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Abstract - Principal Component Analysis (PCA) is a
characteristic extraction method, whose main objective
function is the reconstruction of the original data space. PCA
is a linear optimal method, in the sense of mean squared
error, and is applied in a wide variety of knowledge areas. In
this paper, a new neural method for PCA extraction is
proposed and compared, in terms of accuracy and
computational costs, to other well accepted neural extraction
methods, such as GHA and APEX. The performance
comparison was evaluated using preprocessed spectra from
passive sonar signals. It was verified that the proposed
method performed better than all other methods, exhibiting
easier implementation, lower computational costs and higher
accuracy.

I. INTRODUCTION

    In a considerable number of knowledge areas, the
manipulation of large dates sets is necessary. So, relevant
characteristic extraction is mandatory, and it is dependent
on the type of information searched for. Basically,
characteristic extraction may have the objective of
efficient reconstruction of data or pattern classification.
For each objective, different methods and heuristics are
necessary [1].

   Principal Component Analysis is a characteristic
extraction method that is typicall y used for achieving the
reduction of the dimensionality of the input data space.
PCA is an optimum linear method, under the criterion of
minimization of the mean quadratic error in data
reconstruction [2].  This methodology is applied in various
fields of the knowledge, among them:  data analysis,
image processing and codification, the solution of great
equations systems, patterns detection and recognition,
spectral analysis, signal processing of antennas arrays, etc.
[3].

   In this work, a new neural method for PCA extraction is
presented and its performance is evaluated using a set of
spectra of real passive sonar signals.  The method is also
compared to others PCA neural extraction methods,
considering accuracy and computational costs.

   The structure of this paper is the following:  PCA and
neural methods for component extraction are briefly
presented. In this context we introduce the new proposed
method, and deduce the refered training equations. In the
sequence, the data used to evaluate the algorithm
performance is described and tests are conducted.
Conclusions are then derived in the last section.

II. PRINCIPAL COMPONENTS ANALYSIS

   The principal component analysis is based on the
Karhunen-Loëve series expansion [4].  In a N-dimensional
data space, PCA aims at finding a M-orthogonal vector set
(principal directions) whose data projection variance is
maximized. For zero mean processes, variance is equal to
energy, so PCA vectors are directions for which energy
concentration is maximum. Typicall y, M << N, so that
PCA can ve considered as an optimal l inear method for
data reconstruction, providing M directions for which the
lost of information is minimal, when mean-square error is
considered as a figure of merit.

 

   The most used PCA extraction methods may be grouped
in two categories: classic and neural. In the first group, it is
usually necessary to compute the covariance matrix and to
extract its eigenvalues and eigenvectors [5]. Neural
methods make use of linear neural networks whose
training method might be supervised or not, the latter
being more frequently discussed in the literature [2].

   Generall y, classical methods are computing demanding,
the algorithms are complex and make use of large amount
of memory. They form an algorithm set which use is more
convenient when most of components of a stochastic
process should be extracted, especiall y in off line data
analysis. For online systems, or when only a few
components are required, neural based methods tend to be
the best solution.
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   Neural methods are adaptative algorithms, so a better
trade-off between accuracy and computational cost can be
establi shed. Considering these methods, the computational
cost for methods having similar complexity is usually
measured by the number of training steps.  Another
important advantage of neural methods is the algorithm’s
simplicity. Since they use few additions and
multipli cations, their implementation on multiple
platforms can be easil y realized, especiall y when memory
restrictions apply, because the correlation matrix needs to
be computed or stored during the training process.

III. NEURAL PCA METHODS

    The most popular unsupervised neural methods for PCA
extraction are GHA [6], APEX [7] and PAST [8]. Among
supervised methods, there is the constructive auto-
associative neural network, here referred to as MLP-I
architecture, which was used in [9] for dimensionality
reduction of passive sonar signals spectra.

A. Generalized Hebbian Algorithm (GHA)

   Oja has shown that a single linear neuron submitted to a
Hebbian training rule finds the first principal component
[10]. Sanger generalized this model, developing a linear
network for the extraction of an arbitrary number of
components (p) [6], whose training equations are:
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for a N-dimensional input data space, being )(nwij∆  the

weights-update at n-th iteration and η the learning rate.

B.Adaptive Principal Components Extraction (APEX)

   APEX method was proposed by Kung and Diamantaras
[7] and, for the extraction of p components, makes use of p
linear neurons that, in addition to feed-forward weights

( mw ), have lateral connections established by inhibition

weights ( mc ). The training equations are:
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   The learning rate factor (η ) can be determined,

iteratively, by the following equation:
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where β is the forgetting factor. According to [7], the
optimal choice of step size parameter has a profound
impact on the convergence speed of the algorithm.

C. Projection Approximation Subspace Tracking - PAST

   Proposed, independently, by [8] and [11], this algorithm
produces weight update equations identical to (1), except
for the learning rate factor which is determined iteratively
by an equation equivalent to (7). Since η  is optimally

determined for each training step, the convergence
behavior of PAST, in sense of speed and accuracy, is much
better than GHA.

D. Auto-associative Multi-Layer Perceptron I – MLP-I

   According to this method, in order to extract p
components from a N-dimensional data space, the
extraction process starts with a linear neural network with
N input nodes, one neuron at the hidden layer and N
neurons at the output layer, which are trained to reproduce
the input patterns (auto-association) using the back-
propagation algorithm. After convergence, one more
hidden neuron is introduced at the network, and the
training process is restarted, keeping the weights refered to
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the previous training cycle unchanged. This process is
repeated until the hidden layer has p trained neurons.

   Some important characteristics of this network are [12]:

1) The principal components are sequentially
extracted.

2) Two estimates of each component are available:
one by the weights that connect the input nodes to
the hidden layer ( w ), here referred as projection

weights, and other by the weights that connect the
hidden layer to output layer (w ), here referred to
as reconstruction weights.

   The convergence behavior of this network was analyzed
in [12]. It was experimentally shown that the convergence
of the reconstruction weights is faster than the projection
weights. Another relevant feature is that the estimates
provided by the reconstruction weights are more accurate.

   An important fact emerges after some manipulations on
the error equations for this network. For an input pattern x,
the error equation related to k-th (k=1..p) neuron is given
by:
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   Observing (9), we conclude that MLP-I network is
similar to p linear networks with N input nodes, one
neuron at hidden layer and N neurons in the output layer,
having a common input vector x  and different target
vectors given by (10). This architecture will be referred to
here as MULTI-NET.

E. Auto-associative Multi-Layer Perceptron II – MLP-II

   Motivated by the drawbacks of the MLP-I method, and
considering the equivalence shown by (8), we propose a
new training method where the projection and
reconstruction weights are made equal for each training
step.

   Considering the i-th (i=1..p) linear neural network of
MULTI-NET, the j-th element of output layer vector is
given by:
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   The square-error for the input pattern x is given by:
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   The gradient for the squared-error function is:
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     Using the stochastic gradient for weight updates results:
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   According to what was observed by [13], the first term in
(15) can be considered less important than the second one.
Thus, (15) can be approximated by
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   If we apply (10) in (16) results:
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which is the same as (1). We conclude that GHA is an
approximation of the proposed method. Therefore, a
convenient choice for η  in (15) is given by (7).  This

choice improves the convergence speed of MLP-II
algorithm, as a sub-optimal learning factor is used at each
training step.  

 IV. RESULTS

   The dataset used to evaluate the proposed extraction
method consists of pre-processed passive sonar spectra.
These signals were obtained by the acquisition of radiated
noise from ships belonging to four classes, considering
different runs and machinery conditions, at an acoustic
path with, approximately, 45 meters deep. Each run
consisted in making a ship to pass over a hydrophone with
constant speed and with a specific machinery condition.
The sensor used was an omnidirection hydrophone near
the ocean bottom. The signals  were digitized by an 8-bit
ADC (analog-to-digital converter) at a sampling rate of
22.05 kHz.

   The digitalized signals were applied to a pre-processing
system developed to implement an efficient and robust
neural classifier based on the spectra of these signals. The
pre-processing system adopted here is shown in Figure 1.
Basically, this system obtains the signal spectra in the
frequency-range of interest (0 - 2871 Hz), improving
signal characteristics relevant to ships classification
[14,15,16]. A Two-Pass Split Window (TPSW) algorithm
[17] is used for background noise reduction and spectra
normalization, improving classification efficiency
significantly.

Fig 1. Block diagram of the signal preprocessing method performed on

the incoming signal.

   A total of 16 different runs, resulting in 6192 acquisition
windows with 400 spectral samples were used to validate
the proposed method. In terms of practical application,
passive sonar signals provide complex high-dimensional
data, so that such dataset may be considered as an
appropriate set to develop the analysis of the convergence
behavior and robustness of the proposed method for
multiple components extraction in real world problems.

A. Experimental Tests

  In order to evaluate the proposed method, we considered
the computational cost and accuracy achieved for each
extracted component. A reference for the analysis was
established by means of an implementation of the package
eispack [18], widely used in the scientific community. For
this evaluation, the proposed method was compared to
well accepted neural extraction methods: Sanger (GHA),
APEX and MLP-I, all of them extracting serially the target
components.

   Along the networks training procedure, a component was
considered extracted when, after a defined number of
training steps, the changes on the value of the associated
eigenvalue estimate were smaller than a specified value
(µ). After some trials, appropriate values for learning rate
(η), number of training steps for the evaluation of
eigenvalue estimate (α), forgetting factor (β), and
convergence value (µ) were chosen, as seen in Table I.

   In accuracy test, the components extracted by each
method were compared to the reference dataset by
measuring the module of the angle, in degrees, between
both of them. Despite the extraction of 400 components,
just the first 31 components were accurately extracted by
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all methods and thus used for analysis. In Figure 2 and 3,
the angles obtained for the first 31 components are
presented. Table II summarizes the mean angle for each
method considering the first 20 and 31 components.

TABLE I

EXTRACTION PARAMETERS FOR THE TRAINING SET

GHA and MLP-I APEX MLP-II

η 1.0E-6 - -

α 10 20 20

β - 0.9999 0.99999

µ 5E-4 5E-4 2.5E-4

TABLE II

MEAN ERROR ANGLES

Method Mean Angle (degrees)

Components 1-20 1-31

  MLP-I (Projection) 18.4 26.9

  MLP-I (Reconstruction) 7.7 19.3

  Sanger 4.6 20.1

  APEX 8.2 20.5

  Proposed Method 1.8 3.7

   Observing Figures 2 and 3, it can be verified that the
estimates provided by the proposed method are more
accurate than the others, especially for components greater
than 20th. According to these results, the methods could be
ranked in terms of accuracy performance in the following
order: Proposed Method, GHA, MLP-I (reconstruction
weights), APEX and MLP-II (projection weights).

Fig 2. Error angles for each method (components 1 to 20) .

Fig 3. Error angles for each method (components 21 to 31) .

   In order to evaluate the computational costs, we
considered the mean value of epochs for each method.
Note that both the proposed method and GHA achieves
approximately the same computational cost per epoch, and
this cost is much lower than for APEX and MLP-I. The
results are summarized in Table III. As we can see, the
computational cost of the proposed method is significantly
smaller.

TABLE III

NUMBER OF MEAN EPOCHES FOR EACH METHOD

Method  Number of Epochs

Components # 20 31

  MLP-I 2762 1786

  GHA 1087 1950

  APEX 3343 3369

  Proposed Method 764 922

 V. SUMMARY

   A new supervised neural method for principal
components extraction was proposed and compared to
other well-accepted neural methods concerning accuracy
and computational cost. The evaluation was based on a
real dataset from a passive sonar system application, which
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provided a large number of realizations and high
dimensionality. It was shown that the proposed method has
a better convergence behavior and lower computational
cost than the other methods, becoming an interesting
option among the multiple PCA extraction techniques.
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