Contents

10 Unsupervised Learning and Clustering 3
10.1 Introduction L 3
10.2 Mixture Densities and Identifiability 4
10.3 Maximum-Likelihood Estimates 6
10.4 Application to Normal Mixtures 7

10.4.1 Case 1: Unknown Mean Vectors 8
Example 1: Mixture of two 1D Gaussians 9
10.4.2 Case 2: All Parameters Unknown 11
10.4.3 K-means clustering, 13
Algorithm 1: K-means i it e 13
10.4.4 *Fuzzy k-means clustering 14
Algorithm 2: Fuzzy k-means o o e 15
10.5 Unsupervised Bayesian Learning 17
10.5.1 The Bayes Classifier 17
10.5.2 Learning the Parameter Vector 18
Ezxample 2: Unsupervised learning of Gaussian data. 21
10.5.3 Decision-Directed Approximation 23
10.6 *Data Description and Clustering 24
10.6.1 Similarity Measures, 25
10.7 Criterion Functions for Clustering 29
10.7.1 The Sum-of-Squared-Error Criterion 29
10.7.2 Related Minimum Variance Criteria 30
10.7.3 Scattering Criteria, . 31
Example 8: Clustering criteria 33
10.8 *Tterative Optimization 35
Algorithm 8: Basic minimum-squared-error 36
10.9 Hierarchical Clustering 37
10.9.1 Definitions e 37
10.9.2 Agglomerative Hierarchical Clustering 39
Algorithm 4: Agglomerative hierarchical 39
10.9.3 Stepwise-Optimal Hierarchical Clustering 41
Algorithm 5: Stepwise optimal hierarchical clustering 42
10.9.4 Hierarchical Clustering and Induced Metrics 43
10.10*The Problem of Validity 43
10.11Competitive Learning e 45
Algorithm 6: Competitive learning 47
10.11.1 Unknown number of clusters 48
Algorithm 7: leader-follower, 48

CONTENTS

10.11.2 Adaptive Resonance, 49
10.12*Graph Theoretic Methods 51
10.13Component analysis Lo 53

10.13.1 Principal component analysis (PCA) 53

10.13.2 Non-linear component analysis 54

10.13.3 *Independent component analysis (ICA) 55
10.14Low-Dimensional Representations and Multidimensional Scaling (MDS) 58

10.14.1 Self-organizing feature maps 61

10.14.2 Clustering and Dimensionality Reduction 65

Algorithm 8: Hierarchical dimensionality reduction 66
SUMMATY o o o e e e e e e e e e 66
Bibliographical and Historical Remarks 68
Problems 68
Computer exerciSes v v v i e e e e e e e e e 79
Bibliography 84

Index e 87

Chapter 10

Unsupervised Learning and
Clustering

10.1 Introduction

ntil now we have assumed that the training samples used to design a classifier were

labeled by their category membership. Procedures that use labeled samples are
said to be supervised. Now we shall investigate a number of unsupervised procedures,
which use unlabeled samples. That is, we shall see what can be done when all one
has is a collection of samples without being told their category.

One might wonder why anyone is interested in such an unpromising problem, and
whether or not it is possible even in principle to learn anything of value from un-
labeled samples. There are at least five basic reasons for interest in unsupervised
procedures. First, collecting and labeling a large set of sample patterns can be sur-
prisingly costly. For instance, recorded speech is virtually free, but accurately labeling
the speech — marking what word or phoneme is being uttered at each instant —
can be very expensive and time consuming. If a classifier can be crudely designed on
a small set of labeled samples, and then “tuned up” by allowing it to run without
supervision on a large, unlabeled set, much time and trouble can be saved. Second,
one might wish to proceed in the reverse direction: train with large amounts of (less
expensive) unlabeled data, and only then use supervision to label the groupings found.
This may be appropriate for large “data mining” applications where the contents of
a large database are not known beforehand. Third, in many applications the charac-
teristics of the patterns can change slowly with time, for example in automated food
classification as the seasons change. If these changes can be tracked by a classifier
running in an unsupervised mode, improved performance can be achieved. Fourth,
we can use unsupervised methods to find features, that will then be useful for cate-
gorization. There are unsupervised methods that represent a form of data-dependent
“smart preprocessing” or “smart feature extraction.” Lastly, in the early stages of
an investigation it may be valuable to gain some insight into the nature or structure
of the data. The discovery of distinct subclasses or similarities among patterns or of
major departures from expected characteristics may suggest we significantly alter our

3

COMPONENT
DENSITIES

MIXING
PARAMETERS

4 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

approach to designing the classifier.

The answer to the question of whether or not it is possible in principle to learn
anything from unlabeled data depends upon the assumptions one is willing to accept
— theorems can not be proved without premises. We shall begin with the very restric-
tive assumption that the functional forms for the underlying probability densities are
known, and that the only thing that must be learned is the value of an unknown pa-
rameter vector. Interestingly enough, the formal solution to this problem will turn out
to be almost identical to the solution for the problem of supervised learning given in
Chap. ?7?7. Unfortunately, in the unsupervised case the solution suffers from the usual
problems associated with parametric assumptions without providing any of the bene-
fits of computational simplicity. This will lead us to various attempts to reformulate
the problem as one of partitioning the data into subgroups or clusters. While some of
the resulting clustering procedures have no known significant theoretical properties,
they are still among the more useful tools for pattern recognition problems.

10.2 Mixture Densities and Identifiability

We begin by assuming that we know the complete probability structure for the prob-
lem with the sole exception of the values of some parameters. To be more specific, we
make the following assumptions:

1. The samples come from a known number ¢ of classes.
2. The prior probabilities P(w;) for each class are known, j =1,...,c.

3. The forms for the class-conditional probability densities p(x|w;, ;) are known,
j=1,...,c

4. The values for the ¢ parameter vectors 04, ..., 0. are unknown.

5. The category labels are unknown.

Samples are assumed to be obtained by selecting a state of nature w; with prob-
ability P(w;) and then selecting an x according to the probability law p(x|w;, 8;).
Thus, the probability density function for the samples is given by

p(x[6) =Y p(x|w;, 0;)P(w;), (1)
j=1
where 0 = (01, ...,0.). For obvious reasons, a density function of this form is called

a mixzture density. The conditional densities p(x|w;, 0;) are called the component
densities, and the prior probabilities P(w;) are called the mizing parameters. The
mixing parameters can also be included among the unknown parameters, but for the
moment we shall assume that only € is unknown.

Our basic goal will be to use samples drawn from this mixture density to estimate
the unknown parameter vector 8. Once we know 6 we can decompose the mixture
into its components and use a Bayesian classifier on the derived densities, if indeed
classification is our final goal. Before seeking explicit solutions to this problem, how-
ever, let us ask whether or not it is possible in principle to recover 8 from the mixture.
Suppose that we had an unlimited number of samples, and that we used one of the
nonparametric methods of Chap. ?? to determine the value of p(x|0) for every x. If

10.2. MIXTURE DENSITIES AND IDENTIFIABILITY 5

there is only one value of @ that will produce the observed values for p(x|@), then
a solution is at least possible in principle. However, if several different values of 6
can produce the same values for p(x|0), then there is no hope of obtaining a unique
solution.

These considerations lead us to the following definition: a density p(x|@0) is said
to be identifiable if @ # 0" implies that there exists an x such that p(x|0) # p(x|@").
Or put another way, a density p(x|@) is not identifiable if we cannot recover a unique
0, even from an infinite amount of data. In the discouraging situation where we
cannot infer any of the individual parameters (i.e., components of), the density
is completely unidentifiable.* Note that the identifiability of 0 is a property of the
model, irrespective of any procedure we might use to determine its value. As one might
expect, the study of unsupervised learning is greatly simplified if we restrict ourselves
to identifiable mixtures. Fortunately, most mixtures of commonly encountered density
functions are identifiable, as are most complex or high-dimensional density functions
encountered in real-world problems.

Mixtures of discrete distributions are not always so obliging. As a simple example
consider the case where x is binary and P(z|0) is the mixture

1 1
P(:l0) = SO7(L— 00" + 2631 0"
1—%(914-92) if z =0.

Suppose, for example, that we know for our data that P(z = 1|0) = 0.6, and hence
that P(x = 0/0) = 0.4. Then we know the function P(z|0), but we cannot determine
0, and hence cannot extract the component distributions. The most we can say is
that 61 +65 = 1.2. Thus, here we have a case in which the mixture distribution is com-
pletely unidentifiable, and hence a case for which unsupervised learning is impossible
in principle. Related situations may permit us to determine one or some parameters,
but not all (Problem 3).

This kind of problem commonly occurs with discrete distributions. If there are
too many components in the mixture, there may be more unknowns than independent
equations, and identifiability can be a serious problem. For the continuous case,
the problems are less severe, although certain minor difficulties can arise due to the
possibility of special cases. Thus, while it can be shown that mixtures of normal
densities are usually identifiable, the parameters in the simple mixture density

p(z|0) =]iﬁ;d_;) exp {—%(1’ — 91)2} + Jjﬁ;d_?exp [—%(m - 02)2] (2)

cannot be uniquely identified if P(wy) = P(w2), for then #; and 65 can be interchanged
without affecting p(x|@). To avoid such irritations, we shall acknowledge that identi-
fiability can be a problem, but shall henceforth assume that the mixture densities we
are working with are identifiable.

* Technically speaking, a distribution is not identifiable if we cannot determine the parameters
without bias. We might guess their correct values, but such a guess would have to be biased in
some way.

COMPLETE
UNIDENTIFI-
ABILITY

6 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

10.3 Maximum-Likelihood Estimates

Suppose now that we are given a set D = {xy,...,X,} of n unlabeled samples drawn
independently from the mixture density

p(x10) = 3" p(xlw;, 0,) Plwy), (1)
j=1

where the full parameter vector @ is fixed but unknown. The likelihood of the observed
samples is, by definition, the joint density

p(D10) = [p(xx/0). (3)
k=1

The maximum-likelihood estimate @ is that value of 8 that maximizes p(D)|).

If we assume that p(D|0) is a differentiable function of @, then we can derive some
interesting necessary conditions for 6. Let [be the logarithm of the likelihood, and
let Vgil be the gradient of | with respect to 8;. Then

= Z In p(x|6) (4)
k=1
and
n 1 c
Vgl = ; mvei ;P(XH%’@J')P(%) : (5)

If we assume that the elements of 8; and 8; are functionally independent if ¢ # j, and
if we introduce the posterior probability

p(Xg|ws, 0;)P(w;)
oal0) ©)

we see that the gradient of the log-likelihood can be written in the interesting form

P(wi|Xk,0) =

Vgl = Z P(w;|xg, O)Vgiln p(Xk|wi, 6;). (7)
k=1
Since the gradient must vanish at the value of 8; that maximizes [, the maximum-
likelihood estimate @; must satisfy the conditions

n

ZP(wﬁxk,é)V&ln p(xk|w¢,é¢) =0, i=1,...,c (8)
k=1

Among the solutions to these equations for 02 we may find the maximum-likelihood
solution.

It is not hard to generalize these results to include the prior probabilities P(w;)
among the unknown quantities. In this case the search for the maximum value of
p(D|0) extends over 6 and P(w;), subject to the constraints

Plw) >0 i=1,....c (9)

10.4. APPLICATION TO NORMAL MIXTURES 7

and

C

y Pw) =1 (10)

i=1

Let P(w;) be the maximum-likelihood estimate for P(w;), and let ; be the maximum-
likelihood estimate for 6;. It can be shown (Problem ?7?) that if the likelihood function
is differentiable and if P(w;) # 0 for any 4, then P(w;) and 0; must satisfy

1 n
== ; (wilxk, 0) (11)

and

Z wz|xk7 VG In p(xk|w17 1) = 07 (12)
where
p(xp|wi, 0:)P(w;)

P(wilxy, 8) = — — . (13)
;P(XM%’%)P(%‘)

These equations have the following interpretation. Equation 11 states that the
maximum-likelihood estimate of the probability of a category is the average over the
entire data set of the estimate derived from each sample — each sample is weighted
equally. Equation 13 is ultimately related to Bayes Theorem, but notice that in
estimating the probability for class w;, the numerator on the right-hand side depends
on 0; and not the full @ directly. While Eq. 12 is a bit subtle, we can understand
it clearly in the trivial n = 1 case. Since P # 0, this case states merely that the
probability density is maximized as a function of 8; — surely what is needed for the
maximum-likelihood solution.

10.4 Application to Normal Mixtures

It is enlightening to see how these general results apply to the case where the compo-
nent densities are multivariate normal, p(x|w;, 0;) ~ N(u;,3;). The following table
illustrates a few of the different cases that can arise depending upon which parameters
are known (x) and which are unknown (?7):

| Case || p; | B [Plwy) | ¢ |
1 ? X X X
2 ? ? ? X
3 ? ? ? ?

Case 1 is the simplest, and will be considered in detail because of its pedagogical
value. Case 2 is more realistic, though somewhat more involved. Case 3 represents the
problem we face on encountering a completely unknown set of data; unfortunately, it
cannot be solved by maximum-likelihood methods. We shall postpone discussion of
what can be done when the number of classes is unknown until Sect. 77.

8 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

10.4.1 Case 1: Unknown Mean Vectors

If the only unknown quantities are the mean vectors u;, then of course 0; consists of
the components of p,. Equation 8 can then be used to obtain necessary conditions
on the maximum-likelihood estimate for p,. Since the likelihood is

In plxfoi, p) = ~In [Y2 2] = S — p) B x -), (14)

1
2
its derivative is

Vi In plxlwr,) = 7 (x —). (15)

Thus according to Eq. 8, the maximum-likelihood estimate fi; must satisfy

> P(wilxk,)7 (xk — f1;) =0, where fi = (fiy,..., f1.)- (16)
k=1

After multiplying by 3; and rearranging terms, we obtain the solution:

S P(wilxp, f1)xs
N k=
Ky = :L (17)
> Plwilxk, ft)
k=1

This equation is intuitively very satisfying. It shows that the maximum-likelihood
estimate for p, is merely a weighted average of the samples; the weight for the kth
sample is an estimate of how likely it is that x; belongs to the ith class. If P(w;|xg, ft)
happened to be 1.0 for some of the samples and 0.0 for the rest, then f, would be the
mean of those samples estimated to belong to the ith class. More generally, suppose
that fi; is sufficiently close to the true value of u, that P(w;|xy, ft) is essentially
the true posterior probability for w;. If we think of P(w;|xy, ft) as the fraction of
those samples having value x; that come from the ith class, then we see that Eq. 17
essentially gives f1, as the average of the samples coming from the ith class.

Unfortunately, Eq. 17 does not give f1; explicitly, and if we substitute

p(xg|wi, fr;) P(w;)
; p(xk|wj, fr;) Pw;)

P(wilx, ft) =

with p(x|w;, ft;) ~ N(fr;,3;), we obtain a tangled snarl of coupled simultaneous
nonlinear equations. These equations usually do not have a unique solution, and we
must test the solutions we get to find the one that actually maximizes the likelihood.
If we have some way of obtaining fairly good initial estimates f1,(0) for the unknown
means, Eq. 17 suggests the following iterative scheme for improving the estimates:

Pwilx, (7)) %k

bl
Niings

(G +1) = (18)

- Plwilxy, (7))
k=1

This is basically a gradient ascent or hill-climbing procedure for maximizing the log-
likelihood function. If the overlap between component densities is small, then the

10.4. APPLICATION TO NORMAL MIXTURES 9

coupling between classes will be small and convergence will be fast. However, when
convergence does occur, all that we can be sure of is that the gradient is zero. Like all
hill-climbing procedures, this one carries no guarantee of yielding the global maximum
(Computer exercise 19). Note too that if the model is mis-specified (for instance we
assume the “wrong” number of clusters) then the log-likelihood can actually decrease
(Computer exercise 21).

Example 1: Mixtures of two 1D Gaussians

To illustrate the kind of behavior that can occur, consider the simple two-component
one-dimensional normal mixture:

plalinoin) = esp |3 (o~ | + Somexp | 5o -)? |

w1 w2

where w; denotes a Gaussian component. The 25 samples shown in the table were
drawn sequentially from this mixture with yqy = —2 and pus = 2. Let us use these
samples to compute the log-likelihood function

Upr, p2) = Zln p(ﬂ?k|ﬂhﬂ2)
k=1

for various values of p1 and ps. The bottom figure shows how [varies with 1 and po.
The maximum value of [occurs at fi; = —2.130 and jio = 1.668, which is in the rough
vicinity of the true values 3 = —2 and ue = 2. However, [reaches another peak of
comparable height at f1; = 2.085 and 1o = —1.257. Roughly speaking, this solution
corresponds to interchanging p; and pe. Note that had the prior probabilities been
equal, interchanging u; and ps would have produced no change in the log-likelihood
function. Thus, as we mentioned before, when the mixture density is not identifiable,
the maximume-likelihood solution is not unique.

k T | w1 | we k T | w1 | we k T w1 | wa

1| 0.608 X 9 0.262 X 17 | -3.458 | x

2 | -1.590 | x 10 | 1.072 X 18 | 0.257 X

3| 0.235 X 11 | -1.773 | X 19 | 2.569 X

4 | 3.949 X 12 | 0.537 X 20 | 1.415 X

51-2.249 | x 13 | 3.240 X 21 | 1.410 X

6 | 2.704 X 14 | 2.400 X 22 | -2.653 | X

7| -2473 | x 15 | -2.499 | x 23 | 1.396 X

8| 0.672 X 16 | 2.608 X 24 | 3.286 X
25 | -0.712 | x

Additional insight into the nature of these multiple solutions can be obtained by
examining the resulting estimates for the mixture density. The figure at the top
shows the true (source) mixture density and the estimates obtained by using the two
maximum-likelihood estimates as if they were the true parameter values. The 25
sample values are shown as a scatter of points along the abscissa — wi points in

10 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

black, ws points in red. Note that the peaks of both the true mixture density and
the maximum-likelihood solutions are located so as to encompass two major groups
of data points. The estimate corresponding to the smaller local maximum of the log-
likelihood function has a mirror-image shape, but its peaks also encompass reasonable
groups of data points. To the eye, neither of these solutions is clearly superior, and
both are interesting.

5 My

(Above) The source mixture density used to generate sample data, and two maximum-
likelihood estimates based on the data in the table. (Bottom) Log-likelihood of a
mixture model consisting of two univariate Gaussians as a function of their means,
for the data in the table. Trajectories for the iterative maximum-likelihood estimation
of the means of a two-Gaussian mixture model based on the data are shown as red
lines. Two local optima (with log-likelihoods -52.2 and -56.7) correspond to the two
density estimates shown above.

If Eq. 18 is used to determine solutions to Eq. 17 iteratively, the results depend
on the starting values fi1(0) and fi2(0). The bottom figure shows trajectories from
two different starting points. Although not shown, if 1(0) = fi2(0), convergence
to a saddle point occurs in one step. This is not a coincidence; it happens for the
simple reason that for this starting point P(w;|zk, {;(0), i;(0)) = P(w;). In such a
case Eq. 18 yields the mean of all of the samples for fi; and fio for all successive
iterations. Clearly, this is a general phenomenon, and such saddle-point solutions can
be expected if the starting point does not bias the search away from a symmetric

10.4. APPLICATION TO NORMAL MIXTURES 11

answer.

10.4.2 Case 2: All Parameters Unknown

If p;, 33;, and P(w;) are all unknown, and if no constraints are placed on the covariance
matrix, then the maximum-likelihood principle yields useless singular solutions. The
reason for this can be appreciated from the following simple example in one dimension.
Let p(z|u, 0?) be the two-component normal mixture:

€ 02)—;@([_1(37—#)2]_##6}([—le]
PR = S ame P L2\ N

The likelihood function for n samples drawn from this probability density is merely
the product of the n densities p(z|u, 0?). Suppose that we let u = 1, the value of
the first sample. In this situation the density is

(z| 02)_#+L6X [—lmﬂ
PLE 20ame avam b2t |

Clearly, for the rest of the samples

p(ar|p, o?) > ;exp [—13:2]
T 2V 27k]’

so that

1 1 1 1
p(a:l,.. .,SCn|,l,L,O'2) > {; + exp |:—§$%:| } Wexp [—EZ:C%] .

k=2

Thus, the first term at the right shows that by letting o approach zero we can make
the likelihood arbitrarily large, and the maximum-likelihood solution is singular.

Ordinarily, singular solutions are of no interest, and we are forced to conclude that
the maximum-likelihood principle fails for this class of normal mixtures. However, it
is an empirical fact that meaningful solutions can still be obtained if we restrict our
attention to the largest of the finite local maxima of the likelihood function. Assuming
that the likelihood function is well behaved at such maxima, we can use Eqgs. 11 —
13 to obtain estimates for p;, ¥;, and P(w;). When we include the elements of 3;
in the elements of the parameter vector 0;, we must remember that only half of the
off-diagonal elements are independent. In addition, it turns out to be much more
convenient to let the independent elements of % ! rather than X; be the unknown
parameters. With these observations, the actual differentiation of

=21

I pekles, 02) = In T v — 50 1) 57 (ke —)

12 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

with respect to the elements of p; and X! is relatively routine. Let x,(k) be the pth
element of xy, u,(i) be the pth element of p;, op,(7) be the pgth element of 3;, and
oP4(i) be the pgth element of X;*. Then differentiation gives

Vi, In p(xp|wi, 0:) = 77 (x — ;)

and

PO (1= 228 o) — Caplh) — 1)) () —)]

where 6, is the Kronecker delta. We substitute these results in Eq. 12 and perform a

small amount of algebraic manipulation (Problem 16) and thereby obtain the following
equations for the local-maximum-likelihood estimate f1;, 3;, and P(w;):

1 n
=2 Plabend) (19)

kz P(wilxk, 0)xy,
fr; = "5— - (20)
Z P(w1|xk70)
k=1

3 Pl 0)o -)k)
3, = A= (21)
(wilx, 0)

M=
hU)

where

P(wﬂxk, 9)

. s —1 (]
_) > ‘ (@22

While the notation may make these equations appear to be rather formidable,
their interpretation is actually quite simple. In the extreme case where P(w1|xk.,) is
1.0 when xy, is from Class w; and 0.0 otherwise, P(wl) is the fraction of samples from
w;, ft; is the mean of those Samples and 3; is the corresponding sample covariance
matrix. More generally, P(w;|x,) is between 0.0 and 1.0, and all of the samples
play some role in the estimates. However, the estimates are basically still frequency
ratios, sample means, and sample covariance matrices.

The problems involved in solving these implicit equations are similar to the prob-
lems discussed in Sect. 7?7, with the additional complication of having to avoid singular
solutions. Of the various techniques that can be used to obtain a solution, the most
obvious approach is to use initial estimates to evaluate Eq. 22 for P(w;|x,) and then

10.4. APPLICATION TO NORMAL MIXTURES 13

to use Egs. 19 — 21 to update these estimates. If the initial estimates are very good,
having perhaps been obtained from a fairly large set of labeled samples, convergence
can be quite rapid. However, the results do depend upon the starting point, and the
problem of multiple solutions is always present. Furthermore, the repeated computa-
tion and inversion of the sample covariance matrices can be quite time consuming.

Considerable simplification can be obtained if it is possible to assume that the
covariance matrices are diagonal. This has the added virtue of reducing the number
of unknown parameters, which is very important when the number of samples is
not large. If this assumption is too strong, it still may be possible to obtain some
simplification by assuming that the ¢ covariance matrices are equal, which also may
eliminate the problem of singular solutions (Problem 16).

10.4.3 K-means clustering

Of the various techniques that can be used to simplify the computation and acceler-
ate convergence, we shall briefly consider one elementary, approximate method. From
Eq. 22, it is clear that the probability P(w;|xy,0) is large when the squared Maha-
lanobis distance (xj — ;)35 (x) — ft;) is small. Suppose that we merely compute
the squared Euclidean distance |xj — f1;]|?, find the mean fi,, nearest to x, and
approximate P(w;|xy,) as

1 ifi=m

Plwilxg, 0) ~ { 0 otherwise.

(23)
Then the iterative application of Eq. 20 leads to the following procedure for finding
fty,..., .. (Although the algorithm is historically referred to as k-means clustering,

we retain the notation ¢, our symbol for the number of clusters.)

Algorithm 1 (K-means clustering)

1 begin initialize n,c, @y, o, ..., K,

2 do classify n samples according to nearest p;
3 recompute p;

4 until no change in p;

5 return pq, po,..., 1,

¢ end

The computational complexity of the algorithm is O(ndcT’) where d the number of
features and 7' the number of iterations (Problem 15). In practice, the number of
iterations is generally much less than the number of samples.

This is typical of a class of procedures that are known as clustering procedures or
algorithms. Later on we shall place it in the class of iterative optimization procedures,
since the means tend to move so as to minimize a squared-error criterion function. For
the moment we view it merely as an approximate way to obtain maximum-likelihood
estimates for the means. The values obtained can be accepted as the answer, or can
be used as starting points for the more exact computations.

It is interesting to see how this procedure behaves on the example data we saw
in Example 1. Figure 10.1 shows the sequence of values for fi; and fi» obtained for
several different starting points. Since interchanging [i; and fio merely interchanges
the labels assigned to the data, the trajectories are symmetric about the line ji; = jis.
The trajectories lead either to the point iy = —2.176, fio = 1.684 or to its symmetric

14 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

Figure 10.1: The k-means clustering procedure is a form of stochastic hill climbing
in the log-likelihood function. The contours represent equal log-likelihood values for
the one-dimensional data in Example 1. The dots indicate parameter values after
different iterations of the k-means algorithm. Six of the starting points shown lead to
local maxima, whereas two (i.e., 111(0) = p2(0)) lead to a saddle point near p = 0.

image. This is close to the solution found by the maximum-likelihood method (viz.,
1 = —2.130 and 12 = 1.688), and the trajectories show a general resemblance to
those shown in Example 1. In general, when the overlap between the component
densities is small the maximum-likelihood approach and the k-means procedure can
be expected to give similar results.

Figure 10.2 shows a two-dimensional example, with the assumption of ¢ = 3 clus-
ters. The three initial cluster centers, chosen randomly from the training points, and
their associated Voronoi tesselation, are shown in pink. According to the algorithm,
the points in each of the three Voronoi cells are used to calculate new cluster centers
(dark pink), and so on. Here, after the third iteration the algorithm has converged
(red). Because the k-means algorithm is very simple and works well in practice, it is
a staple of clustering methods.

10.4.4 *Fuzzy k-means clustering

In every iteration of the classical k-means procedure, each data point is assumed to
be in exactly one cluster, as implied by Eq. 23 and by lines 2 & 3 of Algorithm 1.
We can relax this condition and assume that each sample x; has some graded or
“fuzzy” cluster membership p;(x;) in cluster w;, where 0 < uz(x]) < 1. At root,
these “memberships” are equivalent to the probabilities P(w1|x],) given in Eq. 22,
and thus we use this symbol. In the resulting fuzzy k-means clustering algorithm we
seek a minimum of a global cost function

L= ZZ w1|xj, ||XJ z‘||2» (24)

i=1 j=1

where b > 1 is a free parameter chosen to adjust the “blending” of different clusters.

10.4. APPLICATION TO NORMAL MIXTURES 15

X2

X1

Figure 10.2: Trajectories for the means of the k-means clustering procedure applied to
two-dimensional data. The final Voronoi tesselation (for classification) is also shown
— the means correspond to the “centers” of the Voronoi cells.

If b is set to 0, this criterion function is merely a sum-of-squared errors criterion we
shall see again in Eq. 49. The probabilities of cluster membership for each point are
normalized as

Y Pwilx) =1, j=1,...,n (25)
i=1
At the solution, i.e., the minimum of L, we have

OL/Ou; =0 and OLJ/OP; =0, (26)
and these lead (Problem 14) to the conditions

n

]g [P(wilx;)]"x;

i = ylL (27)
; [P(wilx;)]®

1

2

and

(1/d;;)"/ =)

3 (1) /0D

r=1

Plwilx;) = dij = |Jx; — ;1. (28)

In general, the criterion is minimized when the cluster centers u, are near those
points that have high estimated probability of being in cluster j. Since Eqs 27 & 28
rarely have analytic solutions, the cluster means and point probabilities are estimated
iteratively according to the following algorithm:

Algorithm 2 (Fuzzy k-means clustering)

16 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

X

X

Figure 10.3: At each iteration of the fuzzy k-means clustering algorithm, the prob-
ability of category memberships for each point are adjusted according to Eqs. 27 &
28 (here b = 2). While most points have non-negligible memberships in two or three
clusters, we nevertheless draw the boundary of a Voronoi tesselation to illustrate the
progress of the algorithm. After four iterations, the algorithm has converged and the
red cluster centers and associated Voronoi tesselation would be used for assigning new
points to clusters.

1 begin initialize n, pq,..., o, P(w; | x;),i=1...,¢; j=1,...,n
2 normalize proabilities of cluster memberships by Eq. 25
3 do classify n samples according to nearest p,

4 recompute p,; by Eq. 27

5 recompute P(w; | x;) by Eq. 28
6
7
8

until no change in p; and P(w; | x;)

return pq, to, ..., K,
end

Figure 10.3 illustrates the algorithm. At early iterations the means lie near the center
of the full data set because each point has a non-negligible “membership” (i.e., prob-
ability) in each cluster. At later iterations the means separate and each membership
tends toward the value 1.0 or 0.0. Clearly, the classical k-means algorithm is just of
special case where the memberships for all points obey

L — el < g — g for all # £
Plwilx;) _{ 0 otherwise, (29)

as given by Eq. 17.

While it may seem that such graded membership might improve convergence of
k-means over its classical counterpart, in practice there are several drawbacks to the
fuzzy method. One is that according to Eq. 25 the probability of “membership” of
a point x; in a cluster ¢ depends implicitly on the number of clusters, and when
the number of clusters is specified incorrectly, serious problems may arise (Computer
exercise 4).

10.5. UNSUPERVISED BAYESIAN LEARNING 17

10.5 Unsupervised Bayesian Learning

10.5.1 The Bayes Classifier

As we saw in Chap. 77, maximum-likelihood methods do not assume the parameter
vector 0 to be random — it is just unknown. In such methods, prior knowledge about
the likely values for 0 is not directly relevant, although in practice such knowledge
may be used in choosing good starting points for hill-climbing procedures. In this
section, however, we shall take a Bayesian approach to unsupervised learning. That
is, we shall assume that 6 is a random variable with a known prior distribution p(8),
and we shall use the samples to compute the posterior density p(0|D). Interestingly
enough, the analysis will closely parallel the analysis of supervised Bayesian learning
(Sect. ?7?.77), showing that the two problems are formally very similar.
We begin with an explicit statement of our basic assumptions. We assume that

1. The number of classes ¢ is known.
2. The prior probabilities P(w;) for each class are known, j =1,...,c.

3. The forms for the class-conditional probability densities p(x|w;, @;) are known,
j=1,...,c, but the full parameter vector @ = (01,...,0.) is not known.

4. Part of our knowledge about 6 is contained in a known prior density p(6).

5. The rest of our knowledge about 0 is contained in a set D of n samples x1,...,X,
drawn independently from the familiar mixture density

p(x[0) = p(x|w;, 0;)Pw;). (30)
j=1

At this point we could go directly to the calculation of p(8|D). However, let us
first see how this density is used to determine the Bayes classifier. Suppose that a
state of nature is selected with probability P(w;) and a feature vector x is selected
according to the probability law p(x|w;, ;). To derive the Bayes classifier we must use
all of the information at our disposal to compute the posterior probability P(w;|x).
We exhibit the role of the samples explicitly by writing this as P(w;|x, D). By Bayes’
formula, we have

p(x|wi, D) P(wi|D)

P(wi|x,D) = — .
;p(XM» D)P(w;|D)

(31)

Since the selection of the state of nature w; was done independently of the previously
drawn samples, P(w;|D) = P(w;), and we obtain

p(x|wi, D) P(wi)

> bl D)P(w;)

P(w;|x,D) = (32)

Central to the Bayesian approach is the introduction of the unknown parameter
vector @ via

18 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

p(xX|w;, D) = /p(x,9|w¢,D) do
_ / p(x(8, w5, D)p(B|wn, D) d6. (33)

Since the selection of x is independent of the samples, we have p(x|0,w;, D) =
p(x|w;, ;). Similarly, since knowledge of the state of nature when x is selected tells
us nothing about the distribution of 8, we have p(0|w;, D) = p(0|D), and thus

P(x|w;, D) = /p(x|w¢,9i)p(0|’D) do. (34)

That is, our best estimate of p(x|w;) is obtained by averaging p(x|w;, ;) over 6;.
Whether or not this is a good estimate depends on the nature of p(0|D), and thus
our attention turns at last to that density.

10.5.2 Learning the Parameter Vector

We can use Bayes’ formula to write

p(D|0)p(0)

p(0D) = ———— 35
D)= T oDi6)s(0) i (%)
where the independence of the samples yields the likelihood
p(D]6) =] p(x[6). (36)
k=1

Alternatively, letting D™ denote the set of n samples, we can write Eq. 35 in the
recursive form

n p(x4|0)p(0|D" 1)
POP") = T e 0)p(O[D™T) 48"

These are the basic equations for unsupervised Bayesian learning. Equation 35
emphasizes the relation between the Bayesian and the maximum-likelihood solutions.
If p(0) is essentially uniform over the region where p(D|0) peaks, then p(0|D) peaks
at the same place. If the only significant peak occurs at @ = 0, and if the peak is very
sharp, then Egs. 32 & 34 yield

(37)

p(x|wi, D) ~ p(x|w;, 0) (38)
and
p(x|w;, 0;)P(w;)

P(w;|x,D) =~ — - .
Z] p(x|w;, 0;)P(w;)
]:

(39)

That is, these conditions justify the use of the maximum-likelihood estimate as if it
were the true value of @ in designing the Bayes classifier.

As we saw in Sect. 77.77, in the limit of large amounts of data, maximum-likelihood
and the Bayes methods will agree (or nearly agree). While many small sample size

10.5. UNSUPERVISED BAYESIAN LEARNING 19

p(DI6)
A

>0

D> -

Figure 10.4: In a highly skewed or multiple peak posterior distribution such as illus-
trated here, the maximum-likelihood solution 8 will yield a density very different from
a Bayesian solution, which requires the integration over the full range of parameter
space 6.

problems they will agree, there exist small problems where the approximations are
poor (Fig. 10.4). As we saw in the analogous case in supervised learning whether one
chooses to use the maximum-likelihood or the Bayes method depends not only on how
confident one is of the prior distributions, but also on computational considerations;
maximum-likelihood techniques are often easier to implement than Bayesian ones.

Of course, if p(@) has been obtained by supervised learning using a large set of
labeled samples, it will be far from uniform, and it will have a dominant influence on
p(0|D™) when n is small. Equation 37 shows how the observation of an additional
unlabeled sample modifies our opinion about the true value of 8, and emphasizes the
ideas of updating and learning. If the mixture density p(x|@) is identifiable, then
each additional sample tends to sharpen p(@|D™), and under fairly general conditions
p(8]D"™) can be shown to converge (in probability) to a Dirac delta function centered
at the true value of @ (Problem 8). Thus, even though we do not know the categories
of the samples, identifiability assures us that we can learn the unknown parameter
vector @, and thereby learn the component densities p(x|w;, 8).

This, then, is the formal Bayesian solution to the problem of unsupervised learning.
In retrospect, the fact that unsupervised learning of the parameters of a mixture
density is so similar to supervised learning of the parameters of a component density
is not at all surprising. Indeed, if the component density is itself a mixture, there
would appear to be no essential difference between the two problems.

There are, however, some significant differences between supervised and unsuper-
vised learning. One of the major differences concerns the issue of identifiability. With
supervised learning, the lack of identifiability merely means that instead of obtaining
a unique parameter vector we obtain an equivalence class of parameter vectors. Be-
cause all of these yield the same component density, lack of identifiability presents no
theoretical difficulty. A lack of identifiability is much more serious in unsupervised
learning. When 0 cannot be determined uniquely, the mixture cannot be decomposed
into its true components. Thus, while p(x|D™) may still converge to p(x), p(x|w;, D™)
given by Eq. 34 will not in general converge to p(x|w;), and a theoretical barrier to
learning exists. It is here that a few labeled training samples would be valuable: for
“decomposing” the mixture into its components.

Another serious problem for unsupervised learning is computational complexity.
With supervised learning, the possibility of finding sufficient statistics allows solutions

20 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

that are analytically pleasing and computationally feasible. With unsupervised learn-
ing, there is no way to avoid the fact that the samples are obtained from a mixture
density,

p(x(0) =Y p(x|w;, 0;) P(w;), (1)
i=1

and this gives us little hope of every finding simple exact solutions for p(8|D). Such
solutions are tied to the existence of a simple sufficient statistic (Sect. ?7.77), and the
factorization theorem requires the ability to factor p(D|0) as

p(D]0) = g(s, 0)h(D). (40)
But from Egs. 36 & 1, we see that the likelihood can be written as

p(D16) = T [D p(xrlews. 0, P(wy)] (41)

k=1 j=1

Thus, p(D|0) is the sum of ¢ products of component densities. Each term in this
sum can be interpreted as the joint probability of obtaining the samples x1,...,x,
bearing a particular labeling, with the sum extending over all of the ways that the
samples could be labeled. Clearly, this results in a thorough mixture of 8 and the x’s,
and no simple factoring should be expected. An exception to this statement arises
if the component densities do not overlap, so that as @ varies only one term in the
mixture density is non-zero. In that case, p(D|0) is the product of the n nonzero
terms, and may possess a simple sufficient statistic. However, since that case allows
the class of any sample to be determined, it actually reduces the problem to one of
supervised learning, and thus is not a significant exception.

Another way to compare supervised and unsupervised learning is to substitute the
mixture density for p(x,|0) in Eq. 37 and obtain

S plxalw;, 05)P(w;)

p(6|D") = = p(6|D"). (42)

; [p(xnlw;, 0;)P(w;)p(6]D1) dO

If we consider the special case where P(wy) = 1 and all the other prior probabilities
are zero, corresponding to the supervised case in which all samples come from Class
w1, then Eq. 42 simplifies to

o p(xp|wi, 01)
p(6|D") = [p(xn|wi,01)p(0)D—1) dO

Let us compare Eqs. 42 & 43 to see how observing an additional sample changes
our estimate of 8. In each case we can ignore the normalizing denominator, which is
independent of 8. Thus, the only significant difference is that in the supervised case
we multiply the “prior” density for 6 by the component density p(xy|wi,01), while

(&

p(O|D"). (43)

in the unsupervised case we multiply it by the mixture density > p(xy|w;, 0;)P(w;).
j=1

Assuming that the sample really did come from Class wy, we see that the effect of

not knowing this category membership in the unsupervised case is to diminish the

influence of x,, on changing 6. Since x,, could have come from any of the c classes, we

10.5. UNSUPERVISED BAYESIAN LEARNING 21

cannot use it with full effectiveness in changing the component(s) of 8 associated with
any one category. Rather, we must distributed its effect over the various categories
in accordance with the probability that it arose from each category.

l lxample 2 Unsupervised learning of Gaussian dnt;al

As an example, consider the one-dimensional, two-component mixture with p(x|w)
N(u, 1), p(x|ws,0) ~ N(6,1), where u, P(w1) and P(w2) are known. Here we have

plait) = 2wy |~3o 2|+ DicZewp |G- 0],

and we seek the mean of the second component.

Viewed as a function of z, this mixture density is a superposition of two normal
densities — one peaking at x = p and the other peaking at x = 6. Viewed as a
function of 8, p(x|6) has a single peak at § = x. Suppose that the prior density p(8)
is uniform from a to b. Then after one observation (z = z1) we have

p(0]z1) ap(z10)p(6)
o/ {P(wr)exp[—3(z1 — p1)°]+
= P(ws)exp[—%(z1 — 0)%]} a<6<b ;,
0 otherwise

where a and o’ are normalizing constants that are independent of §. If the sample
x7 is in the range a < x < b, then p(f|z,) peaks at 8 = xy, of course. Otherwise it
peaks either at # = a if 1 < a or at § = b if x1 > b. Note that the additive constant
exp [—(1/2)(z1 — p)?] is large if z; is near p, and thus the peak of p(f|xy) is less
pronounced if xq is near u. This corresponds to the fact that if xq is near pu, it is
more likely to have come from the p(z|w;) component, and hence its influence on our
estimate for # is diminished.
With the addition of a second sample x2, p(f|z1) changes to

p(Olry,22) = Bp(z2|0)p(0]z1)

|
F{P(n) Plor)exp 31 —)2 — Haz — 0]
HP(on) Plaz)exp [-E w1 —)2 — Haa — 07
+[P(w2)P(w1)exp [—?(501 —0)> — §(502 — 11)?]
+[P(ws) P(w2)exp [—5(z1 — 0)% — 5(x2 — 6)°]}
a<f<b
0 otherwise.

Unfortunately, the primary thing we learn from this expression is that p(6)D") is
already complicated when n = 2. The four terms in the sum correspond to the
four ways in which the samples could have been drawn from the two component
populations. With n samples there will be 2" terms, and no simple sufficient statistics
can be found to facilitate understanding or to simplify computations.

It is possible to use the relation

22 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

o e
POIP") = T Op @D) a8

and numerical integration to obtain an approximate numerical solution for p(6|D™).
This was done for the data in Example 1 using the values u = 2, P(wy) = 1/3, and
P(ws) = 2/3. A prior density p(6) uniform from —4 to +4 encompasses the data in
the table. When this was used to start the recursive computation of p(6|D"), the
results shown in the figure. As n goes to infinity we can confidently expect p(6|D™)
to approach an impulse centered at # = 2. This graph gives some idea of the rate of
convergence.

n=0

15

PO 1x,, .. X,)

1.25

1

75

5

.25

-4 -2 0 2 4
In unsupervised Bayesian learning of the parameter , the density becomes more
peaked as the number of samples increases. The top figures uses a wide uniform prior
p(0) = 1/8,—4 < 6 < 4 while the bottom figure uses a narrower one, p(6) = 1/2,1 <
6 < 3. Despite these different prior distributions, after all 25 samples have been used,
the posterior densities are virtually identical in the two cases — the information in
the samples overwhelms the prior information.

One of the main differences between the Bayesian and the maximum-likelihood
approaches to unsupervised learning appears in the presence of the prior density p(6).
The figure shows how p(6|D") changes when p(f) is assumed to be uniform from 1 to
3, corresponding to more certain initial knowledge about 6. The results of this change
are most pronounced when n is small. It is here (just as in the classification analog
of Chap. ?7?) that the differences between the Bayesian and the maximum-likelihood

10.5. UNSUPERVISED BAYESIAN LEARNING 23

solutions are most significant. As n increases, the importance of prior knowledge
diminishes, and in the particular case the curves for n = 25 are virtually identical. In
general, one would expect the difference to be small when the number of unlabeled
samples is several times the effective number of labeled samples used to determine

p(0).

10.5.3 Decision-Directed Approximation

Although the problem of unsupervised learning can be stated as merely the problem of
estimating parameters of a mixture density, neither the maximum-likelihood nor the
Bayesian approach yields analytically simple results. Exact solutions for even the sim-
plest nontrivial examples lead to computational requirements that grow exponentially
with the number of samples (Problem ??). The problem of unsupervised learning is
too important to abandon just because exact solutions are hard to find, however, and
numerous procedures for obtaining approximate solutions have been suggested.

Since the important difference between supervised and unsupervised learning is
the presence or absence of labels for the samples, an obvious approach to unsuper-
vised learning is to use the prior information to design a classifier and to use the
decisions of this classifier to label the samples. This is called the decision-directed
approach to unsupervised learning, and it is subject to many variations. It can be
applied sequentially on-line by updating the classifier each time an unlabeled sample
is classified. Alternatively, it can be applied in parallel (batch mode) by waiting un-
til all n samples are classified before updating the classifier. If desired, this process
can be repeated until no changes occur in the way the samples are labeled. Various
heuristics can be introduced to make the extent of any corrections depend upon the
confidence of the classification decision.

There are some obvious dangers associated with the decision-directed approach.
If the initial classifier is not reasonably good, or if an unfortunate sequence of samples
is encountered, the errors in classifying the unlabeled samples can drive the classifier
the wrong way, resulting in a solution corresponding roughly to one of the lesser
peaks of the likelihood function. Even if the initial classifier is optimal, in general
the resulting labeling will not be the same as the true class membership; the act of
classification will exclude samples from the tails of the desired distribution, and will
include samples from the tails of the other distributions. Thus, if there is significant
overlap between the component densities, one can expect biased estimates and less
than optimal results.

Despite these drawbacks, the simplicity of decision-directed procedures makes the
Bayesian approach computationally feasible, and a flawed solution is often better than
none. If conditions are favorable, performance that is nearly optimal can be achieved
at far less computational expense. In practice it is found that most of these procedures
work well if the parametric assumptions are valid, if there is little overlap between
the component densities, and if the initial classifier design is at least roughly correct
(Computer exercise 7).

24 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

10.6 *Data Description and Clustering

Let us reconsider our original problem of learning something of use from a set of
unlabeled samples. Viewed geometrically, these samples may form clouds of points in
a d-dimensional space. Suppose that we knew that these points came from a single
normal distribution. Then the most we could learn form the data would be contained
in the sufficient statistics — the sample mean and the sample covariance matrix.
In essence, these statistics constitute a compact description of the data. The sample
mean locates the center of gravity of the cloud; it can be thought of as the single point
m that best represents all of the data in the sense of minimizing the sum of squared
distances from m to the samples. The sample covariance matrix describes the amount
the data scatters along various directions. If the data points are actually normally
distributed, then the cloud has a simple hyperellipsoidal shape, and the sample mean
tends to fall in the region where the samples are most densely concentrated.

Of course, if the samples are not normally distributed, these statistics can give
a very misleading description of the data. Figure 10.5 shows four different data sets
that all have the same mean and covariance matrix. Obviously, second-order statistics
are incapable of revealing all of the structure in an arbitrary set of data.

Figure 10.5: These four data sets have identical statistics up to second-order, i.e., the
same mean g and covariance X. In such cases it is important to include in the model
more parameters to represent the structure more completely.

If we assume that the samples come from a mixture of ¢ normal distributions,
we can approximate a greater variety of situations. In essence, this corresponds to
assuming that the samples fall in hyperellipsoidally shaped clouds of various sizes
and orientations. If the number of component densities is sufficiently high, we can
approximate virtually any density function as a mixture model in this way, and use the
parameters of the mixture to describe the data. Alas, we have seen that the problem
of estimating the parameters of a mixture density is not trivial. Furthermore, in
situations where we have relatively little prior knowledge about the nature of the
data, the assumption of particular parametric forms may lead to poor or meaningless
results. Instead of finding structure in the data, we would be imposing structure on

10.6. *DATA DESCRIPTION AND CLUSTERING 25

it.

One alternative is to use one of the nonparametric methods described in Chap. 77
to estimate the unknown mixture density. If accurate, the resulting estimate is cer-
tainly a complete description of what we can learn from the data. Regions of high
local density, which might correspond to significant subclasses in the population, can
be found from the peaks or modes of the estimated density.

If the goal is to find subclasses, a more direct alternative is to use a clustering
procedure. Roughly speaking, clustering procedures yield a data description in terms
of clusters or groups of data points that possess strong internal similarities. Formal
clustering procedures use a criterion function, such as the sum of the squared dis-
tances from the cluster centers, and seek the grouping that extremizes the criterion
function. Because even this can lead to unmanageable computational problems, other
procedures have been proposed that are intuitively appealing but that lead to solu-
tions having few if any established properties. Their use is usually justified on the
ground that they are easy to apply and often yield interesting results that may guide
the application of more rigorous procedures.

10.6.1 Similarity Measures

Once we describe the clustering problem as one of finding natural groupings in a set of
data, we are obliged to define what we mean by a natural grouping. In what sense are
we to say that the samples in one cluster are more like one another than like samples
in other clusters? This question actually involves two separate issues:

e How should one measure the similarity between samples?

e How should one evaluate a partitioning of a set of samples into clusters?

In this section we address the first of these issues.

The most obvious measure of the similarity (or dissimilarity) between two samples
is the distance between them. One way to begin a clustering investigation is to define
a suitable distance function and compute the matrix of distances between all pairs
of samples. If distance is a good measure of dissimilarity, then one would expect the
distance between samples in the same cluster to be significantly less than the distance
between samples in different clusters.

Suppose for the moment that we say that two samples belong to the same cluster
if the Euclidean distance between them is less than some threshold distance dj. It is
immediately obvious that the choice of dy is very important. If dg is very large, all
of the samples will be assigned to one cluster. If dy is very small, each sample will
form an isolated, singleton cluster. To obtain “natural” clusters, do will have to be
greater than the typical within-cluster distances and less than typical between-cluster
distances (Fig. 10.6).

Less obvious perhaps is the fact that the results of clustering depend on the choice
of Euclidean distance as a measure of dissimilarity. That particular choice is generally
justified if the feature space is isotropic and the data is spread roughly evenly along
all directions. Clusters defined by Euclidean distance will be invariant to translations
or rotations in feature space — rigid-body motions of the data points. However, they
will not be invariant to linear transformations in general, or to other transformations
that distort the distance relationships. Thus, as Fig. 10.7 illustrates, a simple scaling
of the coordinate axes can result in a different grouping of the data into clusters. Of
course, this is of no concern for problems in which arbitrary rescaling is an unnatural

CLUSTERING
PROCEDURE

MINKOWSKI
METRIC

CITY BLOCK
METRIC

26 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

Figure 10.6: The distance threshold affects the number and size of clusters. Lines are
drawn between points closer than a distance dy apart for three different values of dg
— the smaller the value of dg, the smaller and more numerous the clusters.

or meaningless transformation. However, if clusters are to mean anything, they should
be invariant to transformations natural to the problem.

One way to achieve invariance is to normalize the data prior to clustering. For
example, to obtain invariance to displacement and scale changes, one might translate
and scale the axes so that all of the features have zero mean and unit variance —
standardize the data. To obtain invariance to rotation, one might rotate the axes so
that they coincide with the eigenvectors of the sample covariance matrix. This trans-
formation to principal components (Sect. 10.13.1) can be preceded and/or followed by
normalization for scale.

However, we should not conclude that this kind of normalization is necessarily
desirable. Consider, for example, the matter of translating and whitening — scaling
the axes so that each feature has zero mean and unit variance. The rationale usually
given for this normalization is that it prevents certain features from dominating dis-
tance calculations merely because they have large numerical values, much as we saw
in networks trained with backpropagation (Sect. ??.7?7). Subtracting the mean and
dividing by the standard deviation is an appropriate normalization if this spread of
values is due to normal random variation; however, it can be quite inappropriate if the
spread is due to the presence of subclasses (Fig. ?7). Thus, this routine normalization
may be less than helpful in the cases of greatest interest.* Section ?7 describes other
ways to obtain invariance to scaling.

Instead of scaling axes, we can change the metric in interesting ways. For instance,
one broad class of distance metrics is of the form

(44)

d 1/q
d(x,x') = (Zm —xw) ,

k=1

where ¢ > 1 is a selectable parameter — the general Minkowski metric we considered
in Chap. ??7. Setting ¢ = 2 gives the familiar Euclidean metric while setting ¢ = 1
the Manhattan or city block metric — the sum of the absolute distances along each
of the d coordinate axes. Note that only ¢ = 2 is invariant to an arbitrary rotation or

* In backpropagation, one of the goals for such preprocessing and scaling of data was to increase
learning speed; in contrast, such preprocessing does not significantly affect the speed of these
clustering algorithms.

10.6. *DATA DESCRIPTION AND CLUSTERING 27

X2
1.6

X2 1.4

1
02 12
s Y
P '

/% ® .8
S 7

i

@

4 .
0 X ®
2 4 6 8 1
2
(20 0 X
0.5 1
X A 2 3 4 5
.5
4 P—
P Ve it
; N B, v o
. .) & 5 /467\, A
\ it ®
2 * .
1
04 A X
25 5 75 1 125 L5 1.75 2

Figure 10.7: Scaling axes affects the clusters in a minimum distance cluster method.
The original data and minimum-distance clusters are shown in the upper left — points
in one cluster are shown in red, the other gray. When the vertical axis is expanded
by a factor of 2.0 and the horizontal axis shrunk by a factor of 0.5, the clustering is
altered (as shown at the right). Alternatively, if the vertical axis is shrunk by a factor
of 0.5 and the horizontal axis expanded by a factor of 2.0, smaller more numerous
clusters result (shown at the bottom). In both these scaled cases, the clusters differ
from the original.

translation in feature space. Another alternative is to use some kind of metric based
on the data itself, such as the Mahalanobis distance.

More generally, one can abandon the use of distance altogether and introduce a
nonmetric similarity function s(x,x’) to compare two vectors x and x’. Convention-
ally, this is a symmetric functions whose value is large when x and x’ are somehow
“similar.” For example, when the angle between two vectors is a meaningful measure
of their similarity, then the normalized inner product

xix/
) [p— 45
566X = 1Tl (45)

SIMILARITY
FUNCTION

TANIMOTO
DISTANCE

28 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

X2 X2
L] L]
. .
o® 'l o ® *

L] L]

L] L]
' N e, 7 g d K ~i. X1
. . .
. . o | o

Figure 10.3. If the data fall into well-separated ClLSteI (left), normalization by a
r the full data may reduce the separation, and hence be unde-
sirable (right). Such a Whltenlng normalization may be appropriate if the full data
set arises from a single fundamental process (with noise), but inappropriate if there

are several different processes, as shown here.

may be an appropriate similarity function. This measure, which is the cosine of the
angle between x and x’, is invariant to rotation and dilation, though it is not invariant
to translation and general linear transformations.

When the features are binary valued (0 or 1), this similarity functions has a simple
non-geometrical interpretation in terms of shared features or shared attributes. Let
us say that a sample x possesses the ith attribute if ; = 1. Then x!x’ is merely the
number of attributes possessed by both x and x’, and ||x|| [|x/|| = (xtxx/'x’)/? is the
geometric mean of the number of attributes possessed by x and the number possessed
by x’. Thus, s(x,x’) is a measure of the relative possession of common attributes.
Some simple variations are

t/

s(x,x') = xx , (46)
d
the fraction of attributes shared, and
t/
s(x,x') = xx (47)

xtx + x/tx! — XtX/’

the ratio of the number of shared attributes to the number possessed by x or x’. This
latter measure (sometimes known as the Tanimoto coefficient or Tanimoto distance) is
frequently encountered in the fields of information retrieval and biological taxonomy.
Related measures of similarity arise in other applications, the variety of measures
testifying to the diversity of problem domains (Computer exercise 77).

Fundamental issues in measurement theory are involved in the use of any distance
or similarity function. The calculation of the similarity between two vectors always
involves combining the values of their components. Yet in many pattern recognition

anplications the comnonents of the featiire vector meaciire seeminolvy noncomnarahle
AappPrilauiUnis viiC COLLIPOLICIHIUS UL vl 1Cauui® VOULUL 1iCanuiC SOCLLIILELY 10LCULLpPal auiC

quantities, such as meters and kilograms. Recall our example of classifying fish: how
can one compare the lightness of the skin to the length or weight of the fish? Should
the comparison depend on whether the length is measured in meters or inches? How
does one treat vectors whose components have a mixture of nominal, ordinal, interval
and ratio scales? Ultimately, there are rarely clear methodological answers to these
questions. When a user selects a particular similarity function or normalizes the data
in a particular way, information is introduced that gives the procedure meaning. We
have given examples of some alternatives that have proved to be useful. (Competitive

10.7. CRITERION FUNCTIONS FOR CLUSTERING 29

learning, discussed in Sect. 10.11, is a popular decision directed clustering algorithm.)
Beyond that we can do little more than alert the unwary to these pitfalls of clustering.

Amidst all this discussion of clustering, we must not lose sight of the fact that
often the clusters found will later be labeled (e.g., by resorting to a teacher or small
number of labeled samples), and that the clusters can then be used for classification.
In that case, the same similarity (or metric) should be used for classification as was
used for forming the clusters (Computer exercise 8).

10.7 Criterion Functions for Clustering

We have just considered the first major issue in clustering: how to measure “similar-
ity.” Now we turn to the second major issue: the criterion function to be optimized.
Suppose that we have a set D of n samples xq,...,X, that we want to partition
into exactly ¢ disjoint subsets D1,...,D.. Each subset is to represent a cluster, with
samples in the same cluster being somehow more similar than samples in different
clusters. One way to make this into a well-defined problem is to define a criterion
function that measures the clustering quality of any partition of the data. Then the
problem is one of finding the partition that extremizes the criterion function. In this
section we examine the characteristics of several basically similar criterion functions,
postponing until later the question of how to find an optimal partition.

10.7.1 The Sum-of-Squared-Error Criterion

The simplest and most widely used criterion function for clustering is the sum-of-
squared-error criterion. Let n; be the number of samples in D; and let m; be the
mean of those samples,

1
m; = — Z X. (48)

' xeD;

Then the sum-of-squared errors is defined by

Jo=%" 3 fx—m. (49)

i=1x€D;

This criterion function has a simple interpretation: for a given cluster D;, the
mean vector m; is the best representative of the samples in D; in the sense that it
minimizes the sum of the squared lengths of the “error” vectors x — m; in D;. Thus,
J. measures the total squared error incurred in representing the n samples x1,...,X,
by the c cluster centers my,..., m.. The value of J. depends on how the samples are
grouped into clusters and the number of clusters; the optimal partitioning is defined
as one that minimizes J,. Clusterings of this type are often called minimum variance
partitions.

What kind of clustering problems are well suited to a sum-of-squared-error crite-
rion? Basically, J, is an appropriate criterion when the clusters form compact clouds
that are rather well separated from one another. A less obvious problem arises when
there are great differences in the number of samples in different clusters. In that case
it can happen that a partition that splits a large cluster is favored over one that main-
tains the integrity of the natural clusters, as illustrated in Fig. 10.9. This situation
frequently arises because of the presence of “outliers” or “wild shots,” and brings up

MINIMUM
VARIANCE

30 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

the problem of interpreting and evaluating the results of clustering. Since little can
be said about that problem, we shall merely observe that if additional considerations
render the results of minimizing J. unsatisfactory, then these considerations should
be used, if possible, in formulating a better criterion function.

J, = large

J, =small

Figure 10.9: When two natural groupings have very different numbers of points, the
clusters minimizing a sum-squared-error criterion (Eq. 49) may not reveal the true
underlying structure. Here the criterion is smaller for the two clusters at the bottom
than at the more natural clustering at the top.

10.7.2 Related Minimum Variance Criteria

By some simple algebraic manipulation (Problem 19) we can eliminate the mean
vectors from the expression for J, and obtain the equivalent expression

1 Cc
Je = 3 ; n;5;, (50)

where

= > > Ix-x (51)

x€D; x'€D;

Equation 51 leads us to interpret 5; as the average squared distance between points in
the ith cluster, and emphasizes the fact that the sum-of-squared-error criterion uses
Euclidean distance as the measure of similarity. It also suggests an obvious way of
obtaining other criterion functions. For example, one can replace §; by the average,
the median, or perhaps the maximum distance between points in a cluster. More
generally, one can introduce an appropriate similarity function s(x,x’) and replace §;
by functions such as

5 = % Z Z s(x,x) (52)

* xeD; x'ED;

or

o '
3; xg}lenpis(x,x). (53)

10.7. CRITERION FUNCTIONS FOR CLUSTERING 31

Table 10.1: Mean vectors and scatter matrices used in clustering criteria.

Depend on
cluster
center?
Yes | No
Meap vector for « m; = 1 Z X (54)
the ith cluster i cep,
1 1o
Total mean vector X m = — Z X= - Z nim; (55)
"D i
Scatter matrix for ¢
the ith cluster % Si = Z (x —m;)(x —my) (56)
x€D;
C
Within-cluster
Sw = S, 57
scatter matrix x w ; ' (57)
Between-cluster y c .
scatter matrix Sp = Z n;(m; —m)(m; —m)" (58)
i=1
_ t
Total scatter matrix X St = Z (x —m)(x —m) (59)
x€D

As in Chap. 7?7, we define an optimal partition as one that extremizes the crite-
rion function. This creates a well-defined problem, and the hope is that its solution
discloses the intrinsic structure of the data.

10.7.3 Scattering Criteria
The scatter matrices

Another interesting class of criterion functions can be derived from the scatter matri-
ces used in multiple discriminant analysis. The following definitions directly parallel
those given in Chapt. 77.

As before, it follows from these definitions that the total scatter matrix is the sum
of the within-cluster scatter matrix and the between-cluster scatter matrix:

Note that the total scatter matrix does not depend on how the set of samples is par-
titioned into clusters; it depends only on the total set of samples. The within-cluster
and between-cluster scatter matrices taken separately do depend on the partitioning,
of course. Roughly speaking, there is an exchange between these two matrices, the
between-cluster scatter going up as the within-cluster scatter goes down. This is for-
tunate, since by trying to minimize the within-cluster scatter we will also tend to
maximize the between-cluster scatter.

To be more precise in talking about the amount of within-cluster or between-
cluster scatter, we need a scalar measure of the “size” of a scatter matrix. The two
measures that we shall consider are the trace and the determinant. In the univariate
case, these two measures are equivalent, and we can define an optimal partition as one

32 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

that minimizes Sy or maximizes Sg. In the multivariate case things are somewhat
more complicated, and a number of related but distinct optimality criteria have been
suggested.

The Trace Criterion

Perhaps the simplest scalar measure of a scatter matrix is its trace — the sum of its
diagonal elements. Roughly speaking, the trace measures the square of the scattering
radius, since it is proportional to the sum of the variances in the coordinate directions.
Thus, an obvious criterion function to minimize is the trace of Sy,. In fact, this
criterion is nothing more or less than the sum-of-squared-error criterion, since the
definitions of scatter matrices (Egs. 56 & 57) yield

tr SW:Ztr Si:Z Z [x —my[|? = J.. (61)
i=1

i=1x€D,

Since trSt = trSw+trSp and trS is independent of how the samples are partitioned,
we see that no new results are obtained by trying to maximize trSg. However, it is
comforting to know that in seeking to minimize the within-cluster criterion J. = trSy,
we are also maximizing the between-cluster criterion

trSp = ZmHmZ —m|? (62)

i=1

The Determinant Criterion

In Sect. 7?7 we used the determinant of the scatter matrix to obtain a scalar measure
of scatter. Roughly speaking, the determinant measures the square of the scattering
volume, since it is proportional to the product of the variances in the directions of
the principal axes. Since Sp will be singular if the number of clusters is less than or
equal to the dimensionality, |Sg| is obviously a poor choice for a criterion function.
Furthermore, Sg may become singular, and will certainly be so if n — ¢ is less than
the dimensionality d (Problem 27). However, if we assume that Sy is nonsingular,
we are led to consider the determinant criterion function

>s
i=1

The partition that minimizes J; is often similar to the one that minimizes J,
but the two need not be the same, as shown in Example 3. We observed before that
the minimum-squared-error partition might change if the axes are scaled, though this
does not happen with J; (Problem 26). Thus J; is to be favored under conditions
where there may be unknown or irrelevant linear transformations of the data.

Jy=|Sw| = . (63)

Invariant Criteria

It is not particularly hard to show that the eigenvalues Aq, ..., \g of S;Vl Sp are invari-
ant under nonsingular linear transformations of the data (Problem ??). Indeed, these
eigenvalues are the basic linear invariants of the scatter matrices. Their numerical
values measure the ratio of hetween-cluster to within-cluster scatter in the direction
of the eigenvectors, and partitions that yield large values are usually desirable. Of

10.7. CRITERION FUNCTIONS FOR CLUSTERING 33

course, as we pointed out in Sect. 7?7, the fact that the rank of Sp can not exceed
c—1 means that no more than ¢—1 of these eigenvalues can be nonzero. Nevertheless,
good partitions are ones for which the nonzero eigenvalues are large.

One can invent a great variety of invariant clustering criteria by composing appro-
priate functions of these eigenvalues. Some of these follow naturally from standard
matrix operations. For example, since the trace of a matrix is the sum of its eigen-
values, one might elect to maximize the criterion function

d
trSy'Sp =Y Ai. (64)

i=1

By using the relation S = Sy + Spg, one can derive the following invariant relatives
of [trSy and |Sw | (Problem 25):

d
1
_ -1 _
J; =trS; Sy = ; Y (65)
and
d

ISw| _ 1

i 1;[1 TE N (66)

Since all of these criterion functions are invariant to linear transformations, the
same is true of the partitions that extremize them. In the special case of two clusters,
only one eigenvalue is nonzero, and all of these criteria yield the same clustering.
However, when the samples are partitioned into more than two clusters, the optimal
partitions, though often similar, need not be the same, as shown in Example 3.

Example 3: Clustering criteria

We can gain some intuition by considering these criteria applied to the following
data set.

sample T To sample T To
1 -1.82 | 0.24 11 0.41 | 0.91
2 -0.38 | -0.39 12 1.70 | 0.48
3 -0.13 | 0.16 13 0.92 | -0.49
4 -1.17 | 0.44 14 2.41 | 0.32
5 -0.92 | 0.16 15 1.48 | -0.23
6 -1.69 | -0.01 16 -0.34 | 1.88
7 0.33 | -0.17 17 0.83 | 0.23
8 -0.71 | -0.21 18 0.62 | 0.81
9 1.27 | -0.39 19 -1.42 | -0.51
10 -0.16 | -0.23 20 0.67 | -0.55

All of the clusterings seem reasonable, and there is no strong argument to favor one
over the others. For the case ¢ = 2, the clusters minimizing the .J. indeed tend to favor
clusters of roughly equal numbers of points, as illustrated in Fig. 10.9; in contrast,
Jgq favors one large and one fairly small cluster. Since the full data set happens to
be spread horizontally more than vertically, the eigenvalue in the horizontal direction
is greater than that in the vertical direction. As such, the clusters are “stretched”

34 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

The clusters found by minimizing a criterion depends upon the criterion function
as well as the assumed number of clusters. The sum-of-squared-error criterion J.
(Eq. 49), the determinant criterion Jy (Eq. 63) and the more subtle trace criterion
Jr (Eq. 65) were applied to the 20 points in the table with the assumption of ¢ = 2
and ¢ = 3 clusters. (Each point in the table is shown, with bounding boxes defined
by —1.8 <x < 2.5 and —0.6 <y < 1.9.)

horizontally somewhat. In general, the differences between the cluster criteria become
less pronounced for large numbers of clusters. For the ¢ = 3 case, for instance, the
clusters depend only mildly upon the cluster criterion — indeed, two of the clusterings
are identical.

With regard to the criterion function involving S, note that St does not depend
on how the samples are partitioned into clusters. Thus, the clusterings that minimize
|Sw|/|ST| are exactly the same as the ones that minimize |Sy/|. If we rotate and scale
the axes so that S7 becomes the identity matrix, we see that minimizing tr[S;.'Syy]
is equivalent to minimizing the sum-of-squared-error criterion trSy after performing
this normalization. Clearly, this criterion suffers from the very defects that we warned
about in Sect. 77, and it is probably the least desirable of these criteria.

One final warning about invariant criteria is in order. If different apparent clusters
can be obtained by scaling the axes or by applying any other linear transformation,
then all of these groupings will be exposed by invariant procedures. Thus, invariant
criterion functions are more likely to possess multiple local extrema, and are corre-
spondingly more difficult to optimize.

The variety of the criterion functions we have discussed and the somewhat subtle
differences between them should not be allowed to obscure their essential similarity. In
every case the underlying model is that the samples form c fairly well separated clouds
of points. The within-cluster scatter matrix Sy is used to measure the compactness
of these clouds, and the basic goal is to find the most compact grouping. While this
approach has proved useful for many problems, it is not universally applicable. For
example, it will not extract a very dense cluster embedded in the center of a diffuse
cluster, or separate intertwined line-like clusters. For such cases one must devise other

10.8. *ITERATIVE OPTIMIZATION 35

criterion functions that are better matched to the structure present or being sought.

10.8 *Iterative Optimization

Once a criterion function has been selected, clustering becomes a well-defined problem
in discrete optimization: find those partitions of the set of samples that extremize the
criterion function. Since the sample set is finite, there are only a finite number of
possible partitions. Thus, in theory the clustering problem can always be solved
by exhaustive enumeration. However, the computational complexity renders such an
approach unthinkable for all but the simplest problems; there are approximately ¢"/c!
ways of partitioning a set of n elements into ¢ subsets, and this exponential growth
with n is overwhelming (Problem 17). For example an exhaustive search for the best
set of 5 clusters in 100 samples would require considering more than 1067 partitionings.
Simply put, in most applications an exhaustive search is completely infeasible.

The approach most frequently used in seeking optimal partitions is iterative op-
timization. The basic idea is to find some reasonable initial partition and to “move”
samples from one group to another if such a move will improve the value of the cri-
terion function. Like hill-climbing procedures in general, these approaches guarantee
local but not global optimization. Different starting points can lead to different solu-
tions, and one never knows whether or not the best solution has been found. Despite
these limitations, the fact that the computational requirements are bearable makes
this approach attractive.

Let us consider the use of iterative improvement to minimize the sum-of-squared-
error criterion J, written as

Je=>_Ji, (67)
i=1
where an effective error per cluster is defined to be
Ji= Y llx—myl? (68)

x€D;

and the mean of each cluster is, as before,

1
m; = — Z X. (48)

' xeD;

Suppose that a sample X currently in cluster D; is tentatively moved to D;. Then m,;
changes to

(69)

and J; increases to

o= Y Ik —milP + % - mj|?
x€D;

(an m, nj+1”>+”nj+1<x m)|

x€eD;

36 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

i

= (70)

TL]'—|—].

Under the assumption that n; # 1 (singleton clusters should not be destroyed), a
similar calculation (Problem 29) shows that m; changes to

" X —m;
i

m, — 1 —

p— (71)

and J; decreases to

Ji=Ji - o

s 2 (72)

These equations greatly simplify the computation of the change in the criterion
function. The transfer of X from D; to D, is advantageous if the decrease in J; is
greater than the increase in J;. This is the case if

LSRR 2 N 5 2
X —m;||* > X—m; 73
e > e (73)
which typically happens whenever x is closer to m; than m;. If reassignment is
profitable, the greatest decrease in sum of squared error is obtained by selecting the
cluster for which n;/(n; + 1)[|%x — m;||? is minimum. This leads to the following
clustering procedure:

Algorithm 3 (Basic iterative minimum-squared-error clustering)

1 begin initialize n,c,m{,mo, ..., m,
2 do randomly select a sample X;
2 i« arg n}}n |lm; — x| (classify %)
4 if n; # 1 then compute
n; ~ . .
; P A
m”x— m;|* =i
6 if pr < p; for all j then transfer X to Dy,
7 recompute J., m;, mg
8 until no change in J, in n attempts
9 return m;, mo,...,m,
10 end

A moment’s consideration will show that this procedure is is essentially a sequen-
tial version of the k-means procedure (Algorithm 1) described in Sect. 10.4.3. Where
the k-means procedure waits until all n samples have been reclassified before updat-
ing, the Basic Iterative Minimum-Squared-Error procedure updates after each sample
is reclassified. It has been experimentally observed that this procedure is more suscep-
tible to being trapped in local minima, and it has the further disadvantage of making
the results depend on the order in which the candidates are selected. However, it is at
least a stepwise optimal procedure, and it can be easily modified to apply to problems
in which samples are acquired sequentially and clustering must be done on-line.

One question that plagues all hill-climbing procedures is the choice of the starting
point. Unfortunately, there is no simple, universally good solution to this problem.
One approach is to select ¢ samples randomly for the initial cluster centers, using
them to partition the data on a minimum-distance basis. Repetition with different
random selections can give some indication of the sensitivity of the solution to the

10.9. HIERARCHICAL CLUSTERING 37

starting point. Yet another approach is to find the c-cluster starting point from the
solutions to the (¢ — a)-cluster problem. The solution for the one-cluster problem is
the total sample mean; the starting point for the c-cluster problem can be the final
means for the (¢c—a)-cluster problem plus the sample that is farthest from the nearest
cluster center. This approach leads us directly to the so-called hierarchical clustering
procedures, which are simple methods that can provide very good starting points for
iterative optimization.

10.9 Hierarchical Clustering

Up to now, our methods have formed disjoint clusters — in computer science terminol-
ogy, we would say that the data description is “flat.” However, there are many times
when clusters have subclusters, these have sub-subclusters, and so on. In biological
taxonomy, for instance, kingdoms are split into phylums, which are split into subphy-
lums, which are split into orders, and suborders, and families, and subfamilies, and
genus and species, and so on, all the way to a particular individual organism. Thus
we might have kingdom = animal, phylum = Chordata, subphylum = Vertebrata,
class = Osteichthyes, subclass = Actinopterygii, order = Salmoniformes, family =
Salmonidae, genus = Oncorhynchus, species = Oncorhynchus kisutch, and individual
= the particular Coho salmon caught in my net. Organisms that lie in the animal
kingdom — such as a salmon and a moose — share important attributes that are not
present in organisms in the plant kingdom, such as redwood trees. In fact, this kind of
hierarchical clustering permeates classifactory activities in the sciences. Thus we now
turn to clustering methods which will lead to representations that are “hierarchical,”
rather than flat.

10.9.1 Definitions

Let us consider a sequence of partitions of the n samples into ¢ clusters. The first of
these is a partition into n clusters, each cluster containing exactly one sample. The
next is a partition into n — 1 clusters, the next a partition into n — 2, and so on until
the nth, in which all the samples form one cluster. We shall say that we are at level
k in the sequence when ¢ = n — k + 1. Thus, level one corresponds to n clusters and
level n to one cluster. Given any two samples x and X/, at some level they will be
grouped together in the same cluster. If the sequence has the property that whenever
two samples are in the same cluster at level k£ they remain together at all higher levels,
then the sequence is said to be a hierarchical clustering.

The most natural representation of hierarchical clustering is a corresponding tree,
called a dendrogram, which shows how the samples are grouped. Figure 10.10 shows
a dendrogram for a simple problem involving eight samples. Level 1 shows the eight
samples as singleton clusters. At level 2, samples xg and x; have been grouped to
form a cluster, and they stay together at all subsequent levels. If it is possible to
measure the similarity between clusters, then the dendrogram is usually drawn to
scale to show the similarity between the clusters that are grouped. In Fig. 10.10, for
example, the similarity between the two groups of samples that are merged at level 5
has a value of roughly 60.

We shall see shortly how such similarity values can be obtained, but first note that
the similarity values can be used to help determine whether groupings are natural or
forced. If the similarity values for the levels are roughly evenly distributed throughout

DENDRO-
GRAM

38 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

the range of possible values, then there is no principled argument that any particular
number of clusters is better or “more natural” than another. Conversely, suppose that
there is a unusually large gap between the similarity values for the levels corresponding
to ¢ = 3 and to ¢ = 4 clusters. In such a case, one can argue that ¢ = 3 is the most

natural number of clusters (Problem 35).
X, X, X3 X, X5 X5 X, Xg

Level 1 — ; 6 100
Level 2 L_I I__I 90
Level 3 = 80 &
Level 4 — 70 E
Level 5 — 60t 2
Level 6 — 50 S
Level 7 — 40 §
Level 8 — 30 §

20} 2

10

0

Figure 10.10: A dendrogram can represent the results of hierarchical clustering algo-
rithms. The vertical axis shows a generalized measure of similarity among clusters.
Here, at level 1 all eight points lie in singleton clusters; each point in a cluster is
highly similar to itself, of course. Points xg and x7; happen to be the most similar,
and are merged at level 2, and so forth.

Another representation for hierarchical clustering is based on sets, in which each
level of cluster may contain sets that are subclusters, as shown in Fig. 10.11. Yet an-
other, textual, representation uses brackets, such as: {{x1, {x2,x3}}, {{{x4, x5}, {x6,x7}},x5}}.
While such representations may reveal the hierarchical structure of the data, they do
not naturally represent the similarities quantitatively. For this reason dendrograms
are generally preferred.

Figure 10.11: A set or Venn diagram representation of two-dimensional data (which
was used in the dendrogram of Fig. 10.10) reveals the hierarchical structure but not
the quantitative distances between clusters. The levels are numbered in red.

Because of their conceptual simplicity, hierarchical clustering procedures are among

the best-known of unsupervised methods. The procedures themselves can be divided

AGGLOMER- according to two distinct approaches — agglomerative and divisive. Agglomerative
ATIVE (bottom-up, clumping) procedures start with n singleton clusters and form the se-
quence by successively merging clusters. Divisive (top-down, splitting) procedures
start with all of the samples in one cluster and form the sequence by successively
splitting clusters. The computation needed to go from one level to another is usually

DIVISIVE

10.9. HIERARCHICAL CLUSTERING 39

simpler for the agglomerative procedures. However, when there are many samples
and one is interested in only a small number of clusters, this computation will have
to be repeated many times. For simplicity, we shall concentrate on agglomerative
procedures, and merely touch on some divisive methods in Sect. 10.12.

10.9.2 Agglomerative Hierarchical Clustering

The major steps in agglomerative clustering are contained in the following procedure,
where ¢ is the desired number of final clusters:

Algorithm 4 (Agglomerative hierarchical clustering)

1 begin initialize ¢, é «+ n,D; — {x;},i=1,...,n
2 doé«—c—1

3 Find nearest clusters, say, D; and D;
4 Merge D; and D;

5 until ¢ = ¢

6 return c clusters

7 end

As described, this procedure terminates when the specified number of clusters has been
obtained and returns the clusters, described as set of points (rather than as mean or
representative vectors). If we continue until ¢ = 1 we can produce a dendrogram like
that in Fig. 10.10. At any level the “distance” between nearest clusters can provide
the dissimilarity value for that level. Note that we have not said how to measure the
distance between two clusters, and hence how to find the “nearest” clusters, required
by line 3 of the Algorithm. The considerations here are much like those involved
in selecting a general clustering criterion function. For simplicity, we shall generally
restrict our attention to the following distance measures:

din(DiD;) = min [x— x| (74)
x’e'b{:i

dmas(DiD;) = max [x— x| (75)
x/€'D'I‘.'i

1
dogDiD) = —— 37 3 x| (76)
"I xeD; x'eD;
dmean(DiaDj) = ”mz_mJH (77)

All of these measures have a minimum-variance flavor, and they usually yield the same
results if the clusters are compact and well separated. However, if the clusters are
close to one another, or if their shapes are not basically hyperspherical, quite different
results can be obtained. Below we shall illustrate some of the differences.

But first let us consider the computational complexity of a particularly simple
agglomerative clustering algorithm. Suppose we have n patterns in d-dimensional
space, and we seek to form c clusters using dp,in(D;, D;) defined in Eq. 74. We
will, once and for all, need to calculate n(n — 1) inter-point distances — each of
which is an O(d?) calculation — and place the results in an inter-point distance
table. The space complexity is, then, O(n?). Finding the minimum distance pair
(for the first merging) requires that we step through the complete list, keeping the

MINIMUM
ALGORITHM

SINGLE-
LINKAGE
ALGORITHM

SPANNING
TREE

MAXIMUM
ALGORITHM

COMPLETE-
LINKAGE
ALGORITHM

COMPLETE
SUBGRAPH

40 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

index of the smallest distance. Thus for the first agglomerative step, the complexity
is O(n(n — 1)(d? + 1)) = O(nd?). For an arbitrary agglomeration step (i.e., from ¢é
to ¢ — 1), we need merely step through the n(n — 1) — ¢ “unused” distances in the
list and find the smallest for which x and x’ lie in different clusters. This is, again,
O(n(n —1) —¢). The full time complexity is thus O(cn?d?), and in typical conditions
n>c*

The Nearest-Neighbor Algorithm

When d,ir, is used to measure the distance between clusters (Eq. 74) the algorithm
is sometimes called the nearest-neighbor cluster algorithm, or minimum algorithm
Moreover, if it is terminated when the distance between nearest clusters exceeds an
arbitrary threshold, it is called the single-linkage algorithm. Suppose that we think
of the data points as being nodes of a graph, with edges forming a path between the
nodes in the same subset D;. When d,,;, is used to measure the distance between
subsets, the nearest neighbor nodes determine the nearest subsets. The merging of
D; and D; corresponds to adding an edge between the nearest pair of nodes in D;
and D;. Since edges linking clusters always go between distinct clusters, the resulting
graph never has any closed loops or circuits; in the terminology of graph theory, this
procedure generates a tree. If it is allowed to continue until all of the subsets are
linked, the result is a spanning tree — a tree with a path from any node to any other
node. Moreover, it can be shown that the sum of the edge lengths of the resulting
tree will not exceed the sum of the edge lengths for any other spanning tree for that
set of samples (Problem 37). Thus, with the use of d,;, as the distance measure, the
agglomerative clustering procedure becomes an algorithm for generating a minimal
spanning iree.

Figure 10.12 shows the results of applying this procedure to Gaussian data. In
both cases the procedure was stopped giving two large clusters (plus three singleton
outliers); a minimal spanning tree can be obtained by adding the shortest possible edge
between the two clusters. In the first case where the clusters are fairly well separated,
the obvious clusters are found. In the second case, the presence of a point located so
as to produce a bridge between the clusters results in a rather unexpected grouping
into one large, elongated cluster, and one small, compact cluster. This behavior is
often called the “chaining effect,” and is sometimes considered to be a defect of this
distance measure. To the extent that the results are very sensitive to noise or to slight
changes in position of the data points, this is certainly a valid criticism.

The Farthest-Neighbor Algorithm

When dyq. (Eq. 75) is used to measure the distance between subsets, the algorithm is
sometimes called the farthest-neighbor clustering algorithm, or mazimum algorithm.
If it is terminated when the distance between nearest clusters exceeds an arbitrary
threshold, it is called the complete-linkage algorithm. The farthest-neighbor algorithm
discourages the growth of elongated clusters. Application of the procedure can be
thought of as producing a graph in which edges connect all of the nodes in a cluster.
In the terminology of graph theory, every cluster constitutes a complete subgraph.

The distance between two clusters is determined by the most distant nodes in the two

* There are methods for sorting or arranging the entries in the inter-point distance table so as
to easily avoid inspection of points in the same cluster, but these typically do not improve the
complexity results significantly.

10.9. HIERARCHICAL CLUSTERING 41

Figure 10.12: Two Gaussians were used to generate two-dimensional samples, shown
in pink and black. The nearest-neighbor clustering algorithm gives two clusters that
well approximate the generating Gaussians (left). If, however, another particular
sample is generated (red point at the right) and the procedure re-started, the clusters
do not well approximate the Gaussians. This illustrates how the algorithm is sensitive
to the details of the samples.

clusters. When the nearest clusters are merged, the graph is changed by adding edges
between every pair of nodes in the two clusters.

If we define the diameter of a partition as the largest diameter for clusters in
the partition, then each iteration increases the diameter of the partition as little
as possible. As Fig. 10.13 illustrates, this is advantageous when the true clusters
are compact and roughly equal in size. Nevertheless, when this is not the case — as
happens with the two elongated clusters — the resulting groupings can be meaningless.
This is another example of imposing structure on data rather than finding structure
in it.

Compromises

The minimum and maximum measures represent two extremes in measuring the dis-
tance between clusters. Like all procedures that involve minima or maxima, they
tend to be overly sensitive to “outliers” or “wildshots.” The use of averaging is an
obvious way to ameliorate these problems, and dgyg and dmeqn (Eqgs. 76 & 77) are
natural compromises between d,,i, and dy,q.. Computationally, dy,eqn is the simplest
of all of these measures, since the others require computing all n;n; pairs of distances
|lx — x'||. However, a measure such as dq.g can be used when the distances ||x — x/|
are replaced by similarity measures, where the similarity between mean vectors may
be difficult or impossible to define.

10.9.3 Stepwise-Optimal Hierarchical Clustering

We observed earlier that if clusters are grown by merging the nearest pair of clus-
ters, then the results have a minimum variance flavor. However, when the measure

42 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

o = large e = sSmall

Figure 10.13: The farthest-neighbor clustering algorithm uses the separation between
the most distant points as a criterion for cluster membership. If this distance is set
very large, then all points lie in the same cluster. In the case shown at the left, a
fairly large d,,q. leads to three clusters; a smaller d,,q. gives four clusters, as shown
at the right.

of distance between clusters is chosen arbitrarily, one can rarely assert that the re-
sulting partition extremizes any particular criterion function. In effect, hierarchical
clustering defines a cluster as whatever results from applying the clustering procedure.
Nevertheless, with a simple modification it is possible to obtain a stepwise-optimal
procedure for extremizing a criterion function. This is done merely by replacing line 3
of the Basic Iterative Agglomerative Clustering Procedure (Algorithm 4) by a more
general form to get:

Algorithm 5 (Stepwise optimal hierarchical clustering)
1 begin initialize ¢,é <« n,D; «— {x;},i=1,...,n
doé«—c—1

2

3 Find clusters whose merger changes the criterion the least, say, D; and D;
4 Merge D; and D;
5

6

7

until c = ¢
return c clusters
end

We saw earlier that the use of d,,q; causes the smallest possible stepwise increase
in the diameter of the partition. Another simple example is provided by the sum-
of-squared-error criterion function J.. By an analysis very similar to that used in
Sect. 7?7, we find that the pair of clusters whose merger increases J. as little as
possible is the pair for which the “distance”

nin;

de(Ds, Dj) = szjleImi —m (78)
is minimum (Problem 34). Thus, in selecting clusters to be merged, this criterion takes
into account the number of samples in each cluster as well as the distance between
clusters. In general, the use of d. tends to favor growth by merging singletons or
small clusters with large clusters over merging medium-sized clusters. While the final
partition may not minimize J, it usually provides a very good starting point for
further iterative optimization.

10.10. *THE PROBLEM OF VALIDITY 43

10.9.4 Hierarchical Clustering and Induced Metrics

Suppose that we are unable to supply a metric for our data, but that we can measure a
dissimilarity value §(x,x’) for every pair of samples, where §(x,x’) > 0, with equality
holding if and only if x = x’. Then agglomerative clustering can still be used, with the
understanding that the nearest pair of clusters is the least dissimilar pair. Interestingly
enough, if we define the dissimilarity between two clusters by

5min(Dia DJ) =)I(IEHDH 5(X» X/) (79)
x’e'b{:i
or
5maz (Dza DJ) = Eé%x 5(X7 X/) (80)
x'€D;

then the hierarchical clustering procedure will induce a distance function for the given
set of n samples. Furthermore, the ranking of the distances between samples will be
invariant to any monotonic transformation of the dissimilarity values (Problem 18).

We can now define a generalized distance d(x,x’) between x and x’ as the value
of the lowest level clustering for which x and x’ are in the same cluster. To show that
this is a legitimate distance function, or metric, we need to show four things: for all
vectors x, x’ and x”

non-negativity: d(x,x’) >0

reflexivity: d(x,x’) =0 if and only if x = x’
symmetry: d(x,x’) = d(x/,x)

triangle inequality: d(x,x’) + d(x’,x") > d(x,x").

It is easy to see that these requirements are satisfied and hence that dissimilarity can
induce a metric. For our formula for dissimilarity, we have moreover that

d(x,x") < maz|d(x,x),d(x’,x")] for any x’ (81)

in which case we say that d(-,-) is an ultrametric (Problem 31). Ultrametric criteria
can be more immune to local minima problems since stricter ordering of distances
among clusters is maintained.

10.10 *The Problem of Validity

With almost all of the procedures considered thus far we have assumed that the num-
ber of clusters is known. That is a reasonable assumption if we are upgrading a
classifier that has been designed on a small labeled set, or if we are tracking slowly
time-varying patterns. However, it may be an unjustified assumption if we are ex-
ploring a data set whose properties are, at base, unknown. Thus, a recurring problem
in cluster analysis is that of deciding just how many clusters are present.

When clustering is done by extremizing a criterion function, a common approach
is to repeat the clustering procedure for ¢ = 1, ¢ = 2, ¢ = 3, etc., and to see how the
criterion function changes with ¢. For example, it is clear that the sum-of-squared-
error criterion J. must decrease monotonically with ¢, since the squared error can

DISSIMIL-
ARITY

METRIC

ULTRA-
METRIC

44 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

be reduced each time c is increased merely by transferring a single sample to a new
singleton cluster. If the n samples are really grouped into é compact, well separated
clusters, one would expect to see J. decrease rapidly until ¢ = ¢, decreasing much
more slowly thereafter until it reaches zero at ¢ = n. Similar arguments have been
advanced for hierarchical clustering procedures and can be apparent in a dendrogram,
the usual assumption being that a large disparity in the levels at which clusters merge
indicates the presence of natural groupings.

A more formal approach to this problem is to devise some measure of goodness of
fit that expresses how well a given c-cluster description matches the data. The chi-
squared and Kolmogorov-Smirnov statistics are the traditional measures of goodness
of fit, but the curse of dimensionality usually demands the use of simpler measures,
some criterion function, which we denote J(c). Since we expect a description in terms
of ¢+ 1 clusters to give a better fit than a description in terms of ¢ clusters, we would
like to know what constitutes a statistically significant improvement in J(c).

A formal way to proceed is to advance the null hypothesis that there are exactly
¢ clusters present, and to compute the sampling distribution for J(c + 1) under this
hypothesis. This distribution tells us what kind of apparent improvement to expect
when a c-cluster description is actually correct. The decision procedure would be
to accept the null hypothesis if the observed value of J(c + 1) falls within limits
corresponding to an acceptable probability of false rejection.

Unfortunately, it is usually very difficult to do anything more than crudely esti-
mate the sampling distribution of J(c + 1). The resulting solutions are not above
suspicion, and the statistical problem of testing cluster validity is still essentially un-
solved. However, under the assumption that a suspicious test is better than none,
we include the following approximate analysis for the simple sum-of-squared-error
criterion which closely parallels our discussion in Chap. 77.

Suppose that we have a set D of n samples and we want to decide whether or not
there is any justification for assuming that they form more than one cluster. Let us
advance the null hypothesis that all n samples come from a normal population with
mean g and covariance matrix o?L.* If this hypothesis were true, multiple clusters
found would have to have been formed by chance, and any observed decrease in the
sum-of-squared error obtained by clustering would have no significance.

The sum of squared error Je(1) is a random variable, since it depends on the
particular set of samples:

Je(1) =Y lx —m|?, (82)

xeD

where m is the sample mean of the full data set. Under the null hypothesis, the
distribution for .J.(1) is approximately normal with mean ndo? and variance 2ndo*
(Problem 38). Suppose now that we partition the set of samples into two subsets Dy
and Ds so as to minimize J.(2), where

2
Je(2) = Z Z ||X - mi||2v (83)

i=1xeD;

m; being the mean of the samples in D;. Under the null hypothesis, this partitioning
is spurious, but it nevertheless results in a value for J(2) that is smaller than Je(1).

* We could of course assume a different cluster form, but in the absence of further information, the
Gaussian can be justified on the grounds we have discussed before.

10.11. COMPETITIVE LEARNING 45

If we knew the sampling distribution for J.(2), we could determine how small J.(2)
would have to be before we were forced to abandon a one-cluster null hypothesis.
Lacking an analytical solution for the optimal partitioning, we cannot derive an exact
solution for the sampling distribution. However, we can obtain a rough estimate by
considering the suboptimal partition provided by a hyperplane through the sample
mean. For large n, it can be shown that the sum of squared error for this partition is
approximately normal with mean n(d — 2/7)o? and variance 2n(d — 8/m?)o.

This result agrees with out statement that J.(2) is smaller than J.(1), since the
mean of J.(2) for the suboptimal partition — n(d — 2/7)0? — is less than the mean
for J.(1) — ndo?. To be considered significant, the reduction in the sum-of-squared
error must certainly be greater than this. We can obtain an approximate critical value
for J.(2) by assuming that the suboptimal partition is nearly optimal, by using the
normal approximation for the sampling distribution, and by estimating o2 according
to

1 1
i2 o2 —
6° = — E Ix — m)]| —ndJe(l). (84)

x€D

The final result can be stated as follows (Problem 39): Reject the null hypothesis at
the p-percent significance level if

Jo(2) 2 2(1 — 8/72d)
A nd (85)

where « is determined by
71
p =100 /%e—“”2 du = 100(1 — erf(a)), (86)

and erf(-) is the standard error function. This provides us with a test for deciding
whether or not the splitting of a cluster is justified. Clearly the c-cluster problem can
be treated by applying the same test to all clusters found.

10.11 Competitive Learning

A clustering algorithm related to decision-directed versions of k-means (Algorithm 1)
is based on neural network learning rules (Chap. ??) and called competitive learning.
In both procedures, the number of desired clusters and their centers are initialized,
and during clustering each pattern is provisionally classified into one of the clusters.
The methods of updating the cluster centers differ, however. In the decision-directed
method, each cluster center is calculated as the mean of the current provisional mem-
bers. In competitive learning, the adjustment is confined to the single cluster center
most similar to the pattern presented. As a result, in competitive learning clus-
ters that are “far away” from the current pattern tend not to be altered (but see
Sect. 10.11.2) — sometimes considered a desirable property. The drawback is that
the solution need not minimize a single global cost or criterion function.

We now turn to the specific competitive learning algorithm. For reasons that will
become clear, each d-dimensional pattern is augmented (with zg = 1) and normalized
to have length ||x|| = 1; thus all patterns lie on the surface of a d-dimensional sphere.

ERROR
FUNCTION

46 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

clusters

normalized
input

Figure 10.14: The two-layer network which implements the competitive learning al-
gorithm consists of d + 1 input units and ¢ output or cluster units. Each augmented
input pattern is normalized to unit length, i.e., ||x|| = 1, as is the set of weights at
each cluster unit. When a pattern is presented, each of the cluster units computes
its net activation net; = W;X; only the weights at the most active cluster unit are
modified. (The suppression of activity in all but the most active cluster units can be
implemented by competition among these units, as indicated by the red arrows.) The
weights of the most active unit are then modified to be more similar to the pattern
presented.

The competitive learning algorithm can be understood by its neural network imple-
mentation (Fig. 10.14), which resembles a Perceptron network (Chapt. ??, Fig. 77),
with input units fully connected to ¢ output or cluster units.

Each of the ¢ cluster centers is initialized with a randomly chosen weight vector,
also normalized ||w;| =1, j =1,...c. It is traditional but not required to initialize
cluster centers to be ¢ points randomly selected from the data. When a new pattern
is presented, each of the cluster units computes its net activation, net; = wg-x. Only
the most active neuron (i.e., the closest to the new pattern) is permitted to update
its weights. While this selection of the most active unit is algorithmically trivial, it
can be implemented in a winner-take-all network, where each cluster unit j inhibits
others by an amount proportional to net;, as shown by the red arrows in Fig. 10.14.
It is this competition between cluster units, and the rsulting suppression of activity
in all but the one with the largest net that gives the algorithm its name.

Learning is confined to the weights at the most active unit. The weight vector at
this unit is updated to be more like the pattern:

w(t+1) = w(t) + nx, (87)

d
where 7 is a learning rate. The weights are then normalized to insure > w? = 1.
i=0
This normalization is needed to keep the classification and clustering based on the
position in feature space rather than overall magnitude of w. Without such weight
normalization, a single weight, say wj:, could grow in magnitude and forever give
the greatest value net; , and through competition thereby prevent other clusters from
learning. Figure 10.15 shows the trajectories of three cluster centers in response to a
sequence of patterns chosen randomly from the set shown.

10.11. COMPETITIVE LEARNING 47

Algorithm 6 (Competitive learning)

1 begin initialize n,n,c,wi, wa, ..., W,

2 x; < {1,x;} i = 1,...n augment all patterns

3 x; < X;/[|xi]| ¢ = 1,...n normalize all patterns
4 do randomly select a pattern x

5

J < argmax W;,X classify x
J

6 w; «— w; +1nx weight update

7 w; « w;/||w;| weight normalization

8 until no significant change in w in n attempts
9 return wi,wa,..., W,
10 end

X3 W3

3

Figure 10.15: All of the three-dimensional patterns have been normalized (Y 2?7 = 1),
i=1

and hence lie on a two-dimensional sphere. Likewise, the weights of the three cluster

centers have been normalized. The red curves show the trajectory of the weight

vectors; at the end of learning, each lies near the center of a cluster.

A drawback of Algorithm 6 is that there is no guarantee that it will terminate,
even for a finite, non-pathological data set — the condition in line 8 may never be
satisfied and thus the weights may vary forever. A simple heuristic is to decay the
learning rate in line 6 , for instance by n(t) = n(0)a’ for o < 1 where ¢ is an iteration
number. If the initial cluster centers are representative of the full data set, and the
rate of decay is set so that the full data set is presented at least several times before the
learning is reduced to very small values, then good results can be expected. However
if then a novel pattern is added, it cannot be learning, since 7 is too small. Likewise,
such a learning decay scheme is inappropriate if we seek to track gradual changes in
the data.

In a non-stationary environment, a we may want a clustering algorithm to be
stable to prevent ceaseless recoding, and yet plastic, or changeable, in response to a
new pattern. (Freezing cluster centers would prevent recoding, but would not per-
mit learning of new patterns.) This tradeoff has been called the stability-plasticity
dilemma, and we shall see in Sect. 10.11.2 how it can be addressed. First, however,
we turn to the problem of unknown number of clusters.

STABILITY-
PLASTICITY

48 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

10.11.1 Unknown number of clusters

We have mentioned the problem of unknown number of cluster centers. When the
number is unknown, we can proceed in one of two general ways. In the first, we
compare some cluster criterion as a function of the number of clusters. If there is a
large gap in the criterion values, it suggests a “natural” number of clusters. A second
approach is to state a threshold for the creation of a new cluster. This is useful in
on-line cases. The drawback is that it depends more strongly on the order of data
presentation.

Whereas clustering algorithms such as k-means and hierarchical clustering typi-
cally have all data present before clustering begins (i.e., are off-line), there are occa-
sionally situations in which clustering must be performed on-line as the data streams
in, for instance when there is inadequate memory to store all the patterns themselves,
or in a time-critical situation where the clusters need to be used even before the full
data is present. Our graph theoretic methods can be performed on-line — one merely
links the new pattern to an existing cluster based on some similarity measure.

In order to make on-line versions of methods such as k-means, we will have to be a
bit more careful. Under these conditions, the best approach generally is to represent
clusters by their “centers” (e.g., means) and update these centers based solely on its
current value and the incoming pattern. Here we shall assume that the number of
clusters is known, and return in Sect. ?? to the case where it is not known.

Suppose we currently have ¢ cluster centers; they may have been placed initially
at random positions, or as the first ¢ patterns presented, or the current state after any
number of patterns have been presented. The simplest approach is to alter only the
cluster center most similar to a new pattern being presented, and the cluster center
is changed to be somewhat more like the pattern (Fig. 10.16).

Figure 10.16: In leader-follower clustering, the number of clusters and their centers
depend upon the random sequence of data presentations. The three simulations shown
employed the same learning rate 7, threshold 6, and number of presentations of each
point (50), but differ in the random sequence of presentations. Notice that in the
simulation on the left, three clusters are generated whereas in the other simulations,
only two.

If we let w; represent the current center for cluster 7, n a learning rate and introduce
a threshold 6, a relative of the Basic leader-follower clustering algorithm is then:

Algorithm 7 (Basic leader-follower clustering)

1 begin initialize 7, § « threshold

10.11. COMPETITIVE LEARNING 49

Figure 10.17: Instability can arise when a pattern is assigned different cluster mem-
berships at different times. Early in clustering the pattern marked x* lies in the black
cluster, while later in clustering it lies in the red cluster. Similar pattern presentations
can make x* alternate arbitrarily between clusters.

Hy —X
do accept new x
J « argmin||x — p; | (find nearest cluster)
]/

AR RS

i [x — g, < 0
then p; < p;+nx
else add new p «— x
pn— /|l (normalize weight)
until no more patterns
10 return pq, o, ...
11 end

© 0 XD O

Before we analyze some drawbacks of such a leader-follower clustering algorithm,
let us consider one popular neural technique for achieving it.

10.11.2 Adaptive Resonance

The simplest adaptive resonance networks (or Adaptive Resonance Theory or ART
networks) perform a modification of the On-line clustering with cluster creation pro-
cedure we have just seen. While the primary motivation for ART was to explain
biological learning, we shall not be concerned here with their biological relevance nor
with their use in supervised learning (but see Problem 41).

The above algorithm, however, can occasionally present a problem, regardless
of whether it is implemented via competitive learning. Consider a cluster wy that
originally codes a particular pattern xo, i.e., if xq is presented, the output node having
weights wy is most activated. Suppose a “hostile” sequence of patterns is presented,
i.e., one that sweeps the cluster centers in unusual ways (Fig. 10.17). It is possible
that after the cluster centers have been swept, that xg is coded by ws. Indeed, a
particularly devious sequence can lead xg to be coded by an arbitrary sequence of
cluster centers, with any cluster center being active an arbitrary number of times.

The network works as follows. First a pattern is presented to the input units. This
leads via bottom-up connections w;; to activations in the output units. A winner-

VIGILANCE

VIGILANCE
PARAMETER

50 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

Figure 10.18: Adaptive Resonance network (ART1 for binary patterns). Weights
are bidirectional, gain, the orienting system controls the , and hence (indirectly) the
number of clusters found.

take-all computation leads to only the most activated output unit being active — all
other output units are suppressed. Activation is then sent back to the input units
via weights wj;. This leads, in turn to a modification of the activation of the input
units. Very quickly, a stable configuration of output and input units occurs, called
a “resonance” (though this has nothing to do with the type of resonance in a driven
oscillator).

ART networks detect novelty by means of the orienting subsystem. The details
need not concern us here, but in broad overview, the orienting subsystem has two
inputs: the total number of active input features and the total number of features
that are active in the input layer. (Note that these two numbers need not be the
same, since the top-down feedback affects the activation of the input units, but not
the number of active inputs themselves.) If an input pattern is “too different” from
any current cluster centers, then the orienting subsystem sends a reset wave signal
that renders the active output unit quiet. This allows a new cluster center to be
found, or if all have been explored, then a new cluster center is created.

The criterion for “too different” is a single number, set by the user, called the
vigilance, p(0 < p < 1. Denoting the number of active input features as |I| and the
number active in the input layer during a resonance as |R|, then there will be a reset
if

|R|

7 <P (88)
where rho is a user-set number called the vigilance parameter. A low vigilance pa-
rameter means that there can be a poor “match” between the input and the learned
cluster and the network will accept it. (Thus vigilance and the ratio of the number of
features used by ART, while motivated by proportional considerations, is just one of
an infinite number of possible closeness criteria (related to 0). For the same data set,
a low vigilance leads to a small number of large coarse clusters being formed, while a
high vigilance leads to a large number of fine clusters (Fig. 10.19).

We have presented the basic approach and issues with ART1, but these return

(though in a more subtle way) in analog versions of ART in the literature.

10.12. *GRAPH THEORETIC METHODS 51

Figure 10.19: The results of ART1 applied to a sequence of binary figures. a) p = zx.
b) p =0.zz.

10.12 *Graph Theoretic Methods

Where the mathematics of normal mixtures and minimum-variance partitions leads
us to picture clusters as isolated clumps, the language and concepts of graph theory
lead us to consider much more intricate structures. Unfortunately, there is no uniform
way of posing clustering problems as problems in graph theory. Thus, the effective
use of these ideas is still largely an art, and the reader who wants to explore the
possibilities should be prepared to be creative.

We begin our brief look into graph-theoretic methods by reconsidering the simple
procedures that produce the graphs shown in Fig. 10.6. Here a threshold distance dy
was selected, and two points are placed in the same cluster if the distance between
them is less than dg. This procedure can easily be generalized to apply to arbitrary
similarity measures. Suppose that we pick a threshold value sg and say that x; is
similar to x; if s(x;,%;) > so. This defines an n-by-n similarity matriz S = [s;;], with
binary component

- J1 if s(x;,%;) > 5o
8ij = { 0 otherwise. (89)

Furthermore, this matrix induces a similarity graph, dual to S, in which nodes corre-
spond to points and an edge joins node ¢ and node j if and only if s;; = 1.

The clusterings produced by the single-linkage algorithm and by a modified version
of the complete-linkage algorithm are readily described in terms of this graph. With
the single-linkage algorithm, two samples x and x’ are in the same cluster if and only
if there exists a chain x,x1,Xo, ..., X, X’ such that x is similar to x, x; is similar to
Xs, and so on for the whole chain. Thus, this clustering corresponds to the connected
components of the similarity graph. With the complete-linkage algorithm, all samples
in a given cluster must be similar to one another, and no sample can be in more than
one cluster. If we drop this second requirement, then this clustering corresponds to
the mazimal complete subgraphs of the similarity graph — the “largest” subgraphs
with edges joining all pairs of nodes. (In general, the clusters of the complete-linkage
algorithm will be found among the maximal complete subgraphs, but they cannot be
determined without knowing the unquantized similarity values.)

SIMILARITY
MATRIX

SIMILARITY
GRAPH

CONNECTED
COMPONENT

MAXIMAL
COMPLETE
SUBGRAPH

INCONSIS-
TENT EDGE

DIAMETER
PATH

52 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

In the preceding section we noted that the nearest-neighbor algorithm could be
viewed as an algorithm for finding a minimal spanning tree. Conversely, given a
minimal spanning tree we can find the clusterings produced by the nearest-neighbor
algorithm. Removal of the longest edge produces the two-cluster grouping, removal of
the next longest edge produces the three-cluster grouping, and so on. This amounts
to a divisive hierarchical procedure, and suggests other ways of dividing the graph
into subgraphs. For example, in selecting an edge to remove, we can compare its
length to the lengths of other edges incident upon its nodes. Let us say that an edge
is inconsistent if its length [is significantly larger than [, the average length of all
other edges incident on its nodes. Figure 10.20 shows a minimal spanning tree for a
two-dimensional point set and the clusters obtained by systematically removing all
edges for which ! > 2/ in this way. This criterion is sensitive to local conditions gives
results that are quite different from merely removing the two longest edges.

Ko TR ey

Figure 10.20: The removal of inconsistent edges — ones with length significantly larger
than the average incident upon a node — may yield natural clusters. The original
data is shown at the left and its minimal spanning tree is shown in the middle. At
virtually every node, incident edges are of nearly the same length. Each of the two
nodes shown in red are exceptions: their incident edges are of very different lengths.
When the two such inconsistent edges are removed, three clusters are produced, as
shown at the right.

When the data points are strung out into long chains, a minimal spanning tree
forms a natural skeleton for the chain. If we define the diameter path as the longest
path through the tree, then a chain will be characterized by the shallow depth of
the branching off the diameter path. In contrast, for a large, uniform cloud of data
points, the tree will usually not have an obvious diameter path, but rather several
distinct, near-diameter paths. For any of these, an appreciable number of nodes will
be off the path. While slight changes in the locations of the data points can cause
major rerouting of a minimal spanning tree, they typically have little effect on such
statistics.

One of the useful statistics that can be obtained from a minimal spanning tree
is the edge length distribution. Figure 10.21 shows a situation in which two dense
clusters are embedded in a sparse set of points; the lengths of the edges of the min-
imal spanning tree exhibit two distinct clusters which would easily be detected by a
minimum-variance procedure. By deleting all edges longer than some intermediate
value, we can extract the dense cluster as the largest connected component of the
remaining graph. While more complicated configurations can not be disposed of this
easily, the flexibility of the graph-theoretic approach suggests that it is applicable to
a wide variety of clustering problems.

10.13. COMPONENT ANALYSIS 53

number

~) L A DN o
number

~ N WA QN o

length length

Figure 10.21: A minimal spanning tree is shown at the left; its bimodal edge length
distribution is evident in the histogram below. If all links of intermediate or high
length are removed (red), the two natural clusters are revealed (right).

10.13 Component analysis

Component analysis is an unsupervised approach to finding the “right” features from
the data. We shall discuss two leading methods, each having a somewhat different
goal. In principal component analysis (PCA), we seek to represent the d-dimensional
data in a lower-dimensional space. This will reduce the degrees of freedom, reduce
the space and time complexities. The goal is to represent data in a space that best
describes the variation in a sum-squared error sense, as we shall see. In independent
component analysis (ICA) we seek those directions that show the independence of
signals. This method is particularly helpful for segmenting signals from multiple
sources. As with standard clustering methods, it helps greatly if we know how many
independent components exist ahead of time.

10.13.1 Principal component analysis (PCA)

The basic approach in principal componements or Karhunen-Loéve transform is con-
ceptually quite simple. First, the d-dimensional mean vector g and d X d covariance
matrix X are computed for the full data set. Next, the eigenvectors and eigenvalues
are computed (cf. Appendix ??), and sorted according to decreasing eigenvalue. Call
these eigenvectors e; with eigenvalue A1, es with eigenvalue A5, and so on. Next, the
largest k such eigenvectors are chosen. In practice, this is done by looking at a spec-
trum of eigenvectors. Often there will be xxx implying an inherent dimensionality of
the subspace governing the “signal.” The other dimensions are noise. Form a k X k
matrix A whose columns consist of the k eigenvectors.
Preprocess data according to:

x' = Al(x— p). (90)

It can be shown that this representation minimizes a squared error criterion (Prob-
lem 42).

KARHUNEN-
LOEVE
TRANSFORM

AUTO-
ENCODER

54 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

10.13.2 Non-linear component analysis

We have just seen how to find a k-dimensional linear subspace of feature space that
best represents the full data according to a minimum-square-error sense. If the data
set is not well described by a sample mean and covariance matrix, but instead in-
volves complicated interactions of features, then the linear subspace may be a poor
representation. In such a case a non-linear component may be needed.

A neural network approach to such non-linear component analysis employs a net-
work with five layers of units, as shown in Fig. 10.22. The middle layer consists of
k < d linear units, and it is here that the non-linear components will be revealed.
It is important that the two other internal layers have nonlinear units (Problem 44).
The entire network is trained using the techniques of Chapt. ?? as an auto-encoder
or auto-associator. That is, each d-dimensional pattern is presented as input and as
the target or desired output. When trained on a sum-squared error criterion, such a
network readily learns the auto-encoder problem.

The top two layers of the trained network are discarded, and the rest used for
non-linear components. For each input pattern x, the output of the k£ units of the
three-layer network correspond to the non-linear components.

output
X, X,

QOOEOOE
i B @ @ © B

OO0

input

Figure 10.22: A five-layer neural network with two layers of non-linear units (e.g.,
sigmoidal), trained to be an auto-encoder, develops an internal representation that
corresponds to the non-linear principal components of the full data set. (Bias units
are not shown.) The process can be viewed in feature space (at the right). The
transformation F'; is a non-linear projection onto a k-dimensional non-linear subspace
denoted I'(F3). Points in T'(F2) are mapped via F5 back to the the d-dimensional
space of the original data.

We can understand the function of the full five-layer network in terms of two succes-
sive mappings, F1 is a projection from the d-dimensional input onto a k-dimensional
nonlinear subspace, followed by F», a mapping from that subspace back to the full
d-dimensional space, as shown in the right of the figure.

Learning in the original network is highly nonlinear, and during training care
must be taken so as to avoid a poor local minimum (Chap. ?7?7). Naturally, one
must take care to set an appropriate number k£ of units. Recall that in (linear)
principal component analysis, the number of components k could be chosen based
on the spectrum of eigenvectors. If the eigenvalues are ordered by magnitude, any
significant drop between successive values indicates a “natural” number dimension
to the subspace. Likewise, suppose five-layer networks are trained, with different
numbers k of units in the middle layer. Assuming poor local minima have been

10.13. COMPONENT ANALYSIS 55

avoided, the training error will surely decrease for successively larger values of k. If
the improvement k£ + 1 over k is small, this may indicate that k is the “natural”
dimension of the nonlinear subspace.

We should not conclude that principal component analysis is always beneficial
for classification. If the noise is large compared to the difference between categories,
then component analysis will find the directions of the noise, rather than the signal,
as illustrated in Fig. 10.23. In such cases, we seek to ignore the noise, and instead
extract the directions that are indicative of the categories — a technique we consider

next.
21

Figure 10.23: Features from two classes are as shown, along with nonlinear compo-
nents of the full data set. Apparently, these classes are well separated along the y»
direction, but the large noise gives the largest nonlinear component to be y;. Prepro-
cessing by keeping merely the largest nonlinear component would retain the “noise”
and discard the “signal,” giving poor recognition. The same defect arises in linear
principal components, where the compoenents are linear and everywhere perpendic-
ular.

10.13.3 *Independent component analysis (ICA)

Suppose there are ¢ independent scalar source signals z;(¢) for ¢ = 1,...c where we
can consider ¢ to be a time index 1 <t <7T'. For notational convenience we group the
¢ values at an instant into a vector x(¢) and assume, further, that the vector has zero
mean. Because of our independence assumption, and an assumption of no noise, we
the multivariate density function can be written as

p(x(t)) = [[p(a:(t)). (91)
i=1
Suppose that a d-dimensional data (or sensor) vector is observed at each moment,

y(t) = Ax(t), (92)

where A is a ¢ X d scalar matrix, and below we shall require d > c.

The method is perhaps best illustrated in its most typical use. Suppose there are
¢ sound sources being sensed by d microphones, all in a room. Each microphone gets
a mixture of the sources, with amplitudes depending upon the distances (Fig. 10.24).
(We shall ignore any effects of delays.)

56 CHAPTER 10 UN S UPERVISED LEARNING AND CLUSTERING

x(0)+a,x (1)

s (1) +w s O+ w,

A
X 1) = w s (1) w s (0w s (1)

Figure 10.24: Independent component analysis (ICA) is an unsupervised method that
can be applied to the problem of blind source separation. In such problems, two or
more source signals (assumed independent) x1(t), z2(t), ..., x4(t) are combined to
yield a sum signal, $1(¢)+s2(¢)+. ..+ s(t) where ¢ > d. (This figure illustrates a case
with only two components.) Given merely the linear signals, and the assumption of
the number of components, d, the task of ICA is to recover the source signals. This
is equivalent to finding a matrix W that is the inverse of A. In general appalications
of ICA, one seeks to extraction independent components from the sensed signals,
whether or not they arose from a linear mixture of initial sources.

The task of independent component analysis is to recover the source signals from
the sensed signals. More specifically, we seek a real matrix W such that

2(t) = Wy (t) = WAx(t), (93)

where z is an estimate of the sources x(t). Of couse we seek W = A~!, but neither
A nor its inverse are known.

We approach the determination of A by maximum-likelihood techniques. We use
an estimate of the density, parameterized by a p(y; a) and seek the parameter vector
a that minimizes the diffrerence between the source distribution and the estimate.
That is, a is the basis vectors of A and thus p(y; a) is an estimate of the p(y).

This difference can be quantified by the Kullback-Liebler divergence:

D(p(y).ply; a)) = (()IIﬁ(y; a))

)l p(y) i
0]
/py Ty a) Y

H(y) - / p(y)logh(y: a)dy (94)

The log-likelihood is

= 13 togi(xi; @), (95)
=1

10.13. COMPONENT ANALYSIS 57

and using the law of large numbers, the Kullback-Liebler divergence can be written
as

o) — — / p(y)logp(y)dy — / pb’”%%dy

= H(y) —De®)|liy; a)), (96)
——

indep. of W

where the entropy H(y) is independent of W. Thus we maximize the log-likelihood
by minimizing the Kullback-Liebler divergence with respect to the estimated density

p(y; a):
%lé?f) - _%D(p(y)llﬁ(y; a)).

Because A is an invertible matrix, and because the Kullback-Liebler divergence is
invariant under invertible transformation (Problem 47), we have

(97)

ol(a) 0
=———D .

) = D) 6(2) (98)
0H(yyy) Ozz;
— = ———Jog[||[WWW ‘

IWWW www %l I+ 8WWW H Dyy;
= [WWW]! — ¢(xxx)zzz!, (99)
where ¢(xxx) is the score function, the gradient fector of the log likelihood:
ap(Z(l)/)321
0p(z)/0z b ?1
o) =L (100)
Op(zq) /024
p(2q)
Thus the learning rule is
H
% = poxx] ™ = p(xx)yy. (101)
A simpler form comes if we merely scale, following the natural gradient
0H
AXXX X MWW’&WW = [I - ¢(xx)xx' | WWW. (102)
Jxxx
This, then is the learning algorithm.
An assumption is that at most one of the sources is Gaussian distributed (Prob-

lem 46). Indeed this method is most successful if the distributions are highly skewed
or otherwise deviate markedly from Gaussian.

We can understand the difference between PCA and ICA in the following way.
Imagine that there were two sources that are correlated and large correlated signals
in a particular direction. PCA would find that direction, and indeed would reduce the
sum-squared error. Such components are not independent, and would not be useful
for separating the sources. As such, they would not be found by ICA. Instead, ICA

SCORE
FUNCTION

58 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

would find those directions that are best for separating the sources — even if those
directions have small eigenvectors.

Generally speaking, when used as preprocessing for classification, independent
component analysis has several characteristics that make it more desirable than linear
or non-linear principal component analysis. As we saw in Fig. 10.23, such principal
components need not be effective in separating classes. Recall that the sensed input
consists of a signal (due to the true categories) plus noise. If the noise is large much
larger than the signal, principal components will depend more upon the noise than on
the signal. Since the different categories are, we assume, independent, independent
component analysis is likely to extract those features that are useful in distinguishing
the classes.

10.14 Low-Dimensional Representations and Multi-
dimensional Scaling (MDS)

Part of the problem of deciding whether or not a given clustering means anything
stems from our inability to visualize the structure of multidimensional data. This
problem is further aggravated when similarity or dissimilarity measures are used that
lack the familiar properties of distance. One way to attack this problem is to try to
represent the data points as points in some lower-dimensional space in such a way
that the distances between points in the that space correspond to the dissimilarities
between points in the original space. If acceptably accurate representations can be
found in two or perhaps three dimensions, this can be an extremely valuable way to
gain insight into the structure of the data. The general process of finding a configura-
tion of points whose interpoint distances correspond to similarities or dissimilarities
is often called multidimensional scaling.

Let us begin with the simpler case where it is meaningful to talk about the dis-
tances between the n samples x1,...,%,. Let y; be the lower-dimensional image of
X;, 0;; be the distance between x; and x;, and d;; be the distance between y; and
y; (Fig. 10.25). Then we are looking for a configuration of image points y1,...,¥yn
for which the n(n — 1)/2 distances d;; between image points are as close as possi-
ble to the corresponding original distances d;;. Since it will usually not be possible
to find a configuration for which d;; = §;; for all i and j, we need some criterion
for deciding whether or not one configuration is better than another. The following
sum-of-squared-error functions are all reasonable candidates:

> (dij — 6ij)?

1<j

Jo = < (103)
> 6%
1<
dii — 63572
T o= Y (F5) (104)
i<j Y
L (dij — 0i5)?

T = . (105)
/ > 0ij ; 0i

1<j

Since these criterion functions involve only the distances between points, they are
invariant to rigid-body motions of the configurations. Moreover, they have all been

10.14. LOW-DIMENSIONAL REPRESENTATIONS AND MULTIDIMENSIONAL SCALING (MDS)59

> V)

X1

Figure 10.25: The distance between points in the original space are §;; while in the
projected space d;;. In practice, the source space is typically of very high dimension,
and the mapped space of just two or three dimensions, to aid visualization. (In order
to illustrate the correspondence between points in the two spaces, the size and color
of each point x; matches that of its image y;.

normalized so that their minimum values are invariant to dilations of the sample
points. While J.. emphasizes the largest errors (regardless whether the distances d;;
are large or small), J;; emphasizes the largest fractional errors (regardless whether
the errors |d;; — ;5| are large or small). A useful compromise is J, s, which emphasizes
the largest product of error and fractional error.

Once a criterion function has been selected, an optimal configuration yq,...,¥y,
is defined as one that minimizes that criterion function. An optimal configuration
can be sought by a standard gradient-descent procedure, starting with some initial
configuration and changing the y;’s in the direction of greatest rate of decrease in the
criterion function. Since

dij = llyi — y;ll,

the gradient of d;; with respect to y; is merely a unit vector in the direction of y; —y;.
Thus, the gradients of the criterion functions are easy to compute:

2 YE—Yj
e = — dui — S Y2 E I
vaJ Z 512] Z(kj k]) dk]
i<y Jj#k
dij — Okj Yk — Y
VyJip = 22 J52' : drs :
PR kg
2 dij — Okj Yk — Y
Vyidef = S 6y J(gk. ’ dk.J'
=] £k J J

The starting configuration can be chosen randomly, or in any convenient way that
spreads the image points about. If the image points lie in a d-dimensional space,

MONO-
TONICITY
CONSTRAINT

60 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

then a simple and effective starting configuration can be found by selecting those d
coordinates of the samples that have the largest variance.

The following example illustrates the kind of results that can be obtained by these
techniques. The data consist of thirty points spaced at unit intervals along a spiral
in three-dimensions:

z1(k) = cos(k/V?2)
() = Sin(kl/\@)
zs(k) = k/V2, k=0,1,...,29.

Figure 10.26 shows a the three-dimensional data. When the J.y criterion was used,
twenty iterations of a gradient descent procedure produced the two-dimensional con-
figuration shown at the right. Of course, translations, rotations, and reflections of
this configuration would be equally good solutions.

X3

20k

et

N

VY g S N

Figure 10.26: Thirty points of the form (cos(k/v/2),sin(k/v2),k/v?2)t for k =
0,1,...,29 are shown at the left. Multidimensional scaling using the J.; criterion
(Eq. 105) and a two-dimensional target space leads to the image points shown at the
right. This lower-dimensional representation shows clearly the fundamental sequential
nature of the points in the original, source space.

In non-metric multidimensional scaling problems, the quantities d;; are dissimi-
larities whose numerical values are not as important as their rank order. An ideal
configuration would be one for which the rank order of the distances d;; is the same as
the rank order of the dissimilarities d;;. Let us order the m = n(n—1)/2 dissimilarities
so that d;, 5, < -+ < d;,.4,., and let ciij be any m numbers satisfying the monotonicity
constraint

di1j1 < di2j2 S-S

Lo (106)
In general, the distances d;; will not satisfy this constraint, and the numbers (Lj
will not be distances. However, the degree to which the d;; satisfy this constraint is

measured by

j’mon = min Z(d” - dij)2, (107)

10.14. LOW-DIMENSIONAL REPRESENTATIONS AND MULTIDIMENSIONAL SCALING (MDS)61

where it is always to be understood that the ciij must satisfy the monotonicity
constraint. Thus, Jmon measures the degree to which the configuration of points
Y1,-..,Yn represents the original data. Unfortunately, Jy,on can not be used to define
an optimal configuration because it can be made to vanish by collapsing the config-
uration to a single point. However, this defect is easily removed by a normalization
such as the following:

Jmon
Jmon = SE (108)
1<]

Thus, Jpen is invariant to translations, rotations, and dilations of the configura-
tion, and an optimal configuration can be defined as one that minimizes this criterion
function. It has been observed experimentally that when the number of points is
larger than dimensionality of the image space, the monotonicity constraint is actually
quite confining. This might be expected from the fact that the number of constraints
grows as the square of the number of points, and it is the basis for the frequently
encountered statement that this procedure allows the recovery of metric information
from nonmetric data. The quality of the representation generally improves as the
dimensionality of the image space is increased, and it may be necessary to go beyond
three dimensions to obtain an acceptably small value of J,,0,. However, this may be
a small price to pay to allow the use of the many clustering procedures available for
data points in metric spaces (Problem ?7).

10.14.1 Self-organizing feature maps

A method closely related to multidimensional scaling is that of self-organizing fea-
ture maps, sometimes called topologically ordered maps or Kohonen self-organizing
feature maps. As before, the goal is to represent all points in the source space by =~ KOHONEN
points in a target space, such that distance and proximity relationships are preserved = MAPS
as much as possible. The self-organizing map algorithm we shall discuss does not
require the storage of a large number of samples, and thus has much lower space
complexity than multidimensional scaling. (In practice, both methods have high time
complexities.) Moreover, the method is particularly useful when there is a nonlinear
mapping inherent in the problem itself, as we shall see.

It is simplest to explain self-organizing maps by means of an example. Suppose
we seek to learn a mapping from a circular disk region (the source space) to a target
space, as shown in Fig. 10.27. The source space is sensed by a movable two-joint
arm of fixed segment lengths; thus each point (z1,x2) in the disk area leads to a pair
of angles (¢1,$2), which we denote as a vector ¢. The algorithm uses a sequence
of ¢ values but not the (x1,x2) values themselves, since they and their nonlinear
transformation are not directly accessible. In our illustration the nonlinearity involves

inverce triconometric 'Fn'nr'f'ln'nc but in most Q'h'hhﬁﬁf'ln'nc .f ig more ﬁnm'r\hﬁﬁfﬂr] and
LLVOLIST LiigUIOHLCUVIIC TUICuIVLS, DUy i Ll Ubv P pPualauiUiis 1v 15 111010 CULLI Pl CavClU a1

not even known.

The task is this: given a sequence of ¢’s (corresponding to points sampled in the
source space), create a mapping from ¢ to y such that points neighboring in the
source space are mapped to points that are neighboring in the target space. It is
this goal of preserving neighborhoods that gives the resulting “topologically ordered
maps” their name.

The mapping is learned by a simple two-layer neural network, here with two inputs
(¢1 and ¢2), fully connected to a large number of outputs, corresponding to points

WINDOW
FUNCTION

62 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

source space

Ay -y
/ y*\ target space
W, > 8-
o MDA TN
£ AT || | T T
®,

Figure 10.27: A self-organizing map from the (two-dimensional) disk source space to
the (one-dimensional) line of the target space can be learned as follows. For each
point x in the target line, there exists a corresponding point in the source space that,
if sensed, would lead to x begin most active. For clarity, then, we can link theses
points in the source; it is as if the image line is placed in the source space. At the
state shown, the particular sensed point leads to x* begin most active. The learning
rule (Eq. 109) makes its source point move toward the sensed point, as shown by the
small arrow. Because of the window function A(|y* — y|), points adjacent to x* are
also moved toward the sensed point, thought not as much. If such learning is repeated
many times as the arm randomly senses the whole source space, a topologically correct
map is learned.

along the target line. When a pattern ¢, each node in the target space computes its
net activation, nety = > ¢;wy;. One of the units is most activated; call it y*. The

T
weights to this unit and those in its immediate neighborhood are updated according
to:

wri(t +1) = wri(t) + nOA(y —y*)by, (109)

where 7(t) is a learning rate which depends upon the iteration number ¢. Next,
every weight vector is normalized such that |w| = 1. (Naturally, only those weight
vectors that have been altered during the learning trial need be re-normalized.) The
function A(ly —y*|) is called the “window function,” and has value 1.0 for y = y* and
smaller for large values of |y —y*|. The window function is vital to the success of the
algorithm: it insures that neighboring points in the target space have weights that
are similar, and thus correspond to neighboring points in the source space, thereby
insuring topological neighborhoods (Fig. 10.28). The learning rate n(t) decreases
slowly as a function of iteration number (i.e., as patterns are presented) to insure
that learning will ultimately stop.

Equation 109 has a particularly straightforward interpretation. For each pattern
presentation, the “winning” unit in the target space (y*) is adjusted so that it is more
like the particular pattern. Others in the neighborhood of y* are also adjusted so that
their weights more nearly match that of the input pattern (though not quite as much
as for y*, according to the window function). In this way, neighboring points in the
input space lead to neighboring points being active.

After are large number of pattern presentations, learning according to Eq. 109

10.14. LOW-DIMENSIONAL REPRESENTATIONS AND MULTIDIMENSIONAL SCALING (MDS)63

b

yE Y1

Figure 10.28: Typical window functions for self-organizing maps for target spaces in
one dimension (left) and two dimensions (right). In each case, the weights at the
maximally active unit, y*, in the target space get the largest weight update while
units more distant get smaller update.

insures that neighboring points in the source space lead to neighboring points in the
target space. Informally speaking, it is as if the target space line has been placed on
the source space, and learning pulls and stretches the line to fill the source space, as
illustrated in Fig. 10.29 shows the development of the map. After 150000 training
presentations, a topological map has been learned.

0 20 100 1000 10000
25000 50000 75000 100000 150000

Figure 10.29: If a large number of pattern presentations are made using the setup of
Fig. 10.27, a topologically ordered map develops. The number of pattern presentations
is listed.

The learning of such self-organizing maps is very general, and can be applied
to virtually any source space, target space and continuous nonlinear mapping. Fig-
ure 10.30 shows the development of a self-organizing map from a square source space
to a square (grid) target space.

There are generally inherent ambiguities in the maps learned by this algorithm.
For instance, a mapping from a square to a square could eight possible orientations,
corresponding to the four rotation and two flip symmetries. Such ambiguity is gen-
erally irrelevant for subsequent clustering or classification in the target space. Nev-

64 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

100 1000

75000 100000 300000

H I

Figure 10.30: A self-organizing feature map from a square source space to a square
(grid) target space. As in Fig. 10.27, each grid point of the target space is shown atop
the the point in the source space that leads maximally excites that target point. This
example also used the non-linear

ertheless the mapping ambiguities are related to a more significant drawback — the
possibility of “kinks” in the map. A particular initial condition can lead to part of
the map learning one of the orientations, while a different part learns another one
(Fig. 10.31). When this occurs, it is generally best to re-initialize the weights ran-
domly and restart the learning with perhaps a wider window function or slower decay
in the learning rate.

0 1000 25000 400000

*

Figure 10.31: Some initial (random) weights and the particular sequence of patterns
(randomly chosen) lead to kinks in the map; even extensive further training does
not eliminate the kink. In such cases, learning should be re-started with randomized
weights and possibly a wider window function and slower decay in learning.

One of the benefits of this learning algorithm is that it naturally takes account
of the probability of sampling in the source space, i.e., p(x). Regions of high such
probability attract more of the points in the target space, and this yields xxx, as
shown in Fig. 10.32. Thus in the target space, xxx points are spread apart — just as
we would want for preprocessing for subsequent classification.

Another issue is the number of dimensions in the target space. One typically
chooses this dimension (and

run in unsupervised mode — track slow changes.

Such self-organizing feature maps can be used in a number of systems. For in-

10.14. LOW-DIMENSIONAL REPRESENTATIONS AND MULTIDIMENSIONAL SCALING (MDS)65

0 1000 400000 800000

A I

1

|

Figure 10.32: Uneven density: 20 times more likely to choose a point in the center
(density is 20 times greater).

stance, one can take a fairly large number (e.g., 12) of temporal frequency filter
outputs and use their output to map to a two-dimensional target space. When such
an approach is applied to spoken vowel sounds, similar utterances such as /ee/ and
/eh/ will be close together, while others, e.g., /ee/ and /oo/, will be far apart —
just as we had in multidimensional scaling. Subsequent supervised learning can label
regions in this target space, and thus lead to a full classifier, but one formed using
only a small amount of supervised training.

10.14.2 Clustering and Dimensionality Reduction

Because the curse of dimensionality plagues so many pattern recognition procedures,
a variety of methods for dimensionality reduction have been proposed. Unlike the
procedures that we have just examined, most of these methods provide a functional
mapping, so that one can determine the image of an arbitrary feature vector. The
classical procedures of statistics are principal components analysis and factor analysis, PRINCIPAL
both of which reduce dimensionality by forming linear combinations of the features. = COMPO-
The object of principal components analysis (known in communication theory as the NENT
Karhunen-Loéve expansion) is to find a lower-dimensional representation that ac-
counts for the wvariance of the features. The object of factor analysis is to find a
lower-dimensional representation that accounts for the correlations among the fea-
tures. If we think of the problem as one of removing or combining (i.e., grouping)
highly correlated features, then it becomes clear that the techniques of clustering are
applicable to this problem. In terms of the data matriz, whose n rows are the d- DATA
dimensional samples, ordinary clustering can be thought of as a grouping of the rows, = MATRIX
with a smaller number of cluster centers being used to represent the data, whereas di-
mensionality reduction can be thought of as a grouping of the columns, with combined
features being used to represent the data.

Let, us consider a simple modification of hierarchical clustering to reduce dimen-
sionality. In place of an n-by-n matrix of distances between samples, we consider a
d-by-d correlation matriz R = [p;;], where the correlation coefficient p;; is related to ~ CORRELA-
the covariances (or sample covariances) by TION

MATRIX

FACTOR
ANALYSIS

Oij
Since 0 < p; < 1, with p7; = 0 for uncorrelated features and p7; = 1 for completely
correlated features, pzzj plays the role of a similarity function for features. Two features

pij = (110)

66 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

for which p?j is large are clearly good candidates to be merged into one feature, thereby
reducing the dimensionality by one. Repetition of this process leads to the following
hierarchical procedure:

Algorithm 8 (Hierarchical dimensionality reduction)

1 begin initialize d’,D; « {x;},i=1,...,d

2 de—d+1

3 dod«—d—1

4 compute R by Eq. 110

5 Find most correlated distinct clusters, say D; and D;
6 D; « D; UD; merge

7 delete D;

8 until d = d’

9 return d’ clusters
10 end

Probably the simplest way to merge two groups of features is just to average them.
(This tacitly assumes that the features have been scaled so that their numerical ranges
are comparable.) With this definition of a new feature, there is no problem in defining
the correlation matrix for groups of features. It is not hard to think of variations on
this general theme, but we shall not pursue this topic further.

For the purposes of pattern classification, the most serious criticism of all of the
approaches to dimensionality reduction that we have mentioned is that they are overly
concerned with faithful representation of the data. Greatest emphasis is usually placed
on those features or groups of features that have the greatest variability. But for
classification, we are interested in discrimination — not representation. While it is a
truism that the ideal representation is the one that makes classification easy, it is not
always so clear that clustering without explicitly incorporating classification criteria
will find such a representation. Roughly speaking, the most interesting features are
the ones for which the difference in the class means is large relative to the standard
deviations, not the ones for which merely the standard deviations are large. In short,
we are interested in something more like the method of multiple discriminant analysis
described in Sect. 77.

There is a large body of theory on methods of dimensionality reduction for pattern
classification. Some of these methods seek to form new features out of linear combi-
nations of old ones. Others seek merely a smaller subset of the original features. A
major problem confronting this theory is that the division of pattern recognition into
feature extraction followed by classification is theoretically artificial. A completely
optimal feature extractor can never by anything but an optimal classifier. It is only
when constraints are placed on the classifier or limitations are placed on the size of
the set of samples that one can formulate nontrivial (or very complicated) problems.
Various ways of circumventing this problem that may be useful under the proper cir-
cumstances can be found in the literature. When it is possible to exploit knowledge
of the problem domain to obtain more informative features, that is usually the most
profitable course of action.

Summary

Unsupervised learning and clustering seek to extract information from unlabeled sam-
ples. If the underlying distribution comes from a mixture of component densities de-

10.14. SUMMARY 67

scribed by a set of unknown parameters 8, then € can be estimated by Bayesian or
maximum-likelihood methods. A more general approach is to define some measure of
similarity between two clusters, as well as a global criterion such as a sum-squared-
error or trace of a scatter matrix. Since there are only occasionally analytic methods
for computing the clustering which optimizes the criterion, a number of greedy (lo-
cally step-wise optimal) iterative algorithms can be used, such as k-means and fuzzy
k-means clustering.

If we seek to reveal structure in the data at many levels — i.e., clusters with sub-
clusters and sub-subcluster — then hierarchical methods are needed. Agglomerative
or bottom-up methods start with each sample as a singleton cluster and iteratively
merge clusters that are “most similar” according to some chosen similarity or dis-
tance measure. Conversely, divisive or top-down methods start with a single cluster
representing the full data set and iteratively splitting into smaller clusters, each time
seeking the subclusters that are most dissimilar. The resulting hierarchical structure
is revealed in a dendrogram. A large disparity in the similarity measure for successive
cluster levels in a dendrogram usually indicates the “natural” number of clusters. Al-
ternatively, the problem of cluster validity — knowing the proper number of clusters
— can also be addressed by hypothesis testing. In that case the null hypothesis is
that there are some number ¢ of clusters; we then determine if the reduction of the
cluster criterion due to an additional cluster is statistically significant.

Competitive learning is an on-line neural network clustering algorithm in which
the cluster center most similar to an input pattern is modified to become more like
that pattern. In order to guarantee that learning stops for an arbitrary data set,
the learning rate must decay. Competitive learning can be modified to allow for
the creation of new cluster centers, if no center is sufficiently similar to a particular
input pattern, as in leader-follower clustering and Adaptive Resonance. While these
methods have many advantages, such as computational ease and tracking gradual
variations in the data, they rarely optimize an easily specified global criterion such as
sum-of-squared error.

Graph theoretic methods in clustering treat the data as points, to be linked ac-
cording to a number of heuristics and distance measures. The clusters produced by
these methods can exhibit chaining or other intricate structures, and rarely optimize
an easily specified global cost function. Graph methods are, moreover, generally more
sensitive to details of the data.

Component analysis seeks to find directions or axes in feature space that provide
an improved, lower-dimensional representation for the full data space. In (linear)
principal component analysis, such directions are merely the largest eigenvectors of
the covariance matrix of the full data; this optimizes a sum-squared-error criterion.
Nonlinear principal components, for instance as learned in an internal layer an auto-
encoder neural network, yields curved surfaces embedded in the full d-dimensional
feature space, onto which an arbitrary pattern x is projected. The goal in independent

comnonent, ahnlycic — which uses gradient descent in an entropv criterion — is to

COIPOLICIL allalysis viliCil UsCs gialliCily GQOSCCIL 1L all CIAIOpy CLILeIiOl s vo

determine the directions in feature space that are statistically most independent.
Such directions may reveal the true sources (assumed independent) and can be used
for segmentation and blind source separation.

Two general methods for dimensionality reduction is self-organizing feature maps
and multidimensional scaling. Self-organizaing feature maps can be highly nonlinear,
and represents points close in the source space by points close in the lower-dimensional
target space. In preserving neighborhoods in this way, such maps also called “topolog-
ically correct.” The source and target spaces can be of very general shapes, and the

68 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

mapping will depend upon the the distribution of samples within the source space.
Multidimensional scaling similarly learns a nonlinear mapping that, too, seeks to
preserve neighborhoods, and is often used for data visualization. Because the basic
method requires all the inter-point distances for minimizing a global criterion function,
its space complexity limits the usefulness of multidimensional scaling to problems of
moderate size.

Bibliographical and Historical Remarks

Historically, the literature on unsupervised learning and clustering dates to Karl Pear-
son, who in 1894 used sample moments to determine the parameters in a misture of
two univariate Gaussians. While most books on pattern classification address un-
supervised learning, there are several modern books[21, 1] and review articles on
unsupervised learning that go into great detail. Much of the work on unsupervised
methods comes from the signal compression community, where vector quantization
(VQ) seeks to represent an arbitrary vector by one of ¢ vectors prototype vectors
corresponding to our clusters [17].

A clear book on mixture models is [29]. The issue of identifiability in unsupervised
learning is [37]. Hasselblad showed how the parameters of one-dimensional normals
could be learned in an unsupervised environment [19]. The k-means algorithm was
introduced in a paper by Lloyd [28], which inspired many variations (including fuzzy”
ones [4, 5]) and computational improvements.

Efficient agglomerative methods for hierarchical clustering are summarized in [10].

The key mathematical concepts underlying principal component analysis appear
in [22] as well as [7, 26, 11], which stress neural implementation. Independent compo-
nent analysis was introduced by Jutten and Herault[23], and the maximum-likelihood
approach introduced by Gaeta and Lacoume[15] Generalizations and a maximum-
likelihood approach are given in [32]. Bell and Sejnowski [3] showed a neural network.
A good compendium is [38]. Another Perlmutter paper [31]. Several studies have
shown the benefits of ICA for classification [13].

Multidimensional scaling discussed in [34, 6] and its relationship to clustering is
explored in [27].

The classificatory foundations of biology, cladistics (from the Greek klados, branch)
provide useful background for the use of classification in all scientific fields [14].

Kohonen'’s long series of papers on self-organizing feature maps began in the early
1980s [24] and a good compendium can be found in [25]; convergence properties
of algorithms for self-organizing feature maps are proved in [39]. There have been
numerous applications of the method, from speech to finding patterns of poverty in
the world.

Also goes under the name Learning Vector Quantization (LVQ).

The main emphasis of research on Adaptive Resonance has been to explore [8,
Chapter 10] A wonderfully clear exposition of the central algorithmic ideas is [30];
an attempt to translate the ideas and terminology of adaptive resonance, including a
glossary, is given in [36].

Problems

5 Section 10.2

10.14. PROBLEMS 69

1. Suppose that = can assume the values 0,1, ..., m and that P(z|0) is a mixture of
¢ binomial distributions

C

Plaio) =3 ()61 - 8,7 P,

j=1
where 0 is a vector of length ¢ representing the parameters in the distributions.

(a) Assuming that the prior probabilities P(w;) are known, explain why this mixture
is not identifiable if m < c.

(b) Under these conditions, is the mixture completely unidentifiable?
(¢) How do your answers above change if the prior probabilities are also unknown?

2. Consider a mixture distribution of two triangle distributions, where component
density w; is centered on u; and has “halfwidth” w;, according to:

1—|z— 2w;) for |x — ;| < w;
p|w;) ~ T(ps, w;) = { (() | pul)/ze) oth<|arwislel.l| l

(a) Assume P(w;) = P(wz) = 0.5 and derive the equations for the maximum-
likelihood values ji; and w;, i = 1, 2.

(b) Under the conditions in part (a), is the distribution identifiable?

(c) Assume that both widths w; are known, but the centers are not. Assume, too,

that thore oviet valiiog for the contorg that oive non-7zoro nrobahility to cach of
UllOuu U1IVU1IU UALODULU valuud 1ul ullu vuldlivul o viiavu 61V\J ERAVE Byl Ol RV le.UU(,luULJJUJ LU vaull UL

the samples. Derive a formula for the maximum-likelihood value of the centers.
(d) Under the conditions in part (c), is the distribution identifiable?

3. Suppose there is a one-dimensional mixture density consisting of two Gaussian
components, each centered on the origin:

1 2 2 1 2 2
e~ %"/ (207) 4+ (1= Plw e % /(202)’
V2moq ((1)) V2moo

and 0 = (P(wy),01,02)" describes the parameters.

p(x]0) = P(w1)

(a) Show that under these conditions this density is completely unidentifiable.
(b) Suppose the value P(wn) is fixed and known. Is the model identifiable?

(¢) Suppose o1 and o2 are known, but P(w;) is unknown. Is this resulting model
identifiable? That is, can P(w;) be identified using data?

B Section 10.3

4. Let x be a d-component binary vector (0,1) and P(x|@) be a mixture of ¢ multi-
variate Bernoulli distributions,

P(x|0) = ZP(x|w¢,0i)P(w¢)
i=1

70 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

where

P(x|w;, 0;) Hé? 1 i,

(a) Derive the formula for the partial derivative:

O In P(x|w;, 0;) x; — by
96, 03(1—6055)

(b) Using the general equations for maximum-likelihood estimates, show that the
maximum-likelihood estimate 8; for 8; must satisfy

P(wilxy, 0:)xs,

0, ="~

G

P(w¢|xk, éz)

k=1

(¢) Interpret your answer to part (b) in words.

5. Let p(x|0) be a c-component normal mixture with p(x|w;, 8;) ~ N(u;,o2I). Using
the results of Sect. 77, show that the maximum-likelihood estimate for o must satisfy

1/d 32 Plwilxr, 0:)xk — fil?
k=1

Z P(wilx, 67)

where f1; and P(wi|xk, 91) are given by Eqgs. 20 & 22, respectively.

6. The derivation of the equations for maximum-likelihood estimation of parameters
of a mixture density was made under the assumption that the parameters in each
component density are functionally independent. Suppose instead that

p(x|a) = Zp (x|wj, @) P(wj),

where « is a parameter that appears in several (and possibly all) of the component
densities. Let [be the n-sample log-likelihood function, and show that

ZZP (wslxk, @) M,

Oa
k=1j=1
where

p(xg|w;, o) P(w;)
p(xgla)

P(wj|xp,a) =

7. Let 6y and 05 be unknown parameters for the component densities p(z|wy, 1) and
p(x|wa, B2), respectively. Assume that 61 and 6, are initially statistically independent,
so that p(01, 92) = D1 (91)p2(92).

10.14. PROBLEMS 71

(a) Show that after one sample z; from the mixture density is observed, p(1, 2|x1)
can no longer be factored as

p(01|z1)p2(62]71)

if

op(z|w;, 0;) .
g 70 =12

(b) What does this imply in general about the statistical dependence of parameters
in unsupervised learning?

8. Assume that a mixture density p(x|0) is identifiable. Prove that under very
general conditions that p(@|D™) converges (in probability) to a Dirac delta function
centered at the true value of 6 as the number of samples becomes very large.

9. Assume the likelihood function of Eq. 3 is differentiable and derive the maximum
likelihood conditions of Egs. 11 — 13.

& Section 10.4

10. Let p(x|w;, 0;) ~ N(p,;, %), where ¥ is a common covariance matrix for the ¢
component densities. Let 0,4 be the pgth element of 33, 0?9 be the pgth element of
=1, z,(k) be the pth element of x, and 1, (i) be the pth element of p,.

(a) Show that

O P[0 00) (1 201) [— (ap) —)) — i),

where
5o — 1 ifp=gq
PE 1 0 ifp#gq.

(b) Use this result and the results of Problem 6 to show that the maximum-likelihood
estimate for X must satisfy

where P(wz) and f1; are the maximum-likelihood estimates given by Eqs. 19 & 20.
11. Show that the maximum-likelihood estimate of a prior probability can be zero by
considering the following special case. Let p(z|w1) ~ N(0,1) and p(x|ws) ~ N(0,1/2),
so that P(wq) is the only unknown parameter in the mixture

p(z) = —]i};j_;) otz y L= P@) _\]/37_5”1)) e,

72 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

(a) Show that the maximum-likelihood estimate P(w;) of P(w:) is zero if one sample
1 is observed and if 3 < In 2.
(b) What is the value of P(w;) if 7 > In 27

(¢) Summarize and interpret your answer in words.

12. Consider the univariate normal mixture

p(miulv'-wﬂcjzi\/(_)exp [_1 (m_“j\Q]
ji= g

in which all of the ¢ components have the same, known, variance ¢2. Suppose that
the means are so far apart compared to ¢ that for any observed x all but one of the
terms in this sum are negligible. Use a heuristic argument to show that the value of

1
max {—lnp(scl,...,xnml,...,uc)}
H1seespie LT

ought to be approximately

JZ;P(wj)ln P(wj) — %ln [27oe]

when the number n of independently drawn samples is large. (Here e is the base of
the natural logarithms.)
T At~ Mn] an nlac

A A_A3n PP m and
J_vJ LCL A1,... ,An D€ 71 a-diinensioiial Sair 1PICS alla

matrix. Show that the vector x that minimizes

m
Z (xp —x)'Z7 (% — x)
k=1

Y Lo s non ,-..v.m. daw J W
Z4 DO ally HoOll-sSlgulal a-vy-u

n
is the sample mean, x =1/n Y xy.
k=1
14. Perform the differentiation in Eq. 26 to derive Eqs. 27 & 28.

15. Show that the computational complexity of Algorithm 1 is O(ndcT), where n,
is the number of d-dimensional patterns, ¢ the assumed number of clusters and 7" the
number of iterations.

16. Fill in the steps of the derivation of Eqs. 19 — 21.

& Section 10.5

17. Consider the combinatorics of exhaustive inspection of clusters of n samples into
c clusters.

(a) Show that there are exactly

C'Z<> Jeign

such distinct clusterings.

(b) How many clusters are there for n = 100 and ¢ = 57

10.14. PROBLEMS 73

(¢) Find an approximation for your answer to (a) for the case n > c. Use your
answer to estimate the number of clusterings of 1000 points into 10 clusters.

& Section 10.6

18. Prove that the ranking of distances between samples discussed in Sect. 77 is
invariant to any monotonic transformation of the dissimilarity values. Do this as
follows:

+

far tho oliig level = and for level 1 1o
1EVEL 1 1E0

UE Vg 10T Tiie pluote'i‘i'ﬁg at level ~, aild 10T 1ev
higher levels, vy is the minimum dissimilarity between pairs of distinct clusters
at level k£ — 1. Explain why with both d,,:, and 0,4, the value vy either stays
the same or increases as k increases.

f N T ol
U1 = u. ror au

(b) Assume that no two of the n samples are identical, so that v > 0. Use this to
prove monotonicity, i.e., that 0 = vy <wvy <wg < --- < vy,

& Section 10.7

19. Derive Eq. 50 from Eq. 49 using the definition given in Eq. 51.

20. If a set of n samples D is partitioned into ¢ disjoint subsets Dy, ...,D., the
sample mean m,; for samples in D; is undefined if D; is empty. In such a case, the
sum of squared errors involves only the non-empty subsets:

Je= > Y |x—m>

D, £0 xeD;

Assuming that n > ¢, show there are no empty subsets in a partition that minimizes
Je. Explain your answer in words.

21. Consider a set of n = 2k + 1 samples, k of which coincide at z = —2, k at £ = 0,
and one at z = a > 0.

(a) Show that the two-cluster partitioning that minimizes J. groups the k samples
at x = 0 with the one at z = a if a® < 2(k + 1).

(b) What is the optimal grouping if a® > 2(k + 1)?

22. Let x1 = (g), Xo = (}1), X3 = ((1)), and x4 = (3), and consider the following three
partitions:

1. D1 = {x1,%x2}, Dy = {x3,%4}
2. Dl - {X17X4}7D2 = {X27X3}
3. D1 = {x1,%2,%x3}, D2 = {x4}

Show that by the sum-of-square error J, criterion (Eq. ??7), the third partition is
favored, whereas by the invariant J; (Eq. 63) criterion the first two partitions are
favored.

23. Let x1 = (22), Xo = (ii), X3 = (22), and x4 = (ii), and consider the following
three partitions:

1. Dy = {x1, %2}, D> = {x3,%x4}

74 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

2. D1 = {x1,x4}, D2 = {x2,x3}
3. D1 = {x1,X2,%x3},D2 = {x4}
(a) Find the clustering that minimizes the sum-of-squared error criterion, J. (Eq. ??).

(b) Find the clustering that minimizes the trace criterion, J4 (Eq. 63).

24. Consider the problem of invariance to transformation of the feature space.

/

N oo L1 . 1 \ \ o ov— 1o . . L . 1 1.
(a) Show the eigenvalues Aq,...,A; of Sy Sp are invariant to nonsingular linear
transformations of the data.

(b) Show that the eigenvalues vy,...,vq of s;lsw are related to those of SﬁflS B
by v; =1/(1 4 X;).

(c) Use your above results to show that Jg = |Sw|/|Sr]| is invariant to nonsingular
linear transformations of the data.

25. Recall the definitions of the within-cluster and the between-cluster scatter ma-
trices (Eqs. 57 & 58). Define the total scatter matrix to be St = Sy + Sp. Show
that the following measures (Eqs. 65 & 66) are invariant to linear transformations of
the data.

d
(©) 183!S5| = [A

(d) What is the typical value of the criterion in (¢)? Why, therefore, is that criterion
not very useful?

26. Show that the clustering criterion Jy in Eq. 63 is invariant to linear transforma-
tions of the space as follows. Let T be a nonsingular matrix and consider the change
of variables x’ = Tx.

(a) Write the new mean vectors mj and scatter matrices S, in terms of the old
values and T.

(b) Calculate J) in terms of the (old) J; and show that they differ solely by an
overall scalar factor.

(c) Since this factor is the same for all partitions, argue that J; and J), rank the
partitions in the same way, and hence that the optimal clustering based on Jy
is invariant to nonsingular linear transformations of the data.

27. Consider the problems that might arise when using the determinant criterion for
clustering.

(a) Show that the rank of the within-cluster scatter matrix S; can not exceed n; —1,
and thus the rank of Sy can not exceed Y (n; —1) =n —ec.

10.14. PROBLEMS 75

(b) Use your answer to explain why the between cluster scatter matrix Sp may
become singular. (Of course, if the samples are confined to a lower dimensional
subspace it is possible to have Sy be singular even though n — ¢ > d.)

5 Section 10.8

28. One way to generalize the basic-minimum-squared-error procedure is to define
the criterion function

Jr=37 3 (- mi)'S7 (x - m),

where m; is the mean of the n; samples in D; and St is the total scatter matrix.
(a) Show that Jp is invariant to nonsingular linear transformations of the data.

(b) Show that the transfer of a sample x from D; to D; causes Jr to change to

n; ~

Cm)ST (% —my) — i
nj—I—l(X m;)'S; (X — my)

Jh = JT+[(f{—mi)tS;l(fc—mi)].

’I’Lz‘—].

(¢) Using this result, write pseudocode for an iterative procedure for minimizing Jr
(cf. Computer Exercise 20).

29. Consider how the transfer of a single point from one cluster to another affects
h and thereby derive Egs. 71 & 72.

1e mean and sum-sqguared error

call al uil=sgualed i

& Section 10.9

e

, &l

30. Let a similarity measure be defined as s(x,x’) = x'x"/(||x| - [|X/|])-

(a) Interpret this similarity measure if the d features have binary values, where
x; = 1 if x possesses the ith feature and z; = —1 if it does not.

(b) Show that for this case the squared Euclidean distance satisfies

I —x|* = 2d(1 — 5(x,X')).

31. Let d be the dimensionality of the space, ¢ a scalar parameter (¢ > 1). For each
of the measures shown, state whether it represents a metric (or not), and whether it
represents an ultrametric (or not).

(a) s(x,x')=|x—x/| (squared Euclidean)
(b) s(x,x) =[x —%/| (Euclidean)
d 1/q
(¢) s(x,x) = <kz |xp — x%|q) (Minkowski)
=1
(d) s(x,x") = x"x'/||x[[[|'] (cosine)

(e) s(x,x') = xix/ (dot product)

76 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

(f) s(x,x') = ming ||x + aT(x) — x||> (one-sided tangent distance)
where T is a linear transform and « a vector of coefficients (cf. Chap. 77, Sect.
77).

32. Let cluster D; contain n; samples, and let d;; be some measure of the distance
between two clusters D; and D;. In general, one might expect that if D; and D; are
merged to form a new cluster Dy, then the distance from Dy to some other cluster
Dy, is not simply related to dp; and dp,;. However, consider the equation

dhk = adp; + oidpj + Bdsj + Y|dni — dajl.

Show that the following choices for the coefficients a;, a5, 3, and «y lead to the distance
functions indicated.

(@) dmin 0y =0 =0.5,=0,7y=—0.5.
(b) dmas : s = a; =0.5,8=0,7 = 40.5.

i

(C) davg S Q= n,;,—f—"nj’aj Y +n] ”8 v =0.

2 . _ —
(d) dmean PO = m’aj T +n 3= —QQ, Y = 0.

33. Consider a hierarchical clustering procedure in which clusters are merged so as
to produce the smallest increase in the sum-of-squared error at each step. If the ith
cluster contains n; samples with sample mean m;, show that the smallest increase
results from merging the pair of clusters for which

nin; 2
g |
is minimum.

34. Assume we are clustering using the sum-of-squared error criterion J. (Eq. ?7?).
Show that a “distance” measure between clusters can be derived, Eq. 78, such that
merging the “closest” such clusters increases J. as little as possible.

35. Create by hand a dendrogram for the following eight points in one dimension:
{-5.5,—-4.1,-3.0,—2.6,10.1,11.9,12.3,13.6}. Define the similarity between to clus-
ters to be 20 — dpin(D;, D;), where dpin(D;, D;) is given in Eq. 74. Based on your
dendrogram, argue that two is the natural number of clusters.

36. Create by hand a dendrogram for the following 10 points in one dimension:
{-2.2,-2.0,-0.3,0.1,0.2,0.4,1.6,1.7,1.9,2.0}. Define the similarity between to clus-
ters to be 20 — dpin(D;, D;), where dpin(D;, D;) is given in Eq. 74. Based on your
dendrogram, argue that three is the natural number of clusters.

7. Assuime that the nearest-neichhor cluster aloorithm has been allowed to continu
Assume that tie nearest-neignbor ciuster aigoritilin nas peell aniowed 1o continu

fully, thereby giving a tree with a path from any node to any other node. Show that
the sum of the edge lengths of this resulting tree will not exceed the sum of the edge
lengths for any other spanning tree for that set of samples.

B Section 10.10

38. Assume that a large number n of d-dimensional samples has been chosen from
a multidimensional Gaussian, i.e., p(x) ~ N(m, X), where ¥ is an arbitrary positive-
definite covariance matrix.

10.14. PROBLEMS 7

(a) Prove that the distribution of the criterion function Je(1) given in Eq. 82 is
normal with mean ndo?. Express ¢ in terms of X.

(b) Prove that the variance of this distribution is 2ndo?.

(c) Consider a suboptimal partition of the Gaussian by a hyperplane through the
sample mean. Show that for large n, the sum of squared error for this partiction
is approximately normal with mean n(d —2/7)o? and variance 2n(d — 8/72)c*,
where ¢ is given in part (a).

39. Derive Eqs. 85 & 86.
&3 Section 10.12

40. Consider a simple greedy algorithm for creating a spanning tree.

(a) Write pseudocode for creating a minimal spanning tree linking n points in d
dimension.

(b) Let k denote the average linkage per node. What is the average space complexity
of your algorithm?

(¢) What is the average time complexity?

& Section 10.11

41. Consider the adaptive resonance clustering algorithm.
(a) Show that the standard ART algorithm cannot learn the XOR problem.

(b) Explain how the number of clusters generated by the adaptive resonance algo-
rithm depends upon the order of presentation of the samples.

(c) Discuss the benefits and drawbacks of adaptive resonance in stationary and in
non-stationary environments.

& Section 10.13

42. Show that minimizing a mean-squared error criterion for d-dimensional data
leads to the k-dimensional representation (k < d) of the Karhunen-Loéve transform
(Eq. 90) as follows. For simplicity, assume that the data set has zero mean. (If the
mean is not zero, we can always subtract off the mean from each vector to define a
new vectors.)

(a) The (scalar) projection of a vector x onto a unit vector e, a(e) = x'e, is, of
course, a random variable. Define the variance of a to be 02 = &[a?]. Show
that 02 = e'Xe, where ¥ = £, [xx!] is the correlation matrix.

(b) A vector e that yields an extremal or stationary value of this variance must obey
o%(e + de) = o%(e), where de is a small perturbation. Show that this condition
implies (de)!Xe = 0 at such a stationary point.

(¢) Consider small variations de that do not change the length of the vector, i.e.,
ones in which de is perpendicular to e. Use this condition and your above results
to show that (de)!XA(de)fe = 0, where A is a scalar. Show that the necessary
and sufficient solution is e = Ae — that is, the eigenvector equation of Eq. 99.

78 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

(d) Define a sum-squared-error criterion for a set of points in d-dimensional space
and their projections onto a k-dimensional linear subspace (k < d). Use your
results above to show that in order to minimize your criterion, the subspace
shoud be spanned by the k largest eigenvectors of the correlation matrix.

43. Show that a neural net auto-association network consisting of d — k — d input,
hidden and output layer (with k < d)

(a) Show that a neural net auto-association network consisting of d — k — d input,

hidden and output laver (with k < d) and linear hidden units nerforms
NIGGEH allG CUIPUL 1ayer (Witil # < &) ailG .incar MGaen units perioriis

P
component analysis by considering the minimization it solves. Trained on sum
squared error.

rincinal
TincCipas

(b) Show that a neural net auto-association network consisting of d — k — d input,
hidden and output layer (with k < d)

(¢) Show that the five layer neural net auto-association network of Fig. 77 consisting
of d — k —r — k — d where both layers having &k units are nonlinear will perform
nonlinear dimensionality reduction.

44. Consider the use of neural networks for nonlinear principal componet analysis.

(a) Prove that if all units in the five-layer network of Fig. 10.22 are linear, and the
network trained to serve as an auto-encoder, then the representation learned at
the middle layer corresponds to the linear principal component of the data.

(b) State briefly why this also implies that a three-layer network (input, hidden,
output) cannot be used for non-linear principal component analysis, even if the
middle layer consists of non-linear units.

45. The derivation of the Independent component analysis algorithm, summarized
in Eq. 99, assumed that the sources and sum signals were all scalars, that there was
no noise, and that the number of observations, 7', is equal to the number of points
generated by each source.

(a) Relax all of these conditions to generalize the method to vectors, x1(t) + ...+
Xc(t). Assume, moreover, that the sum signal is corrupted by additive Gaussian
noise of zero mean, but unknown covariance: p(y) ~ N(0,3).

(b) Suppose the noise is sufficiently small (|¥| < 1), and that the dimensionality
of the vectors is set to d = 1. Show that your learning rule reduces to that of
Eq. 99.

46. Use the fact that the sum samples from two Gaussians is again a Gaussian to
show why independent component analysis can not isolate sources perfectly if more

than one hag a Gangaian distribution
vitall OIIC f1aS a \zausSsiall Gl5uIiouvlolil.

47. It is a fact that the Kullback-Liebler divergence is invariant under general
invertible transforms. Prove this for the special case of linear transforms, as used in
Sect. 10.13.

& Section 10.14

48. Consider the use of multidimensional scaling for representing the points x; =
(1,0)t, x5 = (0,0)! and x3 = (0,1)! in one dimensions. To obtain a unique solution,
assume that the image points satisfy 0 = y1 < y2 < ys.

10.14. COMPUTER EXERCISES 79

(a) Show that the criterion function J.. is minimized by the configuration with
y2 = (14 v2)/3 and y3 = 2ys.

(b) Show that the criterion function Jy; is minimized by the configuration with
yo = (24 v2)/4 and y3 = 2.

Computer exercises

sample i To T3 sample i To T3
1 -7.82 | -4.58 | -3.97 11 6.18 | 2.81 | 5.82
2 -6.68 | 3.16 | 2.71 12 6.72 | -0.93 | -4.04
3 4.36 | -2.19 | 2.09 13 -6.25 | -0.26 [0.56
4 6.72 | 0.88 | 2.80 14 -6.94 | -1.22 | 1.13
5 -8.64 | 3.06 [3.50 15 8.09 | 0.20 | 2.25
6 -6.87 | 0.57 | -5.45 16 6.81 | 0.17 | -4.15
7 4.47 | -2.62 | 5.76 17 -5.19 | 4.24 | 4.04
8 6.73 | -2.01 | 4.18 18 -6.38 | -1.74 | 1.43
9 -7.71 | 2.34 | -6.33 19 4.08 | 1.30 | 5.33
10 -6.91 | -0.49 | -5.68 20 6.27 | 0.93 | -2.78

&y Section 10.4

1. Consider the univariate normal mixture

P(wy) 1 (x—u1)2 1— P(wy) 1 (x—u2>2
x|0) = exp |—= + exp |[—= .
p(x16) 2roy P 2 o1 V2moo P 2 op)
Write a general program for computing the maximum likelihood values of the pa-

rameters, and apply it to the 20 x; points in the table above under the following
assumptions of what is known and what is unknown:

(a) Known: P(wq) = 0.5, 01 = 02 = 1; Unknown: pq and uo.
(b) Known: P(w1) = 0.5; Unknown: o1 = 02 = o, u1 and ps.
(¢) Known: P(w;i) = 0.5; Unknown: o1, 02, u1 and ps.

(d) Unknown: P(wy), o1, 02, 1 and puo.

2. Write a program to implement k-means clustering (Algorithm 1), and apply it to
the three-dimensional data in the table for the following assumed numbers of clusters,
and starting points.

(a) Let ¢ =2, my(0) = (1,1,1)" and my(0) = (1,1, —1)"

(b) Let ¢ = 2, my(0) = (0,0,0)" and m2(0) = (1,1,—1)". Compare your final
solution with that from part (a), and explain any differences, including the
number of iterations for convergence.

(c) Let ¢ =3, my(0) = (0,0,0)!, my(0) = (1,1,1)" and m3(0) = (—1,0,2)".

80 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

(d) Let ¢ = 3, my(0) = (—0.1,0,0.1)", m2(0) = (0,—0.1,0.1)" and m3(0) =
(—0.1,-0.1,.1)!. Compare your final solution with that from part (c), and
explain any differences, including the number of iterations for convergence.

3. Repeat Computer exercise 2, but use instead a fuzzy k-means algorithm (Algo-
rithm 1) with the “blending” be set by b = 2 (Eqgs. 27 & 28).

4. Explore the problems that can come with mis-specifying the number of clusters in
the fuzzy k-means algorithm (Algorithm 2) using the following one-dimensional data:
D ={-5.0,—4.5,-4.1,-3.9,2.5,2.8,3.1,3.9,4.5}.

(a) Use your program in the four conditions defined by ¢ =2 and ¢ =3, and b =1
and b = 4. In each cases initialize the cluster centers to distinct values, but ones
near z = 0.

(b) Compare your solutions to the ¢ = 3, b = 4 case to the ¢ = 3, b = 1 case, and
discuss any sources of the differences.

5. Show how a few labeled samples in a k-means algorithm can improve clustering
of unlabeled samples in the following, somewhat extreme case.

(a) Generate 50 two-dimensional samples for each of four spherical Gaussians, p(x|w;) ~
N(p;, 1), where puy = (23), po = (73), 13 = (3), and py = (3).

(b) Choose ¢ = 4 initial positions for the cluster means randomly from the full 200
samples. What is the probability that your random selection yields exactly one
cluster center for each component density? (Make the simplifying assumption

that the comnonent dencitiee dn not nverlan ci(jhiﬁnahflxr\
tiat tie component aensivles Go nov overiap signiicaniy. ;

(¢) Using the four samples selected in part (b), run a k-means clusterer on the full
200 points. (If the four points in fact come from different components, re-select
samples to insure that at least two come from the same component density
before using your clusterer.)

(d) Now assume you have some label information, in particular four samples known
to come from distinct component densities. Using these as your initial cluster
centers, run a k-means clusterer on the full 200 points.

(e) Discuss the value of a few labeled samples for clustering in light of the final
clusters given in (¢ & d).

& Section 10.5

6. Explore unsupervised Bayesian learning of the mean of a Gaussian distribution
following way.

(a) Generate a data set D of 30 points, uniformly distributed in the interval —10 <
z < +10.

(b) Assume the data comes from a normal distribution with known variance, but
unknown mean, i.e., p(x) ~ N(u,2) — that is, the unknown parameter 6 in
Eq. 37 is simply the scalar u. Assume a wide prior for the parameter: p(u)
is uniform in the range —10 < p < +10. Plot posterior probabilities for k =
0,1,2,3,4,5,10,15, 20, 25, 30 points from D.

10.14. COMPUTER EXERCISES 81

(c) Now assume instead a narrow prior, i.e., p(x) uniform in the range —1 < p < 41,
and repeat part (b) using the same order of data presentation.

(d) Are your curves for part (b) and part (c¢) the same for small number of points?
For large number of points? Explain.

7. Write a decision-directed clusterer related to k-means in the following way.

(a) First, generate a set D of n = 1000 three-dimensional points in the unit square,
0<z; <1,i=1,2.

(b) Randomly choose ¢ = 4 of these points as the initial cluster centers m;, j =
1,2,3,4.

(c) The core of the algorithm operates as follows: First, each sample x;, is classified
by the nearest cluster center m;. Next, each mean mj; is calculated to be
the mean of the samples in w;. If there is no change in the centers after n
presentations, halt.

(d) Use your algorithm to plot four trajectories of the position of the cluster centers.

(e) What is the space and the time complexities of this algorithm? State any
assumptions you invoke.

& Section 10.6

8. Explore the role of metrics, similarity measures and thresholds on cluster formation
in the following way.

(a) First, generate a two-dimensional data set consisting of two parts: D contains
100 points whose distance from the origin is chosen uniformly in the range
3 < r <5, and angular position uniform in the range 0 < ¢ < 27; likewise, Do
consists of 50 points of distance 0 < r < 2 and angle 0 < ¢ < 27. The full data
set used below is D = D1 U Ds.

(b) Write a simple clustering algorithm that links any two points x and x’ if
d(x,x") < 0, where 6 is a threshold selected by the user, and distance is calcu-
lated by means of a general Minkowski metric (Eq. 44),

d 1/q
d(x,x) = (Z |, —x2|q> -

k=1

Let ¢ = 2 (Euclidean distance) and apply your algorithm to the data D for
the following thresholds: 8 = 0.01,0.05,0.1,0.5,1,5. In each case, plot all 150
points and differentiate the clusters by color or other plotting convention.

(¢) Repeat part (b) with ¢ = 1 (city block distance).
(d) Repeat part (b) with ¢ = 4.

(e) Discuss how the metric affects the “natural” number of clusters implied by your
results.

82 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

& Section 10.7

9. Explore different clustering criteria by exhaustive search in the following way. Let
D be the first seven three-dimensional points in the table above.

(a) If we assume that any cluster must have at least one point, how many cluster
configurations are possible for the seven points?

(b) Write a program to search through each of the cluster configurations, and for
d

each compute the following criteria: J, (Eq. 49), Jq (Eq. 63), > A; (Eq. 64),
i=1

J; = trS;7'Sw (Eq. 65) and [S|/|St| (Eq. 66). show the optimal clusters for
each of your four criteria.

(¢) Perform a whitening transformation on your points are repeat part (b).

(d) Inlight of your results, discuss which of the criteria are invariant to the whitening
transformation.

& Section 10.8

10. Show that the Basic Iterative Least-Squares clustering algorithm gives solutions
and final criterion values that depend upon starting conditions in the following way.
Implement Algorithm 3 for ¢ = 3 clusters and apply it to the data in the table above.
For each simulations, list the final clusters as sets of points (identified by their index
in the table), along with the corresponding value of the criterion function.

(a) my(0) = (1,1,1)¢, my(0) = (—1,—1, —1)* and m3(0) = (0,0,0)t.

(b) my(0) = (0.1,0.1,0.1), my(0) = (—0.1, —0.1,—0.1)* and m3(0) = (0,0,0)".
(¢) my1(0) = (2,0,2)!, my(0) = (—2,0,—2)¢ and m3(0) = (1,1, 1)t.

(d) my(0) = (0.5,1,0.2), ma(0) = (0.2, —1,0.5)¢ and m3(0) = (0.2,0.4,0.6).
(e) Explain why your final answers differ.

& Section 10.9

11. Implement the basic hierarchical agglomerative clustering algorithm (Algo-
rithm 4), as well as a method for drawing dendrograms based on its results. Apply
your algorithm and draw dendrograms to the date in the table above using the dis-
tance measure indicated below. Define the similarity between two clusters to be linear
in distance, with similarity = 100 for singleton clusters (¢ = 20) and similarity = 0

for the smgle cluster (¢ = 1)

(a) dmin (Eq. 74)
(b) dmaz (Eq. 75)
(c) davg (Eq. 76)
(d) dmean (Eq. 77)

10.14. COMPUTER EXERCISES 83

12. Explore the use of cluster dendrograms for selecting the “most natural” number
of clusters.

(a) Write a program to perform hierarchical clustering and display a dendrogram,
using measure of distance to be selected from the Eqs. 74 — 77.

(b) Write a program to generate n/c points from each of ¢ one-dimensional Gaus-
sians, p(z|w;) ~ N(ui,02), i = 1,...,c. Use your program to generate n = 50
points, 25 in each of two clusters, with u; = 0, s = 1, and 0} = 03 = 1.

~aata swri

n - PR . |
nepeare winll IJ/Q — 4.

(¢) Use your program from (a) to generate dendrograms for each of the two data
sets generated in (?7).

(d) The difference in similarity values for successive levels is a random variable,
which we can model as a normal distribution with mean and variance. Suppose
we define the “most natural” number of clusters according to the largest gap in
similarity values, and that this largest gap is significant if it differs “significantly”
from the distribution. State your criterion analytically, and show that one of
the cases in (??) indeed has two clusters.

& Section 10.10
&5 Section 10.12

13. xxx
& Section 10.11

14. Implement a basic competitive learning clustering algorithm (Algorithm 6) and
apply it to the three-dimensional data in the table above as follows.

(a) First, preprocess the data by augmenting each vector with zp = 1 and normal-
izing to unit length. In this way, each point lies on the surface of a hypersphere.

(b) Set ¢ =2, and let the inital (normalized) weght vectors correspond to patterns
1 & 2. Let the learning rate be n = 0.1. Present the patterns in cyclic order,
1,2,...,20,1,2,...,20,1,2,

(¢) Modify your program so as to reduce the learning rate by multiplying by the
constant factor a < 1 after each pattern presentation, so the learning rate
approaches zero exponentially. Repeat your simulation of part (b) with such
decay, where a = 0.99. Compare your final clusterings with those from using
a = 0.5.

(d) Repeat part (¢) but with the patterns chosen in a random order, i.e., with the
probability of presenting any given pattern being 1/20 per trial. Discuss the

role of random versus sequenced pattern presentation on the final clusterings.

&5 Section 10.13

15. PCA exercise
16. Explore the use of independent component analysis for blind source separation
in the following example.

84 CHAPTER 10. UNSUPERVISED LEARNING AND CLUSTERING

(a) Generate 100 points for ¢ = 1,...,100 for z1(¢) = zxzz and x2(t) = zzx. Gen-
erate 100 points each for three sensors according to:

z1(t) = zzw

zo(t) = zzT
and three sensors:

s1(t) = zzx
so(t) = zzx

s3(t) = zxx

(Of course, in this blind source separation task, neither the source signals nor
the mixing parameters are known.)

(b) xxx
17. Repeat Computer exercise 16, but for three sources:

z1(t) = zaxx
To(t) = zxx
z3(t) = zxx

and four sensors:

s1(t) = zxx
s9(t) = zxx
s3(t) = zzx

(

s4(t) = zzx

& Section 10.14

18. Write a computer program that uses the general maximum-likelihood equation of
Sect. 77 iteratively to estimate the unknown means, variances, and prior probabilities.
Use this program to find maximum-likelihood estimates of these parameters for the
data in Table 77.

19. hill climbing for clustering. Start at BAD and at GOOD starting places. Note
that do not get same answer.

20. Write a program to perform the minimization of in Problem 28.

Bibliography

1]

2]

3]

7]

8]

Phipps Arabie, Lawrence J. Hubert, and Geert De Soete, editors. Clustering and
Classification. World Scientific, River Edge, NJ, 1998.

Thomas A. Bailey and Richard C. Dubes. Cluster validity profiles. Pattern
Recognition, 15:61-83, 1982.

Anthony J. Bell and Terrence J. Sejnowski. An information-maximization
approach to blind separation and blind deconvolution. Neural Computation,
7(6):1129-1159, 1996.

James C. Bezdek. Fuzzy mathematics in pattern classification. Ph.D. thesis,
Cornell University, Applied Mathematics Center, Ithaca, NY, 1973.

James C. Bezdek. Pattern recognition with fuzzy objective function algorithms.
Plenum Press, New York, NY, 1981.

Ingwer Borg and Patrick J. F. Groenen. Modern Multidimensional Scaling :
Theory and Applications. Springer-Verlag, New York, NY, 1997.

Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and
singular value decomposition. Biological Cybernetics, 59:291-294, 1988.

Gail A. Carpenter and Stephen Grossberg, editors. Pattern Recognition by Self-
organizing Neural Networks. MIT Press, Cambridge, MA, 1991.

Michael A. Cohen, Stephen Grossberg, and David G. Stork. Speech perception
and production by a self-organizgin neural network. In Gail A. Carpenter and
Stephen Grossberg, editors, Pattern Recognition by Self-organizing Neural Net-
works. MIT Press, Cambridge, MA, 1991.

William H. E. Day and Herbert Edelsbrunner. Efficient algorithms for agglom-
erative hierarchical clustering methods. Journal of Classification, 1:7-24, 1984.

Konstantinos I. Diamantaras and Sun-Yuang Kung. Principal Component Neural
Networks: Theory and Applications. Wiley Interscience, New York, NY, 1996.

T. Eckes. An error variance approach to 2-mode hierarchical-clustering. Journal
of Classification, 10(1):51-74, 1993.

Ze’ev Roth and Yoram Baram. Multidmensional density shaping by sigmoids.
IEEE Transactions on Neural Networks, TNN-7(5):1291-1298, 1996.

85

86

[14]

[15]

21]

22]

24]

[25]

[26]

27]

BIBLIOGRAPHY

Peter L. Forey, Christopher J. Humphries, Ian J. Kitching, Robert W. Scotland,
Darrell J. Siebert, and David M. Williams. Cladistics: A practical course in
systematics. Clarendon Press, Oxford, UK, 1 edition, 1992.

Michel Gaeta and Jean-Louis Lacoume. Sources separation without a priori
knowledge: The maximum likelihood solution. In Luis Torres, Enrique Masgrau,
and Miguel A. Lagunas, editors, Furopean Association for Signal Processing,
FEusipco 90, pages 621-624, Barcelona, Spain, 1990. Elsevier.

Selvanayagam Ganesalingam. Classification and mixture approaches to clustering
via maximum likelihood. Applied Statistics, 38(3):455-466, 1989.

Allen Gersho and Robert M. Gray. Vector Quantization and Signal Processing.
Kluwer Academic Publishers, Boston, MA, 1992.

John C. Gower and G. J. S. Ross. Minimum spanning trees and single-linkage
cluster analysis. Applied Statistics, 18:54—64, 1969.

V. Hasselblad. Estimation of parameters for a mixture of normal distributions.
Technometrics, 8:431-444, 1966.

Lawrence J. Hubert. Min and max hierarchical clustering using asymmetric
similarity measures. Psychometrika, 38:63-72, 1973.

Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, Englewood Cliffs, NJ, 1988.

Tan T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, NY,
1986.

Christian Jutten and Jeanny Herault. Blind separation of sources 1: An adaptive
algorithm based on neuromimetic architecture. Signal Processing, 24(1):1-10,
1991.

Teuvo Kohonen. Self-organizing formation of topologically correct feature maps.
Biological Cybernetics, 43(1):59-69, 1982.

Tuevo Kohonen. Self-Organization and Associative Memory. Springer-Verlag,
Berlin, 3 edition, 1989.

Mark A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE Journal, 37(2):233-243, 1991.

Joseph B. Kruskal. The relationship between multidimensional scaling and clus-
tering. In John Van Ryzin, editor, Classification and Clustering: Proceedings of
an advanced seminar conducted by the Mathematics Research Center, the Univer-
sity of Wisconsin-Madison, May 3-5, 1976, pages 7-44. Academic Press, 1977.

Stuart P. Lloyd. Least squares quantization in PCM. I[EEE Transactions on
Information Theory, IT-2:129-137, 1982.

Geoffrey J. McLachlan and Kaye E. Basford. Mixture Models. Dekker, New York,
NY, 1988.

BIBLIOGRAPHY 87

[30]

[31]

[32]

[37]

[38]

[39]

Barbara Moore. Artl and pattern clustering. In David Touretzky, Geoffrey
Hinton, and Terrence Sejnowski, editors, Proceedings of the 1988 Connectionist
Models Summer School, pages 174-185, San Mateo, CA, 1988. (Pittsburg 1988),
Morgan Kaufmann.

Barak A. Pearlmutter and Lucas C. Parra. A context-sensitive generalization
of ICA. In International Conference on Neural Information Processing, pages
151-157, Hong Kong, Sept. 2427 1996. Springer Verlag.

Barak Perlmutter and Lucas C. Parra. Maximum likelihood blind source separa-
tion: A context-sensitive generalization of ICA. In Michael C. Mozer, Michael I.
Jordan, and Thomas Petsche, editors, Neural Information Processing Systems,
volume 9, pages 613619, Cambridge, MA, 1997. MIT Press.

James O. Ramsay. Maximum likelihood estimation in nultidimensional scaling.
Psychometricka, 42:241-266, 1977.

Susan S. Schiffman, Mark L. Reynolds, and F. W. Young. Introduction to Multi-
dimensional Scaling: Theory, Methods and Applications. Academic Press, New
York, NY, 1981.

Stephen P. Smith and Anil K. Jain. Testing for uniformity in multidimensional
data. IEEE Transaction on Pattern Analysis and Machine Intelligence, PAMI-
6:73-81, 1984.

David G. Stork. Self-organization, pattern recognition and adaptive resonance
networks. Journal of Neural Network Computing, 1(1):26-42, 1989.

Henry Teicher. Identifiability of mixtures. Annals of Mathematical Statistics,
32:244-248, 1961.

Te Won Lee. Independent Component Analysis: Theory and Applications. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998.

Hujun Yin and Nigel M. Allinson. On the distribution and convergence of feature
space in self-organizing maps. Neural Computation, 7(6):1178-1187, 1998.

Index

agglomerative clustering, see cluster- trace, 32
ing, agglomerative cluster membership
Agglomerative hierarchical clustering fuzzy, 14
Algorithm, 39 cluster validity, 67
ART, see clustering, adaptive resonance clustering

auto-associator, 54
auto-encoder, 54
auto-encoder network, 67

Basic minimum-squared-error cluster-

ing
Algorithm, 36
Bayes
formula, 18
blind source separation, 56

classification
food, 3
classifier
Bayes, 17
unsupervised, 17
Cluster
similarity measure, 37
cluster
chaining, 40
criterion
chi-squared, 44
determininant, 32
invariant, 32
Kolmogorov-Smirnov, 44
local minimum, 34
dendrogram, 37
diameter
path, 52
level, 37
mean, 35
singleton, 36
tree
minimal spanning, 52
validity, 38
cluster criterion

88

Adaptive Resonance, 67
adaptive resonance, 49-50
agglomerative, 38—42
Bayesian, 67

bottom-up, see clustering, agglom-

erative

chaining, 67
complete-linkage, 40, 51
criterion

squared error, 67

sum-of-squared error, 29

trace, 67
criterion function, 29
decision directed, 23
divisive, 38
farthest-neighbor, 40-41
fuzzy k-means, 14-16, 67
gradient ascent, 35
graph theoretic, 51-52
graph-theoretic, 67
hierarchical, 37, 67

divisive, 67

stepwise-optimal, 41-42
hypothesis

null, 44
iterative algorithms, 67
k-means, 13-14, 67
leader-follower, 48-50, 67
maximum algorithm, 40
maximum-likelihood, 67
minimum algorithm, 40
motivations, 3
nearest-neighbor, 40
nonparametric method, 25
optimization

iterative, 35

INDEX

single-linkage, 40, 51
small sample, 19
solution
unique, 5
splitting, see clustering, divisive
starting point, 36
clusteringt
hierarchical
agglomerative, 67
Competitive learning
Algorithm, 47
competitive learning, 45-47, 67
component analysis, 53-58, 67
connected component, 51
criterion
scattering, 31
sum squared error, 29
curse of dimensionality, 44

data description
flat, 37
hierarchical, 37
data matrix, 65
data mining, 3
dendrogram, see cluster, dendrogram,
67
density
component, 4
joint, 6
mixture, 4, 20
discrimination versus representation, 66
dissimilarity, 43, 60
clustering, 39
distance
Kullback-Liebler, 56
distance function
as dissimiliarity measure, 25
divisive clustering, see clustering, divi-
sive

entropy, 57

for independent component anal-

ysis, 67

error

sum-of-squared, 58
error function (erf), 45
estimate

maximum-likelihood

clustering, 6

factor analysis, 65

89

Factorization Theorem, 20
family (taxonomic), 37
feature space
isotropic, 25
rescaling, 25
flat data description, 37
frequency ratios, 12
function
Dirac delta, 19
fuzzy k-means clustering
Algorithm, 15

genus, 37
graph
similarity, 51

hierarchical data description, 37
Hierarchical dimensionality reduction
Algorithm, 66
hyperellipsoid, 24
hypersphere, 27
hypothesis testing
and clustering, 67

identifiability, 5, 19
discrete distribution, 5
inconsistent edge, 52
inner product, 27
invariance
dilation, 28
rotation, 28
translation, 25

k-means clustering, see clustering, k-
means
Algorithm, 13
kingdom, 37
Kohonen map, see self-organizing fea-
ture map
Kronecker delta, 12

Kullback-Leibler divergence, see distance,

Kullback-Liebler

law of large numbers, 57
Leader-follower clustering
Algorithm, 48
learning
Bayesian vs. maximum-likelihood,
22
competitive, see competitive learn-
ing

90

supervised vs. unsupervised, 19
unsupervised
batch protocol, 23
Bayesian, 18
computational complexity, 19
decision-directed, 23
learning rate
decay, 47
likelihood
gradient ascent solution, 8
LVQ, see learning vector quantization

matrix
covariance, 12
diagonal, 13
data, see data matrix
scatter, 31
total, 31
similarity, 51
maximimum-likelihood
solution
non-uniqueness, 9
maximum-likelihood
solution
singular, 11
unsupervised, 6
non-uniqueness, 8
MDS, see multidimensional scaling
mean
sample, 24
metric
clustering, 25
dissimilarity, 43
Euclidean, 25
induced, 43
Mahalanobis, 27
Minkowski, 26
non-negativity, 43
properties, 43
reflexivity, 43
symmetry, 43
Tanimoto, 28
triangle inequality, 43
minimal spanning tree, see tree, mini-
mal spanning
mixing parameter, see parameter, mix-
ing
mixture
discrete distribution, 5
monotonicity constraint, 60

INDEX

multidimensional scaling, 5861, 67

optimization

iterative, 13, 37
order (taxonomic), 37
orienting subsystem, 50
outlier, 41
outlier pattern, 29

parameter
mixing, 4
partition
minimum variance, 29
PCA, see principal component analysis
phoneme, 3
phylum, 37
preprocessing, 3
principal component, 26
principal component analysis, 53, 67
principal components, 32
nonlinear, 67
probability
posterior, 6

representation, 66

saddle point, 10
sample independence, 18
scatter matrix
eigenvector, 32
invariant, 32
score function, 57
search
bias, 10
segmentation, 67
self-organizing feature map, 61-65, 67
sensor vector, 55
set diagram, see Venn diagram
similarity function, 27
similarity graph, see graph, similarity
similarity measure, 25
skeleton, see tree, spanning, minimal
SOM, see self-organizing feature map
source separation
blind, 67
species, 37
stability-plasticity, 47
standardized data, 26
Stepwise optimal hierarchical cluster-
ing
Algorithm, 42

INDEX

subcluster, 37, 67
subfamily (taxonomic), 37
subgraph

complete, 40

maximal complete, 51
suborder (taxonomic), 37
subphylum, 37
sufficient statistic, 20, 21
sufficient statistics

in unsupervised learning, 24

taxonomy, 37
topologically ordered map, see self-organizing
feature map
trace criterion, see cluster criterion, trace
tree
minimal spanning, 40
spanning
minimal, 52
tree (graph), 40
triangle inequality, see metric, triangle
inequality
two-joint arm
self-organizing map example, 61

ultrametric, 43
unidentifiable
complete, 5
unsupervised learning
convergence rate, 22

vector quantization, 68
Venn diagram, 38

vigilance parameter, 50
Voronoi tesselation, 14

VQ, see vector quantization

weight normalization, 46
whitening transform, 26
wild shot pattern, see outlier pattern

