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Abstract - This paper presents a nonlinear dynamic
plant identification technique using neural networks
that causes small i nterference in the normal operation
point of the system. So, it allows to identify plants that
don't accept the frequently proposed procedure of ap-
plying as input a large amplitude white noise signal
capable of exploiting the whole amplitude and fre-
quency ranges of interest of the system.

This method identifies the order of the system
and may also furnish topological information indicating
the presence of linearities, without any previous knowl-
edge of the plant characteristics.

The used neural network is a slightly modified
feedforward network with delayed output feedback and
the error minimization is performed by a modified
version of a simulated annealing algorithm. All tested
examples pointed out that stable plants bring out
precise and stable models.

Keywords - Nonlinear dynamic systems, Modeling
and Identification, Neural networks.

ΙΙ. INTRODUCTION

Systems modeling is a fundamental engineer-
ing area whose objective is to build a model capable of
producing an output y(k) that approaches the output of
the plant yd(k), with a small error e(k), when both are
submitted to the same input signal u(k) (Figure 1).
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Fig. 1 The Plant and its Model

The neural networks modeling technique is a
tool capable of generating compact and accurate solu-
tions, associated with a great computational simplicity.
It has been largely used for modeling static nonlinear

systems [1] [2]. However, to model real dynamic plants
using recurrent neural networks may be complex. To
guarantee the stabilit y of the model it i s necessary to
precisely identify the behavior of the plant, mainly in
the region of its singularities1.

Some studies presenting dynamic systems
identification processes using recurrent neural networks
[3][4] or memory neural networks [5] proposes to get
the data for the training set (input-output pairs) by the
application of a large amplitude and wide frequency
spectrum signal to the input of the system. The large
amplitude is necessary in order to obtain at the system
output the same dynamic range of the operation signal,
and conveniently characterize the nonlinearities. The
large frequency spectrum is necessary to exploit high
frequency singularities not excited by the normal op-
eration signals. Faili ng to fulfill t hese two conditions
will l ead to a model that poorly represents the nonline-
arities or usually presents high frequency instabilit y.
Although theoreticall y effective, in practice this proce-
dure imposes a severe limitation because most real
plants cannot or shall not excessively deviate from its
normal operation point.

The identification method proposed in this
paper causes just a small i nterference in the operating
point of the plant. It’s able to model the system identi-
fying its order and, eventually, to give information on
its topology.

II. THE GENERAL NEURAL NETWORK
STRUCTURE

Without loss of generalit y, let us restrict to
SISO plant predictors. A general neural network pre-
dictor for such plants may be implemented by the two
layers neural network shown in Figure 2. The neural
network input x(k) at time k is composed by the present
and delayed plant inputs u(.) and outputs yd(.), and the
neural network output y(k+1) is the prediction of the
plant output at time k+1, yd(k+1).

                                               
1 In this work, “singularities” means the singularities of the system
linearized at all it s possible operating points.



The structure of the proposed neural network
uses a linear neuron at the output, and an intermediate
layer with (N-1) sigmoidal neurons (tanh activation
function) plus a linear neuron. The objective of the
linear neurons is to accelerate the identification and to
allow the model simpli fication for plants with quasi-
linear partial transfer functions. This general model is
able to identify all types of plants, as it corresponds to
model IV accordingly to the nonlinear dynamic systems
classification proposed by Narendra and Parthasarathy
[3] (Figure 4). But now the linear transmissions identi-
fication made possible by introduction of the linear
neurons will allow this model to degenerate in the sim-
plest models I, II and III when possible.

An open loop training method, the series-
parallel identification model, is used to avoid instabilit y
during the training process [3].
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Fig. 2 Neural network structure during the training period and
its mathematical behavior. The symbols + and ∫ hold for
linear and tanh neurons, respectively. Note that biasing
the linear neuron in the intermediate layer is redundant.
At operation, yd(k) is replaced by y(k), the delayed NN
output, closing the feedback loop around the neural
network, as shown in Plant IV of Figure 4.

III. PILOT SIGNAL

For a correct identification, the training set
must contain enough information about the nonlineari-
ties and the  singularities of the plant. Because the

normal operation signal usually swings the whole out-
put dynamic range, it allows to characterize the non-
linearities. But as it is usually strongly frequency lim-
ited, it has the inconvenience of not to produce the
appropriate information about the system high fre-
quency singularities. The spectral analysis of the plant
output signal suggests the maximum frequency fo (say,
the –40 dB frequency) where information is still sup-
plied by the normal operation signal. To overcome that
inconvenience we add a low amplitude wide frequency
spectrum pilot signal q(.) to the normal operation input
signal of the plant, Figure 3, during the training proce-
dure. The pilot signal may be white noise or, more
practicall y, a square wave with small and constant
amplitude, zero mean and random pulse width (uni-
form distribution). The limits of the pulse width varia-
tion must be chosen such that for frequencies from fo to
the highest frequency of interest to the plant identifica-
tion the pilot signal spectrum is approximately flat. In
this way only a small disturbance is introduced in the
plant operation point by the pilot signal, but now the
output signal will contain complete information on the
system: the amplitude and frequency characteristics
necessary to the plant identification.

IV. IDENTIFICATION METHOD

The Figure 3 presents the identification proc-
ess block diagram using the series-parallel training
method.

A. Amplitude adjustment of the pilot signal

Basicall y, the pilot signal q(.) amplitude ad-
justment will depend on two characteristics: the plant
frequency response and its internal noise level r(.). The
more accentuated the high frequency attenuation and
the plant noise, higher it must be the input pilot signal
amplitude in order to assure that the output signal con-
tains enough information about the system in the high
frequency range of interest.

To adjust the pilot signal amplitude we con-
struct a low pass (LP) and a high pass (HP) filter with
cutoff f requency fo (say –3 dB), and accept as an esti-
mative of the plant output signal and noise at normal
operation (q(.)=0) the outputs of the LP and HP filters,
respectively. Then we apply the pilot signal q(.) and use
the output signal/noise ratio in dB before (SNR1) and
after (SNR2) the application of the pilot signal esti-
mated using the above approximation to adjust the pilot
signal amplitude.



The linear rate between the pilot signal power
Pq and the noise power Pr is given by:

Pq
Pr

1
SNR1 SNR2

10≈ −
−



10 (1)

The approximation holds because the pilot
signal is much smaller than the operation signal.

B. Identification method

Although the output error yd(.) - y(.) contains
all the informations on the system, those informations
are strongly unbalanced: the low amplitude of the pilot
signal causes very littl e influence on the output error.
The high and low pass filtering allows to compute
separately the high and low frequencies errors, and to
compose a balanced cost function C (2).

C k lme k hme1 + 2= =⋅ ⋅ (2)
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Initiall y k1=1 and k2 balances the importance
of the errors, as k2 equals the power ratio between the
low and high frequency components of the plant output
signal.

Along the training procedure, every time each
parcel of the cost function becomes greater than the
other, it will have more chance of being reduced in the
next optimization step. So, both low (lme) and high
(hme) frequency mean square error are reduced during
the process. Because k2 >> k1 = 1, a small decreasing
in hme will cause great reduction on the total cost.
Therefore, high frequency optimization will t ake place
first but the lme continues reducing until it reaches
about 10% of the high frequency parcel. At this time it
turns diff icult to reach lower costs and the process stops
progressing fast.
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Fig. 3 Identification process: block diagram. q(.) is the pilot
signal and r(.) is the plant internal noise.

To increase the eff icacy of the training proc-
ess, k1 shall be gradually increased to stimulate the lme
reduction, but always respecting k1 ≤ k2. At the end of
the optimization process k1 = k2 and both lme and hme
will have the same magnitude order.

C. Order identification and topological information

When the order of the plant is unknown, the
problem of identification becomes more complex. Be-
ginning with an arbitrary higher order neural model it
will be necessary to eliminate the unimportant inputs of
the neural network based on the quantification of the
importance of each one in the composition of the output
signal.

Although it’s a nonlinear system , the individ-
ual response of each input may be used as an eff icient
way to quantify its relative importance as can be seen
through the results presented in section IV. Using the
training data as shown in sections II and III- A, the
order identification can be obtained by the following
heuristic procedure:

1. Start the identification method (section IV-B)
with a neural model composed by an arbitrary large
number of inputs for both groups, u(.) and yd(.);



2. From the trained neural network, get the indi-
vidual response yi(k+1) for each network input i, van-
ishing  all the others network inputs;

3. Calculate the variance σi
2 for all outputs

yi(k+1) and normalize them by the greatest of its group
(u(.) or yd(.)) in order to obtain the relative importance
of each input in the composition of the output signal;

σ i N
2 1=

=
∑ [y (k +1) - y (k +1)]i i

2

k 1

N

4. Inputs with small relative contribution (say
less than 5%) are discarded. At this time, it is recom-
mended to eliminate no more than one input of each
group;

5. Repeat steps 1 to 4 until i sn’ t possible to dis-
card any input.

Besides the order identification, visual inspec-
tion of the individual transfer curves from each network
input to the network output may suggests the existence
of linearities. So, eventually the neural model achieved
may be simpli fied to plants I, II or III . This procedure
and its results are presented in section V-C.
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 Fig. 4 Plants presented by Narendra and Parthasarathy [3].

D. Optimization Algorithm

The error minimization for training the neural
network was performed by a modified version of a
simulated annealing algorithm [6] that will be detailed
in other paper [7].

V. RESULTS

In order to compare results, we identified the
plants presented by Narendra and Parthasarathy [3],
whose structures and difference equations are repro-
duced in Figure 4.

The input training signal was a simple low
frequency sinusoid. For the verification of the results
we choose, for its complexity, a test signal proposed by
Sasty et al. [4]:
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A neural model with 7 neurons in the interme-
diate layer (6 tanh + 1 linear) was used in all simula-
tions. As pilot signal it was used a square wave with
constant amplitude, zero mean and random pulse
width. To quantify the accuracy between the plant and
the model outputs, the values of signal/error ratio
(SER) are indicated for various time gaps. An error
smaller than 20% corresponds to a SER higher than
14 dB.



A. Order identification

As an example, the step by step results of the
order identification process applied to type III plant are
li sted on Table 1. The line “structure” presents the
models in the order they appear as a result of the appli-
cation of the method of order reduction described in the
section IV-C. Values in boxes point the discarded in-
puts in each model.

Beginning with a arbitrary higher order neural
model (structure 1) the final result (structure 3) cor-
rectly identified the dynamic structure of the plant.

Satisfactory results were obtained for all four
plant types proposed in [3]. In some cases the plant was
identified without an exact correspondence of the order.
But in these cases the rejected or changed inputs didn’ t
had significative importance, indicating that a different
order suitable model of the plant could also be obtained.
But stable plants always generated stable models.

The Figure 5 shows the output of the type III
plant and that of its model.

B. Noisy plant identification

Adjusting the pilot signal power (Pq) for about
twice the noise power (Pr) good results was obtained in
the noisy plants identifications (SNR1 around 43 dB).
Only type I plant required Pq ≈ 4Pr.

 The Table 2 shows the power rate (Pq / Pr)
adjusted for all plants and the Figure 6 presents both
the neural model and type I plant outputs as an exam-
ple of noisy plant identification.

Table 1 Type III plant : Order identification

pilot signal 2%

structure 1 2 3

NN output y(.)  [0 1 3]  [0 3]  [0]

NN input u(.)  [0 1 2]  [0 1]  [0]
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importance

u
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2
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model
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Time 0-250 250-500 500-900 0-900

SER (dB) 24,70 29,05 14,68 22,03

model
  plant

(b)

Fig. 5 Type III plant without noise:
(a) the plant and the trained neural model outputs;
(b) detail of time interval 500-750.

Table 2 Type I to IV plants: Adjusted signal pilot
to noise power rate  (Pq / Pr).

Plant Pilot Signal
versus Input

Signal
magnitude

(%)

SNR1
(dB)

SNR2
(dB)

Pq / Pr

type I 8,4 42,9 35,9 3,95

type II 5,9 42,9 38,1 2,04

type III 1,5 42,9 38,0 2,12

type IV 2,4 43,0 38,2 2,00



model
  plant

Time 0-250 250-500 500-900 0-900

SER (dB) 24,79 33,39 21,32 30,73

Fig. 6 Type I noisy plant: the plant and the trained neural
model outputs (Pq ≈ 4Pr).

C. Topological informations

After getting a trained model able to represent
the plant, we may plot the transfer curves for each
neural network input component (vanishing the others)
to the output. Visual inspection then suggests the exis-
tence or not of linearities. Inputs with quasi-linear
transfers to the output may be tied up only to the linear
neuron of the hidden layer, reducing the synapses num-
ber. A new training should then be performed to fine
tune the simplified structure.

As an example, the transfer curves of the type
I plant are shown in Figure 7.

Fig. 7 Type I plant: input-output transfer curves

They suggest the possibility of linearization of
both second yd(k) and third yd(k-1) elements of the
network input, allowing the construction of a specific
neural model with a simplified structure (Figure 8),
where the dashed line synapses are eliminated. Evi-
dently, when the topological simplifications are com-
pleted, the linear neuron in the intermediate layer is
eliminated and the connections are made directly to the
output layer neuron.
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Fig. 8 Simplified structure based on the topological information.



VI. CONCLUSIONS

Because of its small i nterference in the opera-
tion point and for requesting no previous knowledge of
the characteristics of the plant, the proposed method
seems to be a progress in the modeling and identifica-
tion techniques of nonlinear dynamic plants that cannot
or should not excessively deviate from its normal op-
eration point.

The automatic order identification and the
eventual information on the topology are other inter-
esting characteristics of the method.

Two aspects played an important role in com-
ing up with the precise identification of the plant sin-
gularities. First, the fact that the modeling is eff iciently
made not only in the frequency operation range, but in
the whole frequency spectrum of the system output.
Second, the use of a training algorithm (modified
simulated annealing) able of reaching solutions very
close to the global minimum. This suggests that, ap-
plying the proposed method, if the input-output pairs
are generated from a stable plant, the model obtained
will be precise and stable. The obtained results evi-
dence this observation: all tested cases always came up
with stable models in spite of no specific care taken in
the sense of guaranteeing their stabilit y.
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