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Abstract. The progresses in researches for the development of an automatic system to analyze weld defects in radiographic
images have been evident in the last years. Such research refers to a detailed study of nonlinear classifiers of patterns
implemented by artificial neural networks, in order to classify existing weld defects in radiographed weld joints. To increase
the reliability of the obtained results, radiographic patterns of the IIW (International Institute of Welding) were used.
Geometrical features of the defect classes are used as inputs of the classifiers. The relevance of such features to classify the
studied classes was also evaluated. Techniques of analysis of the principal components of discrimination, which were also
developed by neural networks, are described in order to visualize in two dimensions the classification problem, as well as the
obtained classification performance with the obtained components. The results proved the efficiency of such technique for the
data used in the study.

Keywords. Radiographic Patterns, Welding Defects, Criterion of Relevance, Nonlinear Classifier, Artificial Neural
Networks.

1 – INTRODUCTION

 In our modern and globalized world, more and more industries, such as naval, nuclear, chemical,
automobile, aerospace, metallurgical, petrochemical and petroliferous industries, among others, have been
turning their attention to the quality of their materials and equipments, a basic requisite to keep competitive in
national and international markets. Based on this principle, nondestructive tests have a fundamental role in
evaluating the quality of the materials and equipment, either in the manufacturing process or during the operation
period.

Among nondestructive tests, the radiographic inspection is one the oldest methods and it has been used
for about five decades. Among the advantages obtained with such method, if compared to others, as the
ultrasonic test for instance, is the fact that the image projected on the film shows the internal photograph of the
piece, which no other method can provide. The radiographic test using X-rays or gamma source of welded joint
or cast pieces is among the most important applications of such inspection method. In this study, we will
especially deal with radiographic images of welded joints that are used to inspect the existence of weld defects
caused by several reasons.
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In this test, the conventional inspection method requires an excellent radiographic image quality and,
for this reason, it is controlled by strict international standards. Besides, it is known that the visual inspection of
the radiography done by the inspector is performed subjectively, which requires a large experience, visual acuity
and knowledge of the technique used in the inspection. However, even when done properly, many times errors
occur concerning the interpretation of defects existing in weld joints, either in an existing defect that was not
detected or in the incorrect classification of the detected defect.

Nowadays, there are several research centers in the world directed towards the development of an
automatic system of inspection and analysis of radiographic images, using computerized methods, especially
aiming at the defect classification. Along the period of 15 to 20 years of researches, many publications have been
released about this subject, due to its undeniable relevance and importance to this technological development
area. Some of these publications will be discussed along the presentation of this study, in some cases, comparing
them to this proposed study.

The automatic analysis system applied to radiographic images of welded joint or cast pieces involves
basically the following steps: film scanning, or direct digital acquisition without using the film, image
preprocessing, defect identification in the weld joint and classification of defects that were found; sometimes,
with an extra step of post-processing the results[1-3]. Nowadays, the step corresponding to the classification of
patterns has been one of the most studied ones, in terms of research [4-11].

In this study, we describes one research that was conducted in order to inspect the efficiency of
nonlinear pattern classifiers of defects implemented by using artificial neural networks. The features of weld
defects are evaluated regarding the relevance to the classification of the following defects: undercutting, lack of
penetration, porosity and slag inclusion, the latter subdivided into liner and nonlinear inclusion. To do so, neural
relevance criteria are used aiming at reducing the dimensionality of the data, which are necessary to the
classification. Besides, with the intention of studying this type of classifier deeper, the technique of PCD
(Principal Components of Discrimination) was used, also implemented by neural networks, in order to reduce the
dimensionality of the input data and bidimensional display of the regions showing the separations among classes.
The results are presented in percent of accuracy in the classification of each class. The probability calculation of
correct classification using these types of classifiers is presented as well. Considering that such results are a
sequence to previously conducted and published studies [12-14], some summaries of previous results are presented
along this text to make it easy to understand the new results.

2 - EXPERIMENTAL PROCEDURE

2.1 - Radiographic Films
The radiographic films used in this study follow the IIW1 (International Institute of Welding) patterns,

which attest the existence of a certain defect class in each film. These patterns were used in such a way to ensure
the reliability of the results obtained, because they are well accepted by the professionals who work with
radiographic tests. The IIW patterns are radiographic images of welded joints of carbon steel, and each film
receives the information concerning the radiographic parameters used in the radiographic inspection (equipment
voltage, current used in the study, type of existing weld, focus-film distance, etc), but these factors were not
taken into consideration because they are not part of the proposed study scope.

2.2 - Film Scanning

Industrial radiographic film scanning is allowed, according to the standard ASME V[15], since some
requirements included in the standard are observed. The most frequently used method to scan radiographic
images is the utilization of specific scanners, which work with a light transmission mode.

In his study, Liao[6,7] relates film scanning using the NDT SCAN scanner. Aoki[4] also used one scanner
for the radiographic images in his study.

In this present study, one UMAX scanner was used, model: Mirage II (maximum optical density: 3.3;
maximum resolution for films: 2000dpi) to scan the IIW films. The spatial resolution used in the study was 500
dpi (dots per inch), totaling an average image size (due to a small size variation in the patterns) of 2900 pixels
(horizontal length) × 950 pixels (vertical length), which resulted in an average pixel size of 50µm. Such
resolution was adopted for its possibility of detecting and measuring defects of hundredths of millimeters, which,
in practical terms of radiographic inspection, is much higher than the usual cases. The adopted gray scale
resolution was 8 bits (256 levels), because this scanner model does not allow a better resolution. However, it is
known that visually, the human being is not able to recognize any difference in gray scale over 128 levels [16] and
images of 10, 12 or 16 bits occupy a significant memory space.

                                                          
1 Properly authorized by the IIW.



2.3 - Image Preprocessing

The radiographic films usually have the presence of noises and deficient contrast, due to intrinsic
factors of the inspection technique, such as the non-uniform illumination [3]. The noises in scanned radiographic
images are usually characterized as randomly spread pixels, with intensity values that are different from their
neighboring pixels [2]. The use of low-pass filters to soften the noises is very common, as well as techniques to
extend the gray scale histogram to optimize the contrast [2,4].

After being scanned, the radiographic patterns were preprocessed using the Image Pro Plus 4.0 (Media
Cybernetics) program. One median-type filter was used to soften randomly existing noise and extend the gray
scale histogram to improve the image contrast. The median filter is usually the most indicated to eliminate noises
in radiographic images, according to the present literature[2,4]. Further details about the use of such filters with
the IIW patterns can be found in Silva[17].

2.4 - Features Extraction

One of the most used methods to pattern recognition of weld defects is the one that uses the selection of
shape and position features of such defects in the weld joint. Kato [5] extracted 10 features in his study to develop
one automatic inspection system for radiographic images of joints. The study that Aoki [4] proposed was to deal
with 10 features of weld defects.

In this study, we use four features to build the input data set of nonlinear pattern classifier. Such
features are briefly described below (a detailed description can be found in the previous study [12]):
• Position (P=h/H): ratio of the defect distance to the weld joint center to the joint thickness at the defect

occurrence point. H aims at normalizing the thickness variation of the joint, which occurs frequently in weld
radiographic images.

• Aspect Ratio (a=L/e): it is one of the most known features for the identification of “objects” in pattern
recognition. Ratio of the highest axis to the smallest axis of the smallest ellipse of an area which is
equivalent to the defect area.

• Ratio e/A: ratio of the smallest axis to the defect area.
• Roundness (p2/4πr): ratio that measures the resemblance degree between the defect shape and a

circumference.

With these features, it was possible to build the input data set of the neural network (input vector). It
had a total of 14 samples of undercutting (UC), 15 samples of lack of penetration (LP), 17 samples of porosity
(PO) and 49 samples of slag inclusion (SI), divided into 24 samples of nonlinear slag inclusion (NLSI) and 25
samples of linear slag inclusion (LSI). As the data amount differed from one class to another, some data from the
less favored classes were randomly duplicated, until 25 samples were obtained, the greatest available amount of
a class. Considering the slag inclusion (SI) class as just a single class, 50 samples were handled. It is necessary to
point out that such amount of samples was obtained after preprocessing, in order to eliminate outliners that were
more than three standard deviations distant from the average in a gaussian distribution, not to make the network
training difficult[12].

2.5 - Nonlinear Pattern Classifiers Using Neural Networks

The step of weld defect classification using artificial intelligence tools is one of the most updated
research lines, which is the subject of several publications [4,5]. Most publications talk about the use of Artificial
Neural Networks and Fuzzy Logic [18]. In this study, the neural networks [19,20] are used to implement nonlinear
pattern classifiers of weld defects, giving a sequence to the studies presented in Silva [12,13,14]. Having a training
set, defect patterns extracted from radiographic images of the IIW, networks with supervised learning were used,
being the error retropropagation algorithm [19] used in the neural network training. Nonlinear classifiers were
implemented using the neural networks with two layers: one intermediate layer and one output layer. In order to
obtain the best number of neurons in the intermediate layer, one variation of neuron numbers in this layer was
carried out, following the performance and errors obtained after the training in function of the number of neurons
utilized. With this information, it was possible to find the best number of neurons to obtain the best classification
performance with the data used in the network learning. The obtained results will be displayed in graphs with the
number of neurons versus the classification performance and errors. Since it is a pattern classification network,
the number of neurons of the output layer corresponding to the number of studied classes. In this case, 4 neurons
in the output layer, considering the slag inclusion as just a single class (SI), and 5 neurons in the output layer,
when the slag inclusion was considered as subdivided into two classes: linear slag inclusion (LSI) and nonlinear
slag inclusion (NLSI). All neurons were hyperbolic tangent-type and with the presence of bias [19,20].



The classifier input, vector x  composed of defect features, was variable, depending on the relevance
found through a criterion that was previously described in Silva [13,14] and which will be briefly described as
follows. Figure 1 shows the neural network architecture used in the implementation of nonlinear classifier.

Figure 1: Neural network architecture used in the implementation of nonlinear pattern classifier.

2.6 - Criterion of Relevance

The pattern classifier performance depends significantly on the relevance of the features used in the
input vector. There are several methods to investigate how relevant one feature is to a class discrimination, all of
them aiming at the elimination of irrelevant information in the input vector, which produces a reduction in the
system dimensionality and, consequently, in the calculations involved in the process. This study presents the new
results obtained through the criterion of relevance described in Silva [13]. This criterion is based on the search for
changes in the answer by the network for when one used feature is replaced by its average value. The greater the
difference between the answer of the network, the greater the feature relevance [21]. This criterion was used in
previous studies [13] to evaluate the six features (also known as characteristic parameters) that were initially used
in the study, but, in this case, the classifiers were linear, implemented only with one hyperbolic-tangent type
neuron. The criterion of relevance is calculated through the following equation [13,21]:

)( ixR = 
N
1 ( ) ( )

2

1
,

~~∑
=

−
N

j
ijj xyxy                     (1)

)( ixR : Relevance of Component ix  of input vectors x  ;

N : Number of patterns;
( )jxy~ : Output vector of the neural network for each presented input pattern ix ;

jix : Input vector jx , in which the i-th component was replaced by its average value, which was taken
considering all the input vectors;
( )jixy~ : Network output for the input jix .

The new results differ from the previous ones, because now the criterion of relevance was applied using
nonlinear classifiers. After calculating the relevance parameters for each feature used in the study, the result is
showed in a table.

2.7 - Principal Components of Nonlinear Discrimination

The technique of principal component analysis (PCA) is well known as being one of the most used
techniques to reduce the dimensionality of a multivariable data. Originally [19], it is a multidimensional data
linear mapping technique in lower dimensions, minimizing the loss of information. However, as it is a mapping
linear method, it becomes improper for several engineering problems that are nonlinear, because the smaller



components may contain important information that, consequently, shall not be discarded [22]. For this reason, the
principal nonlinear component analysis is utilized [22].

One of the ways to develop the principal components is by using the artificial neural networks, as
described by Haykin [19] in the self-representation case. In this case, they can be used either to reduce the
representation components or discrimination components. In this study, the principal components are used in
nonlinear classification, implemented with the neural networks, being developed with the error retropropagation
algorithm. Three types of principal component development are evaluated: the components with independent
performance and the components with cooperative performance, the latter divided into two types.

As the initial input vector is composed of four components, four defect features, the two nonlinear and
independent principal components of classification were used to display the problem of defect class separation in
two dimensions. Besides, the principal components found by the three types are used as inputs of nonlinear
classifier to evaluate its performance in a situation of reduced dimension. The developed methodology is
described as follows.

Suppose that one pattern classification system has a vector x  of dimension n as input, then it is desired

to reduce the input vector dimension to a vector z  of dimension m, m < n, containing only information that is
relevant to the data set, so the representation is as follows:

x (dim n) → z (dim m)     m<n                                    (2)

Thus, considering one pattern classification problem, vector z  is composed of m principal components
of classification. If these components are hierarchically developed, the first component is a result of the
orthogonal projection of vector x  in direction 1w ( 1w =1), which represents the principal direction of the
separation of the data in question. Schematically:

Figure 2: Projection p1 1w  of x  in the principal direction of the discrimination.

Thus, the principal component p1 is the orthogonal projection of x  in 1w  and it can be represented as:

   p1= x t
1w            (3)

Where,
x t: Transpose vector of x ;

1w : Vector representing the principal direction of the classification.

So, the representation of x  focusing only one principal component is:

x ≅ p1 1w                      (4)

The representation error 1x  is the following:

x = p1 1w + 1x                     (5)

Vector 1x  represents non-projected information of x  in the direction of 1w . Breaking vector x  up in
m components can be represented by:

x = p1 1w + p2 2w  + p3 3w  +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ +  pm mw  + ε ,                                                     (6)

where ε  is the residual error vector [22] for the representation using m principal components.



The first nonlinear classification component can be obtained by training a network of three layers in
error retropropagation, as shown in Figure 3. The first layer is composed of only one linear-type neuron, while
the others are composed of hyperbolic tangent-type neurons.

The adjustment of synaptic vectors of the three layers is done by the descending gradient method using
the quadratic average error as objective function [19]. After the training, the vector 1w  represents the principal
direction of nonlinear classification of studied pattern classes.

Figure 3: Network for the implementation of the first principal component of nonlinear classification.

One special case of development for the remaining components is to make them orthogonal, that is,

1w ⊥ 2w  ⊥ 3w  ⋅and ⊥ mw . For this purpose, the network is trained again after obtaining 1w  the same way, but

the new input to be used will be 1x , obtained in the equation 5, proceeding successively until the component m
(usually m<n). Here we call them principal component of independent performance, once each component works
with the noise jx  of the information that was not used by the previous ones:
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Trying to make the classification in an independent way, without counting on the help of the previous
components, which had already been extracted, thus now available.

Another way to obtain the components is to consider that the classification is done by utilizing a
cooperative performance process, that is, the classification is done by utilizing the component that is being
calculated, and all the previously extracted ones. This case can be subdivided into two:
• Type I: after obtaining 1w , the second component is found by adding a second linear neuron to the first

layer. However, 1w  is made fixed during the training, training only 2w  and the synaptic weights of the

other layers. In this case, the input continues x , because the components are not independent. The objective
in this case is to find the second classification component that is favorable to work in cooperation with the
first one. The procedure is similar to obtain the third, fourth or m-th component, keeping 2w , 3w , and

1−mw  fixed. One way to speed up the process is to use x  as the input of the first neuron, and 1−jx  as the
input of j-th linear neuron of the first layer. This is possible because, at the input of each hyperbolic tangent-
type neuron of the second layer, the excitation is one linear combination of the network inputs.

• Type II: the two components can also be obtained by training them simultaneously, that is, the two
cooperate between themselves during the network training. Similarly, the same can be done for three, four
or m components. In this case, one base is created for the reduced and optimized input space for the
classification.

In one data set of several dimensions, it is difficult to display the dimension of the separation problem
from one class to another, so, by using the two principal components of nonlinear classification, it is possible to
have an optimized display of the pattern arrangement. In this study, the two principal components of
classification with independent performance were used to display the separation graphs of the four and five
classes that were jointly treated. These components were obtained with a neural network, as shown in figure 3,
which was trained by using the error retropropagation and the variable learning rate and moment [19,20].



The component p1, as well as the independent set (p1 + p2), and the two components obtained by the two
types of training with cooperative performance were used as input vectors of a nonlinear classifier for the
performance evaluation.

3 - RESULTS AND DISCUSSIONS

3.1 - Previous Results

In previous studies [12,13,14], nonhierarchical and hierarchical linear classifiers were evaluated in the
aspects of classification performance when six features were used to classify the same classes: UC, LP, PO, NSI
and LSI (also the inclusion as just a single class). In this case, it was possible to conclude that the hierarchical
classifiers - which classify first the classes of easiest separation [12], enable better performances than those of
nonhierarchical classifiers do. The general percent of accuracy of this type of classifier was 85%, when the
inclusion class division was taking into account, and 97% without considering such division, which are
significantly high percents when talking about linear classifiers.

In Silva [13,14], the results regarding the feature relevance evaluations were published. Two techniques
were used: the evaluation by linear correlation between the features and the studied defect classes and the
criterion of relevance that was previously described. However, in this previous case, the criterion of relevance
was developed using also one linear classifier (implemented with only on neuron). The results showed that the
features C (defect contrast [12]) and L/A did not have a significant relevance when compared to the others. For
this reason, some combinations were also used among the relevant features to form input vectors for the linear
classifiers, which allowed to prove that the reduction in the input data dimensionality is possible, without
affecting the pattern classifier performance considerably.

Regarding the previous results, it is also interesting to point out that the criterion of reclassification [12] –
according to which the class indicating neuron is the one with the highest internal excitation value, the criterion
used for when all classifier outputs are negative or when there are two or more positive outputs-, allowed the
best performance.

In terms of generalizing the classifiers, as the quantity of observations was small for some classes, the
accuracy probability calculations were used within the criterion of reclassification. This methodology is
described in details in Silva [13].

3.2 - New Results

3.2.1 - Nonlinear Classifiers

Starting from the final point of the previous studies, the features C and L/A were discarded from the
classifier input data, and, thus, the results here presented refer to input composed of those four remaining
features (a-e/A-R-P).

In order to find a favorable number of neurons to be used in the intermediate layer of nonlinear
classifier (developed as shown in Figure 1), the empirical criterion was used, which gradually increases the
number of neurons in this layer and, consecutively, observes the classification error and performance. It was
done considering the inclusion class divided into linear and nonlinear inclusion (total of five classes), Figure 4a,
and inclusion considered as just a single class (total of four classes), Figure 4b. It was confirmed that, in the first
case, 5 classes, the classifier reached the maximum performance percent (99.2%) and the minimum error
percent, with the training data of 17/18 neurons in the intermediate layer (Figure 4a). In the four-class case, the
maximum performance percent (100.0%) happened for 10 neurons. The confusion tables 1 and 2 show the
numerical quantity and accuracy percent obtained for the following conditions: without reclassification criterion
and with reclassification criterion for the five-class condition, respectively. It was confirmed that only one
nonlinear slag inclusion observation (NLSI) was not classified at first, being afterwards confused with the lack of
penetration (LP) class. For the four-class condition, the performance of 100.0% was obtained without the
reclassification criterion, therefore, being unnecessary to present the confusion tables.



(a) (b)
Figure 4: (a) and (b) Graphs of neuron number optimization in the intermediate layer of the neural network to
obtain the best performance with nonlinear classifier with the features: a, e/A, R and P as input. For divided and
non-divided inclusion, respectively.

Table 1: Table of Confusion obtained with the features a-e/A-R-P.
Without Reclassification

UC LP PO LSI NLSI More than one None

MO 25(100%) 0 0 0 0 0 0
FP 0 25(100%) 0 0 0 0 0
PO 0 0 25(100%) 0 0 0 0
IEL 0 0 0 25(100%) 0 0 0

IENL 0 0 0 0 24(96%) 0 1(4%)

Table 2: Table of Confusion obtained with the features a-e/A-R-P.
With Reclassification

UC LP PO LSI NLSI Geral Performance
UC 25(100%) 0 0 0 0
LP 0 25(100%) 0 0 4
PO 0 0 25(100%) 4 0
LSI 0 0 0 25(100%) 0

NLIS 0 1 0 0 24(96%)

124(99.2%)

As the quantity of samples was small, and, in order to divides the data set into a test and training group
with the intention of evaluating the generalization [19] capacity of the classifier, once again the statistical
inference tools were used. The outputs obtained in the classifier for this condition were evaluated according to
the test of chi-square and Komolgorov-Smirnov [23] to check if they followed a normal distribution. Then, after
being approved in the normal distribution tests, it was possible to calculate the accuracy probability with the
reclassification criterion. In this case, as described in details in Silva [13], the probability of having the output of
the class in question higher than the outputs of the other classes is calculated, remembering that the output of
neurons is a measurement of the probability that a certain observation belongs to one class [13]. Considering that
in only one observation, no class was indicated (all negative outputs – Table 1), the numerical difference
between the indicated class outputs (positive) and the remaining classes (negative) resulted in one distribution
that is distant from zero for all classes. Thus, the probabilities of accuracy for all classes are approximately
100.0%. One distribution example that was obtained for the UC class is shown in Figure 5 below. The other
examples are not presented for being similar. This criterion is described in details in Silva [13].



Figure 5: Distribution for the difference between the output obtained in the classifier for the UC class and the
remaining classes.

3.2.2 - Criterion of Relevance

In this study, a new evaluation of the feature relevance is done, implementing the criterion described
with a nonlinear classifier (one double-layer network – Figure 1). In this criterion, it must be pointed out that
there is no limit value for a feature to be considered as relevant, unlike the linear correlation criterion [13,14], this
analysis is only comparative. Table 3 shows the current relevance values found for the six originally studied
features. It can be seen that the feature P shows high relevance with almost all the classes, except for the NLSI,
definitively proving to be a very important feature for the defect class classification considered in this study. The
features R, a and e/A show a higher relevance in the classification of the PO class, a result that is compatible
with those obtained before[13,14], and which can be justified by the fact that they are features of the geometric
shape of the defect, and, for the PO class, it is known that the spherical aspect is very common. However, the
features C and L/A have a low degree of relevance, if compared to the other features used in this study.

Based on these results, some combinations of inputs using these features were tested as input vectors for
nonlinear classifier. Figure 6 shows the results obtained for such combinations of the features. The result
obtained with the input vector a-e/A-P, discarding the feature R, was equivalent in the two situations (4 and 5
classes) to the result obtained with the four features, which indicates that it is possible to reduce the input vector
dimension to 3, without affecting the classifier performance. The possibility of using only two features was also
studied, as the figure shows, and, although the performance was lower if compared to the use of 4 or 3 features,
the classification accuracy values are higher than 90% when we use one nonlinear classifier. This result is
contrary to those found by Aoki [4]. In his study, in which, by using one input vector with ten features in one
nonlinear classifier for the classification of the following classes: UC, LP, PO and SI, the performance was
higher than when one or another feature was discarded [4]. Although Aoki [4] worked with features, which are
different from those used in this study, we can certify that, in fact, the input vector dimension of the classifiers
can be significantly reduced if the irrelevant features are discarded.

Kato et al [5] also used ten features to classify the following defects: crack, lack of fusion, lack of
penetration, porosity and slag inclusion. The choice of relevant features to be used in the intelligent pattern
classification system followed one criterion that is based on interviews done with radiography inspectors. In such
interviews, Kato et al [5] concluded that it is difficult to choose features through this method, because the criterion
is very subjective, and each inspector adopts one feature aspect of shape or defect geometry for the
categorization.

Table 3: Results obtained for the criteria of relevance developed with nonlinear classifier.

UC LP PO LSI NLSI SI
C 0.23 0.16 0.11 0.14 0.14 0.21
a 0.10 0.24 0.58 0.07 0.15 0.36

L/A 0.12 0.07 0.14 0.11 0.05 0.15
e/A 0.18 0.17 0.38 0.10 0.11 0.25
R 0.11 0.33 0.58 0.11 0.19 0.28
P 0.62 0.65 0.34 0.54 0.25 0.71



Figure 6: Graph with the performances obtained from the indicated combinations of features applied to
nonlinear classifiers, for the two situations: 4 and 5 classes. See that the origin of the vertical axis is displaced.

3.2.3 - Principal Components of Nonlinear Classification

Figure 7 shows the two-bidimensional graphs built with the two principal components of nonlinear
classification in independent performance. Figure 7a, which refers to the separation situation for four classes,
shows that the classes UC and LP present well-defined regions and, thus, they are easy to be separated by
nonlinear separators. Classes PO and SI present one confusion region in the graph, with some observations of SI
in the region of PO. It had already been detected when linear classifiers were used, because the classification
errors referred to those classes. As nonlinear classifiers were used this time, the possibility of separation of such
classes became viable because the neural networks are able to develop very complex separation surfaces and
allow a high accuracy performance, as it was proved. However, there is the problem of network generalization
[19]. The graphs obtained for the distribution of nonlinear classifier outputs showed that the accuracy probability
for not used data during the training is high. But, to make these results even more reliable, it is necessary to use
test patterns, which surely will be done in future studies with the acquisition of new patterns. The same happens
with Figure 7b, five classes, in which the confusion among NLSI, LSI and PO is even higher. It is easily
explained because the distinction between the two classes of SI is complicated for having very similar features.
In this case, the lack of generalization becomes more inclined to happen.

The utilization of these display graphs using the principal components is very useful for the systems of
higher dimensions, such as the study conducted by Mery [24], that used 71 features to separate the following
classes: real defect and structure in radioscopy of aluminum wheels.

(a) (b)
Figure 7: (a) and (b): Graphs formed by the two principal components of nonlinear classification of independent
performance for the four classes (the inclusion class being considered as just a single class) and five classes
(inclusion subdivided into linear and nonlinear inclusion).



The graph in Figure 8 represents the performance results obtained when the first component p1 was used
as the classifier input vector, as well as independent set (p1 + p2) (bidimensional vector) and cooperative (p1 + p2)
(for the two types). The results showed that, using only the first component, the accuracy percent reaches 92.0%
for the training data with four classes, and it is obviously lower for a more complex situation of five classes
(66.4%). With two components, the percents are close to those results obtained when three or four features were
used. Besides, it is also possible to say that there were no significant differences in performance among the types
of components used in the study. These results confirmed the efficiency of the principal components to reduce
the original data dimension, keeping the same classification accuracy capacity. For the studied case, reducing
dimensions 3 or 4 to dimension 2 does not represent a justifiable dimension reduction. However, the results
motivate similar studies to be done in a system of higher dimension, as the study conducted by Mery [24], because
the quantity of calculations performed by the neural network can be significantly smaller. The same can also be
done for when gray scale of weld joints are used, as in the study conducted by Liao [6,7], in which the classifier
input vectors may have 500 or more components. These techniques to develop classification components are of
recent use, and so far, it has not been found a similar use applied to the researches for the development of an
automatic system of defect pattern recognition in radiographic images.

Figure 8: Graph showing the performances obtained when principal components of nonlinear classification with
independent performance and cooperative performance are used as the classifier input. See that the origin of the
vertical axis is displaced.

4 – CONCLUSIONS

Nonlinear classifiers provide higher performance results for all defect classes that were studied, when
four features of weld defects were used.

The criterion of relevance, used with nonlinear classifiers, definitively confirmed that only four out of
the six initial features were relevant to the classification of the defect classes that were studied. The inspection of
the performance using only three features shows that the most important is the “quality” of the features used, and
not the quantity.

The use of principal components of nonlinear classification to display the defect classes in two
dimensions allowed a real dimension of the nonlinear classification problem for the data used in the study. When
the components were used as input vectors of the classifiers, they allowed good accuracy results.

It is important to point out that the defect classes crack and lack of fusion, which are important in terms
of welded joints, have not been evaluated by this technique yet, due to the insufficient quantity of reliable
samples that are available. But surely it will be done in a future study, with the acquisition of new radiographic
patterns, as well as the use of test data of pattern classifiers to confirm the generalization.
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