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ABSTRACT

The satellite communication services have grown on last yeas
and the radiowave spectrum to support them is sturated. So, it's
necessary to seach for frequency bands higher than the presently
used ones, to al ocate new services. But the problem of radiowave
degradation by rain is critical for communication links operating
above 10 GHz, and a precise knowledge of rain attenuation is
important to design reliable satellite communication links,
considering that it must operate under all atmospheric conditions.
Several phenomenologcal models have been devel oped to predict
the rain attenuation in eath-space paths, but these models $ow
poar acauracy for higher frequencies. In order to improve the
prediction, this paper introduces a new method to evaluate the
rain attenuation in satellit e communication links using a specially
designed neural network. The results ow that this new model
performs much better than the classcal ones.

1. INTRODUCTION

Artificial neural networks are an attempt to simulate, at
least partialy, the structure and functions of nervous
systems of living creatures. In general, an artificial neural
network is an information or signal processng system
composed by simple processng elements, called artificial
neurons, which are interconneded by dired links called
synapses. These structures cooperate to perform parall el
distributed processing in order to solve a desired
computational task. One of the attractive features of neural
networks is their capability to adapt themselves to spedal
environmental conditions by changing their connedion
strengths (synaptic weights) based on an error-corredion
learning rule. By means of a computational program, it is
possble to implement artificial neural networks to solve
very complex problemsin awide variety of areas[1].

This paper discussess the spedfic design and shows the
results of a neural network used to predict the rain
attenuation in earth-space paths at high frequencies. To the
neural network development and analysis we used the data
bank from UIT-R (or ITU-R, Radio-communication Sedor
of International Teleommunication Union) [2], relating

frequency, polarization angle, elevation angle, latitude,
station height and rain rate for a given time percentage of
the average year, to the attenuation that is not exceeled for
that time percentage of the average year. For smplicity,
from now on we will call those last threevariables just rain
rate, attenudion and time percentage. This attenuation isa
critical parameter in the design of reliable communications
links. At this data bank, several experiments of attenuation
in earth-space paths performed around the world can be
found and used to test the prediction models. Unfortunately
only 80 to 160 complete data cases are avail able, depending
on the time percentage. Moreover, some aitical variables,
e.g. rain rate and attenuation, are not very predse. But this
data bank isthe only one avail able in the word.

The neural network was designed to predict the ran
attenuation for time percentages from 0.001 to 0.5% at
frequency range from 11to 20 GHz. The roat mean squared
(RMS) relative aror, E in eqg. 1, is the demerit factor
proposed by ITU-R to evaluate the performance of a moddl.
To judge the merit of the neural model, a comparative
analysis with UIT-R [3], American [4], Japanese [9],
Spanish [6] and Brazlian [7] phenomenological prediction
models was carried out.

2. THE NEURAL NETWORK

A singleintermediate layer feedforward neural network was
implemented in a computational program to predict the
rain attenuation. Such neural network structure, although
simple, is an universal approximator and may be used as a
practical way to realize any linear or nonlinear input-output

mapping [8].

We dedded to use one spedfic network for each time
percentage. The network receaves $x input signals
(frequency, latitude, polarization angle, elevation angle,
station height and rain rate), and predicts the attenuation at
its output. Some eperiments had shown that one linear
neuron at the output layer and that 15 neurons with
hiperbdi c tangent as activation function at the intermediate



layer is an adequate choice for our problem. Figure 1 shows
the schematic of the applied neural network topology.
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Figure 1. Neural Network Architecture

The neural network undergoes a supervised training that is
a modified version of the well known back-propagation
algorithm [9]. For the neural model to reach the best
performance, the objective function used to train the
neural network must minimizes the demerit function
proposed by UIT-R, the mean-squared relative error E
shown in eg. 1. The function F shown in eg. 2 does the
job, and will be used. The essence of back-propagation
algorithm is to dightly modify the synaptic weights vector
W in the direction bur in opposite sense of the gradient of
F (W), in such a way that the discrepancy between the

actual output signal and the desired signal is reduced at
each step, finishing at a sufficiently small value for most
input-output pairs. Theinput-output pairs are constituted by
the six inputs and the desired output, the measured
attenuation.
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where W is the synapses vector, A (pP) is the measured

attenuation and A,(P) is the attenuation estimated by the
model for the input-output pair p. U isthemeanand O is

the standard deviation of eR(p); P is the total number of
available input-output pairs. In the present case usually
0%>>?, andso E 0O .

Super SAB (Speed up Adaptive Backpropagation) [10] in
batch mode was used as learning algorithm to increase the
convergence speed during the training process. Evidently,
all network variables were normalized to the range (-1, +1).

3. DISTRIBUTION OF INPUT-OUTPUT
EXPERIMENTAL PAIRS

When the datigtics is small, as it is in this case, the
occurrence of overtraining or loss of generalization must be
avoided. After the selection of all input-output experimental
pairs for each time percentage, it is necessary to separate
them in two sets. a training set and a test set. This is
usually done by random sorting. The training set is used to
update the synaptic weights while the test set is used to
measure the neural network performance on an unknown
pairs set, during the learning process. As the network only
learns what is taught, when the statistics is small a larger
number of pairs is usually allocated to the training set. In
our case we used 70% of the total number of pairs to the
training set.

Generally, as the learning process goes on, the error for the
training set continuously decreases, but the error for the test
set decreases and then increases. in this second stage the
network is said to be overtraining, loosing its capacity to
generalize. It is generally accepted that the best network is
the one that produced the minimum error for the test set.

The statistical representativeness for both the training set
and the test set isa crucial factor to the success of the
learning process. The separation of a training set and a test
set with high statistical representativeness was a hard task
since the first experiments [11], as the available statistics is
poor. When the test and training sets are distributed in a
random way, they usually lead the learning process to fail.
In thiscase, it is observed that the RMS relative error of the
test set decreases and increases very fast, after a small
number of computational iterations. We called this behavior



premature overtraining. Under such condition, the
attenuation estimated by the neural network presents poor
accuracy.

The analysis of this problem shows that it comes from the
existence of regions in the data space very poorly
populated. The problem is overcome if a pair in this region
is obligatory located to the training set: again, the network
only learns what was taught.

To solve the problem, consider each j-th input-output pair
is represented in the data space by a vector )ﬂ(j whose

components are the inputs and the output of the pair.

In a first step those vectors are arranged in classes. The

center G of thei-th class is the mean value of the vectors

X; that belongs to the class.

We used a modified version of the Divisive Hierarchical
Clustering Algorithm [12]. As our main goa is to hold
with classes with an adequate population, class splitting is
applied to highly populated classes until the number of
individuals in each class is adequate, in our case
approximately 6. When the population is conveniently
distributed and the number of classes established, the

classification is refined: each vector )*(j is eventually

relocated to another class such that the total dissimilarity
J, i.e, the sum of the distances between each vector )*(j

and the center of itsclass C isminimized.
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In the seand step, the location of each pair to the training
or the test sets is made independently for each class For
each class an histogram of the distances between each

vedor X; alowing to the dassand the dasscenter C is

done. Vedors far away from its class center are obligatory
located to the training set. Also, classs with very few
elements have all its elements all ocated to the training set.
The other vedors of each class are them randomly sorted,
classhy class between the training and test sets to provide
the establi shed sets percentage.

Using this procedure we train the largest possble data
domain, and don’t test in regions that were not trained.
After the implementation of this process no more

premature overtraining was observed and the neural
network performancewas considerably improved.

4. RESULTS

To judge the merit of the neural model a comparative
analysis with the phenomenol ogical models was carried out
for eight different values of time percentage, 0.001, 0.002,
0.003 0.005, 0.01, 0.02, 0.03 and 0.05%. Figures 2, 3 and
4 show respedively the mean, the standard deviation and
the RMS value of the squared relative aror evaluated for
al input-output experimental pairs (training set plus test
st). The analysis was performed for the experimental
from UIT-R data with frequencies between 11 and 20 GHz.
As down in fig. 2, the mean error for phenomenol ogical
model s ranges from 0 to 15% whil e for the neural moddl it
ranges from 4 to 7%. Fig. 3 shows that the neural network
achieved a standard deviation from 15 to 20% whil e for the
phenomenological models it ranges from 30 to 40%. The
standard deviation is considered the most important
statistical parameter to access prediction modd’s
performance Finaly, fig. 4 shows that the demerit factor
proposed by UIT-R, the RMS relative aror, ranges from
30% to 40% for the phenomenol ogical models, and from 15
to 20% for the neural model. Therefore, the neural network
seems able to predict the rain attenuation with good
acauracy, much better than the phenomenol ogical models.

5. CONCLUDING REMARKS

After this analysis it seems reasonable to conclude that a
neural network carefully and spedfically designed and
trained may be used with success to evaluate the rain
attenuation in earth-space paths for frequencies between 11
and 20 GHz. The proposed neural network topology and
learning process were adequate to the problem. Mainly, a
method to reduce the problems caused by data regions with
very low statigtics, allowing a datistically robust data
distribution was proposed and applied with success This
method creates an insight on the data statistical structure
and is able to separate them into adequate training and test
sets.

The neural network presented an RMS relative aror from
15to0 20% whil e for the phenomenological models it ranges
from 30 to 40%, that seems to be a significant performance
increase. New studies are airrently being carried on in
order to extend this meth

od to rain attenuation prediction for frequencies abowe 20
GHz (KaBand).
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