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ABSTRACT

The satellit e communication services have grown on last years
and the radiowave spectrum to support them is saturated. So, it’ s
necessary to search for frequency bands higher than the presently
used ones, to allocate new services. But the problem of radiowave
degradation by rain is criti cal for communication  li nks  operating
above 10 GHz, and a precise knowledge of rain attenuation is
important to design reliable satellit e communication li nks,
considering that it must operate under all atmospheric conditions.
Several phenomenological models have been developed to predict
the rain attenuation in earth-space paths, but these models show
poor accuracy for higher frequencies. In order to improve the
prediction, this paper introduces a new method to evaluate the
rain attenuation in satellit e communication li nks using a speciall y
designed neural network. The results show that this new model
performs much better than the classical ones.

1. INTRODUCTION

Artificial neural networks are an attempt to simulate, at
least partiall y, the structure and functions of nervous
systems of li ving creatures. In general, an artificial neural
network is an information or signal processing system
composed by simple processing elements, called artificial
neurons, which are interconnected by direct links called
synapses. These structures cooperate to perform parallel
distributed processing in order to solve a desired
computational task. One of the attractive features of neural
networks is their capabilit y to adapt themselves to special
environmental conditions by changing their connection
strengths (synaptic weights) based on  an error-correction
learning rule. By means of a computational program, it is
possible to implement artificial neural networks to solve
very complex problems in a wide variety of areas [1].

This paper discusses the specific design and shows the
results of a neural network used to predict the rain
attenuation in earth-space paths at  high frequencies. To the
neural network development and analysis we used the data
bank from UIT-R (or ITU-R, Radio-communication Sector
of International Telecommunication Union) [2], relating

frequency, polarization angle, elevation angle, latitude,
station height and rain rate for a given time percentage of
the average year, to the attenuation that is not exceeded for
that time percentage of the average year. For simplicity,
from now on we will call those last three variables just rain
rate, attenuation and time percentage. This attenuation is a
criti cal parameter in the design of reliable communications
links. At this data bank, several experiments of attenuation
in earth-space paths performed around the world can be
found and used to test the prediction models. Unfortunately
only 80 to 160 complete data cases are available, depending
on the time percentage. Moreover, some criti cal variables,
e.g. rain rate and attenuation, are not very precise. But this
data bank is the only one available in the word.

The neural network was designed to predict the rain
attenuation for time percentages from 0.001 to 0.5% at
frequency range from 11 to 20 GHz. The root mean squared
(RMS) relative error, E  in eq. 1, is the demerit factor
proposed by ITU-R to evaluate the performance of a model.
To judge the merit of the neural model, a comparative
analysis with UIT-R [3], American [4], Japanese [5],
Spanish [6] and Brazili an [7] phenomenological prediction
models was carried out.

2. THE NEURAL NETWORK

A single intermediate layer feedforward neural network was
implemented in a computational program to predict the
rain attenuation. Such neural network structure, although
simple, is an universal approximator and may be used as a
practical way to reali ze any linear or nonlinear input-output
mapping [8].

We decided to use one specific network for each time
percentage. The network receives six input signals
(frequency, latitude, polarization angle, elevation angle,
station height and rain rate), and predicts the attenuation at
its output. Some experiments had shown that one linear
neuron at the output layer and that 15 neurons with
hiperbolic tangent as activation function at the intermediate



layer is an adequate choice for our problem. Figure 1 shows
the schematic of the applied neural network topology.

Figure 1: Neural Network Architecture

The neural network undergoes a supervised training that is
a modified version of the well known  back-propagation
algorithm [9]. For the neural model to reach the best
performance, the  objective  function used to train the
neural network must minimizes the demerit function
proposed by UIT-R, the  mean-squared  relative error E
shown in eq. 1. The function F  shown in eq. 2 does the
job, and will be used. The  essence  of back-propagation
algorithm is to slightly modify the synaptic weights vector
w
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 in the direction bur in opposite sense of the gradient of
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, in such a way that the discrepancy between the

actual output signal and the desired signal is reduced at
each step, finishing   at a sufficiently small value for  most
input-output pairs. The input-output pairs are constituted by
the six inputs and the desired output, the measured
attenuation.
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where w
�

 is the synapses vector, )( pAm   is the measured

attenuation and )( pAe  is the attenuation estimated by the

model for the input-output pair p. µ  is the mean and  σ is

the standard deviation of ( )peR ; P is the total number of

available input-output pairs. In the present case usually
2σ >> 2µ , and so σ≅E .

Super SAB (Speed up Adaptive Backpropagation) [10] in
batch mode was used as learning algorithm to increase the
convergence speed during the training process. Evidently,
all network variables were normalized to the range (-1, +1).

3. DISTRIBUTION OF INPUT-OUTPUT
EXPERIMENTAL PAIRS

When the statistics is small, as it is in this case, the
occurrence of overtraining or loss of generalization must be
avoided. After the selection of all input-output experimental
pairs for each time percentage, it is necessary to separate
them in two sets: a training set and a test set. This is
usually done by random sorting. The training set is used to
update the synaptic weights while the test set is used to
measure the neural network performance on an unknown
pairs set, during the learning process. As the network only
learns what is taught, when the statistics is small a larger
number of pairs is usually allocated to the training set. In
our case we used 70% of the total number of pairs to the
training set.

Generally, as the learning process goes on, the error for the
training set continuously decreases, but the error for the test
set decreases and then increases: in this second stage the
network is said to be overtraining, loosing its capacity to
generalize. It is generally accepted that the best network is
the one that produced the minimum error for the test set.

 The statistical representativeness for both the training  set
and the test set is a crucial  factor  to  the success  of  the
learning process. The separation of a training set and a test
set with high statistical representativeness was a hard task
since the first experiments [11], as the available statistics is
poor. When the test and training sets are distributed in a
random way, they usually lead the learning process to fail.
In this case, it is observed that the RMS relative error of the
test set decreases and increases very fast,  after a small
number of computational iterations. We called this behavior
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premature overtraining. Under such condition, the
attenuation estimated by the neural network presents poor
accuracy.

The analysis of this problem shows that it comes from the
existence of regions in  the data space very poorly
populated. The problem is overcome if a pair in this region
is obligatory located to the training set: again,  the network
only learns what was taught.

To solve the problem, consider each j-th input-output pair

is represented in the data space by a vector jx
�

whose

components are the inputs and the output of the pair.

In a first step those vectors are arranged in classes. The

center ic
�

 of the i-th class is the mean value of the vectors

jx
�

 that belongs to the class.

We used a modified version of the Divisive Hierarchical
Clustering Algorithm [12]. As our main goal is to hold
with classes with an adequate population, class splitting is
applied to highly populated classes until the number of
individuals in each class is adequate, in our case
approximately 6. When the population is conveniently
distributed and the number of classes established, the

classification is refined: each vector jx
�

is eventually

relocated to another class such that the total dissimilarity

J , i.e., the sum of the distances between each vector jx
�

and the center  of  its class ic
�

 is minimized.
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In the second step, the location of each pair to the training
or the test sets is made independently for each class. For
each class an histogram of the distances between each

vector jx
�

 allowing to the class and the class center ic
�

 is

done. Vectors far away from its class center are obligatory
located to the training set. Also, classes with very few
elements have all it s elements allocated to the training set.
The other vectors of each class are them randomly sorted,
class by class, between the training and test sets to provide
the establi shed sets percentage.

Using this procedure we train the largest possible data
domain, and don’ t test in regions that were not trained.
After the implementation of this process, no more

premature overtraining was observed and the neural
network performance was considerably improved.

4. RESULTS

To judge the merit of the neural model a comparative
analysis with the phenomenological models was carried out
for eight different values of time percentage, 0.001, 0.002,
0.003, 0.005, 0.01, 0.02, 0.03 and 0.05%. Figures 2, 3 and
4 show respectively the mean, the standard deviation and
the RMS value of the squared relative error evaluated for
all i nput-output experimental pairs (training set plus test
set). The analysis was performed  for  the experimental
from UIT-R data with frequencies between 11 and 20 GHz.
As shown in fig. 2, the mean error for phenomenological
models ranges from 0 to 15% while for the neural model it
ranges from 4 to 7%. Fig. 3 shows that the neural network
achieved a standard deviation from 15 to 20% while for the
phenomenological  models it ranges from 30 to 40%. The
standard deviation is considered the most important
statistical parameter to access prediction model’s
performance. Finall y, fig. 4 shows that the demerit factor
proposed by UIT-R, the RMS relative error, ranges from
30% to 40% for the phenomenological models, and from 15
to 20% for the neural model. Therefore, the neural network
seems able to predict the rain attenuation with good
accuracy, much better than the phenomenological models.

5. CONCLUDING REMARKS

After this analysis it seems reasonable  to conclude that a
neural network carefull y and specificall y designed and
trained may be used with success to evaluate the rain
attenuation in earth-space paths for frequencies between 11
and 20 GHz. The proposed neural network topology and
learning process were adequate to the problem. Mainly, a
method to reduce the problems caused by data regions with
very low statistics, allowing a statisticall y robust data
distribution was proposed and applied with success. This
method creates an insight on the data statistical structure
and is able to separate them into adequate training and test
sets.

The neural network presented an RMS relative error from
15 to 20% while for the phenomenological models it ranges
from 30 to 40%, that seems to be a significant performance
increase. New studies are currently being carried on in
order to extend this meth
od to rain attenuation prediction for frequencies above 20
GHz  (Ka Band).
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Figure 2: Mean relative error evaluated over all i nput-
output pairs.

[11] G. A. Alencar, L. P. Calôba and M. S. Assis, “Rain
attenuation Prediction in Earth-Space Paths Performed by
Artificial Neural Networks” , CLIMPARA - Climatic
Parameters in Radiowave Propagation Prediction
Symposium, Canada, April , 1998.
[12] R. O. Duda, P. E. Hart, “Pattern Classification and
Scene Analysis” ,  John Wiley & Sons, New York, 1973.

0

10

20

30

40

JAPONESE

AMERICAN

UIT-RNeural

0,05
0,03

0,02
0,01

0,0050,0030,0020,001

SPANISH
BRAZILIAN

TIME PERCENTAG
E (%

)

S
TA

N
D

A
R

D
 D

E
V

IA
TI

O
N

 (%
)

Figure 3: Standard deviation of squared relative error
evaluated for all i nput-output pairs.
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Figure 4: RMS relative error evaluated for all i nput-output
pairs.


