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Abstract - Neural models may be very precise but, being
numerical, provide only limited contribution to the
under standing of the phenomenological process, contrary
to phenomenol ogical models. In this paper we use a neural
techniques to evaluate and to provide information on the
sub-models that composes a phenomenological model. We
also show how some hybrid neur al-phenomenol ogical sub-
models may be used to maximally preserve the
phenomenological information while providing numerical
precision.

The problem of radiowave degradation by rain is
critical for the desgn of reiable earth-satelite
communication links  operating above 10 GHz.
Phenomenological models available in the literature are
complex and show poor accuracy, and so are good
candidates for the proposed technique. The use this
technique in the UIT-R model presented very interesting
results.

I. NEURAL INTERPRETATION OF PHENOMENOLOGICAL
MODELS.

Mathematical models usualy consists of a set of
non-reaursive euations siccessvely applied, each one
generating an interna variable of the model. Generdly each
equation has a phenomenological meaning, and may be
considered as a phenomenological sub-model integrating the
model.

Representing each equation as a block, or sub-modd,
we have the block diagram of the global modd. The fig 1
presents a block seen as a sub-model, and the fig 2 presents
the block diagram of the global moddl, constituted by several
sub-models.
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Fig. 1 - Block or sub-model
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Representing the @mnnedions between blocksin fig 2
by direded branches, we have akind o feedforward signal
flow graph. Interpreting the branches as unitary gain synapses
and each block as aneuron with excitation/activation function
equal to the euation it represents, f,, clealy the
phenomenological model corresponds to a non-conventional
feedforward neural network. Models or sub-models using
rearsve ejuations will not be mnsidered in this paper but,
anaogoudly, they may be represented by non-conventional
rearsve neura networks, e.g. TDNNS.

Il. BLock ERROR

Unless its equation represents with sufficient
predsion the phenomenological sub-model, each block
introduces an error that composes the total error at the model
output. It isimportant to classfy the blocs in function of their
contribution to the eror at the model output. Consder a
synapse ¢ , added to the output of the block f; to corred the
block's error, as shown in fig 3.

Z

Fig 3 - Block with error correding synapse

If theblock diagram in fig. 2 perfedly representsthe
phenomenological model, the nominal value of ¢ must be
zero for each block i and each inpu-output pair. Our
objedive now is to measure the @ntribution of each block, or
sub-model, to the output eror. Consider the objective
function F(.) ,
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Fig 2 - Block diagram of the UIT-R model

where E(.) is the expected value, for all input-output pair n =
1,...,N, &) is the output eror, e, is the value of &.) for the

input-output pair n, Yy, isthe target value and Y. the actual
model output value for pair n.

Considering the model as a non-conventiona neural
network, ¢; may be adjusted by the descendent gradient of F to

avector Cwith components ¢;. So,

Ac (n) =-a g—e” ©)
%, _ 08 05 0z “
ac dy 0z dc,

Ac (n)=-a a;eja_y =-ad, (5
oy

where o >0, 0z /dc, =1 and &, is the output error

backpropagated to the output of the block i for pair n. Asit is
a descendent gradient error optimization, for a first order

approximation of F and for constant |g:| the calculated

value of AC minimizes F. On the other hand, when

Ac. (p) completely compensates the error introduced by the

block i , the output error vanishes, and so does F. So, O, isa

very adequate parameter to compare the importance of the
error generated by each block in the output model error.

The classical synapses correction when training a
neura network is

Aci = Eop [Aci (p)]

This correction is implemented by a bias at the block
output. However, this correction is very poor, correcting only
the mean value of the error, which is aready very small if the
blocks were properly projected. It is more effective to correct

the error  Ac; (p) different for each pair p. And so, a good
measure of the influence of each block error in the output
error isthe variance of 0, (p) eq. 7.

(6)

0. =E.,[5°(p)]- E%.[5. (p)] @)

The critical blocks are those with higher influence on

the output error, i.e, those with higher @,°. Those blocks
need to be fixed to provide a more precise global model.

I11. ANALY SIS AND CORRECTION OF SUB-MODELS.

A sub-modd may be inadequate by two main
reasons: its equation isinadequate and / or its input variables
do not provide sufficient information to correctly determine
its output variable value. If the block error (i.e. the generd
model output error backpropagated to the block output)
presents significant correlation with any of the block input
variables, probably the sub-model eguation is not adequate to
represent it, and must be fixed. If this correlation does not
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exigts, than probably there is a lack of information at the
block inputs. When a block equation is calculated, the general
model inputs and some of its internal variables (other blocks
outputs) are dready available. The information needed at the
block input may be present in those available variables. If
some of those variables present significant correlation with
the block error, that may be used as an additional block input
toreduceits eror.

Usually both reasons ocaur simultaneously. In this
case the avail able variables that presents correlation with the
block error must be de-corrdlated from the block input
variables that also presents that correation. If the de-
correlated additional variables does not maintain correlation
with the block error, they must be discarded. But if the
correlation still exist, the additiona variables, de-correlated or
not, must be mnsidered as possble additional inpus to the
block. This last step, involving the de-correlation, avoids the
introduction of unnecessary variables at the block input and is
esentia to maximally preserve the phenomenological sub-
models.

The above procedure dlows determining the critical
blocks, that need to be fixed, and the additional variables that
may be used as new inputs. The corredion is made by
changing the sub-model equation, which is not an easy task,
mainly if the blocks have been carefully designed, as usual.
An adternative is to use a hybrid neural-phenomenological
sub-model: a neural network is placed in parald (or in
cascade) with each critical block, as shown in fig. 4. The goal
of this network is to generate the symmetricd value of the
block error, vanishing it.

From other Corrective
e
P Network
Block
under Z;
corre- + |
——| ction

Fig 4 - Block error corredion using alocal neural network.

The neural network is fed by the block inputs that
present correlation with the block error, and / or by the
additional available variables that present correlation with the
block error even when de-correlated from the block input
variables, as discussed above.

Those auxiliary neural networks must be trained
simultaneously, embedded in the phenomenological model. If
the training procedure is based on the backpropagated error.

The eror backpropagated from the general model output Y
to the block output z is

_aepﬂ

= 7
"oy oz ()

From this point on the error backpropagation insde
the neural network is as usual. As the inputs and the interna
variables of the phenomenological model are not normalised,
it is reeommended to normalise it to zero mean and (-1,+1)
range before presenting it to the neural network, to avoid ill-
conditi oned training. The same should be done with the block
error, the goal of the neural network. However, if the output
neuron of the network is linea, this last normalisation is not
strictly necessary.

IV. EARTH-SATELLITE COMMUNICATION PATH MODELS

The satellite ommunicaion services have grown on last
years and the radiowave spedrum to support them is
saturated. So, it's necessary to search for frequency bands
higher than the presently used ones, to all ocate new services.
But the problem of radiowave degradation by rain is criticd
for communication links operating above 10 GHz, and a
predse knowledge of rain attenuation is important to design
reliable satellite cmmunicaion links, considering that it
must operate under al atmospheric coonditions. The
attenuation A(p) that is not exceealed in atime percentage p of
the average year is a aitical parameter in the design of those
links. Several phenomenological models (eg. UIT-R - or
ITU-R, the Radio-communication Sedor of International
Teleommunication Union [2], American [3], Japanese [4],
Spanish [5] and Brazilian [6]) have been devel oped to predict
the rain attenuation in eath-space paths, but these models
show poor accuracy for higher frequencies. In this paper we
choaose to present results on the UIT-R model, because in the
literatureit is used asreference and comparison with al other
models.

In this paper we used the data bank from UIT-R [1],
relating frequency (f), polarity angle (t), elevation angle (0),
latitude (¢), rain height (hg) and rain rate (Rpou) that is
exceeded for 0.01% of the average year, to the attenuation
{A(p)} that is not exceeded for a time percentage (p) of the
average year. We considered time percentages from p = 0.001
to 0.5% and frequencies from f = 11 to 20 GHz
Unfortunately only a small number, 80 to 165, of input-output
pairs are available, depending on the time percentage. To hold
with this problem a selection criteria of the input-output pairs
was developed in order to guarantee a reasonable generality
for the training (70% of the pairs) and test (30% of the pairs)
sets [7]. Moreover, some critica variables in the data bank,
e.g. rain rate and attenuation, are not very precise. But thisis
the only data bank available in the world.
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Theroot mean-squared (RMS) relative error, E, eq. (8), is
the demerit factor proposed by UIT-R to evaluate the
performance of a model.

E(w) = F(w) ®)
-1y A-AT ©
(V_V)-NHZ:lD A S

where W is the synapses vector, A, is the measured

attenuation and ;\1 is the attenuation estimated by the model

for the input-output pair n. N is the total number of a input-
output pairsin thetraining set.

To reach the best performance, the objective
function used to train the neural network must minimise the
demerit function proposed by UIT-R, the mean-squared
relative error E shown in eg. 8, or the function F ineg. 9.
The input-output pairs are constituted by the seven inputs, f,

hg, Roo1o » T, P, 0, p, and the desired output, A(p).
V. THEUIT-R MODEL

Analysing the UIT-R modd we verify that it is
composed by 12 internal sub-models, whose outputs are Z; to
Z15, connected as shown in fig. 2. Each sub-model has a
phenomenological meaning; its equations are:

Z; =f(9) =hg
hg= 5-.075(p - 23) for 0<¢ <23
hg= 5 for -21<¢ <0
hr= 5+ .1(¢ +21) for -71 sg) <-21
hr= 0 for ¢ <-71
Z, =1(Z1, hr, 6) = Ls,
L :(thS) for 825
senf
L - 2(h, - hg) for 8<5°

S

%ﬂ 20 +2(hRR_ hS)gu +sen 6

Z3= f(ZZ, 9) =lLg=Lg cos 0

Zy=1(f, 7,0, Roon) = Vg = k(F‘>0.01% )a

Z5 = f(23, Z4, f) =
1

Noor =
1+078 /% ~038f1-e?<)

R hs E
Leloo

Ze=(Z1,Z3, Z5) = € = tan™

Z7 = f(zlv Z31 Z51 261 e) = LR

L.r
f e, L - G'0.01
ore>0 Le cosf
d%, LR - (hR - hS)
*nf
Zz=1(0)= X

it |§| <36°, x =36-|¢|
XxX=0

dse,

Zy=1(Z4, Z7, 2,1, 6) =

1
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f

Z10=1(Z7,Z9) = Lg = LrVoy
211 =124 Z1o) = Ay = Vrle

ZlZ = f(e’ ¢= p) = ﬁ

ifp=1%or [¢p| 2 36°, p=0
if p<1%and || < 36° and 6= 25,

B =-0.005 (¢p|-36)
dse, g = -0.005 (p|-36)+1.8-4.25sn (6)

A, = (24,2, p.0)=

= A

0.01

H p Hf(o.ess +0.033 In (p)0.045 In (Ag.u B (@-plsen (0))
00.01 0O
The parameters k and a in Z, equation are not

computed by blocks of the model, but from the Marshall and
Palmer distribution, and so are considered error free.
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V1. SUB-MODELSPRECISION AND CRITICAL SUB-MODELS

The eror backpropagated from the model output to

the z; sub-model output for pair nis

0 On-ADaA _
o.(n)=— —n (20
OSBRI

The derivative 0&1 /OZi was  calculated

numerically, introducing a small, £10°, increment in Z; , and
taking cae with some discontinuities in some block

equations. The standard deviation of O; was calculated for

each block and for each time percentage, and the results are
shown in Table1

TABLE 1
STANDARD DEVIATION OF 0, FOR EACH SUB-MODEL AND FOR
THE DIFFERENT TIME PERCENTAGES.

123456789101112;&

0.001|0.21{0.09|0.10{0.78|1.25|0.00|0.15/0.02|1.16{0.19|0.15{1.17|0.36

0.002|0.17{0.08|0.09/0.68|0.96|0.00|0.13{0.01|0.93|0.16|0.14/0.64|0.36

0.003|0.17{0.07|0.08/0.63|0.82{0.00|0.11{0.00/0.81|0.15|0.13{0.43|0.30

0.005|0.15/0.07|0.08/0.58|0.74|0.00|0.10{0.01|0.72{0.13|0.12{0.21|0.27

0.01 {0.13|0.06|0.08/0.49|0.85|0.00{0.11|0.00{0.78|0.14|0.11/0.00|0.29

0.02 {0.15(0.07|0.09/0.46|1.10|0.00{0.13|0.00{0.94|0.17{0.11|0.26|0.31

0.03 {0.17|0.08/0.10/0.46|1.30|0.00{0.15/0.00{1.08(0.19{0.12|0.44|0.32

0.05 {0.19|0.09|0.12|0.48|1.72|0.00/0.18/0.00{1.37|0.15|0.15/0.76|0.35

Table 1 evidences that sub-models 5 and 9 are the
critical ones, followed by sub-models 12 and 4 We dedded
to fix only blocks 5 and 9, in order not to change too much
the phenomenological structure.

Those results agreewith physical analysis. The UIT-
R mode considers uniform rain in the path, which is
evidently not true. To fix this approximation, heuristic
formulas are used as "horizontal reduction factor", roq; , and
"vertical adjust factor", vpo , established for p = 0.01%.
Those heuristic factors are @l culated by sub-models 5 and 9.

VIl. FIXING THE CRITICAL SUB-MODELS

The first step to fix the sub-model i is to verify the
correlation of J; with the available variables. The correlation
was initidly calculated for p = 0.01%, where alarger (165
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number of pairs were available. The results are presented in
Table 2.

TABLE 2
BACKPROPAGATED ERROR CORRELATIONS FOR
SUB-MODELS5 AND 9, DETERMINED FOR P=0.01%.

Variables Block 5 Block 9

Freguency, f 0.01 0.01
Polarization, t 0.00 0.06
Elevation, 0 -0.11 -0.05
Latitude, @ -0.30 -0.35
Height, hg -0.25 -0.24
Rain, Ry o106 0.13 0.15
Z1 0.10 0.13
Z, 0.21 0.18
Z3 0.20 0.16
Zs 0.12 0.13
Zs -0.21
Zs 0.02
Z; 0.12
Zg 0.22 0.23
Zg -0.09

Zy

Zy
Z1, 0.28 0.24

Thetotal number of pairsfor p = 0.01% was N = 165
and so the 95% confidencelevel is 20 . = 2/4/N = 0,156 -

The bolded numbers represents significant correlations. The
variables that presented significant correlation with the block
errors were then de-correlated form the block input variables
(and also for other variables already accepted as inputs for the
corrective neural network), and the correlation with the block
error was tested again. Those that preserved the correlation
with the block error after de-correlation were then selected as
inputs of the corrective neural network. A similar procedure
was applied to the other time percentages, and in consequence
other variables were introduced. The fina sdection of
variables to present at the input of the corrective neura
networks isshown in Table 3.

TABLE 3
SELECTED VARIABLESFOR THE INPUTS OF THE CORRECTIVE
NEURAL NETWORKSFORBLOCKS5 AND 9.

Block 5 Block 9
Latitude, @ Latitude, ¢
Height, hg Height, hg
Elevation, 0

Z, Z,
Z3 Z3
Z;
Zg
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A neural network was then conneded in parallel with
each criticd block, 5 and 9 as shown in fig 3. Some
preliminary experiments had shown that 10 neurons with
hyperbolic tangent as activation function at the intermediate
layer and ane linea neuron a the output layer was an
adequate choice for our problem. The neural networks
undergo a supervised training that is a modified version of the
well-known back-propagation agorithm, with overtraining
contral. Both neura networks were trained simultaneously,
taking the caesdiscussd in ealier sedions.

VIl . RESULTS AND MODELS COMPARISON

For the sake of comparison we also developed a
neura network to implement the whole dtenuation mode [7].
As this is a more complex mapping probem, this network
reguired 15 neurons in the intermediate layer. The results for
the three models, the pure phenomenological UIT-R Modd,
the hybrid phenomenological-neura, UIT-R-Neurd Modd,
developed in this paper, and the pure Neural Modd [7] are
presented in Tables4 and 5.

TABLE4
RMS RELATIVE ERROR (%) FOR ALL PAIRS.

Model |UIT- Hybrid Neural
R | UIT-R - Neural

Time

Per centage
0,001% 38 21 17
0,002% 32 20 20
0,003% 30 23 20
0,005% 28 19 18
0,01% 29 21 20
0,02% 31 24 21
0,03% 32 22 22
0,05% 35 23 20

TABLES

RMS RELATIVE ERROR (%) FOR THE TEST SET ONLY.

Model |UIT- Hybrid Neural
R | UIT-R - Neural

Time

Per centage
0,001% 25 22 22
0,002% 23 17 19
0,003% 28 24 19
0,005% 21 17 20
0,01% 28 23 22
0,02% 27 24 22
0,03% 27 22 24
0,05% 26 23 22

As expeded, the best results were obtained using the
Neural Modd, that is an universal approximator. The second
best results, very close to those of the Neural Model, were
those obtained using the Hybrid Modd, which has the
advantage of preserving the phenomenological information.
The worst results were those from the phenomenological
model, but the eath-space rain attenuation is a known as a
hard to model problem. The best performance of the
phenomenological model in the test set is beause its
adjustment uses al pairs.

IX. CONCLUSIONS

Neura tedniques may furnish valuable information
on phenomenological models, determining its critical sub-
models and giving indghts on how to fix them. If it is not
posshle to fix them using phenomenological knowledge, one
aternative isto use alocal neural network to fix the output of
the aitical sub-models. This hybrid phenomenol ogical-neural
model furnishes the predsion of the numerica neural model
while preserving the phenomenological mode information.
This technique was applied to the prediction of the rain
attenuation on eath-satellite cmmunication paths with very
interesting results.
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