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PIPELINE INSPECTION

Monitoring equipment in real time has become increasingly 
important, mainly when operational safety is targeted. 
Acoustic emission (AE) testing has been applied to the 
inspection of various types of equipment, particularly rigid 
pipes. This paper presents a study on the use of acoustic 
emission to detect defect propagation in pressurised rigid 
pipes. The resulting AE signals were classified as no 
propagation (NP), stable propagation (SP) and unstable 
propagation (UP) and used as inputs in the implementation 
of non-linear classifiers by error back-propagation. The 
correct classification results reached close to 91%, proving 
the efficiency of the method in the conditions tested in this 
study. The methodologies used for the construction of the 
probability of propagation (POP) curve are presented, 
which are a great innovation in this research field and the 
focus of an international patent. 

Keywords: non-destructive testing (NDT), acoustic emission, non-
linear pattern classifiers, neural network.

Introduction
In the modern world, the use of non-destructive testing (NDT) 
to assess the structural integrity of equipment is of undeniable 
importance. In the past, tests were basically restricted to visual 
testing, liquid penetrant, magnetic particle, radiography and 
ultrasound. Among current NDT, the method of acoustic emission 
(AE) is based on the detection of sources of acoustic signals that 
are emitted during the propagation of discontinuities and sharp 
plastic deformation. As it is a qualitative method, the AE test 
does not provide the dimensions of the discontinuities, which are 
provided by other NDT methods such as ultrasound. Since it only 
provides indications of active discontinuities during the loading 
of structures, one of the main goals of its application is real-time 
monitoring of equipment. 

Motivated by the importance of acoustic emission for non-
destructive inspection of equipment, and the capability of 
implementing non-linear classifiers by neural network techniques, 
this paper describes a study developed to implement non-linear 
pattern classifiers, aiming to detect the growth of defects in rigid pipes 
using the parameters of AE signals as the input set[1]. The signals were 
divided into three classes: no propagation, stable propagation and 
unstable propagation, defined by ultrasound monitoring of growth 
defects, synchronised with hydrostatic testing[2]. 

The results of the development of the classification probability 
techniques supply the foundation for the construction of probability 
of propagation (POP) curves, which have a similar shape to the 
well-known probability of detection (POD) curves; however, they 
are conceptually different. In this way, we present the concept of 
the formation of POP curves and the first results obtained, which 
will guide future studies.

2. Analysis of acoustic emission tests
2.1 Materials 
The specimens were made of API XL Grade 60 steel, 20 inches in 
diameter and 14.5 mm in thickness. An elliptical crack localised 
exactly on the TOFD transducer (Figure 1) was machined on the 
inner and outer surfaces of the pipes, with different dimensions for 
each test. For illustration, Figure 1 contains a typical schematic 
drawing of a pipe section with the instrumentation used for 
monitoring by hydrostatic tests.

The crack on the inner surface of the specimen was machined 
with a grinder using a cutting disc with a radius of 12 mm. The 
defect had a semi-elliptical shape 160 mm long, 1.1 mm wide and 
7.33 mm deep. 

2.2 Acquisition parameters of acoustic emission
Acoustic emission signals were acquired during the hydrostatic 
pressure tests, using the Disp 16 c equipment of PASA (Physical 
Acoustics South America). Eight sensors were used: four near the 
crack and two located at each o-ring. After the acquisition, the 
signals were processed in the same equipment. 

According to Pinto[2], the correct classification of AE signals 
into one of the three proposed classes requires nineteen features, 
which are described in Table 1.
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Table 1. Acoustic emission features collected[2]

Feature Description

Rise Time interval between the first peak that exceeds the 
reference threshold and the maximum peak amplitude.

Count Number of times the signal exceeds the threshold, 
within the value set of HDT.

Energy Integral of absolute value of each wave peak. Since 
this is a discrete time signal, sum up the values of the 
samples of rectified waveform. It must be pointed out 
that breadth here refers to a measure of voltage and not 
decibel.

Duration Time interval between the first and the last thresholds 
exceeded within the pre-set value of HDT.

AMP Maximum peak amplitude of the signal, in dB.

A-Freq Average frequency: the definition is count over duration 
(count/duration).

RMS The root of the integral values of voltage squared 
divided by the interval given by the time difference 
between the upper and lower limits of integration.

ASL Average signal level, in dB.

PCNTS Number of peaks until the maximum amplitude is 
reached, always taking into account the reference 
threshold.

R-Freq Reverb frequency: defined by (count-count to peak)/
(duration-rise time).

I-Freq Initiation frequency: defined by (count to peak / rise 
time).

Sig-Strength Signal strength or intensity: practically the definition of 
power, but with simpler coefficient of sen (π/4).

ABS-Energy This is a normalised parameter that represents the real 
amount of energy in pico-joule. It is defined by the sum 
of the amplitudes of samples squared divided by 10 
(kOhm impedance).

Freq-PP1 First partial power.

Freq-PP2 Second partial power.

Freq-PP3 Third partial power.

Freq-PP4 Fourth partial power.

C-Freq Centroid frequency: not necessarily the centre 
frequency, corresponding to the centre of the spectrum, 
but choosing a setting that takes into account ‘weights’ 
due to the magnitude and spraying.

P-Freq Peak frequency: frequency component of greater 
magnitude in the spectrum.

2.3 Synchronisation of files of acoustic emission signals
Since the monitoring of pressurisation and growth of artificial 
defects and the acoustic emission signals are always in separate 
files, a procedure for synchronising them was established, because 
the acoustic emission activity is related to the load and to the 
propagation of the defect. The AE signals resulting from tests were 
filtered to separate, by arrival time, just those that provided the 
sensors close to defects. 

2.4 Separation of signals
After synchronising the files, the acoustic emission events were 
divided into the following classes: no propagation (NP), stable 
propagation (SP) and unstable propagation (UP)[2]. 

2.5 The neural classifier
Artificial neural networks were used to implement non-linear 
pattern classifiers[3,4].

The classifiers were developed using the back-propagation 
algorithm, a multilayer feed forward topology and performed as 
the hyperbolic tangent activation function. Some configurations 
of training parameters were studied to provide the best possible 
classification and to ensure the generalisation of classifiers[3,4]. 
Several datasets for training and testing were randomly selected 
without data replacement, aiming to estimate the accuracy of the 
identification signals of no propagation (NP), stable propagation 
(SP) and unstable propagation (UP) of defects, as well as two 
classes (NP and P). 

After training had been conducted several times to assess which 
would be the best classifier configuration to be used with the inputs 
provided, aiming at the best possible generalisation (testing for 
three classes), we defined a good classifier with six neurons in the 
hidden layer and a momentum of 0.9, a variable learning rate with 
an initial value at 0.05, a growth factor of 1.05 and a decrease factor 
of 0.9, and set the maximum at 0.2 (parameters adjusted in the 
Matlab program). Once the best parameters to be used in network 
training were set, we decided to test them using a random selection 
without replacing the sets of training (80%) and test (20%)[5]. More 
details can be obtained in Silva et al[6].

3. Probability of propagation (POP) curve
The main objective of the POP curve is to use the output values 
of each neuron of the classifier output layer for calculation of the 
probability of classification. To determine the probability, only two 
sets of data are relevant: the one that belongs to the class and the 
one that does not belong to the chosen class.

Figure 2 can be analysed in order to explain the methodology 
defining the NP class as stage 1 in propagation, SP as stage 2 and UP 
as stage 3, assuming that the probability in relation to time for the 
NP class is near 1, while the others are close to zero at the threshold 
of the definition of this class. When entering the second stage, the 
SP class probability should be close to one and the remainder close 
to zero. In the third and last stage, the probability of the UP class 
should be close to one and the remainder to zero. When plotting 
the three probabilities in one single graphic in relation to time, the 
probability of propagation (POP) curve is generated.

In an ideal situation, we assume that the AE testing for crack 
propagation monitoring in a pressurised equipment lasted 150 s, 
being that the signals of the first 49 s were defined as NP, from 
50 s to 99 s as SP and from 100 s to 150 s as UP. Observing the 
graphic in Figure 3: from 0 s to 49 s, the probability of the signal 
being NP is equal to one, while the remainder is equal to zero; 
between 51 s and 99 s, the probability for SP is equal to 1 and 
the remainder is equal to zero; and from 100 s until the end of the 
testing, the probability for UP is equal to one and the remainder is 
equal to zero. However, it is highlighted that this would happen for 
an ideal signal characterisation situation, that is with 100% hit for 

Figure 1. Schematic of positioning of the sensors close to the 
region of the crack on the inner surface of the specimens. 
Dimensions in mm. TOFD: ultrasound transducer; SG: strain 
gauge sensor; AE: acoustic emission sensor
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the signals of each class in the defined region.
The testing time was used as a reference because, when there 

is a crack and the AE signal is captured, the tendency is for the 
propagation to occur until there is a rupture of the pipe, unless the 
pressure is relieved until the SP class. That is, in a tn+1 time, the size 
of the crack will be bigger or equal to the size in tn, but never smaller.

This new approach can be characterised as a problem of 
recognition of statistical patterns, where the challenge lies in 
estimating the density functions in an n-dimensional space and 
dividing this space into classes[7].

In this new context, among the many classifiers Bayes 
classifiers are considered to be the best, since they minimise the 
error probability in classification. In the first classification stage, 
the non-parametric probability density function is estimated, since 
the data distribution is completely unknown[7]. In the second and 
last stage, the classification is done using Bayes theorem[8].

According to the neural network used to train the classifier, the 
classes were determined from the output value Y. Table 2 presents 
the values for each class.

Table 2. Neural network definitions

Class Output vector Y

NP [1 –1 –1]T

SP [–1 1 –1]T

UP [–1 –1 1]T

According to Specht[9], the similarity between the feed-
forward neural networks and non-parametric pattern classifiers is 
noticeable. The author affirms that this similarity can be observed 
in probabilistic neural networks, where the hyperbolic tangent 
activation function is replaced by an exponential function, the 

same as that used in the Gaussian kernel. Even though we are not 
developing a probabilistic neural network, we concluded that for 
the estimation of the probability distribution it is necessary that the 
activation function of each neuron of the output layer is removed 
according to Equation (1):

                                  Un = tanh
−1 Yn( )  .................................(1) 

so that n is the neuron and Y is the neuron’s output.
After eliminating the activation function, the next step is to 

estimate the probability densities. The non-parametric probability 
functions are extremely difficult to precisely estimate compared to 
the parametric ones. However, the objective is not the precision of 
the estimated function but to use the curve to model the classifier[7,8].

Among the many methods for non-parametric estimation 
Parzen’s stands out, which, when adjusted with a Gaussian kernel 
function K( . ) so that ∫ K(X)dX = 1[7,8], can be interpreted as a 
weighted sum of the value of the K( . ) function for each X value, 
as shown in Figure 4[10].

After estimating the probability density functions, the 
classification can be carried out using Bayes theorem, which will 
determine the a posteriori probability according to Equation (2)[8].  
That is, given an input X, the probability of it belonging to the class 
is calculated:

                  Pr G = j X = x0( ) = π̂ j f̂ j x0( )
π̂ k f̂k x0( )k=1

J∑
 ..................(2)

f̂ X( )  – non-parametric estimated density function.
π̂  – a priori class probability.
J – number of classes. 

Adjusting Equation (2) for the calculation of each class, NP, SP 
and UP, Equation (3) is obtained:

Pr G = Class X = x0( ) = π̂Class f̂Class x0( )
π̂Class f̂Class x0( )+ π̂ notClass f̂notClass x0( )  ....(3)

Since each set of class and not-class is known, in order to 
eliminate any influence of an unbalancing of the sets, the a priori 
probability given any input x will be π̂Class = 0.5  and π̂ notClass = 0.5 . 
In this way, the a posteriori probability will be a result of the 
estimated probability density.

According to Equation (3), the a posteriori probability depends 
on the estimated densities with the class and not-class elements. 

Figure 2. The dashed line represents the plot of pressure 
versus time and the continuous line represents the plot of crack 
propagation versus time

Figure 3. The long-dashed line represents the NP probability, 
the dotted line the SP probability and the short-dashed line the 
UP probability

Figure 4. The curve with the continuous line is the estimated 
density and the dashed lines are the Kernel functions for each 
indicated point[10]



Thus, it is necessary to define a new variable Z, described in 
Equation (4):

                           Z =Ul −max Um ,Un( )  ..............................(4)

such that l, m and n are the neurons of the output layer if, and only 
if, l ≠ m ≠ n.

Using the neural classifier developed for the elements that 
belong to the class, the values of Z will be greater than zero (true 
positive) when properly classified and negative when wrongly 
classified (false negative). For the elements that do not belong to 
the class, the values of Z will be negative when properly classified 
(true negative) and greater than zero when classified as the class 
(false positive). Table 3 presents the equation used in each class; a 
similar approach is presented in Silva[11].

Table 3. Z equations for the respective classes

Class Class elements set Sum of the two sets that do not 
belong to the class

NP ZNP = U1 – max(U2, U3) ZnotNP = U1 – max(U2, U3)

SP ZSP = U2 – max(U1, U3) ZnotSP = U2 – max(U1, U3)

UP ZUP = U3 – max(U2, U1) ZnotUP = U3 – max(U2, U1)

According to Hastie[8], when two probability density curves 
follow the form presented in Figure 5, generated from hypothetical 
data, the a posteriori probability graphic calculated using Equation 
(3) will have the smooth form presented in Figure 6.

Observing the curve in Figure 6, a great similarity to the form 
of the curves generated from hyperbolic tangents is noticed, thus, 
for posteriori probabilities found, a regression using this function 
is carried out. From this moment on, the class probability can be 
written as a function of time and of Z, according to Equation (5):

                 PClass t( ) = a × tanh b× Zn t( )− c( )+ d  ..................(5)

4. Discussion and results 
4.1 First testing
In order to sort the situation into three classes, the signals in Figure 
7 were separated as NP class up to the time of 6868 s (181 bar), 
SP class (stable propagation) between 6869 s and 8143 s (208 bar) 
and UP class between 8144 s and 12,837 s (233 bar), resulting in 
2207 samples being defined as NP, 1394 as SP and 6439 as UP. 
According to Pinto[2], the unbalance of data between the classes 
does not affect the performance of the trained network.

Initially, tests were made with the classification system 
considering the single positive value at the network output layer 
that the authors had already called ‘without reclassification’. This 
methodology was presented by Silva et al[11].

In order to evaluate the quality of the neural network, two sets 
were tested: the first one was the same as that which had trained the 
network (training sets) and the second one was the data that was 
never shown to the network (test sets). 

Table 4 shows that the performance of classification into three 
classes attained 78% for the training sets and 77% for the test sets, 
the nearness of results proving the generalisation of non-linear 
classifiers. It must be noted that the configuration of the neural 
network was the same in all the situations, as explained above. 

Analysing separately the average rates of success of each one of the 
three classes studied, UP was the class that had the best performance 
at 92%, which was expected, since when there is unstable propagation 
of the defect, the acoustic emission events become more noticeable 
in the acquisition system. The SP class reached 77%, which proves 
that finding the exact moment of transition from no propagation of 
the defect to elastic propagation, and then the transition from elastic 
to plastic, is considerably more complex. The ‘not classified’ values 
(more than one positive output or all negative[11]) were expected 
because they usually occur in pattern recognition.

4.2 Second testing
As described in Section 2.4, the signals were divided into NP class, 
SP class and UP class, resulting in 2053 samples being defined as 
NP, 1045 samples as SP and 383 samples as UP. 

Table 5 shows that the performance of the classification into 
three classes attained 91% for both sets. Analysing each individual 
class, it is noted that the trained neural network could discriminate 
correctly the three classes, including the SP class, which obtained 
an accuracy increase of about 10% when compared to the results 

Figure 5. The continuous line represents the class probability 
density and the dashed line the density of the not-class. 
Hypothetical data

Figure 6. Posteriori probability curve for the class, generated 
from the probability density

Figure 7. The dashed line represents the plot of pressure 
versus time and the continuous line represents the plot of crack 
propagation versus time
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of the first test. The ‘not classified’ values (more than one positive 
output or all negative) were insignificant at almost zero.

4.3 POP curve
This section presents the results obtained for each class when 
applying the proposed method. The first POP curve is generated 
from the data obtained in test 2 and the second one from the data 
obtained in test 1.

Table 6 presents the regression function calculated from 
Equation (5) for each class. Through these functions, the probability 
that the input signal belongs to each class NP, SP and UP can be 
calculated.

Table 6. Hyperbolic tangent regression equations

Class Equation

NP PNP(t) = 0.4951 × tanh(3.507 × ZNP(t) – 1.372) + 0.4999 (6)

SP PSP(t) = 0.4951 × tanh(0.7004 × ZSP(t) + 0.4588) + 0.4940 (7)

UP PUP(t) = 0.4745 × tanh(1.811 × ZUP(t) + 3.114) + 0.4925 (8)

 Figure 8 presents the probability of the NP class as a function of 
time; each dot represents the probability for each Z value, found by 
using Equation (6). As initially expected, the greater concentration 
of dots is next to one. Then, with the increase in test time, the 
greater concentration of dots is found close to zero.

The SP probability curve, Figure 9, initially presented the 
biggest value concentration close to zero. As time passed, the 
greater concentration turned to one, and as time increased the 
probability dropped again. This trajectory can be best visualised 
using the regression curve.

The UP probability is presented in Figure 10. As expected, it 
starts with an initial value concentration close to zero and, as it 
reaches 8000 s, the values start to concentrate close to one and 
remain equal to this value until the end of the testing.

Finally, the POP curve could be determined by plotting the three 
probability regression curves in one single graphic, as shown in 
Figure 11.

Since the curve was built from the dataset of test 2, it is known 
that until 6000 s the data is NP, from 6000 s to 8000 s it is SP and 

from 8000 s on it is UP.
Analysing the POP curve until 6000 s, as 

shown in Figure 12, the input signal possesses 
a greater probability of being characterised 
as NP until about 6000 s. When it reaches  
5875 s, the probability of being classified as 
SP exceeds the NP probability.

Figure 13 highlights the SP data. For 6000 s, 
the probability for the signal to be classified as 
SP is the greatest among the three classes. From 
6850 s on, the probability of SP starts dropping 
and that of UP starts rising. As it reaches 7640 s, 
the probability of UP exceeds SP.

Figure 14 highlights UP data. As the test 
time reaches 8000 s, the probability of the 
input signal being classified as UP is over 
90%, while that of SP is approximately 10% 
and that of NP is almost zero. 

To ratify the reproducibility of the 
method, the same procedure was applied to a 
different test, test 1.

Table 7 presents the equations used to 
find the probability for each value of Z and 
the POP curve obtained from these values is 
presented in Figure 15. According to what 
is described in Section 4.1, until 6870 s the 
input signal is classified as NP, from 6870 s 
to 8144 s as SP and from 8144 s on the 
classification is of UP. 

Figure 8. Probability of the NP class. The dots represent the 
probability for each value of Z and the continuous line is the 
regression function of these dots

Figure 9. Probability of the SP class. The dots represent the 
probability for each value of Z and the continuous line is the 
regression function of these dots

Table 4. Results of the average accuracy of 10 training and test sets (three classes 
without reclassification)

Performance  
(training set)

Performance  
(test set)

NP SP UP NC NP SP UP NC

NP 83% 4% 13%

12%

NP 82% 4% 14%

12%SP 16% 77% 7% SP 15% 77% 8%

UP 4% 4% 92% UP 4% 4% 92%

Average total 
success

78%
Average total 
success

77%

NC – not classified

Table 5. Results of the average accuracy for 10 training and test sets (three classes 
without reclassification)

Performance  
(training set)

Performance  
(test set)

NP SP UP NC NP SP UP NC

NP 92.2% 6.4% 0.3%

0.3%

NP 93% 6.1% 0.3%

0.3%SP 9.7% 86.7% 4.0% SP 8.9% 84% 4.2%

UP 0.7% 3.8% 95.4% UP 1.4% 7.6% 91.4%

Average total 
success

91%
Average total 
success

91%

NC – not classified



Table 7. Hyperbolic tangent regression equations of test 1

Class Equation

NP PNP(t) = 0.4764 × tanh(0.9566 × ZNP(t) + 0.788) + 0.4984 (9)

SP PSP(t) = 0.4541 × tanh(0.6761 × ZSP(t) + 0.6295) + 0.5584 (10)

UP PUP(t) = 0.4657 × tanh(0.653 × ZUP(t) – 0.5569) + 0.5229 (11)

Analysing Figure 15, it is observed, as expected, that the NP 
class possesses a greater probability value at the beginning of the 
test, being exceeded by the probability of SP at 6957 s, 87 s after 
the transition from NP to SP. While the NP class remains stable at 
0.1 in the transition from SP to UP, the chance of a signal belonging 
to SP is even higher, but is already declining while the UP signal 
probability rises. The UP probability exceeds the SP value at  
8414 s, that is with a delay of 270 s.

Defining the delays as classification errors, we have  
ERRORNP/SP as the ratio of the delay of the transition of NP to SP by 
total test time, and ERRORSP/UP as the ratio transition delay of SP 
to UP by total test time, according to Table 8. The errors presented 
show that the class transition presented by the POP curve is really 
close to the known real transition.

Table 8. Percentage classification error table

ERRORNP/SP 2.1%

ERRORSP/UP 0.68%

As a final discussion, it is highlighted that the crucial 
propagation moment is located at the threshold between the SP and 
UP classes, since the desired outcome is to predict, with a minimum 
advance, the beginning of an unstable defect propagation regime 
(or plastic propagation as denominated in fracture mechanics). 
Through the POP curves obtained so far, it has been proven that 
this technique is promising in this forecasting, it being possible to 

Figure 10. Probability for the UP class. The dots represent the 
probability for each value of Z and the continuous line is the 
regression function of these dots

Figure 11. POP curve

Figure 12. POP curve – highlighting NP data

Figure 13. POP curve – highlighting SP data

Figure 14. POP curve – highlighting UP data

Figure 15. POP curve for test 1 – separated classes
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transform the pattern classifiers of the neural networks in bases for 
the development of an automatic crack propagation monitoring 
system in this equipment.

5. Conclusion
The paper presents an innovative methodology to identify, in 
an automatic way, the transition from stable to unstable crack 
propagation in rigid pressurised pipes, monitored by acoustic 
emission tests.

This project aimed to conduct a series of investigations for the 
separation of classes of acoustic emission signals for the monitoring 
of rigid ducts, building on previous studies[1,12]. Until now, studies 
have been focused mainly on trying to discriminate the classes, 
stable propagation (SP) from unstable propagation (UP). 

In this project, we innovatively used classification into three 
classes and we attained approximately 91% of classification 
accuracy from the beginning of crack propagation until total 
breaking of the specimen, a rate considered significant in terms of 
the few features applied. However, the separation between NP and 
SP is far more complex than that between both NP and UP and SP 
and UP. This fact can be explained by the little difference that there 
is in terms of acoustic emission phenomena between the time of 
elastic deformation and the beginning of plastic deformation. 

The proposed methodology of POP curves proved to be efficient, 
since in both tests studied so far, for the construction of curves, 
a similar behaviour and a form close to the proposed theoretical 
curve were obtained.

In relation to the method accuracy, the results obtained are 
very promising, since although the transition limits between the 
classes did not match the curve intersection points, which is the 
ideal situation, both were really close, presenting an irrelevant error 
when compared to the total test time.

Even though initial, there being much to be developed, such 
results show the capacity of classifying the propagation of cracks 
in rigid pipelines in a probabilistic way. It is a pioneer study, thus 
there are no previous references with which to compare the results. 

It is important to emphasise that we are not aware of similar 
studies, to date, with the approach developed in the area of acoustic 
emission monitoring of the propagation of defects, so we could not 
compare our results. 

6. Further studies
Further studies will involve applying the data of a test in another 
one to observe the behaviour of the curve and the accuracy of the 
method and adjusting the parameters used to obtain regression 
curves so that the intersections of the probability curves are closer 
to the moment of class transition.

A new three-year project is starting, aiming at performing four 
new tests, this time using test specimens of 25 m in length to be 
nearer to real field situations. The resulting AE signals will be used 
to repeat the methodology presented and to optimise the behaviour 
of the curves.
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