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Abstract - Neural models may be very precise but, being
numerical, provide only limited contribution to the
understanding of the phenomenological process, contrary
to phenomenological models. In this paper we use a neural
techniques to evaluate and to provide information on the
sub-models that composes a phenomenological model. We
also show how some hybrid neural-phenomenological sub-
models may be used to  maximally preserve the
phenomenological information while providing numerical
precision.

The problem of radiowave degradation by rain is
critical for the design of reliable earth-satellite
communication  links  operating above 10 GHz.
Phenomenological models available in the literature are
complex and show poor accuracy, and so are good
candidates for the proposed technique. The use this
technique in the UIT-R model presented very interesting
results.

I. NEURAL INTERPRETATION OF PHENOMENOLOGICAL

MODELS.

Mathematical models usually consists of a set of
non-recursive equations successively applied, each one
generating an internal variable of the model. Generall y each
equation has a phenomenological meaning, and may be
considered as a phenomenological sub-model integrating the
model.

Representing each equation as a block, or sub-model,
we have the block diagram of  the global model. The fig 1
presents a block seen as a sub-model, and the fig 2 presents
the block diagram of the global model, constituted by several
sub-models.

Fig. 1 - Block or sub-model

Representing the connections between blocks in fig 2
by directed branches, we have a kind of feedforward signal
flow graph. Interpreting the branches as unitary gain synapses
and each block as a neuron with excitation/activation function
equal to the equation it represents, fl, clearly the
phenomenological model corresponds to a non-conventional
feedforward neural network. Models or sub-models using
recursive equations wil l not be considered in this paper but,
analogously, they may be represented by non-conventional
recursive neural networks, e.g. TDNNs.

II . BLOCK ERROR

Unless its equation represents with suff icient
precision the phenomenological sub-model, each block
introduces an error that composes the total error at the model
output. It is important to classify the blocs in function of their
contribution to the error at the model output. Consider a
synapse ci , added to the output of the block fi to correct the
block's error, as shown in fig 3.

Fig 3 - Block with error correcting synapse

If the block diagram in fig. 2 perfectly  represents the
phenomenological model, the nominal value of ci must be
zero for each block i and each input-output pair.  Our
objective now is to measure the contribution of each block, or
sub-model, to the output error. Consider the objective
function F(.) ,
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Fig 2 - Block diagram of the UIT-R model

where E(.) is the expected value, for all input-output pair n =
1,...,N, e(.) is the output error, en is the value of e(.) for the

input-output pair n, ny  is the target value and ny~  the actual

model output value for pair n.

Considering the model as a non-conventional neural
network, ci may be adjusted by the descendent gradient of F to

a vector c with components ci . So,
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where 0>α , 1=∂∂ ii cz  and iδ is the output error

backpropagated to the output of the block i for pair n. As it is
a descendent gradient error optimization, for a first order

approximation of F and for constant  c∆  the calculated

value of c∆  minimizes F. On  the other hand, when

)( pci∆  completely compensates the error introduced by the

block i , the output error vanishes, and so does F. So, iδ  is a

very adequate parameter to compare the importance of the
error generated by each block in the output model error.

The classical synapses correction when training a
neural network is

( )[ ]pcEc ipi ∆=∆ ∀         (6)

This correction is implemented by a bias at the block
output. However,  this correction is very poor, correcting only
the mean value of the error, which is already very small if the
blocks were properly projected. It is more effective to correct

the error  ( )pci∆ , different for each pair p. And so, a good

measure of the influence of each block error in the output

error is the variance of  ( )piδ , eq. 7.

( )[ ] ( )[ ]pEpE ipipi δδσ 222
∀∀ −=  (7)

The critical blocks are those with higher influence on

the output error,  i.e., those with higher 
2

iσ . Those blocks

need to be fixed to provide a more precise global model.

III. ANALYSIS AND CORRECTION OF  SUB-MODELS.

A sub-model may be inadequate by two main
reasons: its equation is inadequate and / or its input variables
do not provide sufficient information to correctly determine
its output variable value. If the block error (i.e. the general
model output error backpropagated to the block output)
presents significant correlation with any of the block input
variables, probably the sub-model equation is not adequate to
represent it, and must be fixed. If this correlation does not
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exists, than probably there is a lack of information at the
block inputs. When a block equation is calculated, the general
model inputs and some of its internal variables (other blocks
outputs) are already available. The information needed at the
block input may be present in those available variables. If
some of those variables present significant correlation with
the block error, that may be used as an additional block input
to reduce its error.

 Usually both reasons occur simultaneously. In this
case the available variables that presents correlation with the
block error must be de-correlated from the block input
variables that also presents that correlation. If the de-
correlated additional variables does not maintain correlation
with the block error, they must be discarded. But if the
correlation still exist, the additional variables, de-correlated or
not, must be considered as possible additional inputs to the
block. This last step, involving the de-correlation, avoids the
introduction of unnecessary variables at the block input and is
essential to maximally preserve the phenomenological sub-
models.

The above procedure allows determining the critical
blocks, that need to be fixed, and the additional variables that
may be used as new inputs. The correction is made by
changing the sub-model equation, which is not an easy task,
mainly if the blocks have been carefully designed, as usual.
An  alternative is to use an hybrid neural-phenomenological
sub-model: a neural network is placed in parallel (or in
cascade) with each critical block, as shown in fig. 4. The goal
of this network is to generate the symmetrical value of the
block error, vanishing it.

Fig 4 - Block error correction  using a local neural network.

The neural network is fed by the block inputs that
present correlation with the block error, and / or by the
additional available variables that present correlation with the
block error even when de-correlated from the block input
variables, as discussed above.

Those auxiliary neural networks must be trained
simultaneously, embedded in the phenomenological model. If
the training procedure is based on the backpropagated error.

The error backpropagated from the general model output y~

to the block output zi is
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From this point on the error backpropagation inside
the neural network is as usual. As the inputs and the internal
variables of the phenomenological model are not normalised,
it is recommended to normalise it to zero mean and (-1,+1)
range before presenting it to the neural network, to avoid ill -
conditioned training. The same should be done with the block
error, the goal of the neural network. However, if the output
neuron of the network is linear, this last normalisation is not
strictly necessary.

IV. EARTH-SATELLITE COMMUNICATION PATH MODELS

The satell ite communication services have grown on last
years and the radiowave spectrum to support them is
saturated. So, it’s necessary to search for frequency bands
higher than the presently used ones, to allocate new services.
But the problem of radiowave degradation by rain is critical
for communication  links  operating above 10 GHz, and a
precise knowledge of rain attenuation is important to design
reliable satellite communication links, considering that it
must operate under all atmospheric conditions. The
attenuation A(p) that is not exceeded in a time percentage p of
the average year is a criti cal parameter in the design of those
links. Several phenomenological models (e.g. UIT-R - or
ITU-R, the Radio-communication Sector of International
Telecommunication Union [2], American [3], Japanese [4],
Spanish [5] and Brazilian [6]) have been developed to predict
the rain attenuation in earth-space paths, but these models
show poor accuracy for higher frequencies. In this paper we
choose to present results on the UIT-R model, because in the
literature it is used as reference and comparison with all other
models.

In  this paper we used the data bank from UIT-R [1],���������
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hR) and rain rate (R0.01%) that is

exceeded for 0.01% of the average year, to the attenuation
{A(p)} that is not exceeded for a time percentage (p) of the
average year. We considered time percentages from p = 0.001
to 0.5% and frequencies from f = 11 to 20 GHz.
Unfortunately only a small number, 80 to 165, of input-output
pairs are available, depending on the time percentage. To hold
with this problem a selection criteria of the input-output pairs
was developed in order to guarantee a reasonable generality
for the training (70% of the pairs) and test (30% of the pairs)
sets [7]. Moreover, some critical variables in the data bank,
e.g. rain rate and attenuation, are not very precise. But this is
the only data bank available in the world.

Block
under
corre-
ction

+

1

Zi

Corrective

Neural
Network

From other
blocks and
inputs

Zi



IEEE-INNS IJCNN - International Joint Conference on Neural Networks, Budapest, 2004.

The root mean-squared (RMS) relative error, E , eq. (8), is
the demerit factor proposed by UIT-R to evaluate the
performance of a model.
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where w  is the synapses vector, nA  is the measured

attenuation and nA
~

 is the attenuation estimated by the model

for the input-output pair n. N is the total number of a input-
output pairs in the training set.

To reach the best performance, the  objective
function used to train the neural network must minimise the
demerit function proposed by UIT-R, the  mean-squared
relative error E  shown in eq. 8, or the function F  in eq. 9.
The input-output pairs are constituted by the seven inputs, f,

hR, R0.01%, , W X ϕ, θ , p, and the desired output, A(p).

V. THE UIT-R MODEL

Analysing the UIT-R model we verify that it is
composed by 12 internal sub-models, whose outputs are Z1 to
Z12, connected as shown in fig. 2.  Each sub-model has a
phenomenological meaning; its equations are:

Z1 = f(ϕ) = hR
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The parameters k and α in Z4 equation are not
computed by blocks of the model, but from the Marshall and
Palmer distribution, and so are considered error free.

for   0 ≤ ϕ ≤ 23
for   -21 ≤ ϕ ≤ 0
for  -71 ≤ ϕ < -21

   for   ϕ < -71
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VI. SUB-MODELS PRECISION AND CRITICAL SUB-MODELS

The error backpropagated from the model output to
the zi sub-model output for pair n is

( )
i

n

n

nn

i

n

n

nn

n

i z

A

A

AA

z

A

A

AA

A
n

∂
∂










 −
−=

∂
∂








 −
∂
∂=

~~
2

~~

~ 2

2

δ           (10)

The derivative in zA ∂∂~
 was calculated

numerically, introducing a small, ±10-6, increment in Zi , and
taking care with some discontinuities in some block

equations. The standard deviation of  iδ   was calculated for

each block and for each time percentage, and the results are
shown in  Table 1

TABLE 1
STANDARD DEVIATION OF  δI FOR EACH SUB-MODEL AND FOR

THE DIFFERENT TIME PERCENTAGES.

1 2 3 4 5 6 7 8 9 10 11 12 A
~

0.001 0.21 0.09 0.10 0.78 1.25 0.00 0.15 0.02 1.16 0.19 0.15 1.17 0.36

0.002 0.17 0.08 0.09 0.68 0.96 0.00 0.13 0.01 0.93 0.16 0.14 0.64 0.36

0.003 0.17 0.07 0.08 0.63 0.82 0.00 0.11 0.00 0.81 0.15 0.13 0.43 0.30

0.005 0.15 0.07 0.08 0.58 0.74 0.00 0.10 0.01 0.72 0.13 0.12 0.21 0.27

0.01 0.13 0.06 0.08 0.49 0.85 0.00 0.11 0.00 0.78 0.14 0.11 0.00 0.29

0.02 0.15 0.07 0.09 0.46 1.10 0.00 0.13 0.00 0.94 0.17 0.11 0.26 0.31

0.03 0.17 0.08 0.10 0.46 1.30 0.00 0.15 0.00 1.08 0.19 0.12 0.44 0.32

0.05 0.19 0.09 0.12 0.48 1.72 0.00 0.18 0.00 1.37 0.15 0.15 0.76 0.35

Table 1 evidences that sub-models 5 and 9 are the
critical ones, followed by sub-models 12 and 4. We decided
to fix only blocks 5 and 9, in order not to change too much
the phenomenological  structure.

Those results agree with  physical analysis. The UIT-
R model considers uniform rain in the path, which is
evidently not true. To fix this approximation, heuristic
formulas are used as "horizontal reduction factor", r0.01 , and
"vertical adjust factor", v0.01 , establi shed for p = 0.01%.
Those heuristic factors are calculated by sub-models 5 and 9.

VII . FIXING THE CRITICAL SUB-MODELS

The first step to fix the sub-model i is to verify the

correlation of iδ  with the available variables. The correlation

was initiall y calculated for p = 0.01%, where a larger (165)

number of pairs were available. The results are presented in
Table 2.

TABLE 2
BACKPROPAGATED ERROR CORRELATIONS FOR

SUB-MODELS 5 AND 9, DETERMINED FOR  P=0.01%.

Variables Block 5 Block 9
Frequency, f 0.01 0.01���"�#�N�������'���#�$�f�$�

0.00 0.06���#�������
�#�"���(�
-0.11 -0.05�����
���%�� 
¡N¢(£
-0.30 -0.35

Height, hR -0.25 -0.24
Rain, R0.01% 0.13 0.15

Z1 0.10 0.13
Z2 0.21 0.18
Z3 0.20 0.16
Z4 0.12 0.13
Z5 -0.21
Z6 0.02
Z7 0.12
Z8 0.22 0.23
Z9 -0.09
Z10

Z11

Z12 0.28 0.24

The total number of pairs for p = 0.01% was N = 165
and so the 95% confidence level is 156,022 == Nrσ .

The bolded numbers represents significant correlations. The
variables that presented significant correlation with the block
errors were then de-correlated form the block input variables
(and also for other variables already accepted as inputs for the
corrective neural network), and the correlation with the block
error was tested again. Those that preserved the correlation
with the block error after de-correlation were then selected as
inputs of the corrective neural network. A similar procedure
was applied to the other time percentages, and in consequence
other variables were introduced. The final selection of
variables to present at the input of the corrective neural
networks is shown in Table 3.

TABLE 3
SELECTED VARIABLES FOR THE INPUTS OF THE CORRECTIVE

NEURAL NETWORKS FOR BLOCKS 5 AND 9.

Block 5 Block 9���'�
�%���� (¡N¢(£ �����
���%�� 
¡N¢(£
Height, hR Height, hR¤¦¥#¡�§��'�
�#¨"©�¢
ª

Z2 Z2

Z3 Z3

Z7

Z8
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A neural network was then connected in parallel with
each critical block, 5 and 9, as shown in fig 3. Some
preliminary experiments had shown that 10 neurons with
hyperbolic tangent as activation function at the intermediate
layer and one linear neuron at the output layer was an
adequate choice for our problem. The neural networks
undergo a supervised training that is a modified version of the
well -known back-propagation algorithm, with overtraining
control. Both neural networks were trained simultaneously,
taking the cares discussed in earlier sections.

VIII . RESULTS AND MODELS COMPARISON

For the sake of comparison we also developed a
neural network to implement the whole attenuation model [7].
As this is a more complex mapping problem, this network
required 15 neurons in the intermediate layer. The results for
the three models, the pure phenomenological UIT-R Model,
the hybrid phenomenological-neural, UIT-R-Neural Model,
developed in this paper, and the pure Neural Model [7] are
presented in Tables 4 and 5.

TABLE 4
RMS RELATIVE ERROR (%) FOR ALL PAIRS.

    Model

 Time
Percentage

UIT-
R

Hybrid
UIT-R - Neural

Neural

0,001% 38 21 17
0,002% 32 20 20
0,003% 30 23 20
0,005% 28 19 18
0,01% 29 21 20
0,02% 31 24 21
0,03% 32 22 22
0,05% 35 23 20

TABLE 5
RMS RELATIVE ERROR (%) FOR THE TEST SET ONLY.

    Model

 Time
Percentage

UIT-
R

Hybrid
UIT-R - Neural

Neural

0,001% 25 22 22
0,002% 23 17 19
0,003% 28 24 19
0,005% 21 17 20
0,01% 28 23 22
0,02% 27 24 22
0,03% 27 22 24
0,05% 26 23 22

As expected, the best results were obtained using the
Neural Model, that is an universal approximator. The second
best results, very close to those of the Neural Model, were
those obtained using the Hybrid Model, which has the
advantage of preserving the phenomenological information.
The worst results were those from the phenomenological
model, but the earth-space rain attenuation is a known as a
hard to model problem. The best performance of the
phenomenological model in the test set is because its
adjustment uses all pairs.

IX. CONCLUSIONS

Neural techniques may  furnish valuable information
on phenomenological models, determining its critical sub-
models and giving insights on how to fix them. If it is not
possible to fix them using phenomenological knowledge, one
alternative is to use a local neural network to fix the output of
the critical sub-models. This hybrid phenomenological-neural
model furnishes the precision of the numerical neural model
while preserving the phenomenological model information.
This technique was applied to the prediction of the rain
attenuation  on earth-satell ite communication paths with very
interesting results.
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