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1. Introduction

In the development of non-destructive testing, available tools for 
the pattern recognition and modelling of signals are increasingly 
present, being used for the development of automatic or semi-
automatic systems of detection and classification of existing defects 
in equipment through ultrasonic signals (pulse-echo and time-of-
flight diffraction (TOFD)), eddy current and digital radiography[1-3].

Taking into consideration the importance of Acoustic Emission 
testing (AE) in non-destructive testing used in the inspection of 
equipment, the main objective of the present work is to describe 
the methodologies and the results obtained in a study carried out 
to evaluate the possibility of application of pattern recognition 
techniques in AE signals, aiming at the detection of the propagation 
or not of defects in pressurised pipes. These techniques can be used 
in the implementation of an automatic system for the detection of 
unstable growth of defects in this equipment.

For this purpose, the development of non-linear pattern 
classifiers implemented by artificial neural networks has been 

employed. As input data for the pattern classifiers, parameters of the 
AE signals were used. The separation of the signals into the classes 
No Propagation of defect (NP) and Propagation (P) was carried 
out based on the follow-up of the increase of the defects by means 
of ultrasonic testing, carried out simultaneously with hydrostatic 
and AE testing. The separation of the classes by means of J-critical 
integral value was also carried out. Several relevant studies of the 
parameters of the signals were executed to verify which ones were 
really important in the detection of the propagation of defects.

The classification results were quite satisfactory, showing 
that it is possible to reach high performance in the detection of 
the propagation of defects in pressurised pipes. It is important to 
point out that this study is innovative in this area of equipment 
inspection.

2. Methodologies

2.1 Materials

The specimens were made of API XL Grade 60 steel, 20 inches in 
diameter and 14 mm in thickness. The specimens were welded at 
their extremities in order to form a closed volume and in such a 
manner that would allow them to be pressurised. An external crack 
of 7 mm in depth by 140 mm in length was previously created to 
the pressure in the specimen testing. Figure 1 shows the specimens 
used.

2.2 Hydrostatic test

The extensions of the pipe were tested hydrostatically up to the 
propagation of the defect and subsequent failure of the specimen. 
The chart in Figure 2 represents the evolution of the pressure of the 
testing as time goes by.

2.3. Acquisition of the parameters of the AE signals

Figure 3 illustrates a typical form of an acoustic emission signal and 
some parameters that can be extracted to characterise the signal.
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In the present work, the following parameters were previously 
selected from the AE signals obtained: testing time, channel, rise 
time, counts, energy, duration, amplitude, mean frequency, RMS 
(Root Mean Square) and ASL (Average Signal Level).

2.4. Monitoring of the increase in the size of the defects

The monitoring of the crack was carried out by means of ultrasonic 
testing with an angular beam. A transducer of 70° was placed 
sidelong to the crack according to Figure 4. From the distance of 
the emission point of the transducer up to the defect (L) and sound 
path (S), it was possible to determine the depth of the defect (P).

2.5 Pattern non-linear classifiers

The non-linear classifiers were implemented using an artificial neural 
network consisting of a double layer of neurons of the hyperbolic 
tangent type and with feed-forward. The optimal parameters of the 
classifiers, neural synapses and bias were estimated through the 
training algorithm by retro-propagation of errors[4, 5].

In order to estimate the best number of neurons to be used in the 
intermediate layer of the classifier, the amount of neurons used in 
each training was variable. The number of neurons, which provided 
the best results with the test set was used in the evaluation of the 
classification improvement.

2.6 Selection of characteristics

Quite often in pattern recognition, as well as in signal processing 
areas, the reduction of the dimensionality of input data is advisable 
due to several reasons: reduction of computer costs of the classifiers, 
increase in the robustness of the classification systems and 
reduction of the possibility of data overtraining in the evaluation 
of the classifier parameters. In this work, a few techniques of 
characteristic selection were used, which will be briefly described 
below since they have been used in other works[6, 7].

2.6.1 Linear correlation

The coefficient of linear correlation between two variables can be 
used to verify the linear correlation among the characteristics of a 
classification system, as well as the existing correlation among the 
characteristics and the classes under study. The calculation of the 
correlation coefficient is done according to the equation[6]:

                               ......................(1)

C(x, y): linear correlation between x and y variables.
 and : expected values of x and y variables, respectively.

σx and σy: standard deviations x and y variables, respectively.
To verify the correlation reliability among the characteristics or 

between the characteristics and classes of defects, the confidence 
interval of 95% was used. The correlation coefficients are shown 
in matrices whose columns represent the sum of the characteristics 
including the classes, and the lines represent the characteristics.

2.6.2 Criterion of relevance

Another technique to evaluate how the performance of a classifier 
depends on a given characteristic is calculated by means of the 
equation (2) described by Seixas[8]:

                             ......................(2)

R(xi): relevance of the  component of the  input vectors;
N: number of patterns (training or testing);

: input vector of the neural network for each xi input pattern 
presented;

:  input vector, in which the i component has been replaced by 
its average value calculated over all input vectors;

: network output for  input.
In this work, the relevance criterion was carried out by means 

of a non-linear classifier.

2.6.3 Fisher criterion

Fisher’s linear discriminant is based on the attainment of the 
discrimination main directions of a group of classes[5], based on 
the fact that the main direction in the discrimination of the classes 
is the one in which the maximal separation among the averages 
of data projected in this direction takes place, as well as the 
minimum scattering among the classes. In other words, in a simple 

Figure 2. Evolution of the loading of the hydrostatic testing as 
compared with the testing time

Figure 3. Parameters commonly extracted from the acoustic 
emission signals

Figure 4. Configuration of the angular ultrasonic testing for 
determining the depth of the defect. 70° angular transducer
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example with two classes, the objective function is described by 
the equation (3):

                                     ................................(3)

where  is the discrimination main direction of the two classes, 
in which the distance between  is maximal and the 
intra-class scatter is minimal, measured by the sum of the variance 
of each class, [5, 7]. In order to evaluate the relevance of 
a characteristic in a multivariate distribution, the matrixes of SW 
intra-class covariance and SB intra-class were defined by means of 
the equations (4) and (7):

                              .........................(4)

where:

                                          ...................................(5)

being  the characteristics vector and ni the samples of an i class. 
For a class C case, the SWT total intra-class scatter matrix will be:

                                               ......................................(6)

The interclass covariance matrix is defined by:

                                 ..........................(7),

being  the average vectors of the two classes. For a C 
class case, the total intra-class scatter will be calculated by the 
equation (8):

                            .....................(8)

In this project, the D value for each parameter of the acoustic 
emission signal was calculated between the equations (4) and (7).

3. Results

3.1. Separation of the AE signals in the classes 

The separation of the signals in the classes No Propagation of 
defect (NP) and Propagation (P) was carried out based on the 
follow-up evaluation of the increase of the defect by means of 
ultrasonic testing, carried out simultaneously with hydrostatic and 
AE testing. In order to separate the AE signals into the NP and 
P classes, firstly, the variation of the pressure of the testing with 
time for data acquisition was employed as well as the follow-up of 
the crack propagation analysed by ultrasonic testing with pressure 
variation. In this case, the division of classes was based on the 
significant change of propagation of the crack (depth (mm)) shown 
in the chart of Figure 5 (the sound path is also shown), gathering 
the classes with the time, as per Table 1.

Regions I and II of the chart in Figure 5 were also defined with 
other pressure variation ranges to verify the changes caused in the 
performance of the classifiers, which will be described thereafter.

Besides the separation of the classes by following-up the 
increase of the defect by means of ultrasonic testing, taking into 
consideration that this is not usually done in the operation field of 
these tubes, the separation of the signals in the NP and P classes by 
the J-critical integral value of this material was also carried out, as 
will be discussed later on in the text of this work.

3.2 Non-linear classifiers

With the separation of the classes carried out according to item 
3.1, the set of input of the neural network was formed by 8049 
samples of NP and 7697 samples of P. Initially, seven parameters of 
the signals were used: channel, rise time, Counts, Energy, duration, 
amplitude and ASL (Average Signal Level) collected directly from 
the AE apparatus. In this case, the output set was constituted by 
15,746 lines and seven columns. The output set corresponding to the 
training of the neural network included 15,746 lines and only one 
column, as long as it is a case of only two classes of standards.

Firstly, since it is known that non-linear classifiers are 
implemented in neural networks with two layers, an intermediate 
layer and an output layer, an evaluation of the number of optimal 
neurons was carried out in the intermediate layer in order to 
obtain the best possible performance with the testing samples, 
characterising the generalisation of the classifiers and the non-
occurrence of data overtraining. It must be highlighted that all 
neurons used were of the hyperbolic tangent type.

In order to optimise the number of neurons in the intermediate 
layer, initially a random raffle of 20% of each class data for formation 
of the test set was carried out. This way, it was ensured that the two 
classes (NP and P), even when including an amount of different 
samples, had similar relative percentages of samples raffled for 
test. The data remaining (80%) were used in the formation of the 
training set. Afterwards, several training sessions and tests were 
carried out in these raffled samples, varying the number of neurons 
in the intermediate layer on a two-by-two basis, using batch training 
up to 3000 epochs, with moment (β=0.9) and variable learning rate 
(α)[4, 5], parameters that empirically had demonstrated to be the best 
for fast convergence of the training error. The training sessions 
and tests were carried out with a minimum of five neurons and a 
maximum of 25 neurons. Table 2 shows the results obtained with 
the training and test sets for each situation.

From the Table, it can be verified that with five neurons the best 
(maximum) performance was obtained with the test set (88.86%), 
a result slightly better than the one obtained by the training 
set (87.70%). With the results obtained, it is evident that a high 
number of neurons are not necessary to increase the performance 
significantly. Since the smaller the quantity of neurons used in the 
intermediate layer, the smaller will be the probability of occurrence 
of overtraining of the network parameters (synapses and bias)[4], the 
number of neurons in the intermediate layer was established at five 
for the following training procedures of the classifiers.

3.3 Classification accuracy

In order to calculate the classification accuracy of non-linear 
classifiers, ten training sets and ten test sets were formed by means 

Classes Pressure (kgf/cm2) Time (s)

No Propagation (NP)
Propagation (P)

0-100
200-250

0-4710
9419-20667

Table 1. Data division for formation of the classes

Figure 5. Definition regions of the classes
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of random raffle from the preliminary data (15,746 data), being 
80% of the data for training and the remaining 20% for test. The 
average of the performance obtained for the test sets provides an 
estimate of the classification accuracy for the signals under study[9]. 
In addition, to calculate the general classification accuracy, the rates 
of False Positive (FP) were also determined (signals characterising 
No Propagation of defect which were indicated as Propagation), as 
well as False Negative (FN) (signals characterising Propagation of 
defect which were indicated as No Propagation), for each training 
and test set. Table 3 shows all rates obtained for training and test 
and the average values as well as standard deviations.

From Table 3, it is verified that the accuracy of the classifier with 
test data was of 87.97% (average). Since no expressive difference 
between the performance of the training and test sets occurred, 
the generalisation of the non-linear classifiers was proven, even 
without the use of a criterion of advance interruption to avoid the 
overtraining, as for instance the use of a validation set during the 
training[4].

The rates of False Positive (FP) concerning the test samples 
resulted in an average of 7.67% that proves that there were a low 
number of signals concerning the Non-Propagation of defect, which 
were indicated as Propagation. However, the indications of False 
Negative (FN) resulted in an average of 16.66% that proves that 
there was a greater number of signals concerning the Propagation 
(P) of defects, classified as No Propagation (NP), certainly the most 
critical situation from the point of view of equipment failure.

The generalisation of the non-linear classifier for the 
classification of data under this study is fully proven by the existing 
similarity between the results obtained with the training and test 
data, either for the performance or for the FP and FN rates, as 
can be seen in Table 3. It is also highlighted by the results that 
the resulting standard deviations can be considered low due to the 
number of sets used.

3.3.1 Redefinition of the SP and P classes

The next step in the test was to diminish regions I and II on the chart 
of Figure 5, defining the SP class up to 25 kgf/cm2 and the P class 
from 250 kgf/cm2 (from 15758s). Under this condition, the total 
set was constituted by 1298 samples of NP and 1253 samples of P; 
in this case, there was a small difference between the amounts of 
samples of the two classes. Table 4 includes the performance with 
the training and test sets in the execution of the study concerning 
the number of neurons in the intermediate layer. For this situation, 
with seven neurons, the best percentage of performance with these 
signals (93.53%) was obtained, although with only three neurons a 
very close rate had already been obtained (93.34%).

Table 5 shows 10 pairs of results between the training and test 
sets that were raffled from the original set, in this case constituted 
by 2551 samples (80% for training and 20% for testing). Under 
this condition, a percentage of 93.64% of average performance for 
training and test was reached, a rate considerably better than the 
approximately 88.00% obtained by the first tests (Table 3). The 
values of standard deviation obtained are small, demonstrating the 
small variability of the results. With this, it can be inferred that 
the redefinition of the P class (propagation) for pressures above 
250 kgf/cm2 was responsible for the increase in the performance, 
which could be expected due to fact that the False Negative (FN) 
rates were greater than the False Positive ones (see Table 3). Class P 
is ‘responsible’ for the higher rates concerning the classification of 
errors, which is worsened if we increase region II on the chart of 
Figure 5, removing a larger amount of signals from the ‘confusion’ 
region between the two classes. The similarity between the training 
and tests results confirms the generalisation of the classifier, even if 
a control with the validation set has not been carried out.

3.4 Elimination of the irrelevant parameters

In the pattern recognition, as Duda[5] emphasises, the ideal is that 
the smallest possible amount of parameters describing the classes be 
used and that these parameters not be correlated, which facilitates 
the training of the parameters that form the classifiers and benefits 
their generalisation. Although in terms of generalisation of the non-
linear classifiers the results obtained have shown the generalisation 
of these classifiers, studies of relevance of the parameters were 
carried out for the possible dismissal of less relevant parameters in 
the discrimination of classes with data with the new definition of 
classes (Table 5).

Firstly, the coefficients of linear correlation were calculated for 
a confidence interval of 95%[6], as per Equation 1, and are presented 
in Table 6. Later, the criterion of relevance (Equation 2) was 

Number of neurons in 
the intermediate layer Training (%)* Test (%)*

5 87.70 88.86
7 87.95 87.84
9 87.88 88.41
11 87.83 88.00
13 87.92 87.62
15 87.86 87.75
17 87.72 88.38
19 88.07 87.56
21 87.86 88.32
23 88.10 87.43
25 87.98 87.62

*Results for the same pair of training/test sets

Maximum

Minimum

Table 2. Optimisation of the number of neurons in the 
intermediate layer

SP up to 100 kgf/cm2, P from 200 kgf/cm2

Sets
Performance Training Test

Training (%) Test (%) FP (%) FN (%) FP (%) FN (%)
1 87.81 88.20 7.61 16.94 8.70 15.23
2 88.02 87.70 7.68 16.51 7.12 17.62
3 87.93 87.65 7.60 16.77 7.13 17.76
4 88.05 87.81 7.45 16.65 7.56 17.16
5 87.93 87.87 7.85 16.48 6.98 17.58
6 87.86 88.45 7.65 16.83 8.30 15.07
7 88.03 87.65 7.43 16.74 8.70 16.21
8 87.70 88.76 7.80 16.98 7.15 15.68
9 88.05 87.40 7.94 16.15 8.15 17.28
10 87.90 88.20 7.82 16.65 6.88 16.82

Average 87.92 87.97 7.70 16.67 7.67 16.66
Standard 
Deviation 0.12 0.42 0.17 0.25 0.73 1.03

Table 3. Performance obtained with ten training and test sets 
with the non-linear classifier, as well as the results of False 
Positive (FP) and False Negative (FN)

NP up to 100 kgf/cm2, P from 200 kgf/cm2

Number of neurons Training (%) Test (%)
1 87.71 87.65
3 93.88 93.34
5 93.88 93.34
7 93.68 93.53
9 93.98 93.34
11 94.03 93.53
13 93.83 93.53
15 93.88 93.34

Table 4. Study of the number of neurons in the intermediate 
layer NP up to 25 kgf/cm2, P from 250 kgf/cm2
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employed, calculated with the non-linear classifier. Table 7 lists the 
results obtained in terms of relevance.

From Table 6 it is clear that all seven parameters present 
correlation amongst themselves, because they exceed the limit 
of 0.040. However, the correlation is even more evident between 
parameters Counts and Energy; Counts and Duration; Energy and 
Duration; and Energy and Amplitude, which is explained by the 
technique of acoustic emission itself.

Almost all parameters presented linear correlation with the 
classes (only one column is presented because if a parameter is 
relevant to discriminate a class, it will obviously be for the other). 
However, parameters ASL and Amplitude were highlighted in 
linear correlation with classes, showing to be the most relevant 
ones under the analysis of correlation coefficient.

In order to conclude the relevance studies of the parameters, 
values D of Fisher’s criterion (Equation 3) were calculated for 
the seven parameters. The chart in Figure 6 shows the J values 
obtained. Ratifying the results obtained by the other two techniques, 
once again, the ASL and Amplitude parameters present greater 
comparative relevance to the other parameters, except for the 
parameter Channel that presents similar relevance to the parameter 
Amplitude, as per this technique. By Fisher’s criterion, there is also 
no expressive difference among the parameters Duration, Energy, 
Count and Rise Time. Although there are no negative values of D, 

because the value in module of the difference among the averages 
of each class (Equation 3) is considered, the axis of the chart was 
moved to negative values in order to facilitate the visualisation of 
the difference among the parameters.

Analysing the results of the parameter relevance calculations, 
it was proven that the parameters ASL and Amplitude are, in 
fact, the most relevant ones in the discrimination of the NP and P 
classes of AE signals. From Tables 6 and 7, it is also verified that 
the parameters Channel, Rise Time and Count are the three other 
most important parameters for class separation. It is important to 
highlight that the use of parameter Channel is not recommended 
because of the amount of channels used, and because their position 
in the testing equipment varies in each testing. In such a manner, 
the next procedure was to test the non-linear classifier using an 
input including only parameters: ASL, Amplitude, Count and Rise 
Time. In this case, the same number of neurons in the intermediate 
layer of the classifier of Table 4 (seven neurons) was repeated, but 
new ten pairs of training and test sets were formed. Table 8 shows 
the results obtained.

The averages obtained in this classification situation, 92.95% 
with training sets and 92.57% with test sets, are lower than the 
averages obtained using seven parameters, as per Table 5, which 
confirms that the dismissal of three parameters, Channel, Energy 
and Duration, causes a small decrease in the performance of the 
classifier. However, the decrease of about only 1% of adjustment 
with testing data really showed that the four parameters used are 
the most relevant ones in the discrimination of NP and P classes 

Sets
Performance

Training (%) Test (%)
1 93.54 94.12
2 93.73 93.14
3 93.10 95.90
4 93.60 93.93
5 93.50 94.12
6 93.68 92.55
7 93.60 93.93
8 94.17 92.36
9 93.73 92.55
10 93.68 93.73

Average 93.64 93.64
Standard Deviation 0.27 1.06

Table 5. Performance obtained by ten training and test sets 
(non-linear classifier)

NP up to 25 kgf/cm2, P from 250 kgf/cm2

Table 6. Matrix with the coefficients of linear correlation for 
seven preliminary parameters, but with the new definition of 
classes (up to 25 kgf/cm2 – SP, and from 250 kgf/cm2 – P)

Parameters
Channel Rise 

Time
Count Energy Duration Amp. ASL Class

 Ratio for determining the correlation limit : 0.040 (n = 2551)

Channel 1 -0.038 0.035 0.033 0.036 0.08 -0.08 0.136

Rise Time -0.038 1 0.368 0.232 0.383 0.302 0.193 -0.068

Score 0.035 0.368 1 0.624 0.863 0.66 0.172 0.058

Power 0.033 0.232 0.624 1 0.689 0.468 0.147 0.05

Duration 0.036 0.383 0.863 0.689 1 0.66 0.169 0.019

Amplitude 0.08 0.302 0.66 0.468 0.66 1 0.029 0.267

ASL -0.08 0.193 0.172 0.147 0.169 0.029 1 -0.42

Table 7. Relevance values obtained by the non-linear classifier

Parameters Relevance
Channel 0.020

Rise Time 0.135
Score 0.061
Power 0.003

Duration 0.003
Amplitude 0.145

ASL 0.757

Figure 6. Relevance values for the parameters according to 
Fisher’s criterion

Table 8. Performances obtained using ten training and test sets 
with four parameters: ASL, Amplitude, Count and Rise Time

SP up to 25 kgf/cm2, P from 250 kgf/cm2

Sets
Performance

Training (%) Test (%)
1 92.80 92.36
2 93.20 93.53
3 92.61 90.40
4 92.85 95.10
5 93.34 92.36
6 93.10 91.38
7 92.85 93.53
8 93.05 91.57
9 93.05 92.16
10 92.66 93.34

Average 92.96 92.58
Deviation 0.23 1.28
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and the use of a reduced number of parameters is possible with no 
great classification loss.

It is important to emphasise that other combinations of 
parameters can be tested in order to check the performance with the 
non-linear classifier. However, due to the results already obtained, 
it is evident that the variation of the performance is small between 
the training and test sets, and that about 92/93% of the correct 
classification found can be considered satisfactory in view of the 
small number of parameters used for the characterisation of the 
signals concerning the classes NP and P.

3.5 Classification by means of J initiation values   
 (critical-J)

In practical terms, in field work, it is known that the monitoring 
of the defect increase in pressurised tubes is not performed; 
therefore, the final tests of this project were carried out based on 
J initiation integral values, at which time, under a date pressure, a 
stable propagation of the defect takes place. In this case, classes NP 
(No Propagation) and P (Propagation) are now defined based on 
J initiation integral value for this material (steel API XL grade 60).

In order to find the J initiation value and the concerning 
pressure, respectively, the chart on Figure 7 was used. It was 
stipulated (according to ASTM E1820[10]) that J initiation happens 
for the depth variation range of defect of 0.2 mm in depth 
(∆a = 0.2 mm). From the chart of ∆a (mm) versus J (kJ/m2), Figure 7 
below, drawing a parallel straight line to the tangent of the curve 
in the origin (after an approximate extrapolation), it is observed 
that for the point where ∆a = 0.2 mm, the J initiation value is in 
the range of 2000 kJ/m2. From this result, now analysing the chart 
on Figure 8[11], this J value for the external crack defect of 7 mm in 
depth (initial value of a) and 140 mm in length, is located between 
the third and the fourth measure from the superior part of the curve 
(J integral versus crack depth). As per Table 9 presented below, 
it was verified that for this variation range of the crack (between 
the third and the fourth measure of fracture propagation), the J 
initiation value happens for pressure values between 225 kgf/cm2, 
in a more conservative consideration, and 250 kgf/cm2, in a less 
conservative consideration.

For the pressure of 250 kgf/cm2 (less conservative situation 
in terms of tube fracture), the testing were carried out (Table 8). 
Therefore, new tests were carried out now with NP and P classes 
defined as: NP up to 25 kgf/cm2 and P from 225 kgf/cm2. In this 
case, once again, the number of optimal neurons to be used in 
the intermediate layer of the non-linear classifier was studied; 
this being implemented exactly like the others already described. 
Table 10 shows the training adjustment rates (80% of the original 
set) and test (20%) varying the number of neurons.

While analysing Table 10, the best result obtained with the test 
set happened with nine neurons in the intermediate layer (92.66%). 
Later, a raffle of ten random sets of training and tests was carried 
out, just like the one that has been carried out until the present time 
of the project, aiming at the evaluation of the classification accuracy 
for this situation. The rates obtained can be found in Table 11, as 
well as the accuracy and the respective standard deviations for 
training and test.

The accuracy of 90.50% obtained for the test data can be 
considered quite satisfactory, first because once again the 
generalisation of the classifier is ensured in view of the small 
difference between this rate and the one for training (91.24%), 
second because it differs only 2% for the less conservative situation 
of J initiation integral value (250 kgf/cm2, 92.58% - Table 8).

4. Conclusion

In general terms, the results of accuracy classification, or simply, 
expected performance (average) of the pattern classifiers were 
considerably satisfactory and promising, because they presented 
values in the range of 90% up to 93% of performance of the 
classes of signals, No Propagation and Propagation, in most of the 

Figure 7. Delta curve a (mm) versus J (kJ/m2)

Figure 8. J resistance curves[11]

Table 9. Testing pressure variation with crack propagation
Pressure (kgf/cm2) Depth (mm) Sound path (mm)

0 0.00 0.00
20 0.10 0.21
50 0.10 0.23
75 0.11 0.25
100 0.13 0.28
125 0.15 0.32
150 0.17 0.38
175 0.21 0.45
200 0.27 0.57
200 0.28 0.60
225 0.40 0.87
250 0.72 1.54
250 1.03 2.05
250 1.28 2.55

Table 10. Optimisation of the number of neurons in the 
intermediate layer of the non-linear classifier
NP up to 225 kgf/cm2 and P from 225 kgf/cm2 (Separation for J initiation)

Number of Neurons Training (%) Testing (%)
1 89.61 89.68
3 92.39 91.76
5 92.66 92.56
7 92.66 92.44
9 92.69 92.66
11 89.81 89.98
13 92.66 92.66
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situations studied during the work. The reliability of these results 
is supported by the similarity of the rates obtained with the training 
and test sets, proving the generalisation of the classifiers.

It can also be inferred that the tools for analysing the relevance 
of the parameters used in the project allowed to verify that not all 
characteristic parameters of the AE signals are in fact relevant for 
the discrimination of the standard classes involved.

Taking into consideration the last results concerning the J 
initiation integral values, it was possible to confirm that the 
performance of these is also high, allowing a separation of the 
signals and indication of defect occurrence based on the pressure 
information that the pipe is suffering, which in practical terms 
enables the construction of an automatic or semi-automatic system 
to identify the propagation of defects in similar materials reserved 
for loading on pressure, a main reason for the development of the 
present project. Evidently, many studies can and must be carried 
out aiming at attaining other results and increase even more the 
reliability of the results already obtained, which will permit 
addressing the research of the project to the actual construction of 
these systems.
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Table 11. Performance obtained with ten sets of training and 
test
SP up to 25 kgf/cm2 and P from 225 kgf/cm2 (Separation for J critical)

Sets
Performance

Training (%) Test (%)
1 89.78 89.38
2 92.56 90.17
3 89.81 90.37
4 89.73 89.88
5 92.64 90.97
6 92.59 92.76
7 92.66 91.76
8 90.13 88.10
9 92.70 92.67
10 89.83 88.78

Average 91.24 90.50
Standard Deviation 1.40 1.50
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Advanced Ultrasonic Techniques
15-16 June 2006 – The Cairn Hotel, Harrogate

Contributions are invited for this Conference.

 Sessions will include:

 q Phased arrays. q	Special techniques for advanced materials. 
 q	Time-of-flight techniques. q	Anything else that you have that is NEW  
 q	Specialist probes.  (and can be presented to this specialist audience).
 

Please send your contributions and reserve your exhibition space by contacting
Phil Kolbe at BINDT Headquarters: 1 Spencer Parade, Northampton NN1 5AA. 

Tel: 01604 823709; Fax: 01604 231489 
E-mail: phil.kolbe@bindt.org


