing Lamb waves.
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Shown in Fig. 2.6(b) are the dispersion curves relating the group velocity and

frequency-thickness product. As shown in this figure, each mode has a maximum

group velocity. For example, cmax = 3168 m/s for AO mode and cumax = 5438 m/s for

So mode. It is also noted that the group velocities of the symmetric modes are larger

than those of the antisymmetric modes. In addition, the group velocities of the lowest

symmetric and antisymmetric modes (So and Ao) asymptotic approach the Rayleigh

wave velocity (CR). By contrast, the group velocities of all the other modes approach

the transverse wave velocity (CT). No group velocity exceeds the longitudinal wave

velocity (CL).
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Figure 2.6: Dispersion curves for an aluminum plate of thickness 2h: (a) phase velocity
and (b) group velocity. The longitudinal wavespeed is CL = 6320 m/s and transverse
wavespeed is CT = 3130 m/s.
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Chapter 3

Wave Mode Tuning Techniques

3.1 Introduction

As mentioned in Chapter 1, Lamb waves offer an attractive solution for inspecting

thin-walled structural members mainly because they can travel long distances in the

plane of the members. However, the analysis is complex due to their dispersive and

multi-modal nature. Unlike bulk waves, the propagation velocity of Lamb waves is a

function the frequency. This means that the shape of a propagating waves could be

changed as it travel in the medium. In addition, at least two modes exist at a single

frequency, and the number of co-existing modes increases as the frequency increases.

Hence, the application of Lamb waves depends on the way we deal with these two

features. Two approaches are generally used for this purpose, including those using

broadband signals and those using narrowband signals.

Broadband signals are attractive since they contain rich information over a wide

range of frequency. An example of applications in this category is the construction

of experimental dispersion curves from the laser generated Lamb waves, which will

be discussed in Chapter 8. However, this approach involves advanced signal pro-

cessing algorithms such as two-dimensional Fourier transform and continuous wavelet

transform. Furthermore, in-plane pulse-echo or pitch-catch operations (used for bulk

waves) require much more sophisticated signal processing techniques since it is not

easy to extract useful information directly in the time domain.
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On the other hand, the narrowband signal approaches enable the processing of

signals directly in the time domain. In this case, the waves retain their shapes as

they propagate in the medium so that the dispersion effect is small. However, due

to the existence of multiple modes traveling at different velocities, it is preferred

to discern one desired mode from the other modes. This procedure is called mode

tuning. With successful mode tuning, the pitch-catch or pulse-echo setups can be

simple and useful. For example, Lamb waves can be conveniently used to detect

flaws in structural members, by detecting and measuring the time of flight (TOF) of

a single reflection from a flaw. One of the main objective of this thesis work is to

develop an effective tuning method.

In this chapter, we will presents the various tuning techniques of Lamb waves.

Two major state-of-the-art tuning techniques used in Lamb wave inspection will be

reviewed first, including the angle beam transducer tuning or angle wedge transducer

tuning and comb transducer tuning. Tuning examples will be given to illustrate the

effect and disadvantages of these two techniques. Then we will propose our innova-

tive dynamic phase tuning technique using linear phased arrays, or the phased array

tuning technique. A comparison between our approach and the ones reviewed is in-

cluded. To assist the understanding of the phase tuning concept, the background

of phased arrays will be introduced along with the prototype system development.

Experimental results will be obtained for the phased array tuning, and the limitations

of this technique will be also pointed out. Remarks will be given on alternative phase

tuning technique, synthetic phase tuning method, which will be discussed in great

detail in Chapter 4.

3.2 Angle Wedge Transducer Tuning

The most common and economical way to tune Lamb waves is to control the incident

angle using a variable or fixed angle wedge transducer [13, 17]. Fig. 3.1 shows a

normal contact transducer mounted on an angle wedge (usually made of perspex).
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Figure 3.1: Conventional variable angle wedge transducer used for tuning Lamb
waves.

3.2.1 Principle

As schematically shown in Fig. 3.2, Snell's law governs the principle of this tuning

technique, which gives rise to the computation of the required angle of incidence

0, [17]. The transducer generates a plane wave of wavelength A,, in the wedge. Upon

arrival of this plane wave at the interface between the wedge and the plate, Lamb wave

modes are excited with different wavelength or velocities. Among all the generated

modes, only the mode with a wavelength of A) (which is the mode to be tuned) is

Transducer Wedge

6 s- Plate

Lamb Wave

Figure 3.2: Schematic diagram of angle wedge transducer tuning of Lamb waves.
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efficiently generated due to the delayed arrival times of the wave. This requires the

angle of incidence to be set at

sin 0" - A (3.1)

By virtue of the relationship:

AP=cr/f , AW -cu/f , (3.2)

we may further express the incident angle as

sin OW =- , (3.3)
cp

where cp is the phase velocity of the desired wave mode, and cw is the longitudinal

wave velocity in the wedge. The other modes which do not follow Shell's law are not

constructively interfered. This is how the tuning effect is achieved through the angle

control in the angle wedge transducer tuning technique.

It should be pointed out that the angle wedge transducer can be used as both a

transmitter and receiver in pulse-echo. Sometimes, a second angle wedge transducer

can be used as receiver especially in pitch-catch. The effect of oblique incident angle

can be achieved by directly placing an angle wedge in contact with the surface or by

using an immersion [10] or air-coupled transducer [34,35 techniques.

As an example, Fig. 3.3 shows a typical Lamb wave tuned for A1 mode, and the

conditions set for this experiment are shown in Table 3.1. Although it was possible

to obtain the other modes successfully, only the results for this mode are presented

here for discussion. In this experiment, a variable angle wedge transducer, excited by

a toneburst signal tuned at a carrier frequency fo = 2.25 MHz, is placed on a thin

aluminum plate of 2 mm thickness (2foh = 4.5 MHz-mm). The wedge-transducer

assembly is positioned to send waves toward the edge of the plate and receive signals

reflected from the edge. The phase and group velocities are obtained from the dis-

persion curves shown in Fig. 2.6: c, = 4,269 m/s, c, = 2,161 m/s. Substituting c,
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Figure 3.3: A typical pulse-echo Lamb wave signal, tuned for A1 mode by a variable
angle wedge and toneburst signals.

and c, = 2,720 m/s into Eq. (3.3), the incident angle is set at 0, = 39.60 to produce

the desired mode (A 1). Knowing the group velocity and the distance from the center

of the transducer to the plate edge (x = 104 mm), it is possible to measure the time

(group delay) for a round trip: t,=122.0 ps. This arrival time is indicated in the

figure as a thick dashed line.

Table 3.1: Experimental conditions used for angle wedge tuning experiment.
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Parameter Value

Material Aluminum
Toneburst frequency, fo, (MHz) 2.25
Plate thickness, 2h, (mm) 2.0
2foh value (MHz-mm) 4.5
Wedge angle, 0k, (degree) 39.6
Longitudinal wavespeed in the wedge, c., (m/s) 2720
Transducer-edge distance, x, (mm) 104
Time of travel, t., (Ps) 122.0
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3.2.2 Limitations

From this experiment, one can observe that the arrival time of the wedge-tuned signal

corroborates the theoretical prediction; however, there are some annoying drawbacks

and limitations to this technique. Firstly, since it is usually manipulated manually, it

is difficult to set the angle of incidence with any appreciable accuracy. The sensitivity

due to misalignment is uncertain and error levels may vary for different modes and

frequencies.

Another drawback is attributed to the numerous interfaces that the signal must

traverse in the wedge assembly. As shown in Fig. 3.1, a typical variable angle wedge

consists of two parts: a main wedge and a block rotating around the wedge. Since

the transducer is mounted on a plastic block, three interfaces exist in the transducer-

wedge assembly: (1) one between the transducer and the rotating block, (2) one

between the block and the main wedge, and (3) one between the wedge and the

specimen. These interfaces introduce reflections, producing high peaks near the main

bang. Although the acoustic impedances between the two wedge pieces are equivalent,

reflections are still likely, especially if there is poor coupling. The reflections from the

interface between the wedge and the test material could be pronounced due to the

potentially high impedance mismatches. The problem may become more noticeable

for smaller angles of incidence, where strong multiple reflections may occur. This not

only diminishes the inspection zone in the vicinity of the transducer but also decreases

the transmission efficiency.

There are additional limitations of the wedge-tuning technique. For example,

it may be noted that Eq. (3.3) becomes invalid for cp < c,. Consequently, angle

wedge transducers cannot tune the modes whose phase velocity falls below that of

the longitudinal waves in the wedge. Specifically, the A0 mode in the low frequency

range (approximately below 2-3 MHz-mm) cannot be tuned in this fashion because

cp < 2,720 m/s, as shown in Fig. 2.6.

One remaining disadvantage stems from the fact that the wedge works as a delay

block as a whole, requiring additional travel time that should be taken into account in
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the analysis. Furthermore, the signal may be attenuated significantly before imping-

ing the inspection material. All of the aforementioned limitations make angle wedge

transducers rather cumbersome in certain situations, even though the device is widely

used. The advantage and disadvantage of this technique are listed in Table 3.2.

Table 3.2: Advantages and disadvantages of angle
techniques

wedge and comb transducer tuning

3.3 Comb Transducer Tuning

As an alternative to angle transducers, comb transducers have been explored for single

mode excitation of Lamb waves [13,22,36,37]. Comb transducers are in fact linear

64

Angle wedge transducer tuning Comb transducer tuning

Advantages It is simple to operate. Wave modes of low phase veloci-
ties can be tuned, mode selectiv-
ity is increased and penetration
potential is enhanced.

Disadvantages Difficult to set the angle of inci- The wave inherently propagates
dence with any appreciable accu- bi-directionally, resulting in a
racy. symmetric excitation pattern.

The numerous interfaces in the The arrays cannot be effectively
wedge assembly causes the rever- used as a receiver since the inter-
berations, which introduces high element spacing is fixed.
peaks near the main bang. This
not only diminishes the inspec-
tion zone in the vicinity of the The control of frequency charac-
transducer but also decreases the teristics of the propagating wave
transmission efficiency. is not flexible.

It only applies to the modes The produced signals generally
whose phase velocity is bigger have a long time duration, result-
than the longitudinal velocity in ing in poor spatial resolution.
the wedge.



arrays whose elements are equally spaced. The tuning effect is achieved by adjusting

the element spacing or the frequency of the excitation signal.

3.3.1 Principle

Figure 3.4 schematically depicts the principle of Lamb wave tuning using a comb

transducer. A gated sinusoidal signal of carrier frequency f, excites all the elements

at the same time. Or, in some cases, the elements are divided into two groups by

activating every other element. By adjusting the distance between the elements, d, it

is possible to generate guided waves of wavelength equal to d with the vibration (or

carrier) frequency fe, i.e., the inter-element spacing can be chosen such that d = c/fc.

Similarly, by adjusting fe, it is possible to control the signal in such a way that the

signal peaks are synchronized with the travel velocity of the mode to be tuned. In

other words, the sinusoidal period of the excitation signal is to be set at

1 d
Tc= . (3.4)

There is another type of array transducer similar to the comb transducer, which

is the interdigital transducer. Such transducer was originally developed as a surface

acoustic wave (SAW) device for filters and delay lines used in radar and communica-

tion [38], but it was demonstrated that they could also be used to excite other waves

such as Love and Lamb waves [39,40]. It is believed that interdigital transducers will

Comb transducer

Plate

tFu t i t tt t

Figure 3.4: Schematic diagram of comb transducer tuning of Lamb waves.
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find more and more applications in nondestructive evaluation with the advancement

of micro-electro-mechanical system (MEMS) technology.

3.3.2 Limitations

Comb transducers have several benefits over wedge transducers [36], but there are

several limitations as well. The most critical problem is that the wave inherently

propagates bi-directionally. This is because all the elements are simultaneously acti-

vated by the same signal, resulting in a symmetric excitation pattern. Consequently,

waves of commensurable energy emanate from both sides of the transducer.

The other critical disadvantage is that the arrays cannot be effectively used as

a receiver. Since the inter-element spacing of the transducer is fixed and all the

elements are engaged together, the constructive interference occurs only for the wave

whose wavelength is equal to the inter-element spacing. It is not possible to control

the wavelength and hence these arrays are not suitable for dynamically tuning the

signals in the receiving mode.

Figure 3.5 shows a signal obtained from an experiment using a combination of

array and wedge transducer. The experimental conditions are shown in Table 3.3.

In this experiment, the array transducer works as a transmitter, while the wedge

is placed on one side of the transducer to receive the signal. Both T, and 0, are

set for tuning the So mode. There are two main groups of the waves appearing

in the signal. The first one arriving at t91 = 48.0 ps represents the signal directly

transmitted to the wedge transducer, and the one arriving later at approximately

t92 = 131.2 ps corresponds to the wave initially traveling in the opposite direction

and then reversing upon contact with the edge of the plate. It is important to observe

the significant amplitude of the second signal which has actually been attenuated due

to reflection. This phenomenon is quite deleterious since the signals arriving from the

unwanted direction (opposite direction in this case) may also appear in the waveform

and corrupt the real data.

In addition to these problems, it may be noted that the control of frequency char-

acteristics of the propagating wave is not flexible. Also, the produced signals generally
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Figure 3.5: An So mode-tuned pitch-catch signal transmitted by a comb transducer
and received by a variable angle wedge transducer.

have a long duration time, resulting in poor spatial resolution. The advantage and

disadvantage of comb transducer tuning technique are also listed in Table 3.2.

3.4 Phased Array Tuning

To overcome the drawbacks of the two aforementioned tuning techniques, we pro-

pose the innovative dynamic phase tuning method using linear phased arrays. This

technique is referred to as the phased array tuning method. In contrast to comb trans-

ducers, all the elements of the array are isolated and excited individually according to

a prescribed time delay profile. This allows dynamic tuning of a multi-mode dispersive

wave without repositioning or realigning the transducer.

Before proceeding to explain the principle of phased array tuning in detail, we will

review the background of ultrasonic phased arrays, including the geometry parameters

and beam forming principle. This will help us understand the principle of phased

array tuning. Note that in the following review, bulk waves (non-dispersive) instead

of guided waves (dispersive) are considered.
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Table 3.3: Experimental conditions used for the comb transducer tuning experiment.

3.4.1 Background of Phased Arrays

Ultrasonic phased arrays are made of multiple piezoelectric elements which are subse-

quently activated by time-delayed pulses. In general, phased arrays can be categorized

as linear arrays, planar arrays and annular arrays by their geometry [41]. A linear

array is composed of a number of individual elements arranged in a single line as-

sembly. A planar array is basically a two-dimensional linear array. An annular array

consists of concentric rings. Among these three arrays, only the linear arrays are

considered in this thesis.

A representative linear phased array with eight elements is schematically shown in

Fig. 3.6 viewed from upside-down, where D is the lateral dimension or the aperture,

L is the elevation dimension, d is the inter-element spacing, and a is the element

size or width. The lateral dimension of the array is always larger than its elevation

dimension (D > L), and the individual element is always smaller than its elevation

dimension (L > a). Also, it is observed that the lateral dimension can be expressed

as

D = (N - 1)d + a , (3.5)

where N is the number of elements (N = 8 for this particular case).

The above design parameters, especially the number of elements(N), inter-element

spacing (d), element size (a), as well as the frequency (f) are very important for the
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Property Value

Period of sine function, T., (ns) 473
Vibration frequency, fe, (MHz) 2.1
Phase velocity, cp, (m/s) 2961
Group velocity, c., (m/s) 2704
Velocity in the wedge, ce, (m/s) 2720
Wedge Angle, 0,,, (deg) 66.7
Group delay of direct wave, tg1 , (Ps) 48.0

Group delay of edge-reflected wave, tg2 , (ps) 131.2



d: Inter-elment spacing
a: Element width

Array elements d a L: Elevation dimension
D: Lateral dimension

L

Backing material

D

Figure 3.6: Geometry of a linear phased array transducer.

performance of phased arrays. There have numerous research done on this regard

[42-53].

Beamforming is the most significant advantage of phased arrays over conventional

ultrasonic transducers, which is achievable by adjusting the time delays between array

transducer elements. The beamforming includes beam steering and focusing.

Beam steering of a linear phased array can be achieved by sequentially exciting

individual elements with fixed time delay. The sound field of such configuration

can be represented by the synthesis of pressure contributed by individual elements,

according to Huygens' principle. Figure 3.7(a) illustrates the schematic concept of

beam steering of a phased array. The propagation angle or the steering angle (0,)

of the beam can be written as a function of wavespeed in the medium (c), time

delay between adjacent elements (AT), and the spacing between the elements or the

inter-element spacing (d), such that

AT = dsin (3.6)
c

Beam Focusing is accomplished by variably delaying a group of elements with

respect to the center element. For example, when a delay profile takes a quadratic

form, as shown in Fig. 3.7(b), the beam is converging at a focal point aligned with

the transducer center. If the linear and quadratic time delay profiles are superposed,

beam steering and focusing are obtained at the same time.
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Figure 3.7: Principle of electronic beam forming: (a) a linear delay line creates a
deflected beam, (b) a parabolic delay line results in a focused beam.

3.4.2 Principle

Figure 3.8 illustrates the basic concept of the phased array tuning. In this scheme,

the element located farthest from the direction of the desired propagation is excited

first at certain time, e.g., at t = 0. The wave generated by this element is multi-

modal, bi-directional and dispersive. In other words, the activated element sends

several different waves traveling at different speeds in both directions. An illustrative

waveform is shown in the right-hand side of the topmost figure. The next step is to

excite the adjacent element exactly when the wavefront of the desired mode arrives

beneath that element, i.e., at t = A. At this moment, the other modes traveling

at different speeds may have already passed that element, or they may not have

reached it yet. Now, the desired wave mode is constructively interfered, while the

other modes are not systematically modified. Progressive repetition of this sequence

for all the elements increases the energy so that the amplitude of the desired mode

can be significantly boosted. The required time delay between adjacent elements is

given by a relationship similar to Eq. (3.4),

(3.7)Ar = d/cp .
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Figure 3.8: The concept of phase-tuning mechanism using a linear phased array.

If we compare Eq. (3.6) with Eq. (3.7), we can see that the phased array tuning is

equivalent to steering the mode being tuned at an angle of 900. The only difference

between our phased array tuning method and the aforementioned comb transducer

tuning approach is that the electronics for driving individual element is completely

isolated. In our approach, only the target wave mode requires a systematic and

sequential firing scheme. In this fashion, the amplitudes of the waves traveling in the

opposite direction are suppressed while the ones traveling in the intended direction

are enhanced. Increasing the number of repetitions will further squelch the unwanted

signals.

3.4.3 Experimental Setup

From the principle, we emphasize that the key to phased array tuning is the time

delay between array elements. For this, a sophisticated time delay circuit is required
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to provide accurate time delays for tuning various wave modes. Before introducing

the experimental setup for phased array tuning, we will have a brief review of the

16-channel phased array control system developed in the NDE Laboratory at the

Massachusetts Institute of Technology.

Like most other phased array systems developed for biomedical imaging or NDE

applications [54-62], our system is composed of essentially four main components: (1)

delay circuit, (2) pulser circuit, (3) array transducers, and (4) computer interfacing.

The system electronic hardware is composed of the 16-channel delay generator and

high-voltage pulser circuit. Each of the 16 channels is dedicated to pulsing a specific

array element. Many of the parts used in the hardware are controllable, and therefore

require computer interfacing through parallel I/O cabling, GPIB for data acquisition,

and RS-232 for serial port communication. The result is an electronically controllable

ultrasonic beam.

Figure 3.9 schematically illustrates the conceptual diagram of the system layout.

TTL (transistor-transistor logic) trigger signals, output from an HP function gener-

ator, are used as inputs to all 16 channels. Data from a 192-bit I/O board installed

in a computer manipulates individual delay channels to generate a delayed trigger

source for each of the 16 pulser units. Finally, each piezo element is excited by a

delayed high voltage pulse from each pulser unit. More detailed information on the

system development can be found in elsewhere [63].

Figure 3.10 schematically shows the experimental setup for the phased array tun-

ing operated in pitch-catch configuration. The experimental conditions are tabulated

in Table 3.4. An eight-element linear phased array transducer of center frequency

fo = 2.25 MHz, made of piezo lead zirconate titanate (PZT), was used to tune Lamb

wave modes in an aluminum plate of thickness 2h - 3.2 mm. For the purpose of sim-

plicity, an angle wedge transducer of center frequency fo = 2.25 MHz was used as the

receiver with appropriate angles of incidence corresponding to the tuned wave modes.

The inter-element spacing of the array was d = 2.03 mm. The distance between

the first element (leftmost) and the angle wedge was set at x and the propagation

distance in the wedge was h. = 35.0 mm. Hence, the theoretical time of arrival (or
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Figure 3.10: Experimental setup for the phased array tuning of Lamb waves operated
in pitch-catch configuration, where tuned Lamb waves are generated by an array of
eight elements and received by an angle wedge transducer.

group delay) for a tuned wave mode can be expressed as

t9 = x/c9 + h /c, . (3.8)

With suitable choice of time delays, Lamb wave modes were tuned in the aluminum

plate and received by the angle wedge receiver. After going through the pre-amplifier,

the received signals were displayed in an oscilloscope and further transferred into a

computer for storage and analysis.

3.4.4 Experimental Results

Table 3.5 lists the required parameters for tuning various wave modes, including the

phase and group velocities from Fig. 2.6, calculated time delays according to Eq. (3.7),

and the angles of incidence according to Eq. (3.3). Among all the seven modes, only

four modes: SI, S2, S3 and A 2 were chosen for the experiment. This is because the

capacity of our delay circuit was 500 ns, well below the required time delays for So,

A0 and A1 . Among the four modes of choice, the two modes - S, and S3 display
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Table 3.4: Experimental conditions used for phased array tuned pitch-catch testing.

good tuning effect while the other two modes - A2 and S2 are not well tuned. In the

following, we will only demonstrate the results for the well-tuned modes, S and S3 .

Table 3.5: Required experimental parameters for tuning various wave modes.

Wave Phase velocity Group velocity Time delay Wedge Angle
mode c,, (m/s) cg, (m/s) AT, (ns) 0,, (deg)

S3  8,120 2,780 250 19.6
S2  6,382 4,057 318 25.2
A 2  5,384 2,815 377 30.3
S, 4,036 2,246 503 42.4
A1  3,325 2,732 610 54.9

so 2,903 2,869 699 69.5
Ao 2,892 2,920 702 70.1

In Table 3.5, the required time delay for S, mode is AT = 503 ns, which is just

3 ns above the circuit's delay capacity of 500 ns. Hence AT = 500 ns was used

as the time delay for S, mode. To illustrate the effect of time delay on the tuning

in detail, we varied the time delay from 0 ns to 500 ns with a time step of 50 ns.

Figure 3.11 depicts the waveforms of the tuned S1 mode for various time delays,

where the distance between the first element and the wedge was set as x = 235.0 mm.

In these waveforms, the first peak stands for the triggering signal, and the second
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Parameter [ Value
Material
Number of elements, N
Interelement spacing, d, (mm)
Element width, a, (mm)
Total transducer aperture, D, (mm)
Transducer frequency, f, (MHz)
Plate thickness, 2h, (mm)
2fh value, (MHz-mm)
Array-wedge distance, x, (mm)

Wedge propagation distance, he, (mm)
Longitudinal wave velocity in wedge, ce, (m/s)

Aluminum
8

2.03
1.0

15.2
2.25

3.2
7.2

235.0 (S1)
180.0 (S3)

35.0
2720



signal represents the received Lamb waves. When AT < 450 ns, no tuning effect is

observed. For AT= 500 ns, there is a clear high peak appearing in the waveform,

which is the tuned Si mode. This is confirmed by the calculated theoretical time of

arrival (or group delay) for Si mode, t. = 117.5 ps according to Eq. (3.8). Thus, we

can conclude that Si mode is well tuned using the phased array tuning approach.

For S3 mode, the required time delay is AT= 250 ns, which is one half of the

capacity (500 ns) of the delay circuit. The waveforms of the tuned 53 mode for various

time delays are shown in Fig. 3.12, where the distance between the first element

and the wedge was set as x = 180.0 mm. The peak appearing in the waveform at

AT = 250 ns indicates the tuned S3 mode. However, in contrast to the case of Si mode

tuning, the waveforms in this case are not very sensitive to the change of time delays.

We can observe that there also exist relatively outstanding peaks corresponding to

S3 mode for other time delay values such as AT= 0 ns, 50 ns, 300 ns and 350 ns.

The reasons for this scenario are not totally understood yet, although one possibility

might be that S3 mode has high amplitude inherently. Recall that another objective

of this research is to understand the tuning efficiencies of various wave modes. For

this, we will analyze the transient response of plates to external loadings in Chapter

5.

3.4.5 Limitations

From the experimental results, we may conclude that Lamb wave modes can be tuned

well using the phased array tuning approach. Since the tuned waves are physically ob-

tained, this approach enables flexible operation and high signal-to-noise ratio (SNR),

thanks to the time delay and pulser circuits. On the other hand, the cost of the cir-

cuits is high, and the time delay resolution and capacity are limited by the capability

of the delay circuits. For instance, the delay resolution is 5 ns and the delay capacity

is 500 ns in our phased array system, which excludes the possibility of tuning all the

modes existing for the given frequency. Furthermore, phased array systems usually

use spike pulses so that it is not quite easy to control the frequency bandwidth.
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Figure 3.11: Phased array tuned Si mode in an aluminum plate for various time
delays at 2fh = 7.2 MHz-mm, where the required time delay is Ar = 500 ns.
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3.5 Remarks on the Synthetic Phase Tuning

A natural way to remedy the limitations associated with the ultrasonic phased ar-

rays system is to improve the delay capacity and resolution as well as the frequency

bandwidth control capability. However, this solution could be extremely expensive, if

not impossible. In response to this problem, we propose another dynamic phase tun-

ing approach using the same array transducers, or the synthetic phase tuning. The

phased array tuning and synthetic phase tuning have the same physical principle.

The key difference is the way to provide the time delays for array elements. In the

first approach, the time delay is provided by time delay circuits, while the time de-

lay is provided numerically in the second approach. In this way, the aforementioned

limitations imposed on the phased array array tuning by the system hardware could

be eliminated. The details of the synthetic phase tuning technique will be discussed

in Chapter 4.

3.6 Summary

In this chapter, various tuning methods of Lamb waves were presented. The tradi-

tional angle wedge transducer tuning method was firstly introduced. While the tuning

effect was validated by an example, the limitations of this technique were pointed out,

i.e., not all the wave modes can be tuned, and the tuning effect is influenced by the

numerous interfaces in the wedge assembly, etc. Then the comb transducer tung tech-

nique was introduced. While this method offers several benefits over the angle wedge

tuning method, it also has several limitations. One of the most limiting features is

that the waves propagate bi-directionally.

In order to overcome the limitations of these methods, we proposed an innovative

phased array tuning method whose tuning effect is achieved by adjusting time delays

for controlling the excitation sequence of the array elements. The background of

phased arrays and the system developed in the NDE Laboratory were introduced to

help understanding the principle of the phased array tuning. While certain Lamb
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wave modes were successfully tuned by this method in the experiment, it was shown

that the tuning effect of this technique was severely limited by the capability of the

hardware. Finally, we gave a brief remark on the synthetic phase tuning technique

which will be further discussed in the next chapter.
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Chapter 4

Synthetic Phase Tuning

4.1 Introduction

In Chapter 3, we have investigated three tuning techniques, including the angle wedge

transducer tuning and comb transducer tuning, and the innovative phased array tun-

ing techniques. The principles of mode tuning were explained, and experimental

tuning results were obtained for each tuning technique. The advantages and disad-

vantages of each technique were also addressed.

As an alternative, we propose another dynamic phase tuning method using an

array transducer, which is named the synthetic phase tuning (SPT). The principle of

this method will be introduced followed by the description of the operating schemes.

Afterwards, the procedure for constructing of virtually tuned waves is described in

detail. Finally, experimental tuning results will be obtained using this method. A

discussion of the comparison of SPT with other tuning techniques is included. This

chapter is based on our previous research [64].

4.2 Principle of SPT

The SPT method essentially shares the same physical mechanism with the phased

array tuning method. In other words, the tuning effect is achieved by adjusting the

time delay to boost the mode of interest. The relationship between the required
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time delay, the inter-element spacing and the mode phase velocity is represented by

Eq. (3.6).

The key difference between these two methods is the way to provide the time

delay for the excitation of array elements. For the phased array tuning, the time

delay is provided by the delay circuit. For the SPT, the time delay is provided

numerically rather than physically. Hence, the SPT technique deals with virtual or

synthetic waves, in which the tuning is the result of manipulating a set of waveforms

transmitted and received by individual elements.

4.3 Operating Schemes

There are basically two operating schemes in implementing the SPT: pseudo pulse-

echo (PPE) and pseudo pitch-catch (PPC) schemes. The only difference between the

PPC scheme and PPE scheme is that the former requires a second array transducer

working as a receiver while the latter utilizes the same transducer working simulta-

neously as both both transmitter and receiver. Although it is possible to use either

of them, we shall describe only the PPE scheme in this chapter because it may be

better to demonstrate the capability of inspecting discontinuities in plates using the

SPT technique. An SPT under PPC operating scheme will be considered later in

Chapter 7.

Under the PPE operation, the array transducer behaves like a pulse-echo device.

Figure 4.1 illustrates the concept of the PPE operation, in which an array transducer

is mounted on the surface of the specimen at a distance x between the discontinuity

and the center of the last element of the array. The transducer array consists of N

elements of width a, separated by a center-to-center distance d. For convenience, we

will use the edge of the plate to simulate a discontinuity or flaw in our study.

Since the array elements are operated independently, it is possible to transmit

and receive signals, once at a time. The actual wave is (1) emitted from one of

the transducer elements, (2) traveling in the desired direction, (3) reflected from

discontinuities and traveling in the reverse direction, and (4) received by the same
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UHBBU9~ ~Lamb Wave
D =(N-1) d+ a

Figure 4.1: The concept of synthetic phase tuning under the pseudo pulse-echo
operation. N=number of elements, d=inter-element spacing, a=element width,
D=transducer width=(N - 1)d + a, x=distance between the center of the last el-
ement and the discontinuity.

and other elements. By sequentially repeating the procedure, a total number of N2

individual signals are obtained. Although all the elements participate independently,

the synthetic construction brings about the overall effect as if the array transducer

transmitted a single virtual wave and received the returning virtual wave off the

discontinuity. This operating scheme or setup is therefore called "pseudo" pulse-echo

or "synthetic" pulse-echo.

4.4 Construction of Virtually Tuned Waves

In the SPT testing, the tuning effect is achieved by manipulating the individually

obtained signals. The procedure for constructing a virtually tuned signal consists of

three basic steps: (1) signal generation and recording, (2) synthetic reconstruction of

the emitted waves, and (3) synthetic reconstruction of the received waves. A high-

resolution time-of-flight measurement, which can be achieved by this procedure, may

be used to locate discontinuities or flaws for NDE purposes. It is also possible to

combine steps (2) and (3) using a convenient formula given in this section. This will

allow us to process signals in real-time immediately upon acquiring each waveform.
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Figure 4.2: Flowchart for array data acquisition procedure.
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4.4.1 Signal Generation and Recording

The first step is to generate signals and record them. The excitation sequence of the

elements can be flexibly configured, e.g., pulse-echo (PE) or transmit-receive (TR)

operations. The PE setup can be configured in such a way that each element is used

to send and receive signals simultaneously and independently. The TR configuration,

on the other hand, completely separates the elements. We adopt the TR configuration

since one can achieve a higher SNR by separating the driving electronics. Figure 4.2

illustrates the procedure for the TR setup. A wave emitted by one element is received

and recorded by each remaining array element, one at a time. The element index m

denotes the transmitting element and n represents the index of the receiving elements.

After completing the acquisition, we will have N(N - 1) waveforms to process.

Physically, indices m and n can be manipulated by multiplexers to switch the

elements into different connection configurations. The transmitting elements are ex-

cited by a toneburst signal. Although one may excite the elements by a spike pulser,

broadband signals will be produced, resulting in complicated waveforms. Recall that

the tuning of Lamb waves requires narrow-band signals only.

4.4.2 Synthetic Construction of Emitting Waves

After the signals are acquired, the next step is to construct a synthetic wave. The

waveform that we are constructing is a propagating virtual wave that is emitted from

the transmitting array transducer, reflected off the discontinuity, and received by one

of the array elements in the receiving transducer. We are constructing a total of N

synthetic waveforms received by all elements.

Using the described setup, the signals are acquired with the same reference (trig-

gering) position in time. For narrow-band signals, it is convenient to apply Huygen's

principle directly in the time domain for constructing a new waveform. The signals

are processed by the time shift and delay algorithm described as follows.
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For an arbitrary inter-element time delay AT, the corresponding time delay for

the m-th element is given as

tm+1 =i-m + AT, m = 1, 2, 3, ... , N - 1 , (4.1)

where the excitation time for the first element is taken as reference (t1 = 0). Note

that the first element is located at the extremity of the array with respect to the

wave propagation direction, i.e, the wave erupts from element 1 to N. With this time

delay profile, the synthetic wave received by the n-th element can be constructed by

summing the time-shifted waveforms for all the elements, which can be written in the

form

N

sn (t) = WmnSmn(t - tm) , n = 1, 2, 3, ... , N , (4.2)
m=1, mfn

where Smn(t) are the waves transmitted by the m-th element and received by the n-

th element, and Wmn is the amplitude weighting function. Note here that the signals

Smn(t) encapsulate all the required information regarding the reflection coefficients

and wave mode conversion occurring at the discontinuity. For convenience, we may

take Wmn = 1, assuming that all elements are made equal. Noting this and by

substituting tm, Eq. (4.2) can be rewritten as

N

Sn(t) = 1: smn(t - (m - 1)AT) , n = 1, 2, 3, . .. , N . (4.3)
m=1, mn

Note that this equation is valid for any arbitrary time delay. By setting the time

delay

ATd
Ar = -_ , (4.4)

cP
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the constructed wave takes the form

sn (t) = E smn (t - C , (4.5)
m=1, m#ncp

for n - 1, 2, 3, ... , N. The synthetic signals constructed by this equation are tuned

to a desired wave mode traveling in the plate at the phase velocity of cp.

4.4.3 Synthetic Construction of Receiving Waves

Up to now, only the emitting wave has been conceptualized. When such a propagating

wave encounters a discontinuity, it will reverse upon reflection. During the reflection,

conversion between the modes may occur so that the incoming signal may spawn

a variety of additional wave modes. Consequently, it behooves us to also tune the

return signal in order to truly distinguish a particular mode of interest.

During reception, the time delay sequence has to be reversed since the wave travels

backward, i.e.,

in_1- t + AT' , (4.6)

where AT' could be another arbitrary linear time delay profile. A fully constructed

synthetic signal may then be expressed by the relationship:

1

s(t) = s,(t - (n - 1)AT') . (4.7)
n=N

Although we are free to choose a different wave mode in receiving, we will only tune

the same wave mode in both emitting and receiving stages. For this, we simply set

AT' = AT - . (4.8)
cP

87



Note that the N(N - 1) number of waveforms are used to construct a synthetic PPE

signal represented by Eq. (4.7). The wave constructed under this condition is now

fully tuned to a desired wave mode.

4.4.4 Real-Time Reconstruction of Synthetic Signals

The procedure described above hinges on off-line processing, i.e., synthetic recon-

struction ensues once the waveforms are recorded. This demands potentially large

temporary storage space and the ongoing input/output operations may slow down

the process. A more efficacious method is to process the acquired data immediately

upon recording each waveform. This is possible by combining and recasting Eqs. (4.7)

and (4.8) to create a real-time reconstruction formula as follows:

N N/ (L - \

s ( N = smn t - .m+n ) (4.9)
n=1 m=1,m 4 n

For each (m,n) operation, the synthetic signal s(t) is cumulatively constructed using

this equation. At the end of acquisition, a fully synthesized PPE signal is readily

available for display and analysis. This allows real-time processing of array signals.

4.4.5 Arrival Times of Tuned Waves

The group delay (travel time of the wave), measured from the main bang of element

#1 to the receiver element n, can be expressed as:

(t9 )n - 2x+ +(2N-rn- 1)d+a , (4.10)
C9

where x is the distance between the center of transducer element N and the discon-

tinuity, c9 is the group velocity, d is the inter-element spacing, and to is the trigger

offset time that gives us a reference point. For small elements (a < x), Eq. (4.10)
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can be approximated as

2x + (2N - n - 1)d to (4.11)
C9

The total pulse-echo distance between element #1 and the discontinuity is 2(D+x)

for a fully constructed wave and the corresponding travel time is given by the formula:

tg = 2[x + (N - 1)d] Ato (4.12)
C

9

The advantage to this approach is that this sort of analysis provides excellent spatial

resolution since the TOF is measured for a wave departing from element #1 and then

received by the same element. In other words, the TOF can be exactly measured

from the first element since it has negligible dimension. In fact, the overall dimension

(D = (N - 1)d) of the array transducer does not affect the spatial resolution. Thus,

this approach could enable us to enhance the transducer performance by increasing

the number of elements without sacrificing the resolution.

4.5 Experimental Investigation

The experimental study is conducted in this section to prove the concept of synthetic

phase tuning, where the pseudo pulse-echo operating scheme is used.

4.5.1 Experimental Setup

Figure 4.3 schematically shows the setup for the SPT experiment using the PPE

configuration. In the experiment, a sixteen-element transducer made of flexible

polyvinylidene fluoride (PVDF) piezo-polymer film was used. The inter-element spac-

ing d was fixed at 1.4 mm, and the transducer was placed on an aluminum plate of

2 mm thickness at a location x = 102 mm (the distance between the 16-th element

(rightmost) and the edge of the plate), as illustrated in Fig. 4.1. A five cycle toneburst

signal of 2.25 MHz center frequency, generated by a function generator and power
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Figure 4.3: Experimental setup for the synthetic phase tuning of Lamb waves operated
in the pseudo pulse-echo scheme, where the signal is generated by one element of the
16-element array transducer, and received by all the other elements.

amplifier, was used to excite each element. This yields a 2fh value of 4.5 MHz-mm.

The conditions for the experiment are tabulated in Table 4.1. To facilitate the signal

generation and recording, a single general-purpose pulser/receiver (or a function gen-

erator and pre-amplifier) unit can be used, combined with with a simple multiplexing

unit or solid state switches that connect one element to the pulser/receiver unit at a

time.

4.5.2 Experimental Results

As-Obtained Signals smn(t)

Figure 4.4 shows the respective waves obtained individually by exciting elements #1

through #15 and received by element #16. These waveforms respectively represent

the signals smn(t) where n = N = 16 and m = 1, 2, 3, ... 15. For the sake of brevity,

the signals received by the other elements will not be reported but they have similar

trends and features. In total, there will be N(N - 1) waveforms to be processed.
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Figure 4.4: As-obtained individual waves emitted from elements 1 through 15 and
received by the 16th element: smn(t), n = N = 16, m = 1, 2, 3, ... ,15.
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Table 4.1: Experimental conditions used for synthetic phase tuned pseudo pulse-echo
testing.

Reconstructed Signals s(t)

The waveforms shown in Fig. 4.5 are synthetic signals (s,(t) for n = 16) reconstructed

using Eq. (4.3) with different AT values. In particular, the waveforms shown in the

shadowed frames are the tuned signals obtained using specific time delays given by

Eq. (4.4), i.e., they are the signals synthesized using Eq. (4.5). In all these plots,

the first peaks appearing at near t = 0 are the waves arriving directly from the

transmitting elements to the receiving element. Note that the shape of these peaks

changes with varying AT. This is caused by the numerical delay-sum operations used

in the reconstruction processes, but these signals are of no interest to us and can be

neglected. The remaining peaks, which capture our interest, arrive after significant

delays and represent actual synthetic signals reflected from the discontinuity.

When there is no prescribed time delay between the elements, the array transducer

functions similar to a single rectangular transducer directly placed on the surface of

the plate. Thus, the signal shown on the upper left corner (AT = 0) displays all

untuned modes. As AT increases, the characteristics of synthetic waveforms, such as

arrival times and peak amplitudes, are changing dramatically.

It should be pointed out that the synthetic wave is received by only one element

(element #16) and the tuning procedure is only half-way through. The tuned sig-

nals synthesized up to this step still contain additional wave modes introduced by
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Parameter Value

Material Aluminum
Number of elements, N 16
Inter-element spacing, d, (mm) 1.4
Element width, a, (mm) 0.5
Total transducer aperture, D, (mm) 22.0
Transducer frequency, f, (MHz) 2.25
Plate thickness, 2h, (mm) 2.0
2fh value, (MHz-mm) 4.5
Transducer-edge distance, x, (mm) 102.0
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Figure 4.5: Synthetic waveforms reconstructed with different Ar: s.(t), n = 16.
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reflections, as explained earlier. The tuned waveforms displayed in the shaded frames

reveal several tenacious wave modes coexisting with our desired mode of interest.

Even with only half the tuning done, we can still appreciate the effect of tuning to a

certain extent. Figure 4.6 shows the half-way tuned signals in the receiving mode. A

full tuning can be achieved by combining these two as follows.

Fully-Tuned PPE Signal s(t)

The synthetic signals sn(t) should be further synthesized by Eqs. (4.7) and (4.8)

to produce a fully-tuned pseudo pulse-echo signal. Note that the total number of

N(N-1) acquired signals are used to produce a single waveform s(t). Figure 4.7 shows

these tuned waveforms for various modes at 2fh = 4.5 MHz-mm. The conditions used

in the tuning experiment are tabulated in Table 4.2. The group delay t. for a tuned

wave to make a round trip from element #1 to the discontinuity is computed by

Eq. (4.12) and the corresponding arrival times are marked by thick dashed lines in

the figures.

Table 4.2: Required experimental parameters for tuning various wave modes.

Wave Phase velocity Group velocity Time delay Wedge Angle
mode cp, (m/s) cg, (m/s) Ar, (ns) O0, (deg)

S2  9,846 3,568 142 16.0
S1  5,834 4,171 240 27.8
A1  4,269 2,161 328 39.6
so 2,961 2,704 473 66.7
Ao 2,861 2,980 489 71.9
R 2,917 2,917 480 68.8

The tuning effect for S2, S1 and pseudo-Rayleigh surface (R) wave modes is quite

clear as shown in Figs. 4.7(a), 4.7(b) and 4.7(f). Although the other wave modes

are still observable, they have been significantly reduced and the desired tuning wave

mode becomes dominant. Note the excellent agreement between the estimation and

the true signal on arrival time. By contrast, it seems that the tuning effects for So and

AO modes are not as obvious. The required time delays for these modes (AT = 473 ns
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Figure 4.6: Synthetic waveforms reconstructed with different Ar: s,(t), n = 16.
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for So, and Ar 489 ns forAO mode, respectively) are close to that of the surface

wave (AT = 480 ns). As this occurs, the surface wave is always dominant in the

waveforms shown in Figs. 4.7(d), 4.7(e) and 4.7(f). This may be explained by taking

signal amplitudes into consideration in the analysis.

It is interesting to note that the S1 mode disappears completely in the R-wave

tuned waveform (Fig. 4.7(f)). This is another great advantage of our approach over

traditional comb transducers. Since the required time delay (AT = 480 ns) for the

R-wave tuning is exactly twice that of the Si mode excitation (AT = 240 ns), the

elements of the comb transducer are activated for tuning the S mode as well. By

contrast, in our approach, the elements are individually energized exactly at the given

time so that they are not interfering with each other. Figure 4.7(c) indicates that there

is some difference between the actual arrival time of the maximum peak amplitude

signal and the estimated arrival time of the A 1 mode.

Directionality of Emitting Waves

It was mentioned earlier that one of the main advantages of the SPT method is that

we can choose the preferred direction of wave propagation. More specifically, it is

possible for us to allow a synthetic wave to propagate in either direction using the

same set of measured signals. This means that one can perform inspections in either

direction. In order to allow the wave to propagate in the negative direction, we can

use negative time delays

AT' = AT d (4.13)
cp

or simply reverse the element index. In both cases, the wave propagation sequence is

also reversed such that the wave is initiated by element N.

Although we intend to make a preferred propagation direction, there will always

be some waves traveling in the opposite direction as well. However, we may argue

that these waves are not sequentially amplified and their signal amplitudes may be

much smaller than those of the tuned waves traveling in the given direction. In order
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to study the significance of such waves traveling in the reverse direction, the following

numerical experimentation is made.

Suppose that we want to inspect the negative direction of the transducer using

the same set of data acquired by the same procedure. This mission can be achieved

by entering the negative time delay given by Eq. (4.13). What is of our interest here

is to construct another synthetic wave emitted in the positive direction and received

by the transducer using the same receiving sequence set for the wave returning from

the negative direction, i.e., we set the negative time delay

AT'= -AT = d (4.14)
cp

A signal constructed in this fashion appears as additional ghost peaks interfering

with the PPE signal, if there exists a discontinuity in the direction opposite to the

inspection direction. A comparison of the two waveforms with positive and negative

delays may provide us with a clue as to how much energy travels in the reverse

direction.

Figure 4.8 shows the waveforms, demonstrating the advantage of the SPT method

over the other array techniques. Note that there is a slight time shift of the peaks

between the two sets of signals. This is mainly because the starting element of the

two configurations are different. That is, element #1 initiates the wave propagating

in the forward direction, and likewise, element #16 initiates the wave in the opposite

direction. We can observe from these waveforms that their signal amplitudes are

generally smaller than those shown in Fig. 4.7. The cancellation effect for some wave

modes (S 2 and A1 ) is quite dramatic but the effect for the other modes is not entirely

satisfactory.

Discussion

From these experimental results, we may make the following conclusions:

* The best wave mode for inspecting a 2 mm thick aluminum plate at 2.25 MHz

is perhaps S2. This conclusion is based on the observations that the amplitude
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of the S2 wave propagating in the desired direction is significantly boosted

while the one in the negative direction is virtually canceled out, and that the

predicted group delay for this mode exactly matches that of the main peak in

the waveform. From the same point of view, the A1 mode is a good choice but

we have to first understand the error in the arrival time in the forward direction.

" The S1 mode has good forward propagation characteristics, but in the reverse

direction, it produces relatively high ghost signal amplitudes. The use of this

mode may also be a good choice, but we should be aware of the potential

existence of ghost signals if there is a reflection from the opposite side of the

transducer.

" It is not recommended to use So or AO modes, since the group velocities of these

waves are close to that of surface wave velocity, resulting in close signal arrival

times. These modes also produce considerably higher ghost signals.

These conclusions may be too hasty since these observations are valid only under

this particular experimental condition and may not be generalized. It is certainly

desirable to establish a general guideline for choosing frequency and wave mode, but

for this, a more rigorous study is necessary. Nevertheless, suggestions for specific

conditions can be made by a similar experimental procedure described in this inves-

tigation.

4.6 Conclusions

The SPT method allows us to enhance the tuning capability while adding more flex-

ibility without sacrificing the advantages of angle wedge or comb transducer tuning

techniques. Its validity and robustness have been demonstrated by the experimental

results. Despite the fact that the noise introduced in SPT is higher than that in

the phased array tuning approach, SPT is a preferred approach to implement the

dynamic phase tuning concept. The benefits of SPT technique can be summarized

as follows:
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1. Given the plate thickness and transducer frequency, the array can tune virtually

any Lamb wave mode.

2. The technique requires only one coupling interface between the transducer and

the target material. This results in reduced dead zone and enhanced SNR.

3. Unlike the comb transducer technique, SPT technique can produce strong sig-

nals favoring a particular direction. Thus, we may inspect complex structures

with minimized interference introduced by the reflections from the unwanted

direction.

4. It is possible to tune different wave modes dynamically without mechanically

aligning or relocating the transducer. Measurement is made only once and

the dynamic tuning is performed numerically either by real-time or off-line pro-

cesses. This may allow us to implement a fully automated inspection procedure,

which may reduce the inspection times.

5. The SPT technique is capable of accurate control and recording of signals from

individual elements. Isolated electronics allows for synthesized reconstruction

of tuned signals with very high spatial resolution.

6. In the SPT scheme, the time delay profile can be set with high precision. It is

only limited by the maximum sampling rate of the recording device. A delay

shift and summing algorithm can be used in real-time without storing individual

waveforms. This can be achieved using Eq. (4.9).

7. The implementation of the SPT scheme may be cost-effective since existing

equipment setup for similar tests may be easily modified by adding a multi-

plexer.

Another noticeable point is that the tuning efficiency is different for different

modes. In other words, some wave modes are tuned quite well while the others are

not. Understanding this behavior is very important for selecting the modes. This
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requires an analysis of transient Lamb waves under various loading conditions, which

will be explored in Chapter 5.

Finally, it should be addressed that the time-domain processing technique de-

scribed in this work is currently limited to narrow-band signals. Only one frequency

is investigated at a time to be least disturbed from the dispersion effect. The entire

dispersion can be studied by sweeping the frequency over the range of interest.
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Chapter 5

Transient Waves in Elastic Plates

5.1 Introduction

It was shown in Chapter 4 that Lamb wave modes can be effectively tuned using the

synthetic phase tuning (SPT) method. It is desired to select wave modes that have

excellent tuning capability for achieving high SNR. However, we also notice that dif-

ferent wave modes demonstrated different tuning capabilities. In other words, some

modes were tuned well while some were not. In essence, this necessitates the analysis

of transient waves for a given source of excitation, which will help us understand

the reason why one mode has higher amplitude than another. Since this is critical

for the applications of Lamb waves, much efforts have been made to analyze tran-

sient Lamb waves in elastic plates. Currently there are two mainstream analytical

approaches used widely in this regard, including the integral transform method, the

normal mode expansion method or the equivalent eigenfunction expansion method.

Besides, numerical methods such as the finite element method are also available.

In the earlier theoretical studies, the problem was generally resolved as a func-

tion of input force using the integral transform technique. For the integral transform

method, the solutions are obtained by applying the Laplace transform in time and the

exponential Fourier or Hankel transform in space. The inverse transformation inte-

grals are carried out by the evaluation of residues in conjunction with the methods of

stationary phase approximation or steepest-descent approximation. Viktorov [13] in-
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vestigated the problem of Lamb wave generation under a single frequency (harmonic)

excitation by an angle wedge transducer, where only the 1-D Fourier transform was

applied. There are many other works on the transient wave propagation in elastic

waveguides using the integral transform method [23,32,65-67].

The alternative analytical approach - normal mode expansion or eigen function

expansion method was extensively discussed by Auld [31] and Kino [68], and Ering

and $ububi [69]. The principle is to express the perturbed field as the sum of normal

modes obtained in a traction free waveguide. The expansion amplitude of each mode

is determined via the average power flow using the complex reciprocity relation and

orthogonality of eigenmodes. Ditri and Rose [70] examined the excitation of guided

wave modes by finite sources using the normal mode expansion method. The dis-

placement response of the generated modes to a transient loading is the integral of

the displacement response to a harmonic excitation over the frequency range. The

amplitudes of the generated modes were expressed as the product of an "excitation

function" and an "excitability function". With the normal mode expansion method,

Jia [71] did modal analysis of Lamb wave generation in elastic plates by liquid wedge

transducers, taking into account the effects of wave reflection and radiation. In their

work, Ndfiez et al [72] used the normal mode expansion method to derive a tenso-

rial transfer and Green functions for Lamb wave generation. The tensorial transfer

function determined the impulse response (temporal and spatial) for symmetric and

antisymmetric Lamb wave displacements. Li and Berthelot [73] formulated a normal

mode expansion solution for transient excitation of circumferential waves in a thick

annulus.

Besides the two above analytical methods, finite element method has been applied

to transient Lamb waves. Al-Nasser et al [74] employed a combined finite element and

normal mode expansion method to investigate the interaction of Lamb waves with

defects in an elastic plate. Alleyne and Cawley [16-18] used finite element method

to predict the propagation of Lamb waves in elastic plates with and without defects.

Moser et al [75] studied Lamb wave propagation in an elastic plate and annular ring

using the finite element method. To identify and measure the amplitudes of individual
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Lamb wave modes, Alleyne and Cawley [16-18] also applied two-dimensional Fourier

transform (2-D FT) to the predicted waves.

Among the analytical and experimental tools available, the 2-D FT method is of

particular interest to us since it can used to measure the amplitudes and velocities

of Lamb waves. The 2-D FT approach is based on the spectral analysis of Lamb

wave signals in the frequency-wavenumber domain. In this method, signals measured

at many sequential points along the wave propagation direction are processed in

two phases. Individual signals are first transformed from the time domain to the

frequency domain, and then the transformed set of signals are transformed again

from the space domain to the wavenumber domain. The net result of this operation

is a set of dispersion curves presented in the frequency-wavenumber domain, providing

both the amplitude and phase velocity information of the Lamb wave modes.

In contrast to the treatment of experimental Lamb wave signals, however, theoreti-

cal treatments of transient Lamb waves using the 2-D FT are rarely found, according

to our knowledge. A possible reason to this might be that the integral transform

method and normal mode (eigenfunction) expansion method are dominant and do

provide the solution of displacements for Lamb waves in an elastic plate subject to

external loading.

This chapter is divided into two parts. In the first part, the 2-D FT will be used

to analyze the transient Lamb waves. Instead of finding the displacements of individ-

ual modes and summing them, we directly obtain the 2-D FT of the displacements

expressed in the frequency-wavenumber domain. This analysis is extended to derive

the displacements induced by an arbitrary transient loading. The overall and modal

excitation efficiencies are computed and the results are compared with those obtained

by other methods. In the second part, the results from our analytical method will be

compared with those from the finite element method.
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5.2 Transient Response to an External Loading

5.2.1 Problem Statement

Consider an isotropic plate of thickness 2h loaded by an arbitrary traction f(x, t).

The problem geometry along with the coordinate system is shown in Fig. 5.1, in which

the stress boundary conditions are prescribed as

0-2 (X, t) =
f (X, t)

0

o0z(x, t) = 0

at z +h

at z =-h

at z Eh,

Assuming the state of plane strain, the equations of motion can be expressed in terms

of displacements as:

a2U 2UZ(A +(u) + ) - +
' a2 Xaz

(A±,U) + z 2

Ox 2 + 0z 2

( 2U + 2U)
+ (a822 + a 2 )

where A and p are Lame constants, and p is the mass density.

Zi

fly
f(x,t)

2h >
y x

Figure 5.1: Problem geometry.
arbitrary traction f(x, t) on the

An isotropic plate of thickness 2h is loaded by an
top surface (z = h).
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Our objective is to obtain the 2-D FT of the displacements u,(z, X, t) induced by

the loading f(x, t), which is defined as

un(z, k, w) =j+J o
Un(z, x, t)e-3(kx-wt)dxdt ,

where k and w are the wavenumber and angular frequency. The subscript n denotes

the axis, i.e., n = x (in-plane) or n = z (out-of-plane). Correspondingly, the inverse

FT is defined as

un(z, x, t) = 7 2 jj ft,(z, k, w)ei(kx-wt)dkdw ,

The solution in (z, k, w) can be obtained simply by substituting the displacements

Un(z, X, t) in the form of inverse 2-D Fourier transform into the equations of motion

and satisfying the boundary conditions. This procedure is described as follows.

5.2.2 Two-Dimensional Fourier Transform

The derivatives of u (z, x, t)

are obtained as

Oux
--

a 2
2

192 U

2

at2

1

472

47r2

47r2

472

and uz(z, x, t) with respect to the variables x, z and t

+o ++o W

_ 
0 

W
f+0 +oo

(jk)fi exp[j(kx - wt)]dkdw

(-k 2 )ix exp[j(kx - wt)]dkdw

(jk) f exp[j(kx - wt)]dkdw
dz

(-W2) fi exp[j(kx - wt)]dkdw ,

(5.6)

(5.7)

(5.8)

(5.9)
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and

-- - 1++00 W/zexp[j(kx - wt)]dkdw
oz 47r2 _ C O dz

2 uz

9z 2

02u zzax

at2

+ooj47r f _CO

47 -~o 00

1 42f+Oo 0

47r2 _- oO0

[+00 d 2it

dz2 exp[j(kx - t)]dkdw

(+00

-00

dii
(jk) exp[j(kx - wt)]dkdw

(-W 2 )fl exp[j(kx - wt)]dkdw.

(5.10)

(5.11)

(5.12)

(5.13)

By substituting these into the governing equations of motion or Eqs. (5.3), we

would have the ordinary differential equations:

pdz2 + [(A + p) (jk)] dfz + [pw 2 - k2( A + 2pt)]i = 0
dz

(5.14)

(5.15)(A + 2p) d2z + [(A + p)(jk)] dft + [pw 2 - k2P]fz = 0.
dz2 dz

Solving, the general solutions of f, (z, k, w) can be written in the form:

fi = {jAsk cosh (az) - D,/ cosh(Oz)} + {jBak sinh (az) - Ca3 sinh(Oz)}

fz ={Aa sinh(az) + jDok sinh(#z)} + {Baa cosh(az) + jCk cosh(z)} ,

(5.16)

(5.17)

where the parameters a and 3 are defined as

(5.18)2'CT

and CL and cT are the longitudinal and transverse wave velocities, respectively. As, Ds,

Ba and Ca are the constants to be determined from the stress boundary conditions.

Then the displacements in terms of these constants using Eq. (5.5).

Since the stresses re related to the displacements by virtue of the constitutive law:

G-zz = (A + 2P) z
Sz + Aaxax

c I( z
ax
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the stresses can be expressed in terms of the constants As, Ds, Ba and C, i.e.,

1z z = 4 2 f + 0

cT 47r -0 [(A + 2/pL) a 2 - A(k2)] [A, cosh(az) + Ba sinh(az) ] ej(kx-wt)dkdc +

+0 0

-oC [21pk#3 [jDs cosh(#z) + jCa sinh(#z)I ej(k--wt)dkdw ,

(5.20)

and

S2 2ka jA sinh(az) + jB, cosh(az) ej(kx-Lt)dkdw -O~x- 47 I 2kC, [Jf coh"~
-4 O -00 . .

J j k2 + /2 D sinh(#z) + Ca cosh(#z) e(kx-Lt)dkda
-+0 -+00

(5.21)

In the meantime, the stress boundary conditions can be expressed via the inverse

2-D FT as

47r2 -0 -"

0

f(k, w)ei(kx~wt)dkdw

zz(x, t) = 0

where f(k, w) is the 2-D FT of the traction f(x, t):

f(k, w) = /+ofj+O
f-+O -oO

at z +h

at z -h

at z = h

By satisfying the stress boundary conditions, the constants are determined as

(k2 + /2) sinh(0h) . f(k, w)

(k2 + /2) cosh(h) . f(k, w)
2pLa,

jka sinh(ah) . f(k, w)DS = -

Ca -
jka cosh(ah) - f(k, w)

pAa
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f (X, t)e-j(kx-wt)dxdt .



where

AS = (k2 + /2)2 cosh(oh) sinh(#h) - 4k 20# sinh(ah) cosh(#h) (5.27)

Aa= (k2 + 02)2 sinh(ah) cosh(#h) - 4k 2ca cosh(ah) sinh(3h) . (5.28)

Note that the conditions for A, = 0 and Aa= 0 represent the frequency equations

for symmetric and antisymmetric Rayleigh-Lamb wave modes, respectively [13].

Using Eqs. (5.16) and (5.17), it is straightforward to compute f2,(z, k, w) at an ar-

bitrary position z, which can be expressed as the sum of symmetric and antisymmetric

parts:

in(z, k, w) - (z, k, w) + ft (z, k, w) , (5.29)

where

s (k 2 + 2) cosh (az) sinh(Oh) - 2aO cosh(Oz) sinh(ah)
ix jk 2pA f(k, w) (5.30)

ka (k2 + /2) cosh(Oh) sinh(az) - 2aO cosh (ah) sinh ( fz)
ix jk - (k, w) (5.31)

2pa

and

ts a (k2+2) sinh(az) sinh(h) - 2k 2 sinh(ozh) sinh(#z) (k,
z( /3s (k, w) (5.32)

a(k' +2) cosh(az) cosh(#h) - 2k 2 cosh(ah) cosh(z) 1
z =2 h )- f(k w) . (5.33)

This is the analytical solution representing the transient Lamb waves generated by an

arbitrary traction. It can be observed that the 2-D FT u' (z, k, W) and ?4(z, k, W) are

the product of two independent terms: the first term is the material response which

is dependent only on the material properties, and the second term is the loading in

the transformed domain which is dependent only on the loading. For convenience, we

denote Ns(z, k, w) and Nna(z, k, w) as the material responses for the symmetric and
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antisymmetric wave modes, i.e.,

(5.34)

(5.35)

where

Nx(z, k, w) =jk

N(z, k, w) = jk

and

Nz (z, k, w) =e

Nz (z, k, w)

(k2 + /2) cosh(az) sinh(Oh) - 2a/ cosh(Oz) sinh(ah)

2pA,

(k2 + /2) cosh(/h) sinh(az) - 2aO cosh(ah) sinh(#z)

(k 2+ 2) sinh(az) sinh(#h) - 2k 2 sinh(ah) sinh(#z)

2pA, I
(k2 + /2) cosh(cez) cosh(h) - 2k 2 cosh (ah) cosh()z)1

[ 2pAa

Since it is of our particular interest to consider the case on the upper surface, i.e.,

z = h, the corresponding material responses are

(k2 + 02) cosh(ah) sinh(oh) -

I2pA[
(k2 + /2) sinh(ch) cosh(oh) -

I 2iiAa

2a# sinh(ah) cosh(/h)

2a# cosh (ah) sinh(/h)

and

N2s(hkw) =

N2a(h, k,w) =

+ /2) sinh(ah) sinh(#h)~

I
2pAs

(-k 2 + 2) cosh(ah) cosh(#h) 1
2pAa

In the following, we will discuss the material responses on the surface, i.e., Nx(h, k, w)

and Nz(h, k, w). For the same reason, the displacements on the surface un(h, x, t) will

be determined.
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(5.37)

(5.38)

(5.39)

Nx'(h,kw) = jk

Nx (h,k,) = jk

(5.40)

(5.41)

(5.42)

(5.43)

fis (z, k, w) = N'(z, k, w) - (k, w)

n (z , kI w) = Nna (z, kI w) -f(kI w) ,

.



5.2.3 Surface Displacements

The surface displacements can be obtained through the inverse FT of fl, (h, k, w). In

a similar way, the displacements are considered as the sum of the symmetric and

antisymmetric components:

Un(h, x, t) - u (h, x, t) + u' (h, x, t) , (5.44)

where

us(h, x, t) = N (h, k, w) f(k, w) -ej(kx-wt)dkdu, (5.45)
472 _00 0

ua (h, x, t) Na (h, k, w) f(k, w)- ei(kx-wt)dkdw. (5.46)
47 2 _00 _c

Since the functions N (h, k, w) and N (h, k, w) contain an infinitely large number

of poles corresponding to the roots of the Rayleigh-Lamb dispersion equations, it is

convenient to use the residue theorem for evaluating the integrals over the wavenum-

ber k. The integral over the wavenumber k can be evaluated by integrating in the

complex k-plane along the contour shown in Fig. 5.2. The contour contains the real

k-axis and a semi-circle on the upper half of the complex k-plane. The contributions

to the perturbed displacement fields come from all the residues of the integrand within

the contour. For a given frequency, there are finite number of real poles and an infi-

nite number of complex poles with nonzero imaginary parts within the contour for the

given integrand. Since the superposition of two modes with complex wavenumbers,

ft(h, k, w) + f(h, k*, w), forms a standing wave without carrying any energy from the

source, the only modes propagating in the far field are those with real wavenumbers.

Solving, both the in-plane and out-of-plane surface displacements are obtained as

1 f~o
u (h, x, t) = 2 f H (h, w) - f(k, w) ej(kx-wt)dw (5.47)

1 2 _0o

ka
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Imk

k, k2 k3

Rek

Figure 5.2: The contour of integration in the complex k-plane with poles in the upper
half plane.

where H3(h, w) and H3(h, w) are the material responses of the individual modes,

expressed as

-j(k - /34) cosh(ah) sinh(3h) (549)
n. A ,

-j (k- 4) sinh(ah) cosh(#h)

-ja(k2 _ 32) sinh(ah) sinh(#h)

-jce(k 2 _ /2) cosh(ah) cosh(#h)

4PaA

(5.50)

(5.51)

(5.52)

113

Hx(h,w)

Hx(h,w) =

Hz(h,w)

Hza(h,w)



Here A' and A' represent the derivatives of A, and A, with respect to the wavenum-

ber k:

A' =8k(k2 + 02) cosh (ah) sinh(0h) - 8kac sinh(ah) cosh(Oh) -

4hk# 3 cosh(ah) cosh(#h) - 4hk3a sinh(ceh) sinh(#h) +

hk(k 2 + 02)2 sinh(ah) sinh(oh) hk(k 2 + 02)2 cosh(ah) cosh(#h) _ (5.53)
a /3

4k 30 sinh(ah) cosh(#h) 4k 3a sinh(ah) cosh(Oh)

and

' =8k(k2 + #2) sinh(ah) cosh(Oh) - 8koz/ cosh(ah) sinh(Oh) -

4hk 30 sinh(ah) sinh(3h) - 4hk3 a cosh(ah) cosh(/h) +

hk(k 2 + /2)2 cosh(ah) cosh(h) hk(k 2 + /2)2 sinh(ah) sinh(#h) _ (5.54)

+ /3
4k 3/ cosh(ah) sinh(h) 4k 3a cosh(ozh) sinh(h)

Note that the summations are carried out for the real wavenumbers k. and ka to

represent the propagating waves in the far field.

5.2.4 Excitation Efficiencies

It is shown above that the Fourier responses of the surface displacements can be

generally expressed as the product of the material response and the loading term in

the transformed domain. Both N,(h, k, w) and H,(h, w) represent the responses of

the material to external loading. They are similar, in that they are independent of

the loading condition and both represent the efficiency for generating certain modes;

they are different, in that the former consists of the terms for all the modes, while

the latter is the factored term for individual modes. From this point of view, both

functions may be referred to as the excitation efficiency of Lamb wave modes.
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N(h, k, w) - Overall Excitation Efficiency

Figure 5.3 displays the out-of-plane excitation efficiency for a steel plate (CL = 5850

m/s, CT = 3240 m/s), in which the intensity or pixel values represent the magnitude

of the function N (h, k, w). By comparing this image plot with the dispersion curves

shown in Fig. 5.4, we can observe that the image shows the same dispersion charac-

teristics as those obtained from the Rayleigh-Lamb frequency equations. Moreover,

the excitation efficiency plot is more informative than the dispersion curves, since it

shows the distribution of energy for all the wave modes in addition to the dispersion

relations. For example, it can be observed that the A 0 mode (represented by the curve

at the lowest position) carries the highest energy among the existing modes. Likewise,

the in-plane excitation efficiency N(h, k, w) is shown in Fig. 5.5. Although this plot

exhibits the same dispersion characteristics, its energy distribution is different from

that of Figure 5.3.

U 12

0
Z

0 2 4 6 8
Normalized wavenumber, kh

10

Figure 5.3: Image visualization of material response N,
wave modes in a steel plate, where the longitudinal
transverse velocity cT = 3240 m/s.

(h, k, w) for out-of-plane Lamb
velocity CL = 5850 m/s and
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Figure 5.4: Dispersion curves of Lamb wave modes in a steel plate (CL = 5850 m/s
and CT= 3240 m/s), where the solid lines stand for symmetric case and dashed lines
for the antisymmetric case.

H,(h, w) - Modal Excitation Efficiency

The function Ha(h, w) is also a material response function dependent only on the

material properties. It is in fact an integral of the function N"(h, k, w) over the

wavenumber for certain frequency. Compared with N (h, k, w), it is a more direct

criterion to evaluate the excitation efficiency for each wave mode, which is equivalent

to the excitability function introduced by Ditri and Rose [70] or the tensorial transfer

function defined by Ndfiez et al [72]. To differentiate from Nn(h, k, w), this function

may be referred to as the modal excitation efficiency.

In Figs. 5.6 and 5.7, the out-of-plane modal excitation efficiencies of an aluminum

plate (CL = 6420 m/s, CT= 3040 m/s), H,(h, w) and H,(h, w), are plotted as a func-

tion of normalized frequency wh/CT for the 10 lowest symmetric and antisymmetric

modes. It can be observed from these plots that all the symmetric modes except the

So mode produce at least sharp drops at certain frequencies. For example, the Si
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Figure 5.5: Image visualization of material response N(h, k, w) for in-plane Lamb
wave modes in a steel plate, where the longitudinal velocity CL = 5850 m/s and
transverse velocity cT = 3240 m/s.

mode has a local minimum near the normalized frequency of 3.5 and the minimum for

the S2 mode occurs at that of 7.2. This means that the wave at those frequencies (at

the dips) are not easily generated. It is therefore recommended to avoid excitation

at those frequencies. The antisymmetric modes also show similar trends except that

both AO and A1 modes have no significant local minimum, as shown in Fig. 5.7. These

results are also in good agreement with the tensorial transfer function computed by

Ndifiez et al [72]. This confirms that the expressions for the displacements u"(z, x, t)

are essentially the same as those obtained using the normal mode expansion method.

5.2.5 Loading Conditions

We now consider the loading conditions. Although the derived expressions allow us

to consider arbitrary loads distributed over an area, we will consider only a point or

hairline source at this moment for the sake of simplicity. In other words, we assume
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Figure 5.6: The response function H'(h, w) for symmetric out-of-plane Lamb wave
modes in an aluminum plate, where the longitudinal wave velocity CL = 6420 m/s
and transverse wave velocity CT = 3040 m/s.
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the traction is of the form:

f (x, t) = 6( - xo)g(t) , (5.55)

so that the excitation response is written as a function of only the frequency W, i.e.,

f(k, w) = y(w)ikxo , (5.56)

where 6(x - xo) is a spatial Dirac delta function, x0 is the source location, and g(t) is

a transient excitation signal. For an impulse loading, g(t) = 6(t), the corresponding

Fourier integral is a constant, i.e., f(k, w) = 1, so that the 2-D FT of the displacements

are equal to the excitation efficiency as already shown in Figs. 5.3 and 5.5. This means

that N,(h, k, w) is the impulse response of the material system.

Without loss of generality, the effect of excitation signal characteristics can be

studied by considering a Gaussian spike pulse with the center angular frequency Wo

and bandwidth B (rad), which can be written as

g(t) ejW0te_B2t2/8 , (5.57)
27r

whose Fourier transform is obtained as (see Appendix A)

(w) = 2 e2(ww) 2 / 2 . (5.58)

Figures 5.10 and 5.11 show the theoretical 2-D FT of the out-of-plane displacements,

iLz(h, k, w), for a steel plate of thickness 2h = 2 mm. For comparison, two different

bandwidths B/27r = 2.0 MHz (wide band) and B/27r = 0.5 MHz (narrow band) are

used for the same center frequency wo/27r = 2.25 MHz. Figures 5.8 and 5.9 depict

the waveforms and amplitude spectrum for these two signals.

It is obviously observed that the energy distribution for the broadband excitation

signal is relatively uniform over the wide range of frequencies. On the other hand, the

distribution is limited in a narrow range of frequencies for the narrow-band excitation
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Figure 5.8: Gaussian spike pulse with the center frequency
bandwidth B/27r = 0.5 MHz (Narrow band case), where (a)

wo/27r = 2.25 MHz and
is g(t) and (b) is g(w).

signal. From this reason, the number of well-excited wave modes decreases as the

bandwidth is narrowed. Therefore, it can be envisioned that a bandwidth control of

excitation signals should be used effectively for exclusively selecting the wave modes

of interest.

5.3 Comparison with the FEM Results

It is interesting to compare the results obtained by various approaches. It was shown

that our expressions for the displacements are in fact equivalent to those obtained by

the normal mode expansion method. In this section, we compare our analytical results

with the numerical (FEM) results published by Alleyne and Cawley [16-18]. To do

this, it is necessary to review the parameters used in their numerical procedure. In the

FEM model, plane strain condition was assumed in the xz plane. A uniform square

mesh of four-noded quadrilateral elements was created with more than 10 nodes per
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Figure 5.9: Gaussian spike pulse with the center frequency wo/27r = 2.25 MHz and
bandwidth B/27r = 2.0 MHz (Broad band case), where (a) is g(t) and (b) is g(w).

wavelength. An explicit central difference scheme was employed to produce the time

marching solution, the time step being chosen to be less than the time taken for the

longitudinal wave to travel between two adjacent nodes. To control the bandwidth,

the input was assumed as a toneburst enclosed in a Hanning window.

5.3.1 Loading Conditions

Consider an m-cycle sinusoidal toneburst with the center frequency fo (or angular

frequency w0 = 27rfo). Accordingly the spatiotemporal traction f(x, t) can be repre-

sented as

f (x, t) = 6(x) exp(-jwot)wH(t) , (5.59)
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Figure 5.10: Image representing the 2-D FT of the out-of-plane surface displacements,
i.e., 'i2z(h, k, w) for a steel plate of thickness 2h = 2 mm (CL = 5, 850 m/s and cT =

3, 240 m/s) excited by a Gaussian spike pulse with the center frequency wo/2ir =
2.25 MHz and bandwidth B/2-r = 2.0 MHz (Broad band case).

where wH (t) is the Hanning window of duration to = m/fo (see Appendix B),

WH(t) = {1 - cos(27rt/to) H(t) - H(t - to)
2 (5.60)

= 1 - cos(wot/m) H(t) - H(t - m/fo)}.

Thus, the Fourier transform f(k, w) is obtained as (see Appendix B)

f(k, w) = 6(x)e-ikxdx wH(t)e-' 00'ejtdt
- W-00 (5.61)

__1

= -(A 1 + A2 + A3),2
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Figure 5.11: Image representing the 2-D FT of the out-of-plane surface displacements,
i.e., 'fi,(h, k, w) for a steel plate of thickness 2h = 2 mm (CL = 5, 850 m/s and cT =
3, 240 m/s) excited by a Gaussian spike pulse with the center frequency wo/27r =

2.25 MHz and bandwidth B/27r = 0.5 MHz (Narrow band case).

where

2 [in7m(w-wo)
A 2 I WO exp jirm(w - we), (5.62)

W - 0  I W

sin [7rm(w-wo-wo/m)
A2 = - exp jrrn(w - we - we/r) (5.63)

W -WO- w 00

si m(w--wo- o/m)
sin i j w + we - e/r) (56A3 = -- ww-er exp [ (w.64

After substituting Eq. (5.61) into the displacement equations, Eqs. (5.47) and

(5.48), for individual wave modes, we are able to predict the propagation behavior

of these modes. These theoretical waveforms are compared with those obtained from

the finite element simulation using the same excitation condition [16-18].
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5.3.2 Prediction of Waveforms for Individual Modes

The propagation behavior of So mode in a steel plate of thickness 2h = 3.0 mm

is predicted. The excitation signal is a 10-cycle sinusoidal toneburst enclosed in a

Hanning window, with center frequencies of fo = 0.450 MHz, and fo = 0.667 MHz.

Figure 5.12 shows the dispersion curves for steel. The longitudinal and transverse

wave velocities in steel are CL = 5960 m/s and cT = 3260 m/s, respectively.

Figure 5.13 shows the predicted waveforms of So mode at the distances of (a)

X = 0 mm, and (b) x = 500 mm, for fo = 0.450 MHz. One can observe that the

wave shape is well maintained over such a significant distance. This is because for

the corresponding frequency-thickness product, 2foh = 1.35 MHz-mm, the dispersion

curve of So mode is flat, as shown in Fig. 5.12. These waveforms are almost exactly

the same as the finite element simulation results shown in Figs. 5.14(a) and (b) [17].

Figure 5.15 illustrates the predicted waveforms at the distances of (a) x = 0 mm;

(b) x = 100 mm; (c) x = 200 mm, and (d) x = 500 mm for fo = 0.667 MHz.

Together with the corresponding FEM results shown in Figs. 5.16(a), (b), (c) and

201 I II III I
A1 I S1 S2 A21  A 3\ 3 A4 \ S4 S5 A5 1 A 6 \ S6 A 7 1S S8 A8 ' A9 \ S9

.. . .. . . . . . - - - - -- - - - - -- - - - - - I - ~ -- - - : -- - "--V16 -- -- - - - --
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Frequency xthickness, 2jh, (MHz.mm)

Figure 5.12: Phase velocity dispersion curves for steel (CL = 5960 m/s and CT =

3260 m/s).
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Figure 5.13: Theoretical prediction of the propagation of So mode along a steel plate
of thickness 2h = 3.0 mm at the distances of (a) x = 0 mm; and (b) x = 500 mm,
where the excitation signal is a 10-cycle sinusoidal toneburst enclosed in a Hanning
window and the center frequency is fo = 0.45 MHz.

(d) [17], one can observe the dispersion effect, i.e., the wave shape changes as the wave

propagates. This can be explained by the fact that for the corresponding frequency-

thickness product, 2foh = 2.0 MHz-mm, the dispersion curve of So mode does not

remain flat, as shown in Fig. 5.12.

5.3.3 2-D FFT of Single Mode Waveforms

As described earlier in this chapter, the 2-D FT, providing the amplitude information

in the frequency-wavenumber domain, can be used effectively to identify wave modes

or to construct dispersion curves. For the efficiency of computation, the 2-D FT is

represented by the two-dimensional fast Fourier transform (2-D FFT). In the follow-

ing, we will compare our results again with the FEM results. The excitation signal

is a 5-cycle sinusoidal toneburst enclosed in a Hanning window, with fo = 1.0 MHz.

Figure 5.17(a) shows the predicted waveform of So mode at a distance of x =

100 mm for a steel plate of thickness 2h = 0.5 mm. Figure 5.17 (b) shows the 2-D FFT

of the 64 sequential waveforms collected between x = 100 mm and x = 163 mm at a
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Figure 5.14: Finite element prediction of the propagation of So mode along a steel
plate of thickness 2h = 3.0 mm at the distances of (a) x = 0 mm; and (b) x = 500 mm,
where the excitation signal is a 10-cycle sinusoidal toneburst enclosed in a Hanning
window and the center frequency is fo = 0.45 MHz [17].

spatial sampling interval of 1.0 mm. The results are represented in the form of a 3-D

plot of amplitude as a function of frequency and wavenumber. For all frequencies, the

amplitude is significant only at one single wavenumber, indicating that only one mode

(So) is present in this frequency range. Also note the amplitude reaches its maximum

at the center frequency of the toneburst signal, fa = 1.0 MHz. For comparison, the

corresponding FEM results are shown in Figs. 5.18(a) and (b) [16].

Similarly, the results for AO mode in a steel plate of thickness 2h = 3.0 mm are

shown in Figs. 5.19 and 5.20 [16], for a distance of x = 50 mm. For the predictions,

waveforms are collected between x = 30 mm and x = 67.8 mm at an interval of

Ax = 0.6 mm.

The results for A1 mode in a steel plate of thickness 2h = 3.0 mm are shown in

Figs. 5.21 and 5.22, for the distances of x = 50 mm. Note that the wave shape of

this mode is quite different from that of AO mode as shown in Fig. 5.19(a), although

the excitation conditions are the same for both modes. The 2-D FFT results shown
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Figure 5.15: Theoretical prediction of the propagation of So mode along a steel plate

of thickness 2h = 3.0 mm at the distances of (a) x = 0 mm; (b) x = 100 mm; (c)
x = 200 mm and (d) x = 500 mm, where the excitation signal is a 10-cycle sinusoidal

toneburst enclosed in a Hanning window and the center frequency is fo = 0.667 MHz.

in Fig. 5.21 are obtained by processing the 64 sequential waveforms collected between

x = 30 mm and x = 67.8 mm at an interval of Ax = 0.6 mm.

5.4 Conclusions

In this chapter, the dispersion of Lamb waves in an elastic plate excited by an arbi-

trary traction force was analyzed by seeking the integral transform solutions of the

surface displacements. Since the solution turns out to be the product of the excitation

efficiency and loading, we could conveniently to study the influences of both material

properties and the excitation function in the frequency-wavenumber domain, which

provides the information not available in the time-space domain. The displacements

are obtained by carrying out the inverse Fourier transforms.
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(c) x = 200 mm and (d) x = 500 mm, where the excitation signal is a 10-cycle
sinusoidal toneburst enclosed in a Hanning window and the center frequency is fo=
0.667 MHz [17].

Our approach is in fact virtually identical to the integral transform method, except

that we consider information in both the frequency-wavenumber and spatiotemporal

domains. Meanwhile, it is shown that the solutions for the displacements are essen-

tially the same as those obtained using the normal mode expansion method. Finally,

the analytical results of our method are in excellent agreement with the numerical

results from the finite element method studies [16-18].

Our method is advantageous compared with the conventional integral transform

and the normal mode expansion methods. In these two methods, the displacement

responses of individual wave mode are computed independently in the spatiotemporal

domain, from which the total response is obtained by summing the contributions made

by all the modes. That procedure is tedious and sometimes unnecessary, especially if

we are only interested in selecting the modes of a strong displacement response.
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Figure 5.17: (a) Predicted waveform of So mode on the surface of a steel plate of
thickness 2h = 0.5 mm at the distance of x = 100 mm using the 2-D FT method. (b)
Normalized 3-D plot of the 2-D FFT results of the case in (a), showing the propagating
So mode.
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Figure 5.18: (a) Predicted waveform of So mode on the surface of
thickness 2h = 0.5 mm at the distance of x = 100 mm using FEM.
3-D plot of the 2-D FFT results of the case in (a), showing the
mode [16].
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Figure 5.19: (a) Predicted waveform of Ao mode on the surface of a steel plate of
thickness 2h = 3.0 mm at the distance x = 50 mm using the 2-D FT method. (b)
Normalized 3-D plot of the 2-D FFT results of the case in (a), showing the propagating
AO mode.
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Figure 5.20: (a) Predicted waveform of AO mode on the surface of a steel plate of
thickness 2h = 3.0 mm at the distance of x = 50 mm using FEM. (b) Normalized 3-D
plot of the 2-D FFT results of the case in (a), showing the propagating AO mode [16].
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Figure 5.21: (a) Predicted waveform of A1 mode on the surface of a steel plate of
thickness 2h = 3.0 mm at the distance of x = 50 mm using the 2-D FT method. (b)
Normalized 3-D plot of the 2-D FFT results of the case in (a), showing the propagating
A1 mode.
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Figure 5.22: (a) Predicted waveform of A1 mode on the surface of a steel plate of
thickness 2h = 3.0 mm at the distance of x = 50 mm using FEM. (b) Normalized 3-D
plot of the 2-D FFT results of the case in (a), showing the propagating A1 mode [16].
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Chapter 6

Analysis of Angle Wedge

Transducer Tuning

6.1 Introduction

In Chapter 5, an analytical model was developed to study the behavior of transient

Lamb waves in an elastic plate subject to an arbitrary loading. This model, allow-

ing for the study of generation efficiencies of waves modes due to both the internal

(material properties) and external factors (loadings), is extended in this chapter to

investigate quantitatively the angle wedge transducer tuning of Lamb waves.

These two tuning techniques have been studied experimentally Chapters 3 and

4, respectively. As one representative and important broadband signal approach

of introducing Lamb waves, the laser generation method will also be studied using

the analytical model. These investigations may lead us to find an optimum tuning

scenario for Lamb waves, which is also one of the major objectives of this research. On

the other hand, this provides us with an opportunity to further verify our analytical

model.

In this chapter, the angle wedge transducer tuning is studied from a quantitative

point of view. Compared with other tuning techniques, this technique is economical

and simple to operate though its disadvantages are obvious. For example, not all the

modes are tunable, multiple interfaces exist in the wedge assembly, and the results
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are sensitive to the angle of incidence, etc. Despite these limitations, the angle wedge

transducer tuning technique is widely used.

Some work has been done to study the mechanism of this tuning technique. For

example, using the one-dimensional Fourier transform, Viktorov [13] developed a

model to predict the displacements of Lamb wave modes under the assumption of

monochromatic excitation, which is not pragmatic. Besides, Ditri and Rose [70] uti-

lized the normal mode expansion method to study this excitation problem where

bandwidth effect was incorporated. However, their study did not provide predicted

or experimental waveforms. With the normal mode expansion method, Jia [71] per-

formed modal analysis of Lamb wave generation in elastic plates by liquid wedge

transducers, taking into account the effects of wave reflection and radiation. Only

two fundamental modes - A0 and So were chosen to excite in the study, and their

theoretical and experimental peak-to-peak amplitudes were illustrated with respect to

the frequency-thickness product. However, the issue regarding the tuning efficiencies

of wave modes was not discussed.

In summary, these studies did not provide the guidance for tuning effect underlying

the angle wedge transducer tuning method. Our knowledge of this tuning technique

is more or less limited to Snell's law governing the angle of incidence. This is certainly

not enough to well apply this technique comfortably, especially in view of the fact

that discrepancy in the tuning efficiencies exists for different wave modes.

To best illustrate the tuning effect of angle wedge transducers, we consider a case

without tuning, i.e., the generation of Lamb waves using normal contact transducers.

The analytical model will be extended by taking into account the excitation condi-

tions for both transducers. Then effectiveness of tuning will be studied theoretically

and experimentally by showing the 2-D FT of displacements and the waveforms of

individual modes.
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6.2 Excitation Conditions

The solutions to the transient Lamb waves due to an arbitrary loading depend on

both the excitation efficiency, N(h, k, w), and the Fourier transform of the loading,

f (k, w). Since N(h, k, w) is already known for a given material, we only need to enter

the expressions for the loading f(x, t) in order to obtain general.

For convenience, we may express the external loading, f(x, t), as the product of a

space excitation function, p(x), and a time excitation function, g(t), i.e.,

f (x, t) = p(s)g(t) . (6.1)

Since the functions p(x) and g(t) are independent, the Fourier transform of the load-

ing, f(k, w), is the product of the spatial Fourier transform, P(k), and the temporal

Fourier transform, .(w), i.e.,

f(k, w) = j p(x)e-jkxdx j g(t)eiwtdt = P(k) (w) . (6.2)

We will now consider various excitation functions to represent the loading conditions.

6.2.1 Normal Contact Transducers

As shown in Fig. 6.1, a normal contact transducer of size a is assumed to produce

harmonic pressure on the upper surface of an elastic plate of thickness 2h. To control

the frequency range of excitation, a sinusoidal toneburst is chosen as the excitation

signal. For an m-cycle toneburst of the center frequency fo, the time excitation

function, g(t), is expressed as

g(t) = [H(t) - H(t - to)] exp[-jwot] , (6.3)

where to is the duration of the signal (to = m/fo), wo is the center angular frequency

wo = 27rfo, and H(t) is the Heaviside unit step function. It is straightforward to
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Figure 6.1:
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Generation of Lamb waves in a plate of thickness 2h using a normal
contact transducer of size a.

express the temporal Fourier transform as

9^G) = f_0[H(t) - H(t - to)]e-iWOtejwtdt
sin[(w - wo)m/2fo] ej(w-o)m/ 2fo

(w-(wo).2

(6.4)

For a rectangular transducer, it is reasonable to assume that the pressure distri-

bution is uniform. The space excitation function p(x) is then assumed to be

p(x) = [H(x + a/2) - H(x - a/2)] , (6.5)

which yields the spatial Fourier transform as

(k) = f [H(x + a/2) - H(x - a/2)]e-ikxdx - sin(ka/2)
f-+Ock/2

(6.6)

Consequently, the Fourier transform of the traction f(x, t) is obtained as

a sin(ka/2) sin[(w - wo)m/2fo] ej(-wo)m/2fo (6.7)
fw)-fo ka/2 (w - wo)/2fo

6.2.2 Angle Wedge Transducers

In the case of angle wedge excitation, the transducer is assumed to produce a time-

harmonic plane wave that travels through the wedge and strikes the plate at an

incident angle 0., as shown in Fig. 6.2. For the sake of simplicity, we ignore the

136



Figure 6.2: Generation of Lamb waves in a plate of thickness 2h using an angle wedge
transducer of size a, where the angle of incidence is 0, and the average propagation
distance in the wedge is h,.

effects of beam spreading and shifting upon striking the plate, as done by Viktorov

[13] and Ditri and Rose [70]. Also assumed is that the wedge is coupled to the plate

by a thin layer of non-viscous liquid so that only the normal tractions are transferred

and the shear tractions vanish.

We still denote c, as longitudinal wave velocity in the wedge and h, the average

propagation distance in the wedge. Assuming the excitation signal is an m-cycle

sinusoidal toneburst of the center frequency fo, the time excitation function g(t) is

expressed as

g(t) = [H(t - tw) - H(t - tw - to)] exp[-jwot] , (6.8)

where te, is the average time of the longitudinal wave in the wedge (tw = hw/cw), and

to is the duration of the toneburst signal. The temporal Fourier transform can be

written as

2 . (- wo)ml h m9s(W) =sin exp j(+-w 0 ) M- -(W - Wo) L 2fo . CW 2fojj

Here it is still assumed that the transducer is a source producing uniformly dis-

tributed traction across the transducer-wedge interface. Then the space excitation
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function p(x) is

p(x) = |R(Ow)|[H(x + a/2 cosO,,) - H(x - a/2 cos9,,)] exp[jkw sin 0,x] , (6.10)

where the factor R(Ow) is equal to the amplitude ratio of the normal stress at the

wedge-plate interface to that at the transducer-wedge interface. Further discussion of

R(O.) was done by Ditri and Rose [70] and it will not be discussed in this thesis. The

exponential term in Eq. (6.10) accounts for the propagation in the positive x direction

in the wedge, where kw is the wavenumber in the wedge. The spatial Fourier transform

can be obtained as

p((k) = sin (k-kwsinOw)a(611)
(k - k, sin 0,) 2 cos0, (.

and the Fourier transform of the traction is written as

4|1R(Ow)| I k - kw sin Oja~ P( -WO)mf (k,wo) =R( )sin [kIsiO) 1 sin [x;o~1>
(k - k sinO)(w -wo) [ 2cosO _ 2fo - (6.12)

exp j(W - WO) hw+ .I ( cW 2 fo

From Eq. (6.12), one can observe that there are two terms representing the con-

tribution by the angle of incidence Ow. Since the first term R(Ow) is not discussed in

this thesis, we may take a look at the second term, which is denoted as

2sin (k - kw sin O) a]
1 2 cos Ow

13 (k - kw sin Ow) (.3

We can observe that a is identical to the result obtained by Viktorov [13] and Ditri

and Rose [70]. Also observed is that Snell's law is that rigorously applicable, which

assumes only a single wavenumber (or frequency). This indicates that when Snell's

law is not obeyed, wave modes can still be generated, albeit less efficiently. However,

when the wavenumber k approaches kw sin Ow, the term a approaches its maximum
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value a/ cos 0,, which could result in tuning effect. These observations are the same

as those made by Ditri and Rose [70].

6.3 Theoretical Analysis

The expressions of the external loading in the Fourier domain, Eqs. (6.7) and (6.12),

enable us to obtain the surface displacements as well as their transformation in the

frequency-wavenumber domain. Note that in practical situations, the frequency re-

sponses of the transducer system (including the transmitter and receiver) should be

also taken into account.

The excitation conditions used in the theoretical analysis are determined from

the experimental parameters for the purpose of comparison. Three 5-cycle sinusoidal

toneburst signals are used with the center frequencies of 0.48, 0.96 and 2.25 MHz,

respectively. The thickness of the aluminum plate under investigation (2h) is 2.0 mm,

the transducer width (a) is 12.7 mm, and the average propagation distance in the

wedge (he)is 35.0 mm. The distance x is set at 162 mm, measured from the center of

the beam at the wedge-plate interface. Note that there is an additional delay in the

wedge. Table 6.1 summarizes the respective conditions used in the normal contact

and angle wedge transducer generation of Lamb waves.

Table 6.1: Conditions used in the normal contact and angle wedge transducer gener-
ation of Lamb waves.
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Parameter Value

Plate material Aluminum
Longitudinal wavespeed, CL, (m/s) 6320
Transverse wavespeed, cT, (m/s) 3130
Center frequency of toneburst, fo, (MHz) 0.48, 0.96, 2.25
Number of cycles of toneburst, m 5
Plate thickness, 2h, (mm) 2.0
Transducer size, a, (mm) 12.7
Propagation distance in wedge, h,, (mm) 35.0
Longitudinal wavespeed in wedge, c,, (m/s) 2720
Propagation distance in plate, x, (mm) 162.0



For a given frequency, we may find the existing wave modes from the dispersion

curves as shown in Fig. 2.6. Table 6.2 tabulates the wave modes, and their phase

and group velocities corresponding to the three excitation frequencies. Also shown in

Table 6.2 are the required angles of incidence for tuning the respective modes.

Table 6.2: The phase and group velocities of individual wave modes in an aluminum
plate of thickness 2h = 2 mm for the excitation frequencies fo, as well as the required
angles of incidence to tune these modes.

Frequency Wave Phase velocity Group velocity Angle of Incidence
fo, (MHz) mode cp, (m/s) c9 , (m/s) 02, (deg)

0.48 5,356 5,176 30.5
_ .48 AO 2,311 3,142 N.A.

A1  9,776 3,075 16.2
0.96 So 4,880 3,399 33.9

Ao 2,669 3,142 N.A.

S2 9,846 3,568 16.0
S1  5,834 4,171 27.8

2.25 A 1  4,269 2,161 39.6
so 2,961 2,704 66.7
AO 2,861 2,980 71.9

The 2-D FTs and the corresponding waveforms of the untuned case (normal con-

tact) at fo = 0.48 MHz (woh/cT = 0.96) are shown in Figs. 6.3 and 6.4, respectively.

Note that the intensity of the image shown in Figs. 6.3(a) and (b) represents the

level of energy distribution. It can be observed that the AO mode carries much higher

energy than the So mode at about fo = 0.48 MHz . This means that the amplitude of

the AO mode is higher than that of the So mode, which is confirmed by the respective

waveforms shown in Fig. 6.4(a). From Table 6.2 we realize that the only mode that

can be tuned using an angle wedge transducer is the So mode. The AO mode can not

be tuned since its phase velocity (cp = 2311 m/s) is smaller than the longitudinal

wave velocity in the wedge (c, = 2720 m/s). Figure 6.3(b) shows the transformed

displacement fi(h, k, w) for the angle wedge transducer tuning. It is observed that the

relative energy level of the So mode is considerably enhanced compared with that of

the untuned case. However, it is still lower than that of the AO mode, meaning that
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Figure 6.3: Image visualization of 2-D FT ftz(h, k, w) of Lamb wave displacements
for the normal contact transducer and an angle wedge transducer generation with an
excitation toneburst signal of center frequency fo = 0.48 MHz: (a) untuned case, (b)
So mode tuning.

the AO mode is still a dominant mode. This is assured in Fig. 6.4(b), where the SO

mode has a much lower amplitude than that of the AO mode. This concludes that it

is not desirable to tune the So mode at this frequency. Although the AO mode can

not be tuned, the high amplitude ratio between the Ao and So mode allows the use

of AO mode at this frequency range.

Figures 6.5 and 6.6 illustrate the effect of tuning at the frequency fo = 0.96 MHz

(woh/cT = 1.93). Figure 6.5(a) shows the result for the untuned case. In addition

to the three modes (AO, So, A1 ) expected from the dispersion curve containing high
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Figure 6.4: Predicted waveforms of individual wave modes generated by a normal

contact transducer and an angle wedge transducer with an excitation toneburst signal

of center frequency fo = 0.48 MHz: (a) untuned case, (b) So mode tuning.

energy approximately at 0.96 MHz, there are additional two modes appearing in

the figure: Si and S 2 . This is because the excitation toneburst signal has certain

bandwidth so that the cutoff frequencies of these two modes are reached. Among

the three dominant modes, A0 can not be tuned by angle wedge transducers for the

same reason as that of the previous case. Figure 6.5(b) shows the 2-D FT of the So

tuned wave, in which it can be observed that the relative energy level of the So mode

is significantly enhanced and much higher than those remaining modes including A 0

and A 1 , indicating that the So mode is now well tuned. This is also confirmed in

Fig. 6.6(b) by the predicted waveforms. Shown in Figs. 6.5(c) and 6.6(c) are the

results for the A1 mode tuning. The energy of the A 1 mode is the highest but that

of So mode is significantly high as well.This indicates that the A 1 mode tuning is not

desirable.

With the increase of 2foh value, the number of wave modes increases. Shown in

Figs. 6.7, 6.8 and 6.9 are the results at the frequency fo = 2.25 MHz (woh/cT = 4.52).

One can observe that there are three additional modes (A 2 , A 3 , and S3 ) exist in

addition to the five expected modes (A0 , So, A 1, S1 and S2 ) at the given frequency.
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Figure 6.5: Predicted waveforms of individual mode generated by a normal contact
transducer and an angle wedge transducer with an excitation toneburst signal of the
center frequency fo = 0.96 MHz: (a) untuned case, (b) So mode tuning, and (c) A1

mode tuning.
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Figure 6.6: Predicted waveforms of individual modes for the normal contact trans-
ducer and angle wedge transducer generation of Lamb waves with an excitation toneb-
urst signal of center frequency fo = 0.96 MHz: (a) untuned case, (b) So mode tuning,
and (c) A1 mode tuning.
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Figure 6.7(a) show the 2-D FT result for the untuned case. The energy levels at

2.25 MHz are ranked in a descending order as S2, A1 , So and A0 . The remaining two

modes, S, and A2 , have much lower energy. The observations made are consistent

with those made from the waveforms of individual modes shown in Fig. 6.8(a).

Figures 6.7(b) and 6.8(b) show the results for the Si mode tuning. The selection

of this mode for tuning may not be desired since the level of energy is distributed

approximately equal for both S1 and A1 modes, resulting in two dominating modes

excited at the same time.

Shown in Figs. 6.7(c) and 6.8(c) are the results for the AO mode tuning, while

Figs. 6.7(d) and 6.9(a) are those for the So mode tuning. Since the phase velocities

of these two modes (2861 m/s and 2961 m/s) are very close, the required angles of

incidence for tuning are also very close. Consequently, tuning one of these modes also

boosts the other mode. The tuned waves arrive at a similar time. As a result, these

modes may not be desirable for tuning, either.

The results for the A1 mode tuning are shown in Fig. 6.7(e) and 6.9(b), from

which we can observe that the A1 mode has much higher energy than all the other

modes. This indicates that A1 can be used for tuning. Similarly, the tuning of S2

mode is excellent, as shown in in Figs. 6.7(f) and 6.9(c).

6.4 Experimental Investigation

The tuning effect of angle wedge transducers has been demonstrated in the above

analysis. In this section, we will validate the tuning effect experimentally using the

measured set of data.

6.4.1 Experimental Setup

Figure 6.10 illustrates the schematic diagram of the experimental setup used for the

generation and detection of Lamb waves in a plate using a normal contact transducer.

The distance x is measured from the center of the transmitter to the receiver. The

receiver is a 0.5 mm wide broadband PVDF transducer. The effect of averaging
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Figure 6.7: Image visualization of 2-D FT iiz(h, k, w) of displacements for the normal
contact transducer and angle wedge transducer generation of Lamb waves with an
excitation toneburst signal of center frequency fo = 2.25 MHz: (a) untuned case, (b)
Si mode tuned, (c) A0 mode tuning, (d) So mode tuning, (e) A1 mode tuning, and
(f) S2 mode tuning.
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Figure 6.8: Predicted waveforms of individual modes for the normal contact trans-
ducer and angle wedge transducer generation of Lamb waves with an excitation toneb-
urst signal of center frequency fo = 2.25 MHz: (a) untuned case, (b) Si mode tuning,
and (c) A 0 mode tuning.

147



AO

0A

-1H
0 50 100

Time, t, (ps)

AO

-1

So

0

-1

0 50 100
Time, t, (ps)

1-

AO

U 0

-1

1-

So

0

0 50 100
Time, t, (ps)

(a) So mode tuning

A1

S1

0 50 100
Time, t, (ps)

(b) A1 mode tuning

A,

S1

0 50 100
Time, t, (ps)

(c) S2 mode tuning

A1

S,

0 50 100
Time, t, (ps)

A
2

S2

0 50 100
Time, t, (ps)

A2

S2

0 50 100
Time, t, (ps)

A2

S2

0 50 100
Time, t, (ps)

Figure 6.9: Predicted waveforms of individual modes for the normal contact trans-
ducer and angle wedge transducer generation of Lamb waves with an excitation toneb-
urst signal of center frequency fo = 2.25 MHz: (a) So mode tuning, (b) A1 mode

tuning, and (c) S2 mode tuning.

148



- - - - - ~ -~ ~ - - --

Function Generator

Power Amplifier

Transmitte

Computer

Oscilloscope

Preamplifier

Receiver

1 Specimen

Figure 6.10: Experimental setup for the
contact transducer.

generation of Lamb waves using a normal

across the face of the sensor is minimized due to the small size, so that the receding

transducer can be approximated as a point receiver. The transmitter is excited using

a sinusoidal toneburst signal, generated by a function generator and amplified by

a power amplifier to produce Lamb waves in the plate. The received signal is pre-

amplified and transferred to the oscilloscope. Then , the signal is downloaded to a

computer through GPIB. The experimental conditions are the same as those used in

the theoretical condition as listed in Table 6.1.

For the angle wedge transducer tuning, we simply replace the normal contact

transducer with an angle wedge transducer, as shown in Fig. 6.11, where the distance

x is measured from the center of the beam at the wedge-plate interface to the receiver.

Note that both the travel time in the wedge and that in the plate should be take into

account to evaluate the group delay (or time of arrival).

6.4.2 Experimental Results

Since it is impossible to extract waveforms of single modes from the acquired wave-

forms, the comparisons are made with the predicted signal contributed by all the
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Figure 6.11: Experimental setup for the generation of Lamb waves using an angle
wedge transducer.

modes. Figures 6.12 through 6.15 show the predicted and measured waveforms for

various (and untuned) modes at the respective center frequencies of 0.48, 0.96, and

2.25 MHz.

In general, the predicted waveforms are in good agreement with the experimental

results. From these waveform data, we can make the following observations:

The waveforms received in the experiment come from the overall contributions of

the generated wave modes. They will be compared with the theoretical waveforms

which are obtained from the summation of those of individual modes. As in the

theoretical analysis, here we also give the comparison results in the order of the

excitation frequencies.

Figures 6.12 show the comparison of theoretical and experimental waveforms for

the excitation frequency of fo = 0.48 MHz, where Figs. 6.12(a) and (b) are the theo-

retical and experimental waveforms for the untuned case (normal contact generation),

Figs. 6.12(c) and (d) are the theoretical and experimental waveforms for So mode tun-

ing. As we can see, So and A0 modes are distinguishable in both cases since they have

quite different group velocities, as shown in Table 6.2. Also, the agreement between
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Figure 6.12: Theoretical and experimental waveforms for normal contact transducer
and angle wedge transducer generation of Lamb waves with an excitation toneburst
signal of frequency fo = 0.48 MHz: (a) untuned (theoretical), (b) untuned (mea-
sured), (c) So mode tuning (theoretical), and (d) So mode tuning (measured).

theoretical and experimental results for both untuned case and So mode tuning is

good. This confirms the theoretical observation that So mode can not be tuned well

using the angle wedge transducer in this case.

Shown in Figures 6.13 is the comparison of theoretical and experimental results

for the excitation frequency of fo = 0.96 MHz, where Figs. 6.13(a) and (b) are the

theoretical and experimental waveforms for the untuned case (normal beam gener-

ation), Figs. 6.13(c) and (d) are the theoretical and experimental waveforms for A1

mode tuning, and Figs. 6.13(e) and (f) are the theoretical and experimental wave-

forms for So mode tuning. As we can see, no single mode can be distinguished from

the overall waveforms for the untuned case, as shown in Fig. 6.13(a) and confirmed
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by Fig. 6.13(b). This is because the three modes (AO, So and A1 ) have close energy

distribution and group velocities, as mentioned above. For the case of A1 mode tun-

ing, the overall waveform is mainly composed of A1 and So modes, thus still no single

mode can be watched. In contrast, a single So mode can be identified in Fig. 6.13(e),

which is consistent with the previous observation in the previous theoretical analysis

that So mode is the dominant mode. Moreover, this is well confirmed by Fig. 6.13(f).

Hence So mode has excellent tuning efficiency except that the wave package is wide

in terms of resolution requirement for practical purpose.

Figures 6.14 and Figures 6.15 illustrate the comparison of theoretical and experi-

mental results for the excitation frequency of fo = 2.25 MHz, where Fig. 6.14(a) and

Fig. 6.15(a) are the theoretical and experimental waveforms for the untuned case,

Fig. 6.14(b) and Fig. 6.15(b) correspond to the case of S1 mode tuning, Fig. 6.14(c)

and Fig. 6.15(c) correspond to the case of AO mode tuning, Fig. 6.14(d) and Fig. 6.15(d)

correspond to the case of So mode tuning, Fig. 6.14(e) and Fig. 6.15(e) correspond

to the case of A1 mode tuning, and Fig. 6.14(f) and Fig. 6.15(f) correspond to the

case of S2 mode tuning. Referring back to Fig. 6.7(a), we can understand that the

overall waveform for the untuned case, as shown in Fig. 6.14(a), has many peaks

since several modes coexist. This indicates the necessity of mode tuning. As we have

already pointed out after looking at the 2-D FT of displacements or Figs. 6.7 that

A1 and S2 modes are tuned well while AO, So and Si modes are not. This prediction

is demonstrated by the waveforms as shown in Figs. 6.14. For the cases of A1 and

S2 mode tuning, a single peak corresponding to the mode of tuning appears in the

waveform, while for the cases of AO, So and Si mode tuning, no single peak corre-

sponding to the mode of tuning exists in the waveform. In addition, the observation

is confirmed by the experimental waveforms shown in Figs. 6.15. It is worth pointing

out that the agreement between the theoretical and experimental waveforms is quite

good though difference in similarity level is shown.
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6.5 Conclusions

The angle wedge transducer tuning method was investigated quantitatively in this

chapter, based on the theoretical model proposed in Chapter 5. The generation of

Lamb waves by normal contact transducers was also considered in order to highlight

the tuning effect of angle wedge transducers. Good agreement was observed between

the theoretical results and experimental results, for various excitation frequencies.

It was shown that the tuning effect can be achieved by the oblique incidence.

Although Snell's law is not rigorously applicable if the excitation signal has certain

bandwidth, the displacement amplitude of the wave mode reaches its maximum value

at the required incident angle. It was also shown that the tuning efficiencies of wave

modes can be effectively illustrated by the waveforms of individual modes and the

Fourier spectrum of displacements. The transient wave model proposed in Chapter 5

was validated.
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Figure 6.13: Theoretical and experimental waveforms for normal contact transducer
and angle wedge transducer generation of Lamb waves with an excitation toneburst
signal of frequency fo = 0.96 MHz: (a) untuned (theoretical), (b) untuned (mea-
sured), (c) A1 mode tuning (theoretical), (d) A1 mode tuning (measured), (e) So
mode tuning (theoretical), and (f) So mode tuning (measured).
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Figure 6.14: Theoretical waveforms for the normal contact transducer and angle
wedge transducer generation of Lamb waves with an excitation toneburst signal of
frequency fo = 2.25 MHz: (a) untuned case, (b) Si mode tuned, (c) Ao mode tuning,
(d) So mode tuning, (e) A1 mode tuning, and (f) S2 mode tuning.
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Figure 6.15: Experimental waveforms for the normal contact transducer and angle
wedge transducer generation of Lamb waves with an excitation toneburst signal of
frequency fo = 2.25 MHz: (a) untuned case, (b) S mode tuned, (c) Ao mode tuning,
(d) So mode tuning, (e) A1 mode tuning, and (f) S2 mode tuning.
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Chapter 7

Analysis of Synthetic Phase Tuning

7.1 Introduction

The concepts of phased array and synthetic phase tuning were introduced in Chap-

ters 3 and 4. Although the mechanism of tuning is understood and the feasibility

of approaches is verified experimentally, it is still necessary to study the tuning be-

havior for better understanding and finding of optimum tuning. In Chapter 6, we

have investigated the angle wedge transducer tuning mechanism, using the transient

analysis model developed in Chapter 5. In this chapter, we will extend the theory

to predict the behavior of phase tuning using an array, based on the single element

excitation model and the principle of superposition.

It should be pointed out that in Chapter 4 the signals were processed using the

pseudo pulse-echo (PPE) scheme, where a single array transducer was used both as

a transmitter and receiver to process the signal reflected off a discontinuity.

The reflection of the propagating waves at the discontinuity could involve complex

phenomenon such as energy loss and mode conversion. Although the signals are

tuned in the forward direction, the tuning effect can be disturbed due to the mode

conversion. Therefore, it is needed to tune the waves again in the backward direction.

This "full tuning" concept can be applied without any analytical tools. However,

the analysis of such problem requires rigorous models, which is beyond the scope of

this thesis. For simplicity, we will analyze the array tuning for the pseudo pitch-
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catch (PPC) operation, which eliminates the need to take into account the problems

associated with the reflection or mode conversion.

In operation, we consider two different scenarios: half-way tuning and full tuning.

In both cases, an array transducer is used to transmit phase tuned waves. In the

former, the transmitted signals are received by a single-element receiver; in the latter,

the signals are received and tuned by a secondary array transducer.

7.2 Theoretical Development

7.2.1 Single Element Excitation

Before analyzing the array-tuned scenarios, we will consider the condition where Lamb

waves are generated by a single element transducer and received by another single

element transducer located at a distance x, as shown in Fig. 7.1. For reference, we may

use indices m and n to denote the transmitting and receiving elements, respectively.

If the element size a is small, e.g., a < 1 mm, it is reasonable to assume the receiving

transducer as a point receiver. Otherwise, the size of the receiving element should be

taken into account in the analysis. We will treat the receiving element transducer as

a point receiver for simplicity.

The analysis is based on the transient wave model treated in Chapter 5, except

that we express the equations using the indices m and n. The key equations are the

displacements expressed in terms of the overall excitation efficiency:

Umn(h, x, t) = N(h, k, w) - f(k, w) . e(k--')dkd, (7.1)Umn(h x t =47r2 _ f o

and those expressed in terms of the modal excitation efficiency:

Umn(h, x, t) = 1 j S H(h, w) - f(k, w) . ej(kx~~*)dkdu (7.2)

where the summation is carried out for all the modes. Note that the displacements

umn(h, x, t) refer to the out-of-plane displacements. For simplicity, the superscripts
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s (symmetric) and a (antisymmetric) are omitted in Eqs. (7.1) and (7.2), and the

subscript mn represents the transmitter-receiver pair (m, n).

The expressions for the overall excitation efficiency N(h, k, w) and the modal exci-

tation efficiency H(h, w) can be readily found in Chapter 5. In this study, we consider

the same excitation condition as those used in Chapter 6, i.e., the time excitation

function of an mo-cycle toneburst with the center frequency fo, and the uniformly

distributed space excitation function over the element, represented by the function

f (X, t) = [H(x + a/2) - H(x - a/2)][H(t) - H(x - mo/fo)] exp[-jwot] , (7.3)

whose Fourier transform is the same as Eq. (6.7):

f (ki U) = a sin(ka/2) sin[(w - wo)mo/2fo] e(L-wO)mo/ 2fO

fo ka/2 (w - wo)/2fo
(7.4)

Recall that the displacement in the transformed domain is expressed in the form:

Umn(h, k, w) = N(h, k, w)f(k, w) . (7.5)

7.2.2 Half-way Tuning

Figure 7.2 schematically illustrates the first scenarios, in which Lamb waves are gen-

erated using an M-element linear array of element size a and inter-element spacing

d, and received by the n-th element of the receiving array. The distance between

S-n

z rv-.
2 hl

Figure 7.1: Generation of Lamb waves in
element of size a. The distance between
is x.

an elastic plate of thickness 2h using a single

the receiving and the transmitting elements
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1 2 3 m M n

2h zt
y x

Figure 7.2: Tuning of Lamb waves in an elastic plate of thickness 2h using an M-
element linear phased array (half-way tuning in PPC operation), where the element
size is a, the inter-element spacing is d. The distance between the receiver and the
first transmitting element is x.

the first transmitting element and the receiving element (n) is x. Recall that the

time delay between two neighboring elements required for synthetic phase tuning or

phased array tuning is given as

AT = d/cp . (7.6)

If we choose the position of the first element in the transmitting array as the origin

of the x-coordinate, the displacement contributed by the m-th transmitting element

can be expressed as

Umn(h, x, t) = uin(h, x - (m - 1)d, t - (m - 1)AT) , (7.7)

assuming that characteristics of the elements are identical.

The phase tuned displacement is obtained by summing the contributions made by

all the elements as

M M

un(h, X, t) = umn(h, x, t) = Uin(h, x - (m - 1)d, t - (m - 1)AT) . (7.8)
M=1 m=1

By substituting Eqs. (7.1) and (7.6) into Eq. (7.8), and using the relationship:

3 e-j(m-1)(kd-wAr) eijM(kd-wAT) sin[M(kd - wAT)/2] ej(M-1)(k-wAr)/2
E1 - e-j(kd-wAr) sin[(kd - wAr)/2]

(7.9)
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the displacement can be written in terms of the inverse double Fourier transform as

__ +o+ sin[M(kd - W AT)/2]
Un (h, x , t) =_12f+0f+) N(h, k, )- (k, w) - snMk- A)1]x

47r2 _OC _0 sin[(kd - wAw)/2] (7.10)

e-j(M-1)(kd-wAr)/2 . ej(kx-wt)dkdw ,

or it can be expressed in terms of the response of individual mode as

1 f sin[M(kd - wAT)/21
un(h, x, t) = E H(h, w) f(k, w) . x

27 _J0 sin[(kd - wAT)/2] (7.11)

e j(kx-wt) . e-j(M-1)(kd-w-r)/2Cj

From Eq. (7.10), we can show that the displacement in the Fourier domain is written

as

~nn(h, k, w) = N(h, k, w) -f(k, w) sin[M(kd-wA) (7.12)
sin[(kd - WAT)/2]

Note from Eqs. (7.11) and (7.12) that the tuning effect is contributed by the term
sin[M(kd - wAT)/2]

sin[(kd - wA)/2]

7.2.3 Full Tuning

Now we consider the second scenario, in which the array tuning takes place both in

transmission and reception.

Figure 7.3 schematically illustrates the operation of full tuning in PPC, where the

transmitting and receiving arrays have M and N elements, respectively. The two

arrays have the same element size a and inter-element spacing d, and the distance

between the first receiving element and the first transmitting element is x. The time

delay between two neighboring elements is still set according to Eq. (7.6).

If we choose the first element in the receiving array as a reference, the half-way

tuned wave displacement obtained by the n-th receiving element can be expressed as

un(h, x, t) = u1 (h, x - (n - 1)d, t - (n - 1)A7) . (7.13)
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Figure 7.3: Tuning of Lamb waves using an array of M elements, where the receiver
is an array of N elements (full tuning in PPC operation). The distance between the
first receiving element and the first transmitting element is x.

Carrying out the summation for all the receiving elements, we obtain the fully tuned

displacement in the form

N N

u(h, x, t) = un(h, x, t) = Zul(h, x
n=1 n=1

- (n - 1)d, t - (n - 1)AT) . (7.14)

which can be expanded by substituting Eqs. (7.10) and (7.6) into Eq. (7.14) as

1 + of sin[M(kd - wAr)/2]
u(h, x, t) = N(h, k, w) f(k, w) . x4 Jr2_ _J sin[(kd - w AT)/2]

sin[N(kd - wAr)/2] e-j(M+N-2)(kd-wAr)/2 . ej(kx-wt)dkd
sin[(kd - wAr)/2]

or in terms of the individual modes as

(7.15)

1 +oo
u(h, x, t) =

27r _-+00
E H(h, w) - f(k, w)

sin[M(kd - wAT)/2]
sin[(kd - wAr)/2]

sin[N(kd - wAZr)/2] X
sin[(kd - wAr)/2]

e-j(M+N-2)(kd-wAr)/2 . j(kx-wt)

(7.16)

The displacements in the transformed domain are

ii(h, k, w) = N(h, k, w) - f(k, w). sin[M(kd - wAT)/2
sin[(kd - wAr)/2]

e-j(M+N-2)(kd-wAr)/2

sin[N(kd - wAz-)/2]

sin[(kd - wAr)/2]

(7.17)

162

x



If two identical arrays are used for transmitter and receiver (M = N), then the

corresponding equations are rewritten as

u(h, x, t) = f f N(h, k, ) f(k, W) sin[M(kd - wAT)2] 2x47r 2  _ Jo _. sin[(kd - WAT)/2] (7.18)

e-j(M-1)(k-wAr) . ej(kx-wt)dkdw

u(h, x, t) =- f0 0 E H(h, w) -f(k, w) sin[M(kd -JT)/2] 2x
27r J ' I0sin[(kd - wA'r)/2] (7.19)

ej(M-1)(k-wAT) . Cj(kx-wt)dw

and

n(h, k, C) = N(h, k, w)- f(k, w)f { sin[M(kd - wAT)/2] 2 j(M-1)(kd-wA)
sin[(kd - wAT)/2] e

(7.20)

Observe from Eqs. (7.11) and (7.12) that the full tuning effect comes from the term

sin[M(kd - A)/2] 2 which is exactly the square of the contributing term for
sin[(kd - wA-F)/2]

the half-way tuning.

7.3 Simulation Examples

We will now examine the tuning efficiencies for various modes through a simulation

study by giving examples of the half-way and fully tuned waves. To be consistent,

we use the same excitation conditions, i.e., a five-cycle toneburst signal of center

frequency fo = 2.25 MHz is used as excitation signal. Both transmitting and receiving

transducers are 16-element arrays, the inter-element spacing is d = 0.7 mm, and

element size a = 0.4 mm.

7.3.1 Half-way Tuning

The parameters used in the half-way tuning simulation are summarized in Table 7.1.

163



M

Table 7.1: Parameters used in the half-way tuning simulation.

Parameter Value
Material
Longitudinal wavespeed, CL, (m/S)
Transverse wavespeed, CT, (m/s)
Number of elements (transmitting),
Inter-element spacing, d, (mm)
Element width, a, (mm)
Toneburst frequency, fo, (MHz)
Number of toneburst cycles, mo
Plate thickness, 2h, (mm)
2foh value, (MHz-mm)
Transducer distance, x, (mm)

According to the dispersion curves shown in Fig. 2.6, at the given center frequency

(2foh = 4.5 MHz-mm, woh/cT = 4.52), there are five coexisting modes: Ao, So, A 1 ,

Si and S 2 , whose phase and group velocities as well as the required time delays are

given in Table 7.2.

Table 7.2: Required parameters for half-way tuning of various wave modes.

Simulation results for half-way tuning are shown in Figs. 7.4, 7.5 and 7.6. As is

the case for angle wedge transducer tuning, additional modes (A 2, A3 and S3) appear

in the images shown in Fig. 7.4, due to the bandwidths of the excitation signal. Of

course, these modes are not dominant, so that their individual waveforms are not

shown.
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Wave Phase velocity Group velocity Time delay
mode cp, (m/s) cg, (m/s) AT, (ns)

S2 9,846 3,568 71
S1 5,834 4,171 120
A1  4,269 2,161 164

so 2,961 2,704 236
Ao 2,861 2,980 245

Aluminum
6320
3130

16
0.7
0.4

2.25
5

2.0
4.5

168.0



Figure 7.4(a) is the result for the untuned case (AT = 0 ns). At the center

frequency of 2.25 MHz, the energy levels of the AO and So modes are much higher

than those of other modes, which is also shown in Fig. 7.5(a).

Figures 7.4(b) and 7.5(b) show the result of S mode tuning (AT = 120 ns),

which is not quite successful since the energy is distributed almost evenly to all

existing modes.

Shown in Figs. 7.4(c) 7.5(c) are the result for Ao mode tuning (AT = 245 ns).

TheAO mode can be boosted, but it may not be a good choice for tuning since the

phase velocities and required time delays are approximately the same for both AO and

So modes. Similar conclusions can be drawn for tuning So mode (AT = 236 ns), as

shown in Figs. 7.4(d) and 7.6(a).

It seems that the best tuning modes are A1 (AT = 164 ns) and S2 (AT = 71 ns)

as shown in Figs. 7.4(e), 7.6(b), 7.4(f), and 7.6(c). The tuned modes carry the

highest energy (or amplitude) while the undesired modes are virtually squelched.

By summing the signals of individual wave modes depicted in Figs. 7.5 and 7.6,

we can simulate the actual signal received by the transducer, as shown in Fig. 7.7.

The signals shown in Figs. 7.7(a), through (d) are either bi-modal or multi-modal,

whereas the waves in Figs. 7.7(e) and (f) are clearly tuned into single mode. Thus, it

is desirable to use these modes (A1 and S2) for the given parameters.

7.3.2 Full Tuning

Now we extend our simulation study to full tuning. The main difference is that

the tuning is carried out in receiving as well, using a second array. The simulation

parameters found in Table 7.1 are used, except that an identical array is used as

receiver and x = 168.0 mm refers to the distance between the first elements in the

transmitting and receiving arrays.

The results are shown in Figs. 7.8 to 7.7. Comparing them with Figs. 7.4 to 7.7,

we can clearly see that the tuning effect is enhanced for all the tuning cases. However,

this does not change the conclusions on desired modes. For the S1, SO and AO modes

which are not well tuned in the half-way tuning, the improvement of tuning effect is
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(c) A0 mode tuning (At = 245 ns) (d) So mode tuning (At = 236 ns)
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Figure 7.4: Image visualization of 2-D FT of displacements, fi(h, k, w), for the half-

way tuning with an excitation toneburst signal of center frequency fo = 2.25 MHz:

(a) untuned case (A-r = 0 ns), (b) S, mode tuning (AT = 120 ns), (c) Ao mode
tuning (Ar- = 245 ns), (d) So mode tuning (A-r = 236 ns), (e) A, mode tuning
(A-r = 164 ns), and (f) S2 mode tuning (A-F = 71 ns).
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Figure 7.5: Predicted waveforms of individual modes for the half-way tuning with
an excitation toneburst signal of center frequency fo = 2.25 MHz: (a) untuned case
(Ar 0 ns), (b) Si mode tuning (AT = 120 ns), (c) Ao mode tuning (rAT= 245 ns).
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Figure 7.6: Predicted waveforms

an excitation toneburst signal of
of individual modes for the half-way tuning with

center frequency fo = 2.25 MHz: (a) So mode

tuning (AT= 236 ns), (b) A 1 mode tuning (AT = 164 ns), and (c) S 2 mode tuning

(AT = 71 ns).
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Figure 7.7: Predicted waveforms for the half-way tuning of Lamb waves with a 5-
cycle toneburst signal of frequency fo = 2.25 MHz: (a) untuned case (A7 = 0 ns),
(b) Si mode tuning (AT = 120 ns), (c) AO mode tuning (AT = 245 ns), (d) So mode
tuning (AT = 236 ns), (e) A1 mode tuning (AT = 164 ns), and (f) S2 mode tuning
(AT = 71 ns).
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not significant enough to make them a desirable choice. For the A1 and S2 modes

which are already well tuned in the half-way tuning, the improvement of tuning effect

makes them a more desirable choice.

7.4 Experimental Investigation

The simulation results are validated in this section by comparing the predicted wave-

forms with those obtained experimentally. The investigation is limited only for half-

way tuning, for the sake of simplicity.

Figure 7.12 illustrates the schematic diagram of the experimental setup for the

half-way tuning. This setup is identical to that used in the angle wedge transducer

tuning experiment, except that the wedge is replaced by a PVDF array transducer.

For consistency, the same parameters given in the simulation study are used, which

can be found in Tables 7.1 and 7.2.

Figure 7.13 shows the as-obtained waves transmitted by the 16 transmitting el-

ements and received by the single-element receiver. Note that the waveforms vary

from one transmitting element to the other, which is perhaps caused by not only the

dispersive nature of Lamb waves but also the response disparity of array elements.

This deficiency may influence the tuning result, but can be alleviated with im-

proved array transducers. Tuned waves are constructed synthetically using the for-

mula

M
Un(h, xt) = umn(h, x, t - (m - 1)AT) . (7.21)

M=1

as introduced in Chapter 4.

The experimental tuning results for various wave modes are shown in Fig. 7.14. If

we compare the theoretical results shown in Fig. 7.7 with these experimental results,

we can observe that the agreement is good in general while the difference is not trivial.

Both results show that the S1, AO and So modes are not well tuned while the A1

and S2 modes are well tuned, as compared with the untuned case. Furthermore, the
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Figure 7.8: Image visualization of 2-D FT of displacements, iL(h, k, w), for the full
tuning of Lamb waves with an excitation toneburst signal of center frequency fo =
2.25 MHz: (a) untuned case (Ar = 0 ns), (b) S1 mode tuning (Ar = 120 ns), (c) A0
mode tuning (AT = 245 ns), (d) S mode tuning (Ar = 236 ns), (e) A1 mode tuning
(AT = 164 ns), and (f) S2 mode tuning (AT = 71 ns).
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Figure 7.9: Predicted waveforms of individual modes for the full tuning of Lamb

waves with an excitation toneburst signal of center frequency fo - 2.25 MHz: (a)

untuned case (AT = 0 ns), (b) S mode tuning (AT = 120 ns), (c) AO mode tuning

(AT-= 245 ns).
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(d) So mode tuning (Ar = 236 ns)
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Figure 7.10: Predicted waveforms of individual modes for the full tuning with an
excitation toneburst signal of center frequency fo = 2.25 MHz: (a) So mode tuning
(AT =236 ns), (b) A1 mode tuning (AT = 164 ns), and (c) S2 mode tuning (AT
71 ns).

173

A2

S2

0 25 50 75 100
Time, t (ps)

ns)

A2

S2

0 25 50 75 100
Time, t (ps)

s)

A2

S2

0 25 50 75 100
Time, t, (ps)

E

U

-a
S



1.0

CD
N

M0.5

0
C 0.0

CD
=3

E

-1.0

1.0

0.
N

- 0.5

E
0

0.0

0.5

E

-1.0

1.0

N
0.5

E

-1.0
20 40 60

Time, t (ps)
80 100 0

(b) S1 mode tuning (Ar = 120 ns)(a) Untuned (Ar = 0 ns)

(c) AO mode tuning (Ar = 245 ns)

(e) A1 mode tuning (AT= 164 ns)

20 40 60
Time, t (ps)

80 100

Figure 7.11: Theoretical waveforms for the full tuning with a 5-cycle toneburst signal

of frequency fo = 2.25 MHz: (a) untuned case (AT = 0 ns), (b) S1 mode tuning

(AT = 120 ns), (c) Ao mode tuning (AT = 245 ns), (d) So mode tuning (AT = 236 ns),
(e) A1 mode tuning (AT = 164 ns), and (f) S2 mode tuning (AT = 71 ns).
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Figure 7.12: Experimental setup for half-way tuning of Lamb waves, where tuned
Lamb waves are generated by an array of 16 elements and received by one single-
element transducer.

experimental waveforms for A1 and S2 mode tuning are quite similar to the theoretical

waveforms.

The big difference between Fig. 7.14 and Fig. 7.7 is the relative amplitude of the

A0 and So tuned waves, which is experimentally very low while theoretically very high.

There are two possible causes for this difference. The first cause is that the array

elements might have different characteristics, while in the theoretical calculation we

assume that all the elements are identical. The second cause is that the measured

frequency response (of a representative element) has a center frequency of fo at about

6 MHz, while in the tuning experiment we observed that the received signals became

very weak when the frequency of the excitation toneburst signal was higher than 3

MHz. Note that in the theoretical waveforms of A0 and So modes, high frequency

components are strong, as shown in Figs. 7.4(c) and (d). Currently, we can not

understand this phenomenon.

175



1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

m=1

m=2

m=3

m=4

m=5

m=6

m=7

m=8

m=9

m=10

m=11

m=12

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Time, t, (ps) Time, t, (ps) Time, t (pus) Time, t (ps)

Figure 7.13: As-obtained individual waveforms generated by the 16 elements of the
transmitting array and received by the receiving element.
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Figure 7.14: Experimental waveforms for the half-way tuning testing of Lamb waves
with a 5-cycle toneburst signal of frequency fo = 2.25 MHz: (a) untuned case (AT =
0 ns), (b) S1 mode tuning (AT = 120 ns), (c) AO mode tuning (AT = 245 ns), (d) So
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7.5 Conclusions

The synthetic phase tuning (SPT) in the pseudo pitch-catch (PPC) operation was

investigated quantitatively, based on the analytical model of transient waves. Simula-

tion examples were provided to illustrate tuning effect of SPT, including the half-way

tuning and full tuning. Experimental waveforms were also obtained for the half-way

tuning.

It was shown that the theoretical predications were in general consistent with the

experimental observations. We can conclude that the array tuning effect is achieved

by providing time delays for the transmitting array elements. Also learned is that

the tuning effect is improved by replacing the single-element receiver with a second

array transducer, i.e., full tuning is better than half-way tuning.

As pointed out in Chapter 4, the SPT method is advantageous than the angle

wedge transducer tuning method. This was further confirmed in this chapter. First,

it is possible to tune all the wave modes using array transducers. By contrast, wave

modes with low phase velocities can not be tuned using angle wedge transducers.

Second, the SPT enables accurate control of the time delays while it is difficult to

set the angle of incidence accurately. Third, array transducers are directly coupled

to the specimen, eliminating the problem caused by multiple interfaces in the wedge

assembly.

Note that the influence of the array parameters such as the number of elements,

M (and N), and the inter-element distance, d, on the tuning effect of this approach

was not studied. An extensive investigation on this topic will be recommended for

the future work.
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Chapter 8

Analysis of Laser Generation of

Lamb Waves

8.1 Introduction

Up to now, we have used toneburst signals to excite piezoelectric transducers for

producing Lamb waves. The narrow bandwidth of the signals allows for simple sig-

nal processing schemes because the influence of dispersion are minimally attributed.

However, it is often desirable to use broadband signals because the information over

a wide range of frequency can be processed without sweeping the frequency. One of

the candidate sources to produce broadband ultrasonic signals is laser. Another good

reason to use laser sources is that they are non-contact. Due to the many advantages,

laser ultrasonics is finding more and more application in flaw detection and material

characterization, as summarized by Scruby [76] and Davies et al. [77].

Depending on the specimen geometry, lasers can produce bulk, Rayleigh, Lamb,

and other waves. In the early stage of the development, bulk waves were most com-

monly used. With the increasing awareness of Lamb waves NDE, lasers become

common energy sources to produce Lamb waves. They have been employed to con-

struct dispersion curves [78-80], to measure the thickness of thin metal sheet [81],

to measure elastic constants of paper [79,82] and to assess damages in paper [83].
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The mechanism of laser generation of ultrasound in solids has been studied by

many investigators [84-86]. Basically, there are two types of acoustic sources repre-

senting the generation process: thermoelastic regime and ablation regime, as schemat-

ically shown in Fig. 8.1. In the thermoelastic regime where the laser power density

is low, the optical energy is converted to acoustic energy primarily due to the ther-

moelastic expansion of materials. As a result, the induced stresses are primarily in

directions parallel to the surface (shear stresses). In the ablation regime, on the other

hand, the high laser power density level causes the formation of plasma and the re-

moval of material from the surface. As a result of the momentum transfer, normal

stresses will be induced.

Laser-generated ultrasound in bulk materials has been studied by numerous in-

vestigators [76, 84, 87-97], both theoretically and experimentally. By contrast, the

analytical studies on the generation of Lamb waves are limited. Spicer et al. [98]

developed a quantitative model using Hankel-Laplace transform to study ultrasonic

waves in thin plates excited thermo elastically by a laser pulse. Using the normal mode

expansion method, Cheng et al. [99-103] studied the waves caused by thermoelastic

excitation or oil-coating evaporation (ablation regime), although their theoretical re-

sults were not confirmed by experiments. Most of the work on Lamb wave generation

is limited to the experimental measurements.

This chapter is mainly devoted to the development of an analytical model to study

the transient behavior of Lamb waves generated by a laser source in the ablation

range. The circular cross-section of a laser beam produces a circular illumination

area (source). However, it is often advantageous to use a source of strip (line) shape

in some cases, e.g., to enhance the wave directivity [95]. This is practically possible

by focusing the laser beam into a line source, using a cylindrical lens [94, 96]. It is

easier to analyze such line source since a simple two-dimensional model is sufficient

to describe the nature, thus some of the mathematical complexity associated with

circular sources can be relaxed. The model developed in Chapter 5 can be directly

used by taking into account the different loading conditions.
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Laser Laser

(1) Thermoelastic regime (II) Ablation regime

Figure 8.1: Schematic diagram of laser generation of ultrasound: (a) thermoelastic
regime; (b) ablation regime.

Besides, this chapter will also investigate the tuning of laser-generated Lamb

waves. Since broadband signals can be decomposed into multiple narrowband sig-

nals, it is possible to illustrate the tuning effect at different frequencies. The virtually

tuned waves can be obtained by applying the synthetic phase tuning (SPT) scheme

described in Chapter 4. Due to the aforementioned superior feature of laser ultra-

sound, tuning of laser-generated Lamb waves is very attractive. This study will

greatly expand the application of broadband Lamb waves.

We will start with the development of an analytical model to study the propaga-

tion of transient waves originated from a circular source. Solutions will be obtained

using the Fourier and Hankel transform for the wave mode displacements. Then, the

loading conditions will be prescribed to represent the line and circular sources. The

Lamb wave displacement responses due to a line source are analyzed using the 2-D FT

of displacements and group velocity dispersion curves. Finally, laser-generated wave-

forms are obtained, and used to construct experimental dispersion curves as well as

virtually tuned waves. The theoretical results will be compared with the experimental

results.
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8.2 Transient Response to a Circular Source

The analytical model of transient waves developed in Chapter 5 can be directly ap-

plied to a line source, where the Cartesian coordinates are used and the plain strain

condition is assumed. Such waves are often called straight-crested waves [14]. In

contrast, a circular source loading is actually an axisymmetric problem, which re-

quires cylindrical coordinates for analysis. Waves under this condition are often called

circular-crested waves [14]. In the following, an analytical model is developed to ob-

tain the solutions of transient circular-crested waves due to a circular source using

the Fourier and Hankel transform. The derivation procedure is similar to that used

in obtaining the solutions of transient straight-crested waves from a line source.

8.2.1 Problem Statement

Consider a cylindrical coordinate system as shown in Fig. 8.2, where a plate of thick-

ness 2h is subjected to a normal load f(r, t) distributed in a circular area. 1 The

stress boundary conditions can be prescribed as

f(r, t) at z = +h
U-zz (r, t) = (8.2)

0 at z =-h

Urz(Xt) = 0 at z =±h. (8.3)

For an axisymmetric case, we have the condition uO = a/aO 0. Then the

resulting equations of motion can be expressed in terms of displacement as [104]

OA &Q &2 Ur 84
(A+ 2p)- + p = pt2 (84)

ar aZ at2

&z\ _ ,ia rQ) D2uz(A + 2p )  r r p t2 (8.5)
az r ar 8

'A particular case of circular load is the point load (r -+ 0), represented by the form

f (r,t) g(t) (8.1)2wrt

where g(t) is the time dependence of the source, or the time excitation function.
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f(r,t)

2h >

Figure 8.2: An isotropic plate of thickness 2h subjected to a normal load f(r, t)
distributed circularly on the top surface (z = h).

where A and Q are defined as

IOU, Ur aUZA - + + (8.6)
Or r Oz

Ou I OU. (8.7)
Oz r

Our interest is to obtain the transformed displacements fi(z, k, w) induced by the

normal load f(x, t), where the subscript n denotes the axis, i.e., n = r (in-plane) or

n = z (out-of-plane). In the cylindrical coordinates, Fourier transform is applied to

the time variable t, and Hankel transform is applied to the spatial variables r and z.

To utilize the properties of the Hankel transform, the zeroth-order Hankel transform is

used to compute the out-of-plane displacement uz(z, r, t), while the first-order Hankel

transform is used for the in-plane displacement ur (Z, r, t). Thus, the Fourier-Hankel

transform of the displacements are defined as

uz(z, k, w) j j uz(z, r, t)r Jo(kr)eiwdrdt (8.8)

r,(z, k, w) j Ur (, r, t)r J(kr)eitdrdt , (8.9)
-o+0 0
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with the inverse transform pair as

UZ(z, r, t) 2r f_001

Ur (Z, r, t) - 20r _Jj

fl(z, k, w)kJo(kr)e-ijwdkdw

fr(z, k, w)kJ1(kr)e-jiwdkdw,

where Jo (kr) and Ji (kr) are the Bessel functions of the zeroth and first-order, respec-

tively. The solution i,(z, k, w) can be obtained simply by substituting the displace-

ments un(z, x, t) in the form of inverse Fourier-Hankel transform into the equations

of motion and satisfying the boundary conditions. This procedure is described as

follows.

8.2.2 Fourier-Hankel Transform

The derivatives of

obtained as

the displacements with respect to the spatial variables r and z are

0Ur
Or
8r
au,
az

au,
Or

-9z
19Z

21 /7o
27r C

1 +Co
- 7 0

27r /C
2r -

f+fk 2 J'(kr)e-wdkdw
0

+00 dii
irkJi(kr)e-jwidkdw

o dz

J +00
o ftk 2 Joi(kr)e&iwtdkdWi

+ z kJ(kr)e-jidkdw

o dz

From Eqs. (8.6) and (8.7) the parameters A and Q are expressed as

A 1

27r

1

2ir

/7 +0

-+c0_f C O f +)

_+oo +o

k, + dfz kJo(kr)e- jwdkdw
dz I

dfi + kftz k J1(kr je-jw'dkdw
dz I
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(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)



where the following properties of the Bessel functions are utilized:

(8.18)

(8.19)Ji(kr) + krJ (kr) = krJo(kr) .

Hence, the derivatives of A and Q with respect to the variables r and z are obtained

as

DA _ 1
or 27r

DA _ 1

az 27r

DQ 1

9r 27r

9 Q 1

az 27r

1D(rQ)

r Dr

1

2wr

j+o0

o +000

100 10

kf. + diz k2 Jo(kr)e-idkdw
dzI

E dii
kd

dz
+ d f, Z kJo(kr)e-jwt dkdw

dz2I

-0010r + kfz k )2 J ikre-wdkdw
_ f dz

_00 j0
+o0 0

[2 dr + k dfiz k J1(kr) e-widkdw
dZ2 dz I

I +00 [fi- + kiz k2 Jo(kr)e~iwtdkdw0 1 dz I

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

Also note that the derivatives of the displacements with respect to the time variable

t can be obtained as

Dt 2  27r ] 2

a2 u 1

Dt2 2 7r

By substituting Eqs. (8.20)

Eqs. (8.4) and

tions:

00J

jo

+00

fiirkJ(kr)(-w 2)e-joidkdw (8.25)

+00
+0ikJo(kr)(-w

2)e-&widkdw . (8.26)

(8.26) into the governing equations of motion,

(8.5), we would have the following set of ordinary differential equa-

d 2p 2 l
d

- [(A+ p)k] d + [pw2 - k 2 (A + 2p)]i=0

(A + 2/1) dz2 duii
+ [(A + p)k] d f + [pw 2 - -k2]fz = 0.
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Solving, the general solutions for the transformed displacements can be represented

by the form:

fir = {Ak cosh(az) - D, ,§cosh(Oz)} + {Bak sinh(az) - Ca# sinh(#z)}

2 = {-A, csinh(xz) + Dk sinh(Oz)} + {-Ba acosh(az) + Cak cosh(Oz)}

(8.29)

(8.30)

where As, D8, Ba and Ca are arbitrary constants to be determined. and the variables

a and 3 are defined as

2

z2 = k2 - ,_
a2'
CL

(8.31)- -,
CT

where CL and CT are the longitudinal and transverse wave velocities, respectively.

Since the stresses are related to the displacements by virtue of the constitutive

law, i.e.,

(aur +

O-zr = +az

Ur+ -1

r a
&rz
ar

+ 2p
19z

(8.32)

(8.33)

the stress boundary conditions

1 +Ocf +oO

(-zz 0 27r - 0 0

0

7r z=0

f(k, w)kJo(kr)eiwtdkdw at z = +h

at z=-h

at z=±h

can be satisfied in terms of displacements, where f(k, w) is the Fourier-Hankel trans-

form of the circular load f(x, t). As a result, the constants are determined to be

-(k 2 + p32) sinh(0h) f(k, w)

2pAS

-(k 2 + 02) cosh(0h) f(k, w)

2pAa
Ca -

-ka sinh(ah) f(k, w)

PAS

-ka cosh(ah) f(k, w)

/IAa
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(8.35)

A =

Ba-

(8.36)

(8.37)



where

AS =(k 2 + 32) cosh(ah) sinh(oh) - 4k 2 oa sinh (ah) cosh(Oh)

'A = (k2 + 32)2 sinh(ceh) cosh(h) - 4k 2 oaj cosh (ah) sinh(Oh).

(8.38)

(8.39)

Note that the conditions for A, = 0 and Aa = 0 represent the Rayleigh-Lamb fre-

quency equations for symmetric and antisymmetric wave modes, respectively. Also

noticeable is that the frequency equations for circular-crested waves are the same as

those for straight-crested waves [104].

It is straightforward to compute ?n (z, k, w) at an arbitrary position z. But it is

of our interest to evaluate those on the upper surface, i.e., fn(h, k, w), which can be

expressed as the sum of symmetric and antisymmetric parts:

(8.40)

where

fi (h, k, w) = N'(h, k,) -f(k,w) (

n (h, k, Lj) = n N,(h, k, )- (k, ),

(8.41)

(8.42)

and

Ns(h, k,)

N, (hkw) =

Nz(h, k,w)

Nza (h, k,w)

k (k + /2) cosh(ah) sinh(#h) - 2a sinh(ah) cosh(#h)

k [(k 2 + /2) sinh(ah) cosh(#h) - 2a cosh(ah) sinh(h)

(-k2- + /2) sinh(a/h) sinh(/h)]

2pA s I

(- k 2 + 2) cosh(ozh) cosh(#h)~
2a I

This is the analytical solution representing the transient response of the Lamb

waves generated by an axisymmetric normal load. It should be pointed out that

187

(8.43)

(8.44)

(8.45)

(8.46)

ftn(h, k, w) = fis(h, k, w) + fa~h , )



ft (h, k, w) or f4(h, k, w) are the product of two independent terms, where f(k, w) is

the loading in the transformed domain and Nn(h, k, w) and N7a(h, k, w) are the mate-

rial responses (or overall excitation efficiencies) for the symmetric and antisymmetric

wave modes, respectively.

8.2.3 Surface Displacements

We extend our study to compute the displacements induced by the same excitation

source. The surface displacements at z - h are also considered as the sum of sym-

metric and antisymmetric components:

us(h, x, t) = u (h, x, t) + ua(h, x, t) (8.47)

-o 0
27r 0 - f

27r -oG f

27r _ f

Nz"(h, k, w)f(k, w)k Jo(kr)e-"dkdw

N (h, k, w)f(k, w)kJo(kr)e-iwdkdw

N'(h, k, w)f(k, w)k Ji (kr)e-"dkdw

Na (h, k, w)f(k, w)k J (kr)e-iwdkdw.

Since the functions N (h, k, w) and N (h, k, w) contain an infinitely large number

of poles corresponding to the roots of the dispersion equations for circular-crested

waves, it is convenient to use the residue theorem for evaluating the integrals over

the wavenumber k. Accordingly, the in-plane and out-of-plane surface displacements
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us(h, x, t)

ua(h, x, t)

us (h, x, t)

ur(h, x, t)

(8.48)



are obtained as

r+cc

us~,x, t) =] Hz(h, w)f(k, w)k Jo(kr)e~-i t dw

u8(h, x, t) ] Hz(h, w)f(k, w)kJo (kr)e-tdw
+0 k,

-00" a(h, x, t) =a H,(h, o)(k, w) k Jo1(kr) e-j" da

-OC ks

00ka

(8.49)

(8.50)

(8.51)

(8.52)

where H,(h, w) and H,(h, w) are the material responses (or modal excitation efficien-

cies) for symmetric and antisymmetric wave modes, expressed as

H,"(h, w)

Hr (h,w) =

Hz(h,w) =

Hz (h,w)

j(k - 34) cosh(ah) sinh(#h)
8kAS

j(k - #34) sinh(ah) cosh(#h)
8k.,P'a

-ja(k 2 _ /2) sinh(ah) sinh(oh)

-ja(k2 - #32) cosh(ceh) cosh(#h)

4aa

(8.53)

(8.54)

(8.55)

(8.56)

Here A' and A' are the derivatives of A, and Aa with respect to the wavenumber k.

The summations are carried out for the real wavenumbers to represent the propagating

waves in the far field.

Theses displacement expressions are similar to those for a line source given in

Chapter 5. The only difference is that the Hankel transform instead of the Fourier

transform is used in the space domain.

8.3 Laser Source Loading Models

In order to find the displacements of transient waves due to the laser source, we need

to find the expression for the line source f(x, t) or the circular source f(r, t), which
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is considered as the product of the time excitation function g(t) and space excitation

function p(x) or p(r).

For simplicity, the time excitation function is assumed to be a Dirac delta func-

tion, since the duration of the broadband laser pulse is in general very short (less than

10 ns). Figure 8.3 shows two types of space excitation functions: (a) uniform distri-

bution function which has constant amplitude over the beam area, and (b) elliptical

distribution function in which the intensity decreases elliptically from the center of

the beam. If the beam size a is small, it is reasonable to imagine that the uniform

distribution is equivalent to the elliptical distribution. Thus, in the following, we

simply assume the uniform distribution space function.

8.3.1 Line Source

The spatiotemporal loading for a line source can be represented by

f (x, t) = [H(x + a/2) - H(x - a/2)]6(t) , (8.57)

where H(x) is the Heaviside step function. The corresponding spatial and temporal

Fourier transform is obtained as

/+oo +si(ka/2)
f(k, w)= j S6(t)ei t dt j [H(x + a/2) - H(x - a/2)]e-ik' = sin-k/2)

(8.58)

8.3.2 Circular Source

The spatiotemporal loading for a circular source can be expressed as

f (r, t) = [H(r) - H(r - a/2)]6(t) , (8.59)
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Figure 8.3: Spatial loading distribution: (a) uniform distribution; (b) elliptical dis-
tribution, where a is the beam size.

and the Fourier-Hankel transform is

f(k, w) =
+f0 aJ(ka/2)

6(t)eiwdt [H(r) - H(r - a/2)]rJo(kr)dr = 2k . (8.60)

8.4 Predicted Waveforms

The expressions for f(k, w) enable us to predict the transient waves due to a line and

circular source. Consider a laser source of diameter a = 0.5 mm at the surface of

an aluminum plate of thickness 2h = 3.2 mm. The distance between the receiving

point and the coordinate origin is set as x = 135 mm. These conditions used for the

prediction are summarized in Table 8.1.

Table 8.1: Theoretical conditions used for simulating laser generation.
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Parameter Value
Material Aluminum
Longitudinal wavespeed, CL, (m/s) 6320
Transverse wavespeed, cT, (m/s) 3130
Plate thickness, 2h, (mm) 3.2
Source diameter, a, (mm) 0.5
Propagation distance, x, (mm) 135



Figures 8.4 and 8.5 show the predicted waveforms for individual wave modes,

for the line and circular source loading models, respectively. Here we only display

the four lowest antisymmetric modes (A0 , A1 , A2, A3) and symmetric modes (SO, S1,

S2 , S3). These two models give rise to similar results. Figures 8.6(a) and (b) show

the overall displacements for the line source and circular source, obtained from the

summation of individual modes. As expected, these two waveforms look similar.

8.5 Discussion

We are interested in analyzing the predicted waveforms such as the ones shown in

Fig. 8.6. Of particular interest are the arrival times corresponding to the longitudinal

(L), transverse (T), and Rayleigh waves (R) as well as their corresponding wave

amplitudes. Since the total response can be represented by summing the individual

responses of wave modes, we start with analyzing the individual responses as shown

in Fig. 8.4.

Before we proceed, it is of importance to examine the similar work by Weaver

and Pao [105]. They explained the responses of individual Lamb wave modes to a

point source in detail, by virtue of the group velocity dispersion curves and "modal

factors" of the wave modes which were defined as the amplitudes of displacements.

Specifically, the group velocity was used for determining the time of arrivals, and the

modal factors were used for estimating the waveform amplitudes at these arrivals.

In our analysis, we will use group velocities for determining the times of arrival,

as was done by Weaver and Pao [105]. However, we will use the spatial and temporal

Fourier transform of the displacements, fi(k, w), for examining the amplitudes, as com-

pared to the normal mode expansion method. Furthermore, we assume a uniformly

distributed space excitation function and Dirac delta time excitation function, while

they used Dirac delta space excitation function and a Heaviside step time excitation

function.
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Figure 8.4: Theoretical waveforms of individual Lamb waves modes (AO, A1, A2, A3 ,
So, S 1, S2 and S3) in an aluminum plate of thickness 2h = 3.2 mm at a distance
of x = 135 mm, where uniformly distributed line source is assumed with a beam
diameter of a = 0.5 mm.
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Figure 8.5: Theoretical waveforms of individual Lamb waves modes (Ao, A1 , A2, A3,
So, S 1 , S2 and S3) in an aluminum plate of thickness 2h = 3.2 mm at a distance of
x = 135 mm, where uniformly distributed circular source is assumed with a beam
size of a = 0.5 mm.
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Figure 8.6: Theoretical waveform of Lamb waves in an aluminum plate of thickness
2h = 3.2 mm at a distance of x = 135 mm, where (a) uniformly distributed line
source, and (b) uniformly distributed circular source are assumed with a beam size
of a = 0.5 mm.

8.5.1 Dispersion curves and Fourier Spectrum

We begin our discussion by observing the dispersion curves relating the group velocity

and frequency, as shown in Fig 8.7. As we can see, each wave mode has a maximum

group velocity, for example, (Cg)max = 3, 168 m/s for the Ao mode and (Cg)max =

5, 438 m/s for the So mode. It is noticeable that the group velocities of the symmetric

modes are significantly larger than those of the antisymmetric modes. In addition,

the lowest symmetric and antisymmetric modes (So and AO) have asymptotic group

velocities equal to the wavespeed of Rayleigh waves (CR). In contrast, all the other
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Figure 8.7: Group velocity dispersion curves of Lamb waves in an aluminum plate

(CL 6 6, 320 m/s, CT = 3, 130 m/s and CR = 2, 910 m/s).

modes have asymptotic group velocities equal to the transverse wavespeed (CT). None

of the group velocities exceed the longitudinal wavespeed (CL).

Figure 8.8 displays the Fourier transform of the displacement, fi(h, k, w), for the

lowest four symmetric and antisymmetric modes, which shows not only the dispersion

relations but also the associated energy distribution of the wave modes. The gray

lines OR, OT and OL represent the Rayleigh, transverse, and longitudinal waves,

respectively. As we know, fi(h, k, w) is the product of excitation efficiency N(h, k, W)

and external loading f(k, w), thus it accounts for the influences of both the material

properties and external excitation.

Note that the group velocities are represented by the slope of the dispersion curves

in the frequency (w) and wavenumber (k) domain. From Fig. 8.8 we can qualitatively

obtain the information about not only the group velocities but also the change of

energy distribution as a function of frequency for each mode. For example, the group

velocity of the A 0 mode increases from nearly zero to its maximum value and then

asymptotically approaches the wavespeed of Rayleigh waves (CR), as the frequency
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Figure 8.8: Image representing the 2-D FT of the out-of-plane surface displacements,
i.e. , fiz,(h, k, w) for an aluminum plate of thickness 2h = 3.2 mm, where uniform
distribution space excitation source is assumed with a beam size a = 0.5 mm.

increases. On the other hand, the energy decreases. This is consistent with the

observations made from Fig. 8.7.

Both the So and A0 modes have asymptotic group velocities equal to the Rayleigh

wave speed (CR). In contrast, all the other modes have asymptotic group velocities

equal to the transverse wave speed (CT) . Moreover, by tracing the line OL and disper-

sion branches, it is of interest to notice that compared with the antisymmetric modes,

the symmetric modes have larger maximum slopes (or maximum group velocities) of

their dispersion curves, which has been already confirmed in Fig. 8.7. However, for

the symmetric modes, the energy is low at the frequencies corresponding to the indi-

vidual maximum group velocities. For example, the maximum group velocity of So
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mode is close to the longitudinal wave speed ((cg)ma = 5438 m/s = 0.86 CL) when

the frequency is nearly zero; but as shown in Fig. 8.8, the energy for that frequency

is very low.

8.5.2 Predicted Waveforms

With these observations, we will explain the responses of individual wave modes as

shown in Fig. 8.4. The following key observations are made:

" For each mode, the earliest arrival time of in the signal corresponds to its

maximum group velocity, i.e., tmin = x/(Cg)max. For example, the calculated

earliest arrival time for the AO mode is tmin = 42.7 ps.

" The high amplitudes of the AO and So mode signals shown in Fig. 8.4 are

consistent with the energy distribution shown in Fig. 8.8. It is also consistent

that the amplitude of the AO mode is higher than that of the So mode at low

frequency (wh/cT < 2).

" In the AO mode signal, one can observe that a signal of moderately high am-

plitude and low frequency, arriving at the time equivalent to that of transverse

waves (T). This is due to the fact that the maximum group velocity of AO

mode is very close to the transverse wavespeed ((Cg)max e CT) at the frequency

wh/CT = 1.33 and the energy contained at that frequency is high.

" We can also observe a sharp high peak standing at the time equivalent to the

arrival time of Rayleigh waves, which corresponds to the high-frequency asymp-

totic (minimum) group velocity.

* The moderately large-amplitude signal following Rayleigh waves is the low fre-

quency flexural motion, as observed by Weaver and Pao [105]. Note that AO

mode has very high energy at low frequency.

" The time of the earliest arriving So signal is tmin = 24.9 [s, computed from the

maximum group velocity (Cg)max = 5, 438 m/s (at wh/CT ~ 0). The amplitude

of this signal is small due to the low energy at this frequency.
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* As in the case of the A0 mode, there is also a sharp peak in the So mode signal

at the Rayleigh wavespeed. This can be understood that the local maximum

group velocity approaches the transverse wavespeed at high frequency where So

mode has high energy.

Similar observations can be made for the other modes. Summing the individual

waveforms, the total response is obtained as shown in Fig 8.6(a). Still, our interest is

the arrivals and amplitudes of L-wave, T-wave and R-wave. Here of particular interest

is that the maximum group velocities of symmetric are kind of close to the longitudinal

wave speed, where the closest case among the modes in Fig. 8.4 is (C9)max = 0.86 CL

for So mode. However, it is shown that the energy of these modes associated with the

maximum group velocities is small. This explains the fact that in the total response

there is very low amplitude at the arrival of longitudinal wave, as shown in Fig 8.6(a).

It is worth pointing out that the moderately high peak at the arrival time of

transverse waves is largely contributed by the A0 mode. In fact, there is very low

amplitude at this speed in the waveforms of individual modes except A0 . This is

contrast to the fact that all the modes except A0 and So have asymptotic group

velocities equal to the transverse wavespeed at high frequency. However, as we have

pointed out, the energy tends to decrease as frequency decreases, meaning that the

peak of the transverse wavespeed comes largely from the A0 mode which has much

higher energy than the other modes except So.

Finally it is natural to understand that there is a huge peak corresponding to the

time arrival of Rayleigh wave in the total response waveform. This shall be mainly

attributed to the A0 and So modes. On the one hand, both the A0 and So modes

have asymptotic group velocities equal to the Rayleigh wave speed at high frequency.

On the other hand, both modes have much higher energy compared with the other

modes at high frequency.
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8.6 Experimental Results

Figure 8.9 shows the schematic of the experimental setup used for the laser generation

and detection of Lamb waves in an aluminum plate. The excitation (source) laser

was a flash-lamp pumped, Q-switched Nd:YAG laser operating at a wavelength of

1064 nm. The pulse energy was about 90 mJ and the pulse width was 6-8 ns. The

smallest beam diameter achieved by focusing was approximately 0.5 mm, reduced

from unfocused beam diameter of approximately 3.75 mm. The excitation laser head

was mounted on a custom-made linear sliding table with a scanning resolution of 25.4

pam.

Amplifier

PH-EMF
Detector

W.B .B.

x

Detection Laser
(Nd: YVO4)

R.B. = Reference Beam

W.B.= Working Beam

-30 To Oscilloscope

Excitation Laser
(Nd: YAG)

Focusing
Lens

a a

Ig m

Figure 8.9: Experimental schematic of the laser generation and detection of Lamb
waves in a plate.
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Figure 8.11: Sample experimental waveforms of Lamb waves in an aluminum plate of

thickness 2h = 3.2 mm at the distances (a) 133 mm, (b) 185 mm, and (c) 223 mm,

where the excitation source is a Nd:YAG pulsed laser and the receiver is a Lasson

EMF-500 laser receiver.
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Although we have demonstrated that the predicted waveforms at a distance of

135.0 mm are similar for a line and circular source of small size (diameter), it is

still interesting to compare the experimental waveforms shown in Fig. 8.11 with the

predicted waveforms for these two loading models, as shown in Figs. 8.12 and 8.13,

respectively. 2 We can observe that the agreement between the theoretical results for

both two loading models and the experimental results is excellent.

From the 128 waveforms obtained at various spatial locations, we can obtain dis-

persion curves using a fast 2-D FFT, which is presented as a gray scale image as

shown in Fig. 8.14. The image shows the amplitude-wavenumber information at dis-

crete frequencies, through which the individual Lamb wave modes are identified. A

Hanning window was used to reduce the leakage in the wavenumber domain. Fig-

ure 8.14 also shows the predicted Fourier spectrum, it(h, k, w), of Lamb waves in the

aluminum plate, for a uniform distribution space excitation over the beam diameter

a = 0.5 mm. The experimental result agrees very well with the theoretical result.

8.7 Construction of Virtually Tuned Waves

The laser-generated signals at various spatial locations can be used to construct virtu-

ally tuned waves. Specifically, the broadband signals are decomposed into narrowband

signals with certain center frequency and bandwidth, and then virtually tuned waves

are constructed according to the SPT scheme.

In this case, the inter-element spacing is equivalent to the space sampling interval

(d = Ax = 0.8255 mm), the number of transmitting elements is equivalent to the

number of scanning locations (M = 128), and the number of receiving elements is

equivalent to the number of receiving locations (N = 1). Referring to Chapter 4, the

2 In the experiment, the cylindrical lens for producing line sources was not available. Thus
theoretically speaking, the circular source loading model should be more suitable.
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Figure 8.12: Predicted waveforms of Lamb waves in an aluminum plate of thickness
2h = 3.2 mm at the distances (a) x1 = 133 mm, (b) x 2 = 185 mm, and (c) X3

223 mm, where the excitation source is a line source of width a = 0.5 mm.
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Figure 8.13: Predicted waveforms of Lamb waves in an aluminum plate of thickness
2h = 3.2 mm at the distances (a) ri = 133 mm, (b) r 2 = 185 mm, and (c) r 3 -
223 mm, where the excitation source is a circular source of diameter a = 0.5 mm.
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Figure 8.14: Comparison of the experimental 2-D FFT and theoretical 2-D FT of
Lamb waves in an aluminum plate of thickness 2h = 3.2 mm, where the uniform
distribution space excitation is assumed with beam size a = 0.5 mm.

construction process can be represented in the time domain by the following formula:

M N

s(t) = Smn(t - (m + n - 2)Ar) 0 h(t)
m=1 n=1

(8.61)

where as before, Smn(t) are the signals obtained from the transmitter-receiver pair

(m,n), Z\r is the required time delay at a certain frequency, 0 represents the convo-

lution, and h(t) is the filtering function (usually bandpass). It is often convenient to

make the computation in the frequency domain. According to the frequency shifting
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Figure 8.15: Magnitude of the bandpass Butterworth filter's frequency response.

and convolution properties of Fourier transform, we have

M N

s Eo) Z smn(w)ewm~n)A -(w) , (8.62)
m=1 n=1

where s(w), 9mn and h(w) are the Fourier transform of s(t), Smn(t) and h(t), respec-

tively.

The filter design is critical for the tuning effect, which is decided by the chosen

center frequency and bandwidth of the narrowband signals. According to the disper-

sion curves of aluminum shown in Fig. 2.6(a), we choose a frequency-thickness value

of 2fah = 4.0 MHz-mm. This means that the center frequency is fo = 1.25 MHz,

since the plate thickness is 2h = 3.2 mm. Correspondingly, a Butterworth bandpass

filter of order 20 is used, where the lower- and upper-bound frequency are 1.0 and

1.5 MHz. Figure 8.15 shows the magnitude of the filter's frequency response.

For the frequency-thickness value of 4.0 MHz-mm, there are five wave modes: AO,

A1 , So, S and S2. The phase (and group) velocities along with the required time

delay and group delays for these modes are tabulated in Table 8.2.
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Table 8.2: Required parameters for tuning laser-generated waves (2foh = 4.0 MHz-
mm, d = 0.825 mm, and x = 238 mm).

Wave Phase velocity Group velocity Time delay Group delay
mode c,, (m/s) ce, (m/s) AT, (ns) t9 , (Ps)

S2  12,520 3,196 65.9 42.2
S, 6,072 4,548 135.9 29.7
A1  4,887 2,554 168.8 52.9
So 3,030 2,618 287.8 51.6
Ao 2,867 3,026 272.3 44.6

Shown in Fig. 8.7 are the tuning results of laser-generated Lamb waves, where the

dashed lines represent the arrival times of individual wave modes. We can observe

that among these modes, AO and So are tuned well while A 1 , S1, and S 2 are not.

8.8 Conclusions

The laser generation of Lamb waves was studied in this chapter. Both the line source

and circular source were used to model the laser generation of Lamb waves. For this,

an analytical model was developed to analyze the transient waves due to a circular

source.

It was shown that the line source model and circular source model predict similar

waveforms, which are close to the experimental waveforms. We can conclude that

both source models are valid for lasers in the ablation regime. In addition, the line

source can link the theoretical 2-D FT (or theoretical dispersion curves) with the

experimental 2-D FFT result (or experimental dispersion curves).

The tuning of laser-generated Lamb waves was also investigated. The SPT scheme

was applied to a set of filtered signals. It was shown that it is possible to tune various

wave modes at different frequencies by processing the broadband signals.
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Figure 8.16: Virtually tuned waves obtained from the laser-generated Lamb waves for
2foh = 4.0 MHz-mm: (a) as-filtered case (x = 133 mm), (b) AO mode tuning (AT =

272.3 ns), (c) So mode tuning (AT = 287.8 ns), (d) A1 mode tuning (AT = 168.8 ns),
(e) Si mode tuning (AT = 135.9 ns), and (f) S2 mode tuning (AT = 65.9 ns).
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Chapter 9

Transient Waves in Transversely

Isotropic Composites

9.1 Introduction

By far the tuning of Lamb waves has been investigated for homogeneous isotropic

plates. It was shown that the synthetic phase tuning method is effective as compared

to the other tuning techniques and that the analytical model for studying transient

Lamb waves can be used to investigate the tuning efficiencies of various wave modes.

The results show that it is important to select proper Lamb wave modes for the

nondestructive evaluation of thin-walled structures. It is the interest of this chapter

to study the tuning of Lamb waves in composite materials.

Due to their high strength to weight ratio, composite materials are finding exten-

sive applications in many industries especially the aerospace industry. As a result,

it is of extreme importance to determine material properties for stress analysis and

design. In addition, detection of failure in composites is critical to their safe use.

Ultrasonic techniques are considered as the most commonly used techniques for mea-

suring elastic constants of composites and detecting flaws in composites.

The elastic constants of composite materials can be measured nondestructively

using bulk waves [106-109] and Rayleigh surface waves [110]. The properties are also
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measurable using Lamb waves [12,82,1111 and leaky Lamb waves [8,112-114]. 1 In

addition, matrix cracking and delamination in composites can be detected using leaky

Lamb waves [115] and Lamb waves [116].

Hence, Lamb wave tuning techniques have a great potential in determining elastic

constants and detecting flaw in composite plates. However, composite materials are

anisotropic, so that a great deal of efforts should be made to study the propagation

of Lamb waves in composite laminates before analyzing the tuning mechanism. For

this reason, the focus of this chapter is on investigating transient Lamb waves in

transversely isotropic composite plates, rather than the tuning of Lamb waves in

composites.

The choice of transversely isotropic composites is that unidirectional fiber rein-

forced composites (such as carbon/epoxy, glass/epoxy composites) falling into this

category are widely used and have only 5 independent elastic constants. The inves-

tigation in this chapter is intended to serve as the basis for future research work on

the tuning of Lamb waves in composite plates.

In fact, in the measurement of elastic constants of composites, bulk waves and

Lamb waves are used together. In this chapter, the propagation of bulk (or plane)

waves in transversely isotropic composites will be introduced first, which refers to

the publications by Wu and Liu [82], and Wooh and Daniel [106] . This will be

useful for understanding the methods for measuring elastic constants of composites.

The governing equations of motion for plane waves will also be used to derive the

dispersion relationship in the principal directions (parallel and normal to the fiber

direction), from which the dispersion curves will be constructed. More detail on the

derivation of dispersion relation can be found in the work by Habeger et al. [117],

and Dayal and Kinra [115]. Afterwards, the transient Lamb waves in the principal

directions due to an arbitrary loading will be investigated, which will be very useful

for understanding the tuning capabilities of waves modes. Finally, experiment will

be done to generate Lamb waves in the composite principal directions using laser

'When the plate is immersed in a fluid, Lamb waves traveling in the plate leak energy into the
surrounding fluid and sensed by a receiver. These waves in the fluid are named "leaky Lamb waves".
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sources. The waveforms collected in multiple receiving locations will be will be used

to construct experimental dispersion curves using the two-dimensional fast Fourier

transform (2-D FFT) algorithm which has been utilized in Chapters 5 and 8.

9.2 Plane Waves Propagation

For an elastic medium, the constitutive relation or Hooke's Law relates the stress and

strain components by:

O-ij = CijklEIkl for ij,k,l = 1,2,3 ,

where -j3 is the stress tensor, CijkI is the tensor of elastic constants, and EI is the

strain tensor. The equations of motion are expressed as

x at 2 i=1,2,3, (9.2)

where ui is the displacement, and p is the density. The strain-displacement relation

can be written as

Eij = (Uij + uj,i)/2, for i, j = 1, 2,3 . (9.3)

For a plane wave without external boundaries, the displacements are given as

(9.4)

where k is the wave number, j is the unit imaginary number, ni is the direction cosines

of the normal to the wave front, Urn is the displacement amplitude, and c the wave

speed. By substituting Eq. (9.4) into Eq. (9.1), we obtain the following eigenvalue

equation:

(9.5)
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UM = Um exp[jk(nixi - ct)] ,

(Cijkniniln - PC 6 ik)Uk = 0



where 6ik is the Kronecker delta. This is the well-known Christoffel equation.

A general anisotropic material without any plane of symmetry has 21 independent

elastic constants. If a material has three mutually orthogonal planes of material

property symmetry, it is called an orthotropic material. In this case, the number of

independent elastic constants reduces to 9. The stress-strain relations in coordinates

aligned with principal material directions are
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(9.6)

Hence Eq. (9.5) takes the form

17 - pC2

C12

P13

F 12

r 22 - pc 2

r 23

r13 U 

P2 3  U2

r33 - pC2 U

(0

0
oJ

(9.7)

where the so-called Christoffel stiffnesses Fjj are given by

1711

F22

£33

r12

F23

1 13

= n2C 1 + n2C 66 + n2 C55 ,

= nm~ 66 + nrC 22 + niC 4 4 ,

= 1i0 55 + iC 44 + niC 33 ,

= nin2(C 12 + C66) ,

= f 2 f 3 (C23 + C44) ,

= nii 3(C 13 + C55) .

(9.8)
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For nontrivial solution of the displacement vector U, the characteristic determinant

of Eq. (9.7) is set to be zero:

F11 - pc2  P12  F13

F 12  F 22 - pc 2  P23  =0. (9.9)

F13  P23  p33 - pC2

An orthotropic material is called transversely isotropic when one of its planes is

a plane of isotropy, as shown in Fig. 9.1. By assuming the 2-3 plane is the plane of

isotropy, the elastic constants satisfy the following relationship:

C12 = C13 , C22 = C33 , C55 066 , C44 - (022 - 23) (9.10)

If the wave propagates in the 3 direction, i.e., ni =n2 = 0, n3 = 1, Eq. (9.9) gives

three distinct solutions:

__ C33 C44 C55(.
C33L - , C32T -r , C31T - (9.11)

p p P

where C33L is the longitudinal wave in the 3-axis, C32T is the transverse wave with

a polarization in the 2-axis and C31T is the transverse wave with a polarization in

the 1-axis. We can see that the three independent elastic constants of a transversely

isotropic material: C33, 044 and C55 can be measured using the conventional bulk wave

measurements [82,106]. The remaining two unknown elastic constants C11 and C12 can

be determined using the Lamb wave testing [82]. Specifically, they are determined

inversely from the experimental measurements of phase velocity and frequency, or

the experimental dispersion curves. This requires the understanding of dispersion of

Lamb waves in transversely isotropic plates.
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9.3 Dispersion Relation

Consider an infinitely long transversely isotropic composite plate in the coordinate

system shown in Fig. 9.1. If we assume plane strain condition, the displacement U2

and all derivatives with respect to y vanish. Substituting Eqs. (9.6) and (9.3) into

Eq. (9.2) yields

Pi = CHu 1 ,11 + C13t 3 ,3 1 + C5s(ui, 33 + u3,13 ) (9.12)

pli3 = C 33u 3,3 3 + C 13U1 ,13 + C55 (u1 ,13 + u3 ,11) (9.13)

For a plane wave with displacements in the x and z directions only, the displace-

ment components can be written as

U1= U1 o exp{j(kzx + kz - wt)} (9.14)

U3 U30 exp{j(kxx + kzz - wt)} , (9.15)

where U10 and U30 are the wave amplitudes. Substituting Eqs. (9.14) and (9.15) into

Eqs. (9.12) and (9.13) one obtains

pUiow 2  C 1 Uiok! + (C13 + C5s)U 30 kxk2 + C55 Uiok2 (9.16)

pU 3ow 2 = C55 U30 kx + (C13 + C55)U1 0kxkz + C33 U30k2 (9.17)

For a given frequency w and wavenumber kx, Eqs. (9.16) and (9.17) can be used

to find the wavenumber kz and corresponding values of wave amplitude ratio U30 /U10 ,

where k2 satisfy the following quadratic equation

(C55 + C 13 )2 k k2 = (pw2 - Cn k2 - C5sk 2) (pW2 - C55k - C33 k 2) (9.18)

and given a value of kz, U30/U 10 can be obtained as

U30  (pw2 - Cn1 k2 - C55 k2)R C- =). (9.19)
U10 (C55 + C13 )kxkz
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Figure 9.1: Orthotropic material with the 2-3 plane as the plane of transverse isotropy.

From Eq. (9.18), k2 can be represented in terms of kx

k2  kX[B ± /B2 - 4D]
z 2

P[CM(CH/P - w2 /k') - C 13 (2C 5 5 + C 13 )/p - C 55 w2 /k]

C33C55

(W2/k 2 - C 55/p) (w2 /k - lC/p)
C33C55

(9.20)

(9.21)

(9.22)

If we define kzy and kzm as the complex conjugates of the two roots of kz, i.e.,

kz= jkz and kz = ±jkzm, then k 2 and k m are the two opposite values of k2

obtained from Eq. (9.20) with + and - signs in the bracket,

1,2 _ k [-B +v/B 2 - 4D]
.~zp 2 \-(92-3)

k 2 [-B - v/B2 - 4D]
kzm 2

(9.24)
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Also, Rp and Rm are the values of R, respectively, when kz, and kzm are substituted

into Eq. (9.19) (excluding -j),

(pw2 - Cn k2 + C5 5 k 2)
Rp = X z (9.25)

(C5 5 + C 13)kxkzP

Rm (pw2 - Cn1 k2 + C55 km) .(9.26)
(C55 + C13)kxkzm

The equations in the above stand for the bulk waves traveling in an unbounded

medium. The plate wave solution is obtained if these bulk waves add up such that

the free boundary conditions are met at z ± th. The two possible plate wave

displacements have the following forms:

ul = exp[j(kxx - wt)][M exp(-kzz) + N exp(kzz) (9.27)

+ P exp(-kzmz) + Q exp(kzmz)]

and

u3 = exp[j(kxx - t)]{-jR[M exp(-kzz) - N exp(kzz) (9.28)

- jRm[P exp(-kzmz) - Q exp(kzmz)j},

where M, N, P, Q are arbitrary constants.

The free boundary conditions to be satisfies at z = ±h gives

0'33 = C33u 3,3 + C13uI,1 = 0 (9.29)

3= C55ui,3 + C55 u3 ,1 = 0. (9.30)
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Substituting ui and u3 from Eqs. (9.27) and (9.28) into Eqs. (9.29) and (9.30) imposes

the four following conditions on M, N, P and Q:

G, exp(-kzph)

GP exp(kzph)

-H exp(-kzph)

-HP exp(kzph)

GP exp(kzph)

GP exp(-kzph)

Hp exp(kzph)

Hp exp(-kzph)

Gm exp(-kzmh)

Gm exp(kzmh)

-Hm exp(-kzmh)

-Hm exp(kzmh)

Gm exp(kzmh)

Gm exp(-kzmh)

Hm exp(kzrnh)

Hm exp(--kzh)

where GP and Gm are defined as

GP= C33 kzpRp + C13kx

Gm = C33kzmRm + C 1 3k, ,

(9.32)

(9.33)

and Hp and Hm are defined as

Hp = kz- kxRp

Hm = kzm - kxRm

(9.34)

(9.35)

There are non-zero solutions for M, N, P and Q only if the determinant of the matrix

in Eq. (9.31) is equal to zero, which yields

GpH, cosh(kzph) sinh(kzmh) - GmHp sinh(kzph) cosh(kzmh) = 0

GpHm sinh(kzph) cosh(kzmh) - GmHp cosh(kzph) sinh(kzmh) = 0.

(9.36)

(9.37)

This further results in

tanh(kzph)

tanh(kzmh)

GpHm
GmHp

(9.38)
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for symmetric modes, and

tanh(kzh) _ Gm (939)
tanh(kzmh) GpHm

for antisymmetric modes. These are the dispersion equations for transversely isotropic

composite plates in the fiber direction. 2 This involves four of the five elastic constants:

C1, C13, C33 and C55 . Similar procedures can be applied to obtain the dispersion

relations normal to the fiber direction, where the four elastic constants: C22, C23, C33

and C44 are used.

Figure 9.2 shows the dispersion curves of Lamb waves in the fiber direction for a

7-ply unidirectional carbon/epoxy composite plate of thickness 2h = 0.92 mm. The

material properties used are: p = 1.55 g/cm 3, C1 = 154.02 GPa, C13 = 3.29 GPa,

C33 = 10.96 GPa, and C55 = 5.59 GPa. This composite plate will be used for the

experimental work later in this Chapter. If we compare this figure with the dispersion

curves for aluminum plates, we can see they are quite different.

9.4 Transient Response to an External Loading

In Chapter 5, we analyzed the transient response of a homogeneous isotropic plate

to an arbitrary loading (normal direction) using the integral transform method. The

double Fourier transform was applied to the time variable t and space variable x.

Solutions were obtained for the surface displacements of Lamb waves and their 2-D

FTs. In this section, we use the same method to analyze the transient response of an

orthotropic composite plate to an arbitrary loading.

9.4.1 Problem Statement

Consider an orthotropic plate of thickness 2h loaded by an arbitrary traction f(x, t).

The problem geometry along with the coordinate system is shown in Fig. 9.3, in which

2 In fact, the dispersion equations are valid for orthotropic composite plates.
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Figure 9.2: Dispersion curves of Lamb waves in the fiber direction of a 7-ply unidi-
rectional carbon/epoxy composite plate.

the stress boundary conditions are prescribed as

r zz(x, t) =
f (x, t)

0

UZz(x, t)= 0

at z =+h

at z =-h

at z =h,

Assuming the state of plane strain, the equations of motion can be expressed in terms

of displacements as:

P7i = ClIu 1,1 + C 13U3,3 1 + C5 (ui, 3 3 + u3 ,13 )

P = C33u3 ,33 + C13uI,13 + C55 (ui, 13 + u3,11)

(9.42)

where A and p are Lame constants, and p is the mass density.
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Our objective is to obtain the 2-D FT of the displacements u,(z, x, t) induced by

the loading f(x, t), which is defined as

j+70 +00n(z, k, w) = Un(z, x, t)e-j(kxw)dxdt , (9.43)

where where k and w are the wavenumber and angular frequency. The subscript n

denotes the axis, i.e., n = x (in-plane) or n = z (out-of-plane). Correspondingly, the

inverse FT is defined as

n(z, Xt) =+ 0 +oofi4 (z, k, w)ej(kx-wt)dkdw ,

The solution fin (z, k, w) can be obtained simply by substituting the displacements

un(z, x, t) in the form of inverse 2-D Fourier transform into the equations of motion

and satisfying the boundary conditions. This procedure is described as follows.

zi

2h

f(x, t)

Th1
ix

Figure 9.3: Problem geometry. An orthotropic plate of thickness 2h is loaded by an
arbitrary traction f(x, t) on the top surface (z = h).
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9.4.2 Two-Dimensional Fourier Transform

The derivatives of ux(z, x, t) and uz(z, x, t) with respect to the variables x, z and t

are obtained as

O 1 [+00

Ox 47r2] -00

2  1[+00
Ox 2 4-2]

OX2z 47r2 f-+2 u 
1[00OxOz 47T21

O~u~ 1 +00

7t24f 100

J +00
-00)

1100 &t(jk) exp[j(kx - wt)]dkdw

fix(-k 2) exp[j(kx - wt)]dkdw

J+ dii--0 z(jk) exp[j(kx -wt)]dkdw
[+00

OUZ 1 +f +00
Oz 4r 2 _+00 +00
2 UZ

OZ2

2 uz

Ozax

7r -+oo O
=4 2 4 +0 0

472 / +00

J +00

-00/700'

fix(-W 2 ) exp[j(kx - wt)]dkdw,

dii
dz exp[j(kx - wt)]dkdw
dz

d 2 exp[j(kx - wt)]dkdw

(jk) exp[j(kx - wt)]dkdw
dz

f2z(-w 2 ) exp[j(kx - wt)]dkdw

By substituting these into the governing equations of motion or Eqs. (9.42), we

would have the ordinary differential equations:

+ [(C13 + C5s)(jk)] dft +
dz

(ik)] dfi +
dz

[pw 2 - Cnk2]x = 0

[pw2 - C55 k2 ]fz = 0.

(9.53)

(9.54)

Solving, the general solutions of ii (z, k, w) can be thus written in the form:

ftx(z, k, w) {-jA Hm cosh(kzpz) + DHp cosh(kzmz)} +

{-jB Hm sinh(kzpz) + CaHp sinh(kzmz)}
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(9.45)

(9.46)

(9.47)

(9.48)

(9.49)

(9.50)

(9.51)

(9.52)

Cod2ft x055 dz2

33 dz 2 + [(C13 + C55)

(9.55)



iiz(z, k, w) ={AsRpHm sinh(kzpz) + jDsRmHp sinh(kzmz)} +
(9.56)

{Ba RpHm cosh(kzpz) + jCaRmHp cosh(kzmZ)} ,

where the parameters kz, and kzm are defined in Eqs. (9.23) and (9.24), Rp and Rm

are defined in Eqs. (9.25) and (9.26), Hp and Hm are defined in Eqs. (9.34) and

(9.26). AS, DS, Ba and Ca are the constants to be determined through satisfying the

stress boundary conditions. By far we can express the displacements in terms of these

constants using Eq. (9.44).

Since the stresses are related to the displacements by virtue of the constitutive

law, i.e.,

c 33 = C 33u 3,3 + C 13u1,1 , 0 31 = C 55 U1 ,3 + C 5 5U3,1 , (9.57)

the stresses can be expressed in terms of the constants A., D8 , Ba and Ca:

1 +o +F
0-zz =4r2 GpHm A. cosh(kzPz) + Ba sinh(kzpz) ej(kx-wt)dkdw +

4r2 GmHp [Ds cosh(kzmz) + jCa sinh(kzmz) ej(k -wt)dkdw,

(9.58)

and

O-z = 12f ' ' [C 55 HpHm] - jA sinh(kzpz) - j Ba cosh(kz pz) ei (kx-t)dkdw -

4j12 C 55 HpHm D sinh(kzmz) + Ca cosh(kzmz) ei(k-wt)dkdw.

(9.59)

where the parameters GP and Gm are defined in Eqs. (9.32) and (9.26).
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In the meantime, via the inverse 2-D FT the stress boundary conditions can be

expressed as

f(k, w)ei(kx-wt)dkdw at z +h

at z =-h

at z ±h

1 + 00 + _O "

02( ,t) = 472 -o -

0

o-72x, ) = 0

(9.60)

(9.61)

where f(k, w) is the 2-D FT of the traction f(x, t):

f(k, w) =0 J+
00 f Wo

(9.62)

By satisfying the stress boundary conditions, the constants are determined as

- sinh(kzmh) f(k, w)
s =2A 8

Ba - cosh(kzmh) f(k, w)
2Aa

DS - j sinh(k2,h) f(k, w)
2AS

Ca- -j cosh(k2,h) . f(k, w)
2Aa

As = GpHm cosh(kzph) sinh(kmh) - GmHp sinh(k2ph) cosh(kzmh)

Aa GpHm sinh(k2ph) cosh(kzmh) - GmHp cosh(k2ph) sinh(kzmh)

(9.65)

(9.66)

Note that the conditions for A, = 0 and Aa = 0 represent the frequency equations

for symmetric and antisymmetric Lamb wave modes, respectively [117.

From Eqs. (9.55) and (9.56), it is straightforward to compute tnn(z, k, w) at an ar-

bitrary position z, which can be expressed as the sum of symmetric and antisymmetric

parts:

fn (z, k, w) = Ua (z, k, w) + u' (z, k, u), (9.67)
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where

fs = j [H, cosh(kzpz) sinh(ckOh) - Hp cosh(kzmz) sinh( kzph) (k, ) (968)X,= 2As ~,o) (.8

a -jH, cosh( kzh) sinh(kzpz) - Hp cosh(k_,h) sinh(kzmz) 1
X, = H 2a f(k, w) (9.69)

and

s _ [RmHp sinh(kzmz) sinh(kzph) - RpHm sinh(kzpz) sinh(kzmh)1[RuzSfl -m)2A f(k, w) (9.70)
z ~2As

f a= RmHpcosh(kzmz) cosh(kzph) - RpHmcosh(kzpz) cosh(kzmh)1[RHzO =kmZ 2a- m f(k,wo) (9.71)
z 2Aa

This is the analytical solution representing the transient Lamb waves generated by

an arbitrary traction. It can be observed that the 2-D FT us (z, k, w) and ua(z, k, w)

are the product of two independent terms: the first is the material response which

is only dependent on the material properties, and the second term is the loading in

the transformed domain which is only dependent on the external loading. As for the

case of isotropic plate, we denote the material responses N"(z, k, w) and Nn(z, k, w)

as the overall excitation efficiencies, i.e.,

ft'(z, k, Lj) = Nns(z, k, w) - (k, Lj) (9.72)

fa k(z, k, ,) N k(z, k, w) - f(k, w) , (9.73)

where

II H cosh(kzpz sinh(kzmh) - Hp cosh(kzmz) sinh(kzph) (N,"(z, k, w) = j [H ohk~)2 ~sn~~h] (9.74)
2A,

x Hm cosh( kzmh) sinh(kz pz) - Hp cosh( kzph) sinh(kzmz) (.5
Z) k) W)2Aa
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and

Nz (z, k, W)

NaNzk )=

H, cosh(kzpz) sinh(kzmh) - Hp cosh(kzmz) sinh(kzph)1[HmC~h~zPZ)2A 8 (9.76)
1 ~ 2As

RmHp cosh(kzmz) cosh(kzph) - RpHm cosh(kzpz) cosh(kzmh)1

2Aa 1

(9.77)

Since it is of our particular interest to consider the case on the upper surface, i.e.,

z = h, the corresponding overall excitation efficiencies are

Ns(h, k,w) =j

N,(h, k, )=j

Hm cosh(kzph) sinh(kzmh) - Hp cosh(kzmh) sinh(kzph)

H 2 s
H, cosh(kzm-,h) sinh(kzph) - Hp cosh(kzph) sinh(kzanh)~

I ~ 2Aa

and

Nz(h, k,w)

Nz (h, k, w)

(RmHp - RpH.) sinh((kzph) sinh(kzmh)]

R R 2A s
S( R,,Hp - RpH ..) cosh( kzph) cosh( kz,,h)

_

(9.80)

(9.81)
2Aa _.

9.4.3 Surface Displacements

Now that the 2-D FT f (h, k, w) is obtained, the displacements on the surface can be

obtained through the inverse FT. In a similar way, the displacements are considered

as the sum of the symmetric and antisymmetric components:

Un(h, x, t) = Ua (h, x, t) + us (h, x, t) (9.82)

where

un8(h, x, t) -

u a(h, x, t)

472 - O

472

N'(h, k, w)- f(k, w) -ej(k-t)dkdw

Na(h, f(k, w)- ej(k-wt)dkdw
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Similar to the case of transient waves in an isotropic and homogeneous plate, the

functions Ns(h, k, w) and Na,(h, k, w) contain an infinitely large number of poles cor-

responding to the roots of dispersion equations in the composite principal directions.

Thus, it is again convenient to use the residue theorem for evaluating the integrals

over the wavenumber k. Referring to Chapter 5, both the in-plane and out-of-plane

surface displacements are obtained as

us (h, x, t)=

u a(h, x, t) =

1

27r

1

27r

j S H.(h, w) -(k, w) -ej(kx-wt)dw
Sk,

f+0:H.' (h, u)) - (k, u)) -j e(kx-wt)du
k,

(9.85)

(9.86)

where Hn(h, w) and Hn(h, w) are the modal excitation efficiencies, expressed as

Hx(h,w) =

Ha (IHS(h,w) =

Hz (h, w) =

Ha (h,w)

Hm(Gp/Gm - 1) cosh(kzph) sinh(kzmh)

4AI
Hm(Gp/Gm - 1) sinh(kzh) cosh(kzmh)

4AI
j(RmHp - RpHm) sinh(kzph) sinh(kzmh)

4A'
S

j(RmHp - RpHm) cosh(kzph) cosh(kzmh)

4A/a

Here A' and A'X represent the derivatives of A, and a with respect to the wavenum-

ber k, which can be obtained numerically. Notice that the summations are carried

out for the real wavenumbers k. and ka to represent the propagating waves in the far

field.

9.5 Experimental Investigation

Experiment is conducted to investigate the Lamb wave propagation in the princi-

pal directions (parallel and normal to the fiber direction) of the 7-ply unidirectional

carbon/epoxy composite plate of thickness 2h = 0.92 mm using laser sources. The

dispersion curves in the fiber direction of this specimen have been shown in Fig. 9.2.
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The experimental setup is basically the same as that for the laser generation of

Lamb waves in an aluminum plate as shown in Fig. 8.9. In the fiber direction (00), 128

waveforms were recorded for varying source-receiver distances with a spatial sampling

interval of 0.8255 mm. In the normal-to-fiber direction (900), only 54 waveforms were

recorded for varying source-receiver distances with a spatial sampling interval of 0.508

mm. The amplitude of the signal is proportional to the out-of-plane displacements

on the plate surface.

Figure 9.4 illustrates three sample waveforms parallel to the fiber direction at the

source-receiver distances of (a) x 1 = 114 mm, (b) x 2 = 166 mm, and (c) x 3 = 219 mm.

Notice that the signal amplitudes are normalized by the same value. As we can see,

there are only two fundamental modes obtained: A0 and So modes, and So mode

arrives earlier than A 0 mode, while the amplitude of So mode is much smaller than

that of A0 mode. For A0 mode, the dispersion effect is obvious since the higher

frequency part arrives earlier than the lower frequency part and the wave shape

changes with the change of source-receiver distance. This observation is the same

as some publication on laser-generated Lamb waves in composites [82]. The lack

of high frequency and high order modes could be caused by the high attenuation of

high frequency signals in composites. Also noticeable is that the amplitude of the

waveform at the distance of x 3 = 219 mm is larger than the one at the distance of

X2 = 166 mm, which is inconsistent with the expectation that the waveform amplitude

tends to decrease with the increase of distance. This is because the detection laser

was not working very steady during the experiment.

Figure 9.5 shows three sample waveforms normal to the fiber direction at the

source-receiver distances of (a) x = 71.0 mm, (b) x 2 = 83.2 mm, and (c) x 3

95.9 mm. The signal amplitudes are also normalized by the same value. As we can

see, as in this case of waveforms in the fiber direction, there are only two fundamental

modes shown: A 0 and So modes, and So mode arrives earlier than A 0 mode. Fur-

thermore, the amplitude of So modes is so small that it is almost non-visible. For

A0 mode, the higher frequency part arrives earlier than the lower frequency part and

the wave shape changes with the change of source-receiver distance, indicative of the
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Figure 9.4: Experimental waveforms of Lamb waves parallel to the fiber direction in
a 7-ply unidirectional carbon/epoxy composite plate of thickness 2h = 0.92 mm at
the distances of (a) x, = 114 mm, (b) X 2 = 166 mm, and (c) X3 = 219 mm, where the
signals are generated by an Nd:YAG pulsed laser and received by a Lasson EMF-500
laser receiver.
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dispersion. The waveforms collected normal to the fiber direction are quite differ-

ent from those collected in the fiber direction, indicating the anisotropic feature of

composites.

After experimental waveforms of Lamb waves are obtained in multiple locations,

it is interesting to see if experimental dispersion curves will be resulted, like the case

of laser experiment on an aluminum plate (see Chapter 8). A two-dimensional fast

Fourier transform (2-D FFT) is applied to the 128 waveforms obtained in the fiber

direction, where a Hanning window is utilized in order to reduce the leakage in the

wavenumber domain. Figure 9.6 illustrates the comparison of the experimental 2-D

FFT and theoretical 2-D FT of Lamb waves in the fiber direction, where the excitation

laser beam is assumed to be beam size a 0.5 mm. It is observed that only a faint

agreement exists at the low frequency range. This result is not surprising since only

low-frequency AO and So modes are observed in the experimental waveforms. The

theoretical model does not take the attenuation in composites (especially the high

frequency modes) into account.

9.6 Conclusions

This chapter was intended to serve as a basis for the future work on the Lamb wave

tuning in composites. A limited investigation on the transient Lamb waves in t-rans-

versely isotropic composite plates was conducted. The propagation of plane waves in

composites was firstly reviewed, which gave the guidance for elastic constants mea-

surement using bulk waves and Lamb waves. The dispersion equations in the principal

directions (parallel or normal to the fiber direction) of composites were reviewed and

sample dispersion curves were constructed. Afterwards, the transient Lamb waves in

the principal directions of composites subject to an arbitrary loading was analyzed

using the integral transform method. Expressions were derived for the displacements

and their 2-D FTs. Finally, laser-generated experimental Lamb waves in the principal

directions were obtained on a unidirectional carbon/epoxy composite plate.
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Figure 9.5: Experimental waveforms of Lamb waves normal to the fiber direction in a
7-ply unidirectional carbon/epoxy composite plate of thickness 2h = 0.92 mm at the
distances of (a) x1 = 71.0 mm, (b) X2 = 83.2 mm, and (c) X3 = 95.9 mm, where the
signals are generated by an Nd:YAG pulsed laser and received by a Lasson EMF-500
laser receiver.
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From the study we can learn that the wave propagation behavior in directions

parallel to the fiber direction is quite different from that in directions normal to

the fiber direction. Also, only two fundamental wave modes AO and So modes are

found in the experimental waveforms, and AO mode is dominant. Since the waveforms

are of low frequency, we may conclude that the attenuation of high frequency wave

modes is high in composites. This also partially explains the observation that he

experimental dispersion curves obtained from the 2-D FFT results are not very close

to the theoretical curves.
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Figure 9.6: Comparison of the experimental 2-D FFT and theoretical 2-D FT of
Lamb waves in a plate unidirectional carbon/epoxy composite plate of thickness 2h =
0.92 mm, where the excitation source is a Nd:YAG pulsed laser of beam size a =
0.5 mm.
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Chapter 10

Summary and Conclusions

10.1 Summary

In this thesis, the tuning of Lamb waves in elastic plates was studied theoretically

and experimentally. A dynamic phase tuning concept employing array transducers

was proposed, and compared with the traditional angle wedge and comb transducer

tuning methods. This tuning concept was implemented in two ways - phased array

tuning and synthetic phase tuning. The former was based on physical time delays,

while in the latter numerical time delays are provided to array elements.

To understand the tuning efficiency of each wave mode, an analytical model was

developed and the transient response of an elastic plate to an arbitrary loading was

analyzed, using an integral transform method (double Fourier integrals applied in

both space and time). The analytical expressions were used to compute the surface

displacements as well as their temporal and spatial Fourier spectrum, which were

then used to illustrate the tuning efficiency of each wave mode.

The analytical model was then extended to investigate the tuning mechanism of

angle wedge and array transducers, by taking into account their excitation conditions.

The surface displacements of individual modes and their Fourier spectrum were de-

rived and used to study the tuning behavior. The analytical results were compared

with the experimental results as well as the numerical results obtained from the finite

element simulation studies.
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In dealing with broadband signals, laser-generated Lamb waves were investigated.

Both line and circular source loading models were considered for lasers in the ablation

regime. The predicted waveforms and dispersion curves were compared with the

experimental results. Virtually tuned waves were also constructed by processing a set

of laser-generated Lamb waves, based on the SPT scheme.

A limited investigation of Lamb waves in transversely isotropic composite plates

was also carried out. Solutions were obtained for transient waves in the principal

directions. Experimental waveforms were obtained in the principal directions using

laser sources. This investigation was intended to serve as a basis for the future study

of Lamb wave tuning in composite plates.

10.2 Conclusions

The following conclusions are drawn from this study:

* The phase tuning using an array transducer is effective in that it can tune the

modes propagating at low phase velocities and that the propagation direction

of tuned waves can be controlled.

" The synthetic phase tuning technique is flexible and cost-effective.

" The tuning efficiency varies from wave mode to wave mode and from frequency

to frequency.

" The analytical solutions for the displacements of wave modes and their Fourier

spectrum can be used to investigate the tuning mechanism of various methods

and tuning efficiencies of various wave modes.

" The analytical results are consistent with the numerical results obtained from

the finite element simulation studies.

" The tuning effect of angle wedge transducers is achieved by controlling the angle

of incidence.
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" For the angle wedge transducer tuning, Snell's law is not rigorously obeyed if

the excitation signal has certain bandwidth.

" The tuning effect of phased array transducers is achieved by providing time

delays between elements.

* The tuning effect is improved from the half-way tuning to the full tuning.

" Both line and circular source loading models are valid for lasers in the ablation

regime.

" The SPT scheme can be applied to broadband signals to construct virtually

tuned waves, combined with signal processing algorithms.

" It is feasible to obtain optimum tuning effect through this study.

" For Lamb waves in a transversely isotropic composite plate, the propagation

behavior parallel to the fiber direction is different from that normal to the fiber

direction. Only two fundamental modes (A0 and SO) exist in the experimental

signals and the amplitude of A0 mode is much larger than that of So mode. In

addition, the attenuation of high frequency components in composites is severe.

10.3 Contributions of the Thesis

The contributions of this thesis include:

" Development of the synthetic phase tuning technique.

" Development of an analytical model for studying transient Lamb waves using

an integral transform method (Fourier transform in both space and time).

" Theoretical and experimental investigation of the tuning mechanism of angle

wedge transducers.

" Theoretical and experimental investigation of the tuning mechanism of array

transducers (synthetic phase tuning).
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" Theoretical and experimental investigation of laser-generated Lamb waves.

" Development of an analytical model for studying transient Lamb waves origi-

nated from a circular source using Fourier and Hankel transform.

" Study of the feasibility of tuning laser-generated Lamb waves.

" Development of an analytical model for studying transient Lamb waves in the

principal directions of transversely isotropic composite plates.

10.4 Recommendations for Future Work

Based on the thesis work, major future research work is recommended as follows:

" Reflection of Lamb waves

When investigating the synthetic phase tuning under pseudo pulse-echo opera-

tion, we assumed a perfect reflection of Lamb waves from the plate edge. In fact,

there are energy loss and mode conversion associated with the wave reflection.

" Attenuation of Lamb waves

Lamb waves have energy loss during their propagation in waveguides, which is

related to the frequency. The attenuation is severe in composite plates, espe-

cially for wave modes of high order.

* Experimental investigation of full synthetic phase tuning in PPC operation

In the thesis research, theoretical results were given for the full synthetic phase

tuning, but were not confirmed by experimental results.

" Influence of array parameters

It is of importance to investigate the influence of array parameters on the tuning

effect, including the number of elements N, inter-element spacing d, and element

size a.
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" Influence of the laser beam size

It is of importance to study the influence of laser beam size (a) on the predicted

waveforms, while in the study we only used a single beam size value.

" Time-frequency analysis

Time-frequency analysis tools such as wavelet transform are very useful for

analyzing dispersive signals. They can be applied to laser-generated Lamb wave

signals for constructing virtually tuned waves.

" Tuning of Lamb waves in composite plates

It is important to apply various tuning techniques, including the angle wedge

transducer tuning, and synthetic phase tuning methods, to transversely isotropic

composite plates.
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Appendix

A Fourier Transform of a Gaussian Spike Pulse

Consider a Gaussian spike pulse of the form:

( 1 e -j e -- 2 2 / 8

27 (A.1)

where wo is the center angular frequency, and B is the bandwidth.

transform of f(t) is simply expressed as

(w) =O

The Fourier

e-2wo e- -2t 2 /8ejwtdt (A.2)

which can be rewritten as

f(w) = exp -
B 2

t2 _ j(W -WO)t dt.

By defining -F as

T = t - j( - wo)t
B 2 /8

we have the equity

t2 j(w - wO)t _ 2

B2/8
+ - W ) 2

B4/16
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Thus the Fourier transform is 1

f() = exp[ B 2,T2  2(w- wo) 2 1 d-
xp- 8 B2 Ir.

(A.6)

Using the quantity

f+0e-2 dx = fi ,I/+00
-00

(A.7)

finally the Fourier transform of the Gaussian spike pulse is obtained as

(A.8)f(w) = 2 2(-wo)2 2

BVr

f+00
'In this thesis, the Fourier transform over the time t is defined as -(w) ] x(t) exp(jwt)dt.

C +oO
Correspondingly, the inverse Fourier transform is defined as T(t) = 2e o ~ )xp( jwt)doi.
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B Toneburst Modulated by Hanning Window

The excitation of narrowband signals is generally implemented by producing sinu-

soidal. In order to control the bandwidth of the excitation signal, a Hanning window

is often applied to modulate the toneburst. The Fourier transform of a sinusoidal

toneburst signal modulated by a Hanning window is derived in this Appendix.

A Hanning window can be viewed as a periodic Hanning function modulated by a

rectangular (Dirichlet) window. As a result, the toneburst modulated by a Hanning

window is equivalent to a sinusoidal signal modulated by a periodic Hanning function

which is modulated by a rectangular window, if the duration of the Hanning window

is equal to the duration of the toneburst.

Denoting x(t) as the sinusoidal signal, h(t) as the periodic Hanning function and

wr(t) as the rectangular window, the modulated toneburst signal wH(t) is the product

of these three terms:

wH(t) = x(t) - h(t) -Wr(t) . (B.1)

In the frequency domain, it is represented as the convolution

1
H(W) - 2 (w) 0 h(P) r (W), (B.2)

where &H(w), s(w), h(w) and 'r(w) are the respective Fourier transform of wH(t),

x(t), h(t) and Wr(t), respectively. The expressions for the signals x(t), h(t) and w,(t)

are simply written as

x(t) exp(-jwot) (B.3)

h(t) 0.5 - 0.5 cos(27rt/to) (B.4)

wr(t) = H(t) - H(t - to) , (B.5)

where wo = 2irfo and fo is the frequency of the sinusoidal signal x(t). The time

constant to is the duration of both the toneburst and the rectangular window, that
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is to = m/fo for the m-cycles of sinusoids in the signal.

Heaviside step function, i.e.,

1 for t > 0
H (t) = (B.6)

0 for t < 0 .

The Fourier transforms f(w), h(w) and z,(w) are then obtained as

:(w) 21r6(w - wo) (B.7)

h(w) =-[26(w) - 6(w - 27r/to) - 6(w + 27r/to)] (B.8)
2

&r (W) 2sin(wto/2) exp(jwto/2) . (B.9)

By substituting these into Eq. (B.2), the Fourier transform WH(W) is obtained as

WH ( +A2+ , (B.10)

where

2 sin 7rm(w-wo) 1j7n(W - W0)

A, = WO e Wo (B.11)
w - Wo

sin [rm(w-wo-w i/)] jir m(w - wo - wO/m)

A2 = - I a e Wo (B.12)
w - wo - WO/m

sin [rm(W-w-o - i/m) j7rm(w + wo - wO/m)

A3 = - I e wo . (B.13)
W + Wo - wO/m
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