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Abstract - This paper presents a nonlinear dynamic
plant identification technique using neural networks
that causes small interference in the normal operation
point of the system. So, it al ows to identify plants that
don't accept the frequently proposed procedure of ap-
plying as input a large amplitude white noise signal
capable of exploiting the whole amplitude and fre-
quency ranges of interest of the system.

This method identifies the order of the system
and may also furnish topological information indicating
the presence of li neariti es, without any previous knowl-
edge of the plant characteristics.

The used neural network is a dightly modified
feadforward network with delayed output feedback and
the eror minimization is performed by a modified
version of a simulated annealing algorithm. All tested
examples pointed out that stable plants bring out
predse and stable models.

Keywords - Nonlinear dynamic systems, Modeling
and Identification, Neural networks.

I. INTRODUCTION

Systems modding is a fundamental engineer-
ing area whose objective is to build a model capable of
producing an output y(k) that approaches the output of
the plant yd(k), with a small error k), when both are
submitted to the same input signal u(k) (Figure 1).
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Fig. 1 The Plant anditsMode

The neural networks moddling technique is a
tod capable of generating compact and accurate solu-
tions, asociated with a great computational simplicity.
It has been largdly used for modeling static nonlinear

systems [1] [2]. However, to model real dynamic plants
using reaurrent neural networks may be wmplex. To
guarantee the stability of the model it is necessary to
predsdy identify the behavior of the plant, mainly in
the region of its sngularities’.

Some studies presenting dynamic systems
identification processes using reaurrent neural networks
[3][4] or memory neural networks [5] proposes to get
the data for the training set (input-output pairs) by the
application of a large amplitude and wide frequency
spedrum signal to the input of the system. The large
amplitude is necessary in order to oltain at the system
output the same dynamic range of the operation signal,
and conveniently characterize the nonlinearities. The
large frequency spedrum is necessary to exploit high
frequency singularities not excited by the normal op-
eration signals. Failing to fulfill these two conditions
will | ead to a modd that poarly represents the nonline-
arities or usually presents high frequency instahility.
Although theoreticall y effedive, in practice this proce-
dure imposes a severe limitation because most red
plants cannot or shall not excessvely deviate from its
normal operation paint.

The identification method proposed in this
paper causes just a small interference in the operating
point of the plant. It's able to mode the system identi-
fying its order and, eventually, to give information on

its topology.

[I. THE GENERAL NEURAL NETWORK
STRUCTURE

Without loss of generdlity, let us restrict to
SISO plant predictors. A general neural network pre-
dictor for such plants may be implemented by the two
layers neural network shown in Figure 2. The neural
network input x(k) at time k is composed by the present
and delayed pant inputs u(.) and outputs yd(.), and the
neural network output y(k+1) is the prediction of the
plant output at time k+1, yd(k+1).

1 In this work, “sngularities’ means the singularities of the system
linearized at all it s possble operating pants.



The structure of the proposed neural network
uses a linear neuron at the output, and an intermediate
layer with (N-1) sigmoidal neurons (tanh activation
function) plus a linear neuron. The objedive of the
linear neurons is to accderate the identification and to
alow the model simplification for plants with quasi-
linear partial transfer functions. This general modd is
able to identify all types of plants, as it corresponds to
model 1V accordingly to the nonlinear dynamic systems
classgfication proposed by Narendra and Parthasarathy
[3] (Figure 4). But now the linear transmissons identi-
fication made possble by introduction of the linear
neurons will allow this modd to degenerate in the sim-
plest models|, Il and Il when possble.

An open loop training method, the series
parall € identification model, is used to avoid instability
during the training process[3].
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Fig. 2 Neural network structure during the training period and
its mathematical behavior. The symbads + and [ hdd for
linear and tanh reurons, respedively. Note that biasing
the linear neuron in the intermediate layer is redundant.
At operation, yd(K) is replaced by y(k), the delayed NN
output, closing the feedback loop around the neura
network, as siown in Plant IV of Figure 4.

1. PILOT SIGNAL

For a correct identification, the training set
must contain enough information about the nonlineari-
ties and the singularities of the plant. Becuse the

normal operation signal usually swings the whole out-
put dynamic range, it allows to characterize the non-
linearities. But as it is usually strongly frequency lim-
ited, it has the inconvenience of not to produce the
appropriate information about the system high fre-
quency singularities. The spedral analysis of the plant
output signal suggests the maximum frequency f, (say,
the —40dB frequency) where information is gill sup-
plied by the normal operation signal. To owercome that
inconvenience we add a low amplitude wide frequency
spedrum pilot signal q(.) to the normal operation input
signal of the plant, Figure 3, during the training proce-
dure. The pilot signal may be white noise or, more
practically, a square wave with small and constant
amplitude, zero mean and random pulse width (uni-
form distribution). The limits of the pulse width varia-
tion must be chosen such that for frequencies from f; to
the highest frequency of interest to the plant identifica-
tion the pilot signal spedrum is approximately flat. In
this way only a small disturbance is introduced in the
plant operation point by the pilot signal, but now the
output signal will contain complete information on the
system: the amplitude and frequency characteristics
necessary to the plant identification.

IV.IDENTIFICATION METHOD

The Figure 3 presents the identification proc-
ess block diagram using the series-parallel training
method.

A. Amplitude adjustment of the pilot signal

Basically, the pilot signal q(.) amplitude ad-
justment will depend on two characteristics: the plant
frequency response and its internal noise level r(.). The
more accentuated the high frequency attenuation and
the plant noise, higher it must be the input pilot signal
amplitude in order to asaure that the output signal con-
tains enough information about the system in the high
frequency range of interest.

To adjust the pilot signal amplitude we con-
struct a low pass(LP) and a high pass (HP) filter with
cutoff frequency f, (say —3 dB), and accept as an esti-
mative of the plant output signal and noise at normal
operation (q(.)=0) the outputs of the LP and HP filters,
respedively. Then we apply the pil ot signal q(.) and use
the output signal/noise ratio in dB before (SNR1) and
after (SNR2) the application of the pilot signal esti-
mated using the above approximation to adjust the pil ot
signal amplitude.



The linear rate between the pilot signal power
Pq and the noise power Pr is given by:

m 10 FNRZ;)SNR2Q 1 (1)

Pr

The approximation holds because the pilot
signal is much small er than the operation signal.

B. Identification method

Although the output error yd(.) - y(.) contains
al the informations on the system, those informations
are strongly unbalanced: the low amplitude of the pil ot
signal causes very littl e influence on the output error.
The high and low pass filtering allows to compute
separately the high and low frequencies errors, and to
compose a balanced cost function C (2).
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Initially k1=1 and k2 balances the importance
of the erors, as k2 equals the power ratio between the
low and high frequency components of the plant output
signal.

Along the training procedure, every time each
parcd of the st function becomes greater than the
other, it will have more chance of being reduced in the
next optimization step. So, bath low (Ime) and high
(hme) frequency mean square eror are reduced duing
the process Becuse k2 >> k1 = 1, a small deaeasing
in hme will cause great reduction on the total cost.
Therefore, high frequency optimization will take place
first but the Ime mntinues reducing until it reaches
about 10% of the high frequency parcd. At this time it
turns difficult to reach lower costs and the process $ops
progressng fast.
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Fig. 3 Identification process block diagram. q(.) is the pilot
signal andr(.) isthe plant internal noise.

To increase the dficacy of the training proc-
ess k1 shall be gradually increased to stimulate the Ime
reduction, but always respeding k1< k2. At the end of
the optimization processkl = k2 and bath Ime and hme
will have the same magnitude order.

C. Order identification and topological information

When the order of the plant is unknown, the
problem of identification becomes more mwmplex. Be-
ginning with an arbitrary higher order neural mode it
will be necessary to eliminate the unimportant inputs of
the neural network based on the quantification of the
importance of each one in the composition of the output
signal.

Although it’s a nonlinear system , the individ-
ual response of each input may be used as an efficient
way to quantify its relative importance as can be see
through the results presented in sedion 1V. Using the
training data & dhown in sedions Il and llI-A, the
order identification can be obtained by the following
heuristic procedure:

1 Start the identification method (sedion IV-B)
with a neural model composed by an arbitrary large
number of inputs for bath groups, u(.) and yd(.);



2. From the trained neural network, get the indi-
vidual response y;(k+1) for each network input i, van-
ishing all the others network inputs;

3. Calculate the variance o for al outputs
yi(k+1) and normali ze them by the greatest of its group
(u(.) or yd(.)) in order to oltain the relative importance
of each input in the compositi on of the output signal;

ol = S [y; (k +1) - ¥ (k +1)]?

Z|-

4, Inputs with small relative cntribution (say
lessthan 5%) are discarded. At this time, it is recom-
mended to eliminate no more than one input of each
group;

5. Repeat steps 1 to 4 wntil isn't posshle to dis-
card any input.

Besides the order identification, visual inspec-
tion of theindividual transfer curves from each network
input to the network output may suggests the eistence
of linearities. So, eventually the neural modd achieved
may be simplified to plants I, Il or Ill. This procedure
and itsresults are presented in sedion V-C.
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Fig. 4 Plants presented by Narendra and Parthasarathy [3].
D. Optimization Algorithm

The aror minimization for training the neural
network was performed by a modified version of a
simulated annealing algorithm [6] that will be detail ed
in other paper [7].

V.RESULTS

In order to compare results, we identified the
plants presented by Narendra and Parthasarathy [3],
whose structures and dfference ejuations are repro-
duced in Figure 4.

The input training signal was a simple low
frequency sinusoid. For the verification of the results
we doose, for its complexity, atest signal proposed by
Sasty et al. [4]:

[&in(7k / 25) k<250
1 ,250<k <375
x(k) =
) S—l ,375<k <500

ED,3sin(7k / 25) +0.1sin(Tk / 32) + 06sin(Tk / 10) , 500 < k < 900

A neural mode with 7 neuronsin the interme-
diate layer (6 tanh + 1 linear) was used in all simula-
tions. As pilot signal it was used a sguare wave with
constant amplitude, zero mean and random pulse
width. To quantify the accuracy between the plant and
the model outputs, the values of signal/error ratio
(SER) are indicated for various time gaps. An error
smaller than 20% corresponds to a SER higher than
14 dB.



A. Order identification

As an example, the step by step results of the
order identification processapplied to type Il plant are
listed on Tablel. The line “structure’ presents the
modelsin the order they appear as aresult of the appli-
cation of the method of order reduction described in the
sedion IV-C. Values in boxes point the discarded in-
putsin each model.

Beginning with a abitrary higher order neural
model (structure 1) the final result (structure 3) cor-
redly identified the dynamic structure of the plant.

Satisfactory results were oltained for all four
plant types proposed in [3]. In some @ses the plant was
identified without an exact correspondence of the order.
But in these @sesthe rejeded or changed inputs didn’t
had significative importance indicating that a different
order suitable model of the plant could also be obtained.
But stable plants always generated stable models.

The Figure 5 shows the output of the type Il
plant and that of its model.

B. Noisy plant identification

Adjusting the pil ot signal power (Pg) for about
twice the noise power (Pr) good results was obtained in
the noisy plants identifications (SNR1 around 43dB).
Only type | plant required Pq = 4Pr.

The Table 2 shows the power rate (Pq/ Pr)
adjusted for al plants and the Figure 6 presents bath
the neural model and type | plant outputs as an exam-
ple of noisy plant identification.

Tablel Typellll plant : Order identification

pilot signal 2%
structure 1 2 3
NN output y(.) [013 [03 [Q]
NN input u(.) [012 [0 [0]

0| 1.0000 [ 1.0000 | 1.0000
relative u| 1| 0.0603
importance 2
of the NN 0| 1.0000 [ 1.0000 | 1.0000
inputs yl1

3| 0.1087
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Fig.5 Type Il plant without noise:
(a) the plant and the trained neural model outputs,
(b) detail of timeinterval 500-750.
Table2 Typel to IV plants: Adjusted signal pilot
to noise power rate (Pq/ Pr).
Plant Pilot Signal | SNR1 | SNR2 | Pq/ Pr
versusInput | (dB) (dB)
Signal
magnitude
(%)
typel 84 42,9 35,9 3,95
typell 59 42,9 38,1 2,04
typelll 15 42,9 38,0 2,12
type IV 24 43,0 38,2 2,00
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Fig. 6 Type | noisy plant: the plant and the trained neural
model outputs (Pg = 4Pr).

C. Topological informations

After getting a trained model able to represent
the plant, we may plot the transfer curves for each
neural network input component (vanishing the others)
to the output. Visual inspection then suggests the exis-
tence or not of linearities. Inputs with quasi-linear
transfers to the output may be tied up only to the linear
neuron of the hidden layer, reducing the synapses num-
ber. A new training should then be performed to fine
tune the simplified structure.

As an example, the transfer curves of the type
| plant are shown in Figure 7.

yik+1)
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Fig. 7 Type| plant: input-output transfer curves

They suggest the possibility of linearization of
both second yd(k) and third yd(k-1) elements of the
network input, allowing the construction of a specific
neural model with a simplified structure (Figure 8),
where the dashed line synapses are diminated. Evi-
dently, when the topological simplifications are com-
pleted, the linear neuron in the intermediate layer is
eiminated and the connections are made directly to the
output layer neuron.

y(k+1)

Fig. 8 Simplified structure based on the topological information.



VI. CONCLUSIONS

Becuse of its gnall i nterference in the opera-
tion point and for requesting no previous knowledge of
the dharacteristics of the plant, the proposed method
seams to be a progressin the modeling and identifica-
tion techniques of nonlinear dynamic plants that cannot
or should not excessvely deviate from its normal op-
eration paint.

The automatic order identification and the
eventual information on the topology are other inter-
esting characteristics of the method.

Two aspeds played an important role in com-
ing up with the predse identification of the plant sin-
gularities. First, the fact that the modeling is efficiently
made not only in the frequency operation range, but in
the whole frequency spedrum of the system output.
Seand, the use of a training algorithm (modified
simulated annealing) able of reaching solutions very
close to the global minimum. This suggests that, ap-
plying the proposed method, if the input-output pairs
are generated from a stable plant, the model ohtained
will be predse and stable. The ohtained results evi-
dence this observation: all tested cases always came up
with stable modds in spite of no spedfic care taken in
the sense of guaranteang their stahility.
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