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Preface

Pattern recognition has its origins in engineering, whereas machine learning grew
out of computer science. However, these activities can be viewed as two facets of
the same field, and together they have undergone substantial development over the
past ten years. In particular, Bayesian methods have grown from a specialist niche to
become mainstream, while graphical models have emerged as a general framework
for describing and applying probabilistic models. Also, the practical applicability of
Bayesian methods has been greatly enhanced through the development of a range of
approximate inference algorithms such as variational Bayes and expectation propa-
gation. Similarly, new models based on kernels have had significant impact on both
algorithms and applications.

This new textbook reflects these recent developments while providing a compre-
hensive introduction to the fields of pattern recognition and machine learning. It is
aimed at advanced undergraduates or first year PhD students, as well as researchers
and practitioners, and assumes no previous knowledge of pattern recognition or ma-
chine learning concepts. Knowledge of multivariate calculus and basic linear algebra
is required, and some familiarity with probabilities would be helpful though not es-
sential as the book includes a self-contained introduction to basic probability theory.

Because this book has broad scope, it is impossible to provide a complete list of
references, and in particular no attempt has been made to provide accurate historical
attribution of ideas. Instead, the aim has been to give references that offer greater
detail than is possible here and that hopefully provide entry points into what, in some
cases, is a very extensive literature. For this reason, the references are often to more
recent textbooks and review articles rather than to original sources.

The book is supported by a great deal of additional material, including lecture
slides as well as the complete set of figures used in the book, and the reader is
encouraged to visit the book web site for the latest information:

http://research.microsoft.com/∼cmbishop/PRML
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Exercises
The exercises that appear at the end of every chapter form an important com-

ponent of the book. Each exercise has been carefully chosen to reinforce concepts
explained in the text or to develop and generalize them in significant ways, and each
is graded according to difficulty ranging from (�), which denotes a simple exercise
taking a few minutes to complete, through to (� � �), which denotes a significantly
more complex exercise.

It has been difficult to know to what extent these solutions should be made
widely available. Those engaged in self study will find worked solutions very ben-
eficial, whereas many course tutors request that solutions be available only via the
publisher so that the exercises may be used in class. In order to try to meet these
conflicting requirements, those exercises that help amplify key points in the text, or
that fill in important details, have solutions that are available as a PDF file from the
book web site. Such exercises are denoted by www . Solutions for the remaining
exercises are available to course tutors by contacting the publisher (contact details
are given on the book web site). Readers are strongly encouraged to work through
the exercises unaided, and to turn to the solutions only as required.

Although this book focuses on concepts and principles, in a taught course the
students should ideally have the opportunity to experiment with some of the key
algorithms using appropriate data sets. A companion volume (Bishop and Nabney,
2008) will deal with practical aspects of pattern recognition and machine learning,
and will be accompanied by Matlab software implementing most of the algorithms
discussed in this book.
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Mathematical notation

I have tried to keep the mathematical content of the book to the minimum neces-
sary to achieve a proper understanding of the field. However, this minimum level is
nonzero, and it should be emphasized that a good grasp of calculus, linear algebra,
and probability theory is essential for a clear understanding of modern pattern recog-
nition and machine learning techniques. Nevertheless, the emphasis in this book is
on conveying the underlying concepts rather than on mathematical rigour.

I have tried to use a consistent notation throughout the book, although at times
this means departing from some of the conventions used in the corresponding re-
search literature. Vectors are denoted by lower case bold Roman letters such as
x, and all vectors are assumed to be column vectors. A superscript T denotes the
transpose of a matrix or vector, so that xT will be a row vector. Uppercase bold
roman letters, such as M, denote matrices. The notation (w1, . . . , wM ) denotes a
row vector with M elements, while the corresponding column vector is written as
w = (w1, . . . , wM )T.

The notation [a, b] is used to denote the closed interval from a to b, that is the
interval including the values a and b themselves, while (a, b) denotes the correspond-
ing open interval, that is the interval excluding a and b. Similarly, [a, b) denotes an
interval that includes a but excludes b. For the most part, however, there will be
little need to dwell on such refinements as whether the end points of an interval are
included or not.

The M × M identity matrix (also known as the unit matrix) is denoted IM ,
which will be abbreviated to I where there is no ambiguity about it dimensionality.
It has elements Iij that equal 1 if i = j and 0 if i �= j.

A functional is denoted f [y] where y(x) is some function. The concept of a
functional is discussed in Appendix D.

The notation g(x) = O(f(x)) denotes that |f(x)/g(x)| is bounded as x → ∞.
For instance if g(x) = 3x2 + 2, then g(x) = O(x2).

The expectation of a function f(x, y) with respect to a random variable x is de-
noted by Ex[f(x, y)]. In situations where there is no ambiguity as to which variable
is being averaged over, this will be simplified by omitting the suffix, for instance

xi



xii MATHEMATICAL NOTATION

E[x]. If the distribution of x is conditioned on another variable z, then the corre-
sponding conditional expectation will be written Ex[f(x)|z]. Similarly, the variance
is denoted var[f(x)], and for vector variables the covariance is written cov[x,y]. We
shall also use cov[x] as a shorthand notation for cov[x,x]. The concepts of expecta-
tions and covariances are introduced in Section 1.2.2.

If we have N values x1, . . . ,xN of a D-dimensional vector x = (x1, . . . , xD)T,
we can combine the observations into a data matrix X in which the nth row of X
corresponds to the row vector xT

n . Thus the n, i element of X corresponds to the
ith element of the nth observation xn. For the case of one-dimensional variables we
shall denote such a matrix by x, which is a column vector whose nth element is xn.
Note that x (which has dimensionality N ) uses a different typeface to distinguish it
from x (which has dimensionality D).
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1
Introduction

The problem of searching for patterns in data is a fundamental one and has a long and
successful history. For instance, the extensive astronomical observations of Tycho
Brahe in the 16th century allowed Johannes Kepler to discover the empirical laws of
planetary motion, which in turn provided a springboard for the development of clas-
sical mechanics. Similarly, the discovery of regularities in atomic spectra played a
key role in the development and verification of quantum physics in the early twenti-
eth century. The field of pattern recognition is concerned with the automatic discov-
ery of regularities in data through the use of computer algorithms and with the use of
these regularities to take actions such as classifying the data into different categories.

Consider the example of recognizing handwritten digits, illustrated in Figure 1.1.
Each digit corresponds to a 28×28 pixel image and so can be represented by a vector
x comprising 784 real numbers. The goal is to build a machine that will take such a
vector x as input and that will produce the identity of the digit 0, . . . , 9 as the output.
This is a nontrivial problem due to the wide variability of handwriting. It could be

1



2 1. INTRODUCTION

Figure 1.1 Examples of hand-written dig-
its taken from US zip codes.

tackled using handcrafted rules or heuristics for distinguishing the digits based on
the shapes of the strokes, but in practice such an approach leads to a proliferation of
rules and of exceptions to the rules and so on, and invariably gives poor results.

Far better results can be obtained by adopting a machine learning approach in
which a large set of N digits {x1, . . . ,xN} called a training set is used to tune the
parameters of an adaptive model. The categories of the digits in the training set
are known in advance, typically by inspecting them individually and hand-labelling
them. We can express the category of a digit using target vector t, which represents
the identity of the corresponding digit. Suitable techniques for representing cate-
gories in terms of vectors will be discussed later. Note that there is one such target
vector t for each digit image x.

The result of running the machine learning algorithm can be expressed as a
function y(x) which takes a new digit image x as input and that generates an output
vector y, encoded in the same way as the target vectors. The precise form of the
function y(x) is determined during the training phase, also known as the learning
phase, on the basis of the training data. Once the model is trained it can then de-
termine the identity of new digit images, which are said to comprise a test set. The
ability to categorize correctly new examples that differ from those used for train-
ing is known as generalization. In practical applications, the variability of the input
vectors will be such that the training data can comprise only a tiny fraction of all
possible input vectors, and so generalization is a central goal in pattern recognition.

For most practical applications, the original input variables are typically prepro-
cessed to transform them into some new space of variables where, it is hoped, the
pattern recognition problem will be easier to solve. For instance, in the digit recogni-
tion problem, the images of the digits are typically translated and scaled so that each
digit is contained within a box of a fixed size. This greatly reduces the variability
within each digit class, because the location and scale of all the digits are now the
same, which makes it much easier for a subsequent pattern recognition algorithm
to distinguish between the different classes. This pre-processing stage is sometimes
also called feature extraction. Note that new test data must be pre-processed using
the same steps as the training data.

Pre-processing might also be performed in order to speed up computation. For
example, if the goal is real-time face detection in a high-resolution video stream,
the computer must handle huge numbers of pixels per second, and presenting these
directly to a complex pattern recognition algorithm may be computationally infeasi-
ble. Instead, the aim is to find useful features that are fast to compute, and yet that
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also preserve useful discriminatory information enabling faces to be distinguished
from non-faces. These features are then used as the inputs to the pattern recognition
algorithm. For instance, the average value of the image intensity over a rectangular
subregion can be evaluated extremely efficiently (Viola and Jones, 2004), and a set of
such features can prove very effective in fast face detection. Because the number of
such features is smaller than the number of pixels, this kind of pre-processing repre-
sents a form of dimensionality reduction. Care must be taken during pre-processing
because often information is discarded, and if this information is important to the
solution of the problem then the overall accuracy of the system can suffer.

Applications in which the training data comprises examples of the input vectors
along with their corresponding target vectors are known as supervised learning prob-
lems. Cases such as the digit recognition example, in which the aim is to assign each
input vector to one of a finite number of discrete categories, are called classification
problems. If the desired output consists of one or more continuous variables, then
the task is called regression. An example of a regression problem would be the pre-
diction of the yield in a chemical manufacturing process in which the inputs consist
of the concentrations of reactants, the temperature, and the pressure.

In other pattern recognition problems, the training data consists of a set of input
vectors x without any corresponding target values. The goal in such unsupervised
learning problems may be to discover groups of similar examples within the data,
where it is called clustering, or to determine the distribution of data within the input
space, known as density estimation, or to project the data from a high-dimensional
space down to two or three dimensions for the purpose of visualization.

Finally, the technique of reinforcement learning (Sutton and Barto, 1998) is con-
cerned with the problem of finding suitable actions to take in a given situation in
order to maximize a reward. Here the learning algorithm is not given examples of
optimal outputs, in contrast to supervised learning, but must instead discover them
by a process of trial and error. Typically there is a sequence of states and actions in
which the learning algorithm is interacting with its environment. In many cases, the
current action not only affects the immediate reward but also has an impact on the re-
ward at all subsequent time steps. For example, by using appropriate reinforcement
learning techniques a neural network can learn to play the game of backgammon to a
high standard (Tesauro, 1994). Here the network must learn to take a board position
as input, along with the result of a dice throw, and produce a strong move as the
output. This is done by having the network play against a copy of itself for perhaps a
million games. A major challenge is that a game of backgammon can involve dozens
of moves, and yet it is only at the end of the game that the reward, in the form of
victory, is achieved. The reward must then be attributed appropriately to all of the
moves that led to it, even though some moves will have been good ones and others
less so. This is an example of a credit assignment problem. A general feature of re-
inforcement learning is the trade-off between exploration, in which the system tries
out new kinds of actions to see how effective they are, and exploitation, in which
the system makes use of actions that are known to yield a high reward. Too strong
a focus on either exploration or exploitation will yield poor results. Reinforcement
learning continues to be an active area of machine learning research. However, a
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Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.
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detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function
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sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑
j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑
n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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Figure 1.3 The error function (1.2) corre-
sponds to (one half of) the sum of
the squares of the displacements
(shown by the vertical green bars)
of each data point from the function
y(x,w).

t
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function y(x,w) were to pass exactly through each training data point. The geomet-
rical interpretation of the sum-of-squares error function is illustrated in Figure 1.3.

We can solve the curve fitting problem by choosing the value of w for which
E(w) is as small as possible. Because the error function is a quadratic function of
the coefficients w, its derivatives with respect to the coefficients will be linear in the
elements of w, and so the minimization of the error function has a unique solution,
denoted by w�, which can be found in closed form. The resulting polynomial isExercise 1.1
given by the function y(x,w�).

There remains the problem of choosing the order M of the polynomial, and as
we shall see this will turn out to be an example of an important concept called model
comparison or model selection. In Figure 1.4, we show four examples of the results
of fitting polynomials having orders M = 0, 1, 3, and 9 to the data set shown in
Figure 1.2.

We notice that the constant (M = 0) and first order (M = 1) polynomials
give rather poor fits to the data and consequently rather poor representations of the
function sin(2πx). The third order (M = 3) polynomial seems to give the best fit
to the function sin(2πx) of the examples shown in Figure 1.4. When we go to a
much higher order polynomial (M = 9), we obtain an excellent fit to the training
data. In fact, the polynomial passes exactly through each data point and E(w�) = 0.
However, the fitted curve oscillates wildly and gives a very poor representation of
the function sin(2πx). This latter behaviour is known as over-fitting.

As we have noted earlier, the goal is to achieve good generalization by making
accurate predictions for new data. We can obtain some quantitative insight into the
dependence of the generalization performance on M by considering a separate test
set comprising 100 data points generated using exactly the same procedure used
to generate the training set points but with new choices for the random noise values
included in the target values. For each choice of M , we can then evaluate the residual
value of E(w�) given by (1.2) for the training data, and we can also evaluate E(w�)
for the test data set. It is sometimes more convenient to use the root-mean-square
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w�)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 � M � 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.
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Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .
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For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w�) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w� obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w� for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w�

0 0.19 0.82 0.31 0.35
w�

1 -1.27 7.99 232.37
w�

2 -25.43 -5321.83
w�

3 17.37 48568.31
w�

4 -231639.30
w�

5 640042.26
w�

6 -1061800.52
w�

7 1042400.18
w�

8 -557682.99
w�

9 125201.43



1.1. Example: Polynomial Curve Fitting 9

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.

ing polynomial function matches each of the data points exactly, but between data
points (particularly near the ends of the range) the function exhibits the large oscilla-
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible
polynomials with larger values of M are becoming increasingly tuned to the random
noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,
the over-fitting problem become less severe as the size of the data set increases.
Another way to say this is that the larger the data set, the more complex (in other
words more flexible) the model that we can afford to fit to the data. One rough
heuristic that is sometimes advocated is that the number of data points should be
no less than some multiple (say 5 or 10) of the number of adaptive parameters in
the model. However, as we shall see in Chapter 3, the number of parameters is not
necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would
seem more reasonable to choose the complexity of the model according to the com-
plexity of the problem being solved. We shall see that the least squares approach
to finding the model parameters represents a specific case of maximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as
a general property of maximum likelihood. By adopting a Bayesian approach, theSection 3.4
over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑
n=1

{y(xn,w) − tn}2 +
λ

2
‖w‖2 (1.4)

where ‖w‖2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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Table 1.2 Table of the coefficients w� for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w�

0 0.35 0.35 0.13
w�

1 232.37 4.74 -0.05
w�

2 -5321.83 -0.77 -0.06
w�

3 48568.31 -31.97 -0.05
w�

4 -231639.30 -3.89 -0.03
w�

5 640042.26 55.28 -0.02
w�

6 -1061800.52 41.32 -0.01
w�

7 1042400.18 -45.95 -0.00
w�

8 -557682.99 -91.53 0.00
w�

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.
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Figure 1.10 We can derive the sum and product rules of probability by
considering two random variables, X, which takes the values {xi} where
i = 1, . . . , M , and Y , which takes the values {yj} where j = 1, . . . , L.
In this illustration we have M = 5 and L = 3. If we consider a total
number N of instances of these variables, then we denote the number
of instances where X = xi and Y = yj by nij , which is the number of
points in the corresponding cell of the array. The number of points in
column i, corresponding to X = xi, is denoted by ci, and the number of
points in row j, corresponding to Y = yj , is denoted by rj .

}

}ci

rjyj

xi

nij

and the probability of selecting the blue box is 6/10. We write these probabilities
as p(B = r) = 4/10 and p(B = b) = 6/10. Note that, by definition, probabilities
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and if they
include all possible outcomes (for instance, in this example the box must be either
red or blue), then we see that the probabilities for those events must sum to one.

We can now ask questions such as: “what is the overall probability that the se-
lection procedure will pick an apple?”, or “given that we have chosen an orange,
what is the probability that the box we chose was the blue one?”. We can answer
questions such as these, and indeed much more complex questions associated with
problems in pattern recognition, once we have equipped ourselves with the two el-
ementary rules of probability, known as the sum rule and the product rule. Having
obtained these rules, we shall then return to our boxes of fruit example.

In order to derive the rules of probability, consider the slightly more general ex-
ample shown in Figure 1.10 involving two random variables X and Y (which could
for instance be the Box and Fruit variables considered above). We shall suppose that
X can take any of the values xi where i = 1, . . . , M , and Y can take the values yj

where j = 1, . . . , L. Consider a total of N trials in which we sample both of the
variables X and Y , and let the number of such trials in which X = xi and Y = yj

be nij . Also, let the number of trials in which X takes the value xi (irrespective
of the value that Y takes) be denoted by ci, and similarly let the number of trials in
which Y takes the value yj be denoted by rj .

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi, Y = yj) and is called the joint probability of X = xi and
Y = yj . It is given by the number of points falling in the cell i,j as a fraction of the
total number of points, and hence

p(X = xi, Y = yj) =
nij

N
. (1.5)

Here we are implicitly considering the limit N → ∞. Similarly, the probability that
X takes the value xi irrespective of the value of Y is written as p(X = xi) and is
given by the fraction of the total number of points that fall in column i, so that

p(X = xi) =
ci

N
. (1.6)

Because the number of instances in column i in Figure 1.10 is just the sum of the
number of instances in each cell of that column, we have ci =

∑
j nij and therefore,
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from (1.5) and (1.6), we have

p(X = xi) =
L∑

j=1

p(X = xi, Y = yj) (1.7)

which is the sum rule of probability. Note that p(X = xi) is sometimes called the
marginal probability, because it is obtained by marginalizing, or summing out, the
other variables (in this case Y ).

If we consider only those instances for which X = xi, then the fraction of
such instances for which Y = yj is written p(Y = yj |X = xi) and is called the
conditional probability of Y = yj given X = xi. It is obtained by finding the
fraction of those points in column i that fall in cell i,j and hence is given by

p(Y = yj |X = xi) =
nij

ci
. (1.8)

From (1.5), (1.6), and (1.8), we can then derive the following relationship

p(X = xi, Y = yj) =
nij

N
=

nij

ci
· ci

N

= p(Y = yj |X = xi)p(X = xi) (1.9)

which is the product rule of probability.
So far we have been quite careful to make a distinction between a random vari-

able, such as the box B in the fruit example, and the values that the random variable
can take, for example r if the box were the red one. Thus the probability that B takes
the value r is denoted p(B = r). Although this helps to avoid ambiguity, it leads
to a rather cumbersome notation, and in many cases there will be no need for such
pedantry. Instead, we may simply write p(B) to denote a distribution over the ran-
dom variable B, or p(r) to denote the distribution evaluated for the particular value
r, provided that the interpretation is clear from the context.

With this more compact notation, we can write the two fundamental rules of
probability theory in the following form.

The Rules of Probability

sum rule p(X) =
∑
Y

p(X, Y ) (1.10)

product rule p(X, Y ) = p(Y |X)p(X). (1.11)

Here p(X, Y ) is a joint probability and is verbalized as “the probability of X and
Y ”. Similarly, the quantity p(Y |X) is a conditional probability and is verbalized as
“the probability of Y given X”, whereas the quantity p(X) is a marginal probability
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and is simply “the probability of X”. These two simple rules form the basis for all
of the probabilistic machinery that we use throughout this book.

From the product rule, together with the symmetry property p(X, Y ) = p(Y, X),
we immediately obtain the following relationship between conditional probabilities

p(Y |X) =
p(X|Y )p(Y )

p(X)
(1.12)

which is called Bayes’ theorem and which plays a central role in pattern recognition
and machine learning. Using the sum rule, the denominator in Bayes’ theorem can
be expressed in terms of the quantities appearing in the numerator

p(X) =
∑
Y

p(X|Y )p(Y ). (1.13)

We can view the denominator in Bayes’ theorem as being the normalization constant
required to ensure that the sum of the conditional probability on the left-hand side of
(1.12) over all values of Y equals one.

In Figure 1.11, we show a simple example involving a joint distribution over two
variables to illustrate the concept of marginal and conditional distributions. Here
a finite sample of N = 60 data points has been drawn from the joint distribution
and is shown in the top left. In the top right is a histogram of the fractions of data
points having each of the two values of Y . From the definition of probability, these
fractions would equal the corresponding probabilities p(Y ) in the limit N → ∞. We
can view the histogram as a simple way to model a probability distribution given only
a finite number of points drawn from that distribution. Modelling distributions from
data lies at the heart of statistical pattern recognition and will be explored in great
detail in this book. The remaining two plots in Figure 1.11 show the corresponding
histogram estimates of p(X) and p(X|Y = 1).

Let us now return to our example involving boxes of fruit. For the moment, we
shall once again be explicit about distinguishing between the random variables and
their instantiations. We have seen that the probabilities of selecting either the red or
the blue boxes are given by

p(B = r) = 4/10 (1.14)

p(B = b) = 6/10 (1.15)

respectively. Note that these satisfy p(B = r) + p(B = b) = 1.
Now suppose that we pick a box at random, and it turns out to be the blue box.

Then the probability of selecting an apple is just the fraction of apples in the blue
box which is 3/4, and so p(F = a|B = b) = 3/4. In fact, we can write out all four
conditional probabilities for the type of fruit, given the selected box

p(F = a|B = r) = 1/4 (1.16)

p(F = o|B = r) = 3/4 (1.17)

p(F = a|B = b) = 3/4 (1.18)

p(F = o|B = b) = 1/4. (1.19)
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p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)

Figure 1.11 An illustration of a distribution over two variables, X, which takes 9 possible values, and Y , which
takes two possible values. The top left figure shows a sample of 60 points drawn from a joint probability distri-
bution over these variables. The remaining figures show histogram estimates of the marginal distributions p(X)
and p(Y ), as well as the conditional distribution p(X|Y = 1) corresponding to the bottom row in the top left
figure.

Again, note that these probabilities are normalized so that

p(F = a|B = r) + p(F = o|B = r) = 1 (1.20)

and similarly
p(F = a|B = b) + p(F = o|B = b) = 1. (1.21)

We can now use the sum and product rules of probability to evaluate the overall
probability of choosing an apple

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1
4
× 4

10
+

3
4
× 6

10
=

11
20

(1.22)

from which it follows, using the sum rule, that p(F = o) = 1 − 11/20 = 9/20.
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Suppose instead we are told that a piece of fruit has been selected and it is an
orange, and we would like to know which box it came from. This requires that
we evaluate the probability distribution over boxes conditioned on the identity of
the fruit, whereas the probabilities in (1.16)–(1.19) give the probability distribution
over the fruit conditioned on the identity of the box. We can solve the problem of
reversing the conditional probability by using Bayes’ theorem to give

p(B = r|F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3
4
× 4

10
× 20

9
=

2
3
. (1.23)

From the sum rule, it then follows that p(B = b|F = o) = 1 − 2/3 = 1/3.
We can provide an important interpretation of Bayes’ theorem as follows. If

we had been asked which box had been chosen before being told the identity of
the selected item of fruit, then the most complete information we have available is
provided by the probability p(B). We call this the prior probability because it is the
probability available before we observe the identity of the fruit. Once we are told that
the fruit is an orange, we can then use Bayes’ theorem to compute the probability
p(B|F ), which we shall call the posterior probability because it is the probability
obtained after we have observed F . Note that in this example, the prior probability
of selecting the red box was 4/10, so that we were more likely to select the blue box
than the red one. However, once we have observed that the piece of selected fruit is
an orange, we find that the posterior probability of the red box is now 2/3, so that
it is now more likely that the box we selected was in fact the red one. This result
accords with our intuition, as the proportion of oranges is much higher in the red box
than it is in the blue box, and so the observation that the fruit was an orange provides
significant evidence favouring the red box. In fact, the evidence is sufficiently strong
that it outweighs the prior and makes it more likely that the red box was chosen
rather than the blue one.

Finally, we note that if the joint distribution of two variables factorizes into the
product of the marginals, so that p(X, Y ) = p(X)p(Y ), then X and Y are said to
be independent. From the product rule, we see that p(Y |X) = p(Y ), and so the
conditional distribution of Y given X is indeed independent of the value of X . For
instance, in our boxes of fruit example, if each box contained the same fraction of
apples and oranges, then p(F |B) = P (F ), so that the probability of selecting, say,
an apple is independent of which box is chosen.

1.2.1 Probability densities
As well as considering probabilities defined over discrete sets of events, we

also wish to consider probabilities with respect to continuous variables. We shall
limit ourselves to a relatively informal discussion. If the probability of a real-valued
variable x falling in the interval (x, x + δx) is given by p(x)δx for δx → 0, then
p(x) is called the probability density over x. This is illustrated in Figure 1.12. The
probability that x will lie in an interval (a, b) is then given by

p(x ∈ (a, b)) =
∫ b

a

p(x) dx. (1.24)
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Figure 1.12 The concept of probability for
discrete variables can be ex-
tended to that of a probability
density p(x) over a continuous
variable x and is such that the
probability of x lying in the inter-
val (x, x+δx) is given by p(x)δx
for δx → 0. The probability
density can be expressed as the
derivative of a cumulative distri-
bution function P (x).

xδx

p(x) P (x)

Because probabilities are nonnegative, and because the value of x must lie some-
where on the real axis, the probability density p(x) must satisfy the two conditions

p(x) � 0 (1.25)∫ ∞

−∞
p(x) dx = 1. (1.26)

Under a nonlinear change of variable, a probability density transforms differently
from a simple function, due to the Jacobian factor. For instance, if we consider
a change of variables x = g(y), then a function f(x) becomes f̃(y) = f(g(y)).
Now consider a probability density px(x) that corresponds to a density py(y) with
respect to the new variable y, where the suffices denote the fact that px(x) and py(y)
are different densities. Observations falling in the range (x, x + δx) will, for small
values of δx, be transformed into the range (y, y + δy) where px(x)δx � py(y)δy,
and hence

py(y) = px(x)
∣∣∣∣ dx

dy

∣∣∣∣
= px(g(y)) |g′(y)| . (1.27)

One consequence of this property is that the concept of the maximum of a probability
density is dependent on the choice of variable.Exercise 1.4

The probability that x lies in the interval (−∞, z) is given by the cumulative
distribution function defined by

P (z) =
∫ z

−∞
p(x) dx (1.28)

which satisfies P ′(x) = p(x), as shown in Figure 1.12.
If we have several continuous variables x1, . . . , xD, denoted collectively by the

vector x, then we can define a joint probability density p(x) = p(x1, . . . , xD) such



1.2. Probability Theory 19

that the probability of x falling in an infinitesimal volume δx containing the point x
is given by p(x)δx. This multivariate probability density must satisfy

p(x) � 0 (1.29)∫
p(x) dx = 1 (1.30)

in which the integral is taken over the whole of x space. We can also consider joint
probability distributions over a combination of discrete and continuous variables.

Note that if x is a discrete variable, then p(x) is sometimes called a probability
mass function because it can be regarded as a set of ‘probability masses’ concentrated
at the allowed values of x.

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and con-
tinuous variables. For instance, if x and y are two real variables, then the sum and
product rules take the form

p(x) =
∫

p(x, y) dy (1.31)

p(x, y) = p(y|x)p(x). (1.32)

A formal justification of the sum and product rules for continuous variables (Feller,
1966) requires a branch of mathematics called measure theory and lies outside the
scope of this book. Its validity can be seen informally, however, by dividing each
real variable into intervals of width ∆ and considering the discrete probability dis-
tribution over these intervals. Taking the limit ∆ → 0 then turns sums into integrals
and gives the desired result.

1.2.2 Expectations and covariances
One of the most important operations involving probabilities is that of finding

weighted averages of functions. The average value of some function f(x) under a
probability distribution p(x) is called the expectation of f(x) and will be denoted by
E[f ]. For a discrete distribution, it is given by

E[f ] =
∑

x

p(x)f(x) (1.33)

so that the average is weighted by the relative probabilities of the different values
of x. In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f ] =
∫

p(x)f(x) dx. (1.34)

In either case, if we are given a finite number N of points drawn from the probability
distribution or probability density, then the expectation can be approximated as a
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finite sum over these points

E[f ] � 1
N

N∑
n=1

f(xn). (1.35)

We shall make extensive use of this result when we discuss sampling methods in
Chapter 11. The approximation in (1.35) becomes exact in the limit N → ∞.

Sometimes we will be considering expectations of functions of several variables,
in which case we can use a subscript to indicate which variable is being averaged
over, so that for instance

Ex[f(x, y)] (1.36)

denotes the average of the function f(x, y) with respect to the distribution of x. Note
that Ex[f(x, y)] will be a function of y.

We can also consider a conditional expectation with respect to a conditional
distribution, so that

Ex[f |y] =
∑

x

p(x|y)f(x) (1.37)

with an analogous definition for continuous variables.
The variance of f(x) is defined by

var[f ] = E
[
(f(x) − E[f(x)])2

]
(1.38)

and provides a measure of how much variability there is in f(x) around its mean
value E[f(x)]. Expanding out the square, we see that the variance can also be written
in terms of the expectations of f(x) and f(x)2Exercise 1.5

var[f ] = E[f(x)2] − E[f(x)]2. (1.39)

In particular, we can consider the variance of the variable x itself, which is given by

var[x] = E[x2] − E[x]2. (1.40)

For two random variables x and y, the covariance is defined by

cov[x, y] = Ex,y [{x − E[x]} {y − E[y]}]
= Ex,y[xy] − E[x]E[y] (1.41)

which expresses the extent to which x and y vary together. If x and y are indepen-
dent, then their covariance vanishes.Exercise 1.6

In the case of two vectors of random variables x and y, the covariance is a matrix

cov[x,y] = Ex,y

[{x − E[x]}{yT − E[yT]}]
= Ex,y[xyT] − E[x]E[yT]. (1.42)

If we consider the covariance of the components of a vector x with each other, then
we use a slightly simpler notation cov[x] ≡ cov[x,x].
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1.2.3 Bayesian probabilities
So far in this chapter, we have viewed probabilities in terms of the frequencies

of random, repeatable events. We shall refer to this as the classical or frequentist
interpretation of probability. Now we turn to the more general Bayesian view, in
which probabilities provide a quantification of uncertainty.

Consider an uncertain event, for example whether the moon was once in its own
orbit around the sun, or whether the Arctic ice cap will have disappeared by the end
of the century. These are not events that can be repeated numerous times in order
to define a notion of probability as we did earlier in the context of boxes of fruit.
Nevertheless, we will generally have some idea, for example, of how quickly we
think the polar ice is melting. If we now obtain fresh evidence, for instance from a
new Earth observation satellite gathering novel forms of diagnostic information, we
may revise our opinion on the rate of ice loss. Our assessment of such matters will
affect the actions we take, for instance the extent to which we endeavour to reduce
the emission of greenhouse gasses. In such circumstances, we would like to be able
to quantify our expression of uncertainty and make precise revisions of uncertainty in
the light of new evidence, as well as subsequently to be able to take optimal actions
or decisions as a consequence. This can all be achieved through the elegant, and very
general, Bayesian interpretation of probability.

The use of probability to represent uncertainty, however, is not an ad-hoc choice,
but is inevitable if we are to respect common sense while making rational coherent
inferences. For instance, Cox (1946) showed that if numerical values are used to
represent degrees of belief, then a simple set of axioms encoding common sense
properties of such beliefs leads uniquely to a set of rules for manipulating degrees of
belief that are equivalent to the sum and product rules of probability. This provided
the first rigorous proof that probability theory could be regarded as an extension of
Boolean logic to situations involving uncertainty (Jaynes, 2003). Numerous other
authors have proposed different sets of properties or axioms that such measures of
uncertainty should satisfy (Ramsey, 1931; Good, 1950; Savage, 1961; deFinetti,
1970; Lindley, 1982). In each case, the resulting numerical quantities behave pre-
cisely according to the rules of probability. It is therefore natural to refer to these
quantities as (Bayesian) probabilities.

In the field of pattern recognition, too, it is helpful to have a more general no-

Thomas Bayes
1701–1761

Thomas Bayes was born in Tun-
bridge Wells and was a clergyman
as well as an amateur scientist and
a mathematician. He studied logic
and theology at Edinburgh Univer-
sity and was elected Fellow of the

Royal Society in 1742. During the 18th century, is-
sues regarding probability arose in connection with

gambling and with the new concept of insurance. One
particularly important problem concerned so-called in-
verse probability. A solution was proposed by Thomas
Bayes in his paper ‘Essay towards solving a problem
in the doctrine of chances’, which was published in
1764, some three years after his death, in the Philo-
sophical Transactions of the Royal Society. In fact,
Bayes only formulated his theory for the case of a uni-
form prior, and it was Pierre-Simon Laplace who inde-
pendently rediscovered the theory in general form and
who demonstrated its broad applicability.



22 1. INTRODUCTION

tion of probability. Consider the example of polynomial curve fitting discussed in
Section 1.1. It seems reasonable to apply the frequentist notion of probability to the
random values of the observed variables tn. However, we would like to address and
quantify the uncertainty that surrounds the appropriate choice for the model param-
eters w. We shall see that, from a Bayesian perspective, we can use the machinery
of probability theory to describe the uncertainty in model parameters such as w, or
indeed in the choice of model itself.

Bayes’ theorem now acquires a new significance. Recall that in the boxes of fruit
example, the observation of the identity of the fruit provided relevant information
that altered the probability that the chosen box was the red one. In that example,
Bayes’ theorem was used to convert a prior probability into a posterior probability
by incorporating the evidence provided by the observed data. As we shall see in
detail later, we can adopt a similar approach when making inferences about quantities
such as the parameters w in the polynomial curve fitting example. We capture our
assumptions about w, before observing the data, in the form of a prior probability
distribution p(w). The effect of the observed data D = {t1, . . . , tN} is expressed
through the conditional probability p(D|w), and we shall see later, in Section 1.2.5,
how this can be represented explicitly. Bayes’ theorem, which takes the form

p(w|D) =
p(D|w)p(w)

p(D)
(1.43)

then allows us to evaluate the uncertainty in w after we have observed D in the form
of the posterior probability p(w|D).

The quantity p(D|w) on the right-hand side of Bayes’ theorem is evaluated for
the observed data set D and can be viewed as a function of the parameter vector
w, in which case it is called the likelihood function. It expresses how probable the
observed data set is for different settings of the parameter vector w. Note that the
likelihood is not a probability distribution over w, and its integral with respect to w
does not (necessarily) equal one.

Given this definition of likelihood, we can state Bayes’ theorem in words

posterior ∝ likelihood × prior (1.44)

where all of these quantities are viewed as functions of w. The denominator in
(1.43) is the normalization constant, which ensures that the posterior distribution
on the left-hand side is a valid probability density and integrates to one. Indeed,
integrating both sides of (1.43) with respect to w, we can express the denominator
in Bayes’ theorem in terms of the prior distribution and the likelihood function

p(D) =
∫

p(D|w)p(w) dw. (1.45)

In both the Bayesian and frequentist paradigms, the likelihood function p(D|w)
plays a central role. However, the manner in which it is used is fundamentally dif-
ferent in the two approaches. In a frequentist setting, w is considered to be a fixed
parameter, whose value is determined by some form of ‘estimator’, and error bars
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on this estimate are obtained by considering the distribution of possible data sets D.
By contrast, from the Bayesian viewpoint there is only a single data set D (namely
the one that is actually observed), and the uncertainty in the parameters is expressed
through a probability distribution over w.

A widely used frequentist estimator is maximum likelihood, in which w is set
to the value that maximizes the likelihood function p(D|w). This corresponds to
choosing the value of w for which the probability of the observed data set is maxi-
mized. In the machine learning literature, the negative log of the likelihood function
is called an error function. Because the negative logarithm is a monotonically de-
creasing function, maximizing the likelihood is equivalent to minimizing the error.

One approach to determining frequentist error bars is the bootstrap (Efron, 1979;
Hastie et al., 2001), in which multiple data sets are created as follows. Suppose our
original data set consists of N data points X = {x1, . . . ,xN}. We can create a new
data set XB by drawing N points at random from X, with replacement, so that some
points in X may be replicated in XB, whereas other points in X may be absent from
XB. This process can be repeated L times to generate L data sets each of size N and
each obtained by sampling from the original data set X. The statistical accuracy of
parameter estimates can then be evaluated by looking at the variability of predictions
between the different bootstrap data sets.

One advantage of the Bayesian viewpoint is that the inclusion of prior knowl-
edge arises naturally. Suppose, for instance, that a fair-looking coin is tossed three
times and lands heads each time. A classical maximum likelihood estimate of the
probability of landing heads would give 1, implying that all future tosses will landSection 2.1
heads! By contrast, a Bayesian approach with any reasonable prior will lead to a
much less extreme conclusion.

There has been much controversy and debate associated with the relative mer-
its of the frequentist and Bayesian paradigms, which have not been helped by the
fact that there is no unique frequentist, or even Bayesian, viewpoint. For instance,
one common criticism of the Bayesian approach is that the prior distribution is of-
ten selected on the basis of mathematical convenience rather than as a reflection of
any prior beliefs. Even the subjective nature of the conclusions through their de-
pendence on the choice of prior is seen by some as a source of difficulty. Reducing
the dependence on the prior is one motivation for so-called noninformative priors.Section 2.4.3
However, these lead to difficulties when comparing different models, and indeed
Bayesian methods based on poor choices of prior can give poor results with high
confidence. Frequentist evaluation methods offer some protection from such prob-
lems, and techniques such as cross-validation remain useful in areas such as modelSection 1.3
comparison.

This book places a strong emphasis on the Bayesian viewpoint, reflecting the
huge growth in the practical importance of Bayesian methods in the past few years,
while also discussing useful frequentist concepts as required.

Although the Bayesian framework has its origins in the 18th century, the prac-
tical application of Bayesian methods was for a long time severely limited by the
difficulties in carrying through the full Bayesian procedure, particularly the need to
marginalize (sum or integrate) over the whole of parameter space, which, as we shall
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see, is required in order to make predictions or to compare different models. The
development of sampling methods, such as Markov chain Monte Carlo (discussed in
Chapter 11) along with dramatic improvements in the speed and memory capacity
of computers, opened the door to the practical use of Bayesian techniques in an im-
pressive range of problem domains. Monte Carlo methods are very flexible and can
be applied to a wide range of models. However, they are computationally intensive
and have mainly been used for small-scale problems.

More recently, highly efficient deterministic approximation schemes such as
variational Bayes and expectation propagation (discussed in Chapter 10) have been
developed. These offer a complementary alternative to sampling methods and have
allowed Bayesian techniques to be used in large-scale applications (Blei et al., 2003).

1.2.4 The Gaussian distribution
We shall devote the whole of Chapter 2 to a study of various probability dis-

tributions and their key properties. It is convenient, however, to introduce here one
of the most important probability distributions for continuous variables, called the
normal or Gaussian distribution. We shall make extensive use of this distribution in
the remainder of this chapter and indeed throughout much of the book.

For the case of a single real-valued variable x, the Gaussian distribution is de-
fined by

N (
x|µ, σ2

)
=

1
(2πσ2)1/2

exp
{
− 1

2σ2
(x − µ)2

}
(1.46)

which is governed by two parameters: µ, called the mean, and σ2, called the vari-
ance. The square root of the variance, given by σ, is called the standard deviation,
and the reciprocal of the variance, written as β = 1/σ2, is called the precision. We
shall see the motivation for these terms shortly. Figure 1.13 shows a plot of the
Gaussian distribution.

From the form of (1.46) we see that the Gaussian distribution satisfies

N (x|µ, σ2) > 0. (1.47)

Also it is straightforward to show that the Gaussian is normalized, so thatExercise 1.7

Pierre-Simon Laplace
1749–1827

It is said that Laplace was seri-
ously lacking in modesty and at one
point declared himself to be the
best mathematician in France at the
time, a claim that was arguably true.
As well as being prolific in mathe-

matics, he also made numerous contributions to as-
tronomy, including the nebular hypothesis by which the

earth is thought to have formed from the condensa-
tion and cooling of a large rotating disk of gas and
dust. In 1812 he published the first edition of Théorie
Analytique des Probabilités, in which Laplace states
that “probability theory is nothing but common sense
reduced to calculation”. This work included a discus-
sion of the inverse probability calculation (later termed
Bayes’ theorem by Poincaré), which he used to solve
problems in life expectancy, jurisprudence, planetary
masses, triangulation, and error estimation.
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Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.

N (x|µ, σ2)

x

2σ

µ

∫ ∞

−∞
N (

x|µ, σ2
)

dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N (

x|µ, σ2
)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N (

x|µ, σ2
)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.
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Figure 1.14 Illustration of the likelihood function for
a Gaussian distribution, shown by the
red curve. Here the black points de-
note a data set of values {xn}, and
the likelihood function given by (1.53)
corresponds to the product of the blue
values. Maximizing the likelihood in-
volves adjusting the mean and vari-
ance of the Gaussian so as to maxi-
mize this product.

x

p(x)

xn

N (xn|µ, σ2)

Now suppose that we have a data set of observations x = (x1, . . . , xN )T, rep-
resenting N observations of the scalar variable x. Note that we are using the type-
face x to distinguish this from a single observation of the vector-valued variable
(x1, . . . , xD)T, which we denote by x. We shall suppose that the observations are
drawn independently from a Gaussian distribution whose mean µ and variance σ2

are unknown, and we would like to determine these parameters from the data set.
Data points that are drawn independently from the same distribution are said to be
independent and identically distributed, which is often abbreviated to i.i.d. We have
seen that the joint probability of two independent events is given by the product of
the marginal probabilities for each event separately. Because our data set x is i.i.d.,
we can therefore write the probability of the data set, given µ and σ2, in the form

p(x|µ, σ2) =
N∏

n=1

N (
xn|µ, σ2

)
. (1.53)

When viewed as a function of µ and σ2, this is the likelihood function for the Gaus-
sian and is interpreted diagrammatically in Figure 1.14.

One common criterion for determining the parameters in a probability distribu-
tion using an observed data set is to find the parameter values that maximize the
likelihood function. This might seem like a strange criterion because, from our fore-
going discussion of probability theory, it would seem more natural to maximize the
probability of the parameters given the data, not the probability of the data given the
parameters. In fact, these two criteria are related, as we shall discuss in the context
of curve fitting.Section 1.2.5

For the moment, however, we shall determine values for the unknown parame-
ters µ and σ2 in the Gaussian by maximizing the likelihood function (1.53). In prac-
tice, it is more convenient to maximize the log of the likelihood function. Because
the logarithm is a monotonically increasing function of its argument, maximization
of the log of a function is equivalent to maximization of the function itself. Taking
the log not only simplifies the subsequent mathematical analysis, but it also helps
numerically because the product of a large number of small probabilities can easily
underflow the numerical precision of the computer, and this is resolved by computing
instead the sum of the log probabilities. From (1.46) and (1.53), the log likelihood
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function can be written in the form

ln p
(
x|µ, σ2

)
= − 1

2σ2

N∑
n=1

(xn − µ)2 − N

2
lnσ2 − N

2
ln(2π). (1.54)

Maximizing (1.54) with respect to µ, we obtain the maximum likelihood solution
given byExercise 1.11

µML =
1
N

N∑
n=1

xn (1.55)

which is the sample mean, i.e., the mean of the observed values {xn}. Similarly,
maximizing (1.54) with respect to σ2, we obtain the maximum likelihood solution
for the variance in the form

σ2
ML =

1
N

N∑
n=1

(xn − µML)2 (1.56)

which is the sample variance measured with respect to the sample mean µML. Note
that we are performing a joint maximization of (1.54) with respect to µ and σ2, but
in the case of the Gaussian distribution the solution for µ decouples from that for σ2

so that we can first evaluate (1.55) and then subsequently use this result to evaluate
(1.56).

Later in this chapter, and also in subsequent chapters, we shall highlight the sig-
nificant limitations of the maximum likelihood approach. Here we give an indication
of the problem in the context of our solutions for the maximum likelihood param-
eter settings for the univariate Gaussian distribution. In particular, we shall show
that the maximum likelihood approach systematically underestimates the variance
of the distribution. This is an example of a phenomenon called bias and is related
to the problem of over-fitting encountered in the context of polynomial curve fitting.Section 1.1
We first note that the maximum likelihood solutions µML and σ2

ML are functions of
the data set values x1, . . . , xN . Consider the expectations of these quantities with
respect to the data set values, which themselves come from a Gaussian distribution
with parameters µ and σ2. It is straightforward to show thatExercise 1.12

E[µML] = µ (1.57)

E[σ2
ML] =

(
N − 1

N

)
σ2 (1.58)

so that on average the maximum likelihood estimate will obtain the correct mean but
will underestimate the true variance by a factor (N − 1)/N . The intuition behind
this result is given by Figure 1.15.

From (1.58) it follows that the following estimate for the variance parameter is
unbiased

σ̃2 =
N

N − 1
σ2

ML =
1

N − 1

N∑
n=1

(xn − µML)2. (1.59)
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Figure 1.15 Illustration of how bias arises in using max-
imum likelihood to determine the variance
of a Gaussian. The green curve shows
the true Gaussian distribution from which
data is generated, and the three red curves
show the Gaussian distributions obtained
by fitting to three data sets, each consist-
ing of two data points shown in blue, us-
ing the maximum likelihood results (1.55)
and (1.56). Averaged across the three data
sets, the mean is correct, but the variance
is systematically under-estimated because
it is measured relative to the sample mean
and not relative to the true mean.

(a)

(b)

(c)

In Section 10.1.3, we shall see how this result arises automatically when we adopt a
Bayesian approach.

Note that the bias of the maximum likelihood solution becomes less significant
as the number N of data points increases, and in the limit N → ∞ the maximum
likelihood solution for the variance equals the true variance of the distribution that
generated the data. In practice, for anything other than small N , this bias will not
prove to be a serious problem. However, throughout this book we shall be interested
in more complex models with many parameters, for which the bias problems asso-
ciated with maximum likelihood will be much more severe. In fact, as we shall see,
the issue of bias in maximum likelihood lies at the root of the over-fitting problem
that we encountered earlier in the context of polynomial curve fitting.

1.2.5 Curve fitting re-visited
We have seen how the problem of polynomial curve fitting can be expressed in

terms of error minimization. Here we return to the curve fitting example and view itSection 1.1
from a probabilistic perspective, thereby gaining some insights into error functions
and regularization, as well as taking us towards a full Bayesian treatment.

The goal in the curve fitting problem is to be able to make predictions for the
target variable t given some new value of the input variable x on the basis of a set of
training data comprising N input values x = (x1, . . . , xN )T and their corresponding
target values t = (t1, . . . , tN )T. We can express our uncertainty over the value of
the target variable using a probability distribution. For this purpose, we shall assume
that, given the value of x, the corresponding value of t has a Gaussian distribution
with a mean equal to the value y(x,w) of the polynomial curve given by (1.1). Thus
we have

p(t|x,w, β) = N (
t|y(x,w), β−1

)
(1.60)

where, for consistency with the notation in later chapters, we have defined a preci-
sion parameter β corresponding to the inverse variance of the distribution. This is
illustrated schematically in Figure 1.16.
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Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

We now use the training data {x, t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x,w, β) =
N∏

n=1

N (
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x,w, β) = −β

2

N∑
n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2 with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑
n=1

{y(xn,wML) − tn}2
. (1.63)
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Again we can first determine the parameter vector wML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x,wML, βML) = N (
t|y(x,wML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w. For simplicity, let us consider a
Gaussian distribution of the form

p(w|α) = N (w|0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
wTw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑
n=1

{y(xn,w) − tn}2 +
α

2
wTw. (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.
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In the curve fitting problem, we are given the training data x and t, along with
a new test point x, and our goal is to predict the value of t. We therefore wish
to evaluate the predictive distribution p(t|x, x, t). Here we shall assume that the
parameters α and β are fixed and known in advance (in later chapters we shall discuss
how such parameters can be inferred from data in a Bayesian setting).

A Bayesian treatment simply corresponds to a consistent application of the sum
and product rules of probability, which allow the predictive distribution to be written
in the form

p(t|x, x, t) =
∫

p(t|x,w)p(w|x, t) dw. (1.68)

Here p(t|x,w) is given by (1.60), and we have omitted the dependence on α and
β to simplify the notation. Here p(w|x, t) is the posterior distribution over param-
eters, and can be found by normalizing the right-hand side of (1.66). We shall see
in Section 3.3 that, for problems such as the curve-fitting example, this posterior
distribution is a Gaussian and can be evaluated analytically. Similarly, the integra-
tion in (1.68) can also be performed analytically with the result that the predictive
distribution is given by a Gaussian of the form

p(t|x, x, t) = N (
t|m(x), s2(x)

)
(1.69)

where the mean and variance are given by

m(x) = βφ(x)TS
N∑

n=1

φ(xn)tn (1.70)

s2(x) = β−1 + φ(x)TSφ(x). (1.71)

Here the matrix S is given by

S−1 = αI + β

N∑
n=1

φ(xn)φ(x)T (1.72)

where I is the unit matrix, and we have defined the vector φ(x) with elements
φi(x) = xi for i = 0, . . . , M .

We see that the variance, as well as the mean, of the predictive distribution in
(1.69) is dependent on x. The first term in (1.71) represents the uncertainty in the
predicted value of t due to the noise on the target variables and was expressed already
in the maximum likelihood predictive distribution (1.64) through β−1

ML. However, the
second term arises from the uncertainty in the parameters w and is a consequence
of the Bayesian treatment. The predictive distribution for the synthetic sinusoidal
regression problem is illustrated in Figure 1.17.
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Figure 1.17 The predictive distribution result-
ing from a Bayesian treatment of
polynomial curve fitting using an
M = 9 polynomial, with the fixed
parameters α = 5× 10−3 and β =
11.1 (corresponding to the known
noise variance), in which the red
curve denotes the mean of the
predictive distribution and the red
region corresponds to ±1 stan-
dard deviation around the mean.
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1.3. Model Selection

In our example of polynomial curve fitting using least squares, we saw that there was
an optimal order of polynomial that gave the best generalization. The order of the
polynomial controls the number of free parameters in the model and thereby governs
the model complexity. With regularized least squares, the regularization coefficient
λ also controls the effective complexity of the model, whereas for more complex
models, such as mixture distributions or neural networks there may be multiple pa-
rameters governing complexity. In a practical application, we need to determine
the values of such parameters, and the principal objective in doing so is usually to
achieve the best predictive performance on new data. Furthermore, as well as find-
ing the appropriate values for complexity parameters within a given model, we may
wish to consider a range of different types of model in order to find the best one for
our particular application.

We have already seen that, in the maximum likelihood approach, the perfor-
mance on the training set is not a good indicator of predictive performance on un-
seen data due to the problem of over-fitting. If data is plentiful, then one approach is
simply to use some of the available data to train a range of models, or a given model
with a range of values for its complexity parameters, and then to compare them on
independent data, sometimes called a validation set, and select the one having the
best predictive performance. If the model design is iterated many times using a lim-
ited size data set, then some over-fitting to the validation data can occur and so it may
be necessary to keep aside a third test set on which the performance of the selected
model is finally evaluated.

In many applications, however, the supply of data for training and testing will be
limited, and in order to build good models, we wish to use as much of the available
data as possible for training. However, if the validation set is small, it will give a
relatively noisy estimate of predictive performance. One solution to this dilemma is
to use cross-validation, which is illustrated in Figure 1.18. This allows a proportion
(S − 1)/S of the available data to be used for training while making use of all of the
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Figure 1.18 The technique of S-fold cross-validation, illus-
trated here for the case of S = 4, involves tak-
ing the available data and partitioning it into S
groups (in the simplest case these are of equal
size). Then S − 1 of the groups are used to train
a set of models that are then evaluated on the re-
maining group. This procedure is then repeated
for all S possible choices for the held-out group,
indicated here by the red blocks, and the perfor-
mance scores from the S runs are then averaged.

run 1

run 2

run 3

run 4

data to assess performance. When data is particularly scarce, it may be appropriate
to consider the case S = N , where N is the total number of data points, which gives
the leave-one-out technique.

One major drawback of cross-validation is that the number of training runs that
must be performed is increased by a factor of S, and this can prove problematic for
models in which the training is itself computationally expensive. A further problem
with techniques such as cross-validation that use separate data to assess performance
is that we might have multiple complexity parameters for a single model (for in-
stance, there might be several regularization parameters). Exploring combinations
of settings for such parameters could, in the worst case, require a number of training
runs that is exponential in the number of parameters. Clearly, we need a better ap-
proach. Ideally, this should rely only on the training data and should allow multiple
hyperparameters and model types to be compared in a single training run. We there-
fore need to find a measure of performance which depends only on the training data
and which does not suffer from bias due to over-fitting.

Historically various ‘information criteria’ have been proposed that attempt to
correct for the bias of maximum likelihood by the addition of a penalty term to
compensate for the over-fitting of more complex models. For example, the Akaike
information criterion, or AIC (Akaike, 1974), chooses the model for which the quan-
tity

ln p(D|wML) − M (1.73)

is largest. Here p(D|wML) is the best-fit log likelihood, and M is the number of
adjustable parameters in the model. A variant of this quantity, called the Bayesian
information criterion, or BIC, will be discussed in Section 4.4.1. Such criteria do
not take account of the uncertainty in the model parameters, however, and in practice
they tend to favour overly simple models. We therefore turn in Section 3.4 to a fully
Bayesian approach where we shall see how complexity penalties arise in a natural
and principled way.

1.4. The Curse of Dimensionality

In the polynomial curve fitting example we had just one input variable x. For prac-
tical applications of pattern recognition, however, we will have to deal with spaces
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Figure 1.19 Scatter plot of the oil flow data
for input variables x6 and x7, in
which red denotes the ‘homoge-
nous’ class, green denotes the
‘annular’ class, and blue denotes
the ‘laminar’ class. Our goal is
to classify the new test point de-
noted by ‘×’.
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of high dimensionality comprising many input variables. As we now discuss, this
poses some serious challenges and is an important factor influencing the design of
pattern recognition techniques.

In order to illustrate the problem we consider a synthetically generated data set
representing measurements taken from a pipeline containing a mixture of oil, wa-
ter, and gas (Bishop and James, 1993). These three materials can be present in one
of three different geometrical configurations known as ‘homogenous’, ‘annular’, and
‘laminar’, and the fractions of the three materials can also vary. Each data point com-
prises a 12-dimensional input vector consisting of measurements taken with gamma
ray densitometers that measure the attenuation of gamma rays passing along nar-
row beams through the pipe. This data set is described in detail in Appendix A.
Figure 1.19 shows 100 points from this data set on a plot showing two of the mea-
surements x6 and x7 (the remaining ten input values are ignored for the purposes of
this illustration). Each data point is labelled according to which of the three geomet-
rical classes it belongs to, and our goal is to use this data as a training set in order to
be able to classify a new observation (x6, x7), such as the one denoted by the cross
in Figure 1.19. We observe that the cross is surrounded by numerous red points, and
so we might suppose that it belongs to the red class. However, there are also plenty
of green points nearby, so we might think that it could instead belong to the green
class. It seems unlikely that it belongs to the blue class. The intuition here is that the
identity of the cross should be determined more strongly by nearby points from the
training set and less strongly by more distant points. In fact, this intuition turns out
to be reasonable and will be discussed more fully in later chapters.

How can we turn this intuition into a learning algorithm? One very simple ap-
proach would be to divide the input space into regular cells, as indicated in Fig-
ure 1.20. When we are given a test point and we wish to predict its class, we first
decide which cell it belongs to, and we then find all of the training data points that
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Figure 1.20 Illustration of a simple approach
to the solution of a classification
problem in which the input space
is divided into cells and any new
test point is assigned to the class
that has a majority number of rep-
resentatives in the same cell as
the test point. As we shall see
shortly, this simplistic approach
has some severe shortcomings.
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fall in the same cell. The identity of the test point is predicted as being the same
as the class having the largest number of training points in the same cell as the test
point (with ties being broken at random).

There are numerous problems with this naive approach, but one of the most se-
vere becomes apparent when we consider its extension to problems having larger
numbers of input variables, corresponding to input spaces of higher dimensionality.
The origin of the problem is illustrated in Figure 1.21, which shows that, if we divide
a region of a space into regular cells, then the number of such cells grows exponen-
tially with the dimensionality of the space. The problem with an exponentially large
number of cells is that we would need an exponentially large quantity of training data
in order to ensure that the cells are not empty. Clearly, we have no hope of applying
such a technique in a space of more than a few variables, and so we need to find a
more sophisticated approach.

We can gain further insight into the problems of high-dimensional spaces by
returning to the example of polynomial curve fitting and considering how we wouldSection 1.1

Figure 1.21 Illustration of the
curse of dimensionality, showing
how the number of regions of a
regular grid grows exponentially
with the dimensionality D of the
space. For clarity, only a subset of
the cubical regions are shown for
D = 3.
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extend this approach to deal with input spaces having several variables. If we have
D input variables, then a general polynomial with coefficients up to order 3 would
take the form

y(x,w) = w0 +
D∑

i=1

wixi +
D∑

i=1

D∑
j=1

wijxixj +
D∑

i=1

D∑
j=1

D∑
k=1

wijkxixjxk. (1.74)

As D increases, so the number of independent coefficients (not all of the coefficients
are independent due to interchange symmetries amongst the x variables) grows pro-
portionally to D3. In practice, to capture complex dependencies in the data, we may
need to use a higher-order polynomial. For a polynomial of order M , the growth in
the number of coefficients is like DM . Although this is now a power law growth,Exercise 1.16
rather than an exponential growth, it still points to the method becoming rapidly
unwieldy and of limited practical utility.

Our geometrical intuitions, formed through a life spent in a space of three di-
mensions, can fail badly when we consider spaces of higher dimensionality. As a
simple example, consider a sphere of radius r = 1 in a space of D dimensions, and
ask what is the fraction of the volume of the sphere that lies between radius r = 1−ε
and r = 1. We can evaluate this fraction by noting that the volume of a sphere of
radius r in D dimensions must scale as rD, and so we write

VD(r) = KDrD (1.75)

where the constant KD depends only on D. Thus the required fraction is given byExercise 1.18

VD(1) − VD(1 − ε)
VD(1)

= 1 − (1 − ε)D (1.76)

which is plotted as a function of ε for various values of D in Figure 1.22. We see
that, for large D, this fraction tends to 1 even for small values of ε. Thus, in spaces
of high dimensionality, most of the volume of a sphere is concentrated in a thin shell
near the surface!

As a further example, of direct relevance to pattern recognition, consider the
behaviour of a Gaussian distribution in a high-dimensional space. If we transform
from Cartesian to polar coordinates, and then integrate out the directional variables,
we obtain an expression for the density p(r) as a function of radius r from the origin.Exercise 1.20
Thus p(r)δr is the probability mass inside a thin shell of thickness δr located at
radius r. This distribution is plotted, for various values of D, in Figure 1.23, and we
see that for large D the probability mass of the Gaussian is concentrated in a thin
shell.

The severe difficulty that can arise in spaces of many dimensions is sometimes
called the curse of dimensionality (Bellman, 1961). In this book, we shall make ex-
tensive use of illustrative examples involving input spaces of one or two dimensions,
because this makes it particularly easy to illustrate the techniques graphically. The
reader should be warned, however, that not all intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions.
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Figure 1.22 Plot of the fraction of the volume of
a sphere lying in the range r = 1−ε
to r = 1 for various values of the
dimensionality D.
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Although the curse of dimensionality certainly raises important issues for pat-
tern recognition applications, it does not prevent us from finding effective techniques
applicable to high-dimensional spaces. The reasons for this are twofold. First, real
data will often be confined to a region of the space having lower effective dimension-
ality, and in particular the directions over which important variations in the target
variables occur may be so confined. Second, real data will typically exhibit some
smoothness properties (at least locally) so that for the most part small changes in the
input variables will produce small changes in the target variables, and so we can ex-
ploit local interpolation-like techniques to allow us to make predictions of the target
variables for new values of the input variables. Successful pattern recognition tech-
niques exploit one or both of these properties. Consider, for example, an application
in manufacturing in which images are captured of identical planar objects on a con-
veyor belt, in which the goal is to determine their orientation. Each image is a point

Figure 1.23 Plot of the probability density with
respect to radius r of a Gaus-
sian distribution for various values
of the dimensionality D. In a
high-dimensional space, most of the
probability mass of a Gaussian is lo-
cated within a thin shell at a specific
radius.
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in a high-dimensional space whose dimensionality is determined by the number of
pixels. Because the objects can occur at different positions within the image and
in different orientations, there are three degrees of freedom of variability between
images, and a set of images will live on a three dimensional manifold embedded
within the high-dimensional space. Due to the complex relationships between the
object position or orientation and the pixel intensities, this manifold will be highly
nonlinear. If the goal is to learn a model that can take an input image and output the
orientation of the object irrespective of its position, then there is only one degree of
freedom of variability within the manifold that is significant.

1.5. Decision Theory

We have seen in Section 1.2 how probability theory provides us with a consistent
mathematical framework for quantifying and manipulating uncertainty. Here we
turn to a discussion of decision theory that, when combined with probability theory,
allows us to make optimal decisions in situations involving uncertainty such as those
encountered in pattern recognition.

Suppose we have an input vector x together with a corresponding vector t of
target variables, and our goal is to predict t given a new value for x. For regression
problems, t will comprise continuous variables, whereas for classification problems
t will represent class labels. The joint probability distribution p(x, t) provides a
complete summary of the uncertainty associated with these variables. Determination
of p(x, t) from a set of training data is an example of inference and is typically a
very difficult problem whose solution forms the subject of much of this book. In
a practical application, however, we must often make a specific prediction for the
value of t, or more generally take a specific action based on our understanding of the
values t is likely to take, and this aspect is the subject of decision theory.

Consider, for example, a medical diagnosis problem in which we have taken an
X-ray image of a patient, and we wish to determine whether the patient has cancer
or not. In this case, the input vector x is the set of pixel intensities in the image,
and output variable t will represent the presence of cancer, which we denote by the
class C1, or the absence of cancer, which we denote by the class C2. We might, for
instance, choose t to be a binary variable such that t = 0 corresponds to class C1 and
t = 1 corresponds to class C2. We shall see later that this choice of label values is
particularly convenient for probabilistic models. The general inference problem then
involves determining the joint distribution p(x, Ck), or equivalently p(x, t), which
gives us the most complete probabilistic description of the situation. Although this
can be a very useful and informative quantity, in the end we must decide either to
give treatment to the patient or not, and we would like this choice to be optimal
in some appropriate sense (Duda and Hart, 1973). This is the decision step, and
it is the subject of decision theory to tell us how to make optimal decisions given
the appropriate probabilities. We shall see that the decision stage is generally very
simple, even trivial, once we have solved the inference problem.

Here we give an introduction to the key ideas of decision theory as required for
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the rest of the book. Further background, as well as more detailed accounts, can be
found in Berger (1985) and Bather (2000).

Before giving a more detailed analysis, let us first consider informally how we
might expect probabilities to play a role in making decisions. When we obtain the
X-ray image x for a new patient, our goal is to decide which of the two classes to
assign to the image. We are interested in the probabilities of the two classes given
the image, which are given by p(Ck|x). Using Bayes’ theorem, these probabilities
can be expressed in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (1.77)

Note that any of the quantities appearing in Bayes’ theorem can be obtained from
the joint distribution p(x, Ck) by either marginalizing or conditioning with respect to
the appropriate variables. We can now interpret p(Ck) as the prior probability for the
class Ck, and p(Ck|x) as the corresponding posterior probability. Thus p(C1) repre-
sents the probability that a person has cancer, before we take the X-ray measurement.
Similarly, p(C1|x) is the corresponding probability, revised using Bayes’ theorem in
light of the information contained in the X-ray. If our aim is to minimize the chance
of assigning x to the wrong class, then intuitively we would choose the class having
the higher posterior probability. We now show that this intuition is correct, and we
also discuss more general criteria for making decisions.

1.5.1 Minimizing the misclassification rate
Suppose that our goal is simply to make as few misclassifications as possible.

We need a rule that assigns each value of x to one of the available classes. Such a
rule will divide the input space into regions Rk called decision regions, one for each
class, such that all points in Rk are assigned to class Ck. The boundaries between
decision regions are called decision boundaries or decision surfaces. Note that each
decision region need not be contiguous but could comprise some number of disjoint
regions. We shall encounter examples of decision boundaries and decision regions in
later chapters. In order to find the optimal decision rule, consider first of all the case
of two classes, as in the cancer problem for instance. A mistake occurs when an input
vector belonging to class C1 is assigned to class C2 or vice versa. The probability of
this occurring is given by

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=
∫
R1

p(x, C2) dx +
∫
R2

p(x, C1) dx. (1.78)

We are free to choose the decision rule that assigns each point x to one of the two
classes. Clearly to minimize p(mistake) we should arrange that each x is assigned to
whichever class has the smaller value of the integrand in (1.78). Thus, if p(x, C1) >
p(x, C2) for a given value of x, then we should assign that x to class C1. From the
product rule of probability we have p(x, Ck) = p(Ck|x)p(x). Because the factor
p(x) is common to both terms, we can restate this result as saying that the minimum
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Figure 1.24 Schematic illustration of the joint probabilities p(x, Ck) for each of two classes plotted
against x, together with the decision boundary x = bx. Values of x � bx are classified as
class C2 and hence belong to decision region R2, whereas points x < bx are classified
as C1 and belong to R1. Errors arise from the blue, green, and red regions, so that for
x < bx the errors are due to points from class C2 being misclassified as C1 (represented by
the sum of the red and green regions), and conversely for points in the region x � bx the
errors are due to points from class C1 being misclassified as C2 (represented by the blue
region). As we vary the location bx of the decision boundary, the combined areas of the
blue and green regions remains constant, whereas the size of the red region varies. The
optimal choice for bx is where the curves for p(x, C1) and p(x, C2) cross, corresponding to
bx = x0, because in this case the red region disappears. This is equivalent to the minimum
misclassification rate decision rule, which assigns each value of x to the class having the
higher posterior probability p(Ck|x).

probability of making a mistake is obtained if each value of x is assigned to the class
for which the posterior probability p(Ck|x) is largest. This result is illustrated for
two classes, and a single input variable x, in Figure 1.24.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫
Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).
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Figure 1.25 An example of a loss matrix with ele-
ments Lkj for the cancer treatment problem. The rows
correspond to the true class, whereas the columns cor-
respond to the assignment of class made by our deci-
sion criterion.

( cancer normal
cancer 0 1000
normal 1 0

)

1.5.2 Minimizing the expected loss
For many applications, our objective will be more complex than simply mini-

mizing the number of misclassifications. Let us consider again the medical diagnosis
problem. We note that, if a patient who does not have cancer is incorrectly diagnosed
as having cancer, the consequences may be some patient distress plus the need for
further investigations. Conversely, if a patient with cancer is diagnosed as healthy,
the result may be premature death due to lack of treatment. Thus the consequences
of these two types of mistake can be dramatically different. It would clearly be better
to make fewer mistakes of the second kind, even if this was at the expense of making
more mistakes of the first kind.

We can formalize such issues through the introduction of a loss function, also
called a cost function, which is a single, overall measure of loss incurred in taking
any of the available decisions or actions. Our goal is then to minimize the total loss
incurred. Note that some authors consider instead a utility function, whose value
they aim to maximize. These are equivalent concepts if we take the utility to be
simply the negative of the loss, and throughout this text we shall use the loss function
convention. Suppose that, for a new value of x, the true class is Ck and that we assign
x to class Cj (where j may or may not be equal to k). In so doing, we incur some
level of loss that we denote by Lkj , which we can view as the k, j element of a loss
matrix. For instance, in our cancer example, we might have a loss matrix of the form
shown in Figure 1.25. This particular loss matrix says that there is no loss incurred
if the correct decision is made, there is a loss of 1 if a healthy patient is diagnosed as
having cancer, whereas there is a loss of 1000 if a patient having cancer is diagnosed
as healthy.

The optimal solution is the one which minimizes the loss function. However,
the loss function depends on the true class, which is unknown. For a given input
vector x, our uncertainty in the true class is expressed through the joint probability
distribution p(x, Ck) and so we seek instead to minimize the average loss, where the
average is computed with respect to this distribution, which is given by

E[L] =
∑

k

∑
j

∫
Rj

Lkjp(x, Ck) dx. (1.80)

Each x can be assigned independently to one of the decision regions Rj . Our goal
is to choose the regions Rj in order to minimize the expected loss (1.80), which
implies that for each x we should minimize

∑
k Lkjp(x, Ck). As before, we can use

the product rule p(x, Ck) = p(Ck|x)p(x) to eliminate the common factor of p(x).
Thus the decision rule that minimizes the expected loss is the one that assigns each



42 1. INTRODUCTION

Figure 1.26 Illustration of the reject option. Inputs
x such that the larger of the two poste-
rior probabilities is less than or equal to
some threshold θ will be rejected.

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region

new x to the class j for which the quantity∑
k

Lkjp(Ck|x) (1.81)

is a minimum. This is clearly trivial to do, once we know the posterior class proba-
bilities p(Ck|x).

1.5.3 The reject option
We have seen that classification errors arise from the regions of input space

where the largest of the posterior probabilities p(Ck|x) is significantly less than unity,
or equivalently where the joint distributions p(x, Ck) have comparable values. These
are the regions where we are relatively uncertain about class membership. In some
applications, it will be appropriate to avoid making decisions on the difficult cases
in anticipation of a lower error rate on those examples for which a classification de-
cision is made. This is known as the reject option. For example, in our hypothetical
medical illustration, it may be appropriate to use an automatic system to classify
those X-ray images for which there is little doubt as to the correct class, while leav-
ing a human expert to classify the more ambiguous cases. We can achieve this by
introducing a threshold θ and rejecting those inputs x for which the largest of the
posterior probabilities p(Ck|x) is less than or equal to θ. This is illustrated for the
case of two classes, and a single continuous input variable x, in Figure 1.26. Note
that setting θ = 1 will ensure that all examples are rejected, whereas if there are K
classes then setting θ < 1/K will ensure that no examples are rejected. Thus the
fraction of examples that get rejected is controlled by the value of θ.

We can easily extend the reject criterion to minimize the expected loss, when
a loss matrix is given, taking account of the loss incurred when a reject decision is
made.Exercise 1.24

1.5.4 Inference and decision
We have broken the classification problem down into two separate stages, the

inference stage in which we use training data to learn a model for p(Ck|x), and the
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subsequent decision stage in which we use these posterior probabilities to make op-
timal class assignments. An alternative possibility would be to solve both problems
together and simply learn a function that maps inputs x directly into decisions. Such
a function is called a discriminant function.

In fact, we can identify three distinct approaches to solving decision problems,
all of which have been used in practical applications. These are given, in decreasing
order of complexity, by:

(a) First solve the inference problem of determining the class-conditional densities
p(x|Ck) for each class Ck individually. Also separately infer the prior class
probabilities p(Ck). Then use Bayes’ theorem in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(1.82)

to find the posterior class probabilities p(Ck|x). As usual, the denominator
in Bayes’ theorem can be found in terms of the quantities appearing in the
numerator, because

p(x) =
∑

k

p(x|Ck)p(Ck). (1.83)

Equivalently, we can model the joint distribution p(x, Ck) directly and then
normalize to obtain the posterior probabilities. Having found the posterior
probabilities, we use decision theory to determine class membership for each
new input x. Approaches that explicitly or implicitly model the distribution of
inputs as well as outputs are known as generative models, because by sampling
from them it is possible to generate synthetic data points in the input space.

(b) First solve the inference problem of determining the posterior class probabilities
p(Ck|x), and then subsequently use decision theory to assign each new x to
one of the classes. Approaches that model the posterior probabilities directly
are called discriminative models.

(c) Find a function f(x), called a discriminant function, which maps each input x
directly onto a class label. For instance, in the case of two-class problems,
f(·) might be binary valued and such that f = 0 represents class C1 and f = 1
represents class C2. In this case, probabilities play no role.

Let us consider the relative merits of these three alternatives. Approach (a) is the
most demanding because it involves finding the joint distribution over both x and
Ck. For many applications, x will have high dimensionality, and consequently we
may need a large training set in order to be able to determine the class-conditional
densities to reasonable accuracy. Note that the class priors p(Ck) can often be esti-
mated simply from the fractions of the training set data points in each of the classes.
One advantage of approach (a), however, is that it also allows the marginal density
of data p(x) to be determined from (1.83). This can be useful for detecting new data
points that have low probability under the model and for which the predictions may
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Figure 1.27 Example of the class-conditional densities for two classes having a single input variable x (left
plot) together with the corresponding posterior probabilities (right plot). Note that the left-hand mode of the
class-conditional density p(x|C1), shown in blue on the left plot, has no effect on the posterior probabilities. The
vertical green line in the right plot shows the decision boundary in x that gives the minimum misclassification
rate.

be of low accuracy, which is known as outlier detection or novelty detection (Bishop,
1994; Tarassenko, 1995).

However, if we only wish to make classification decisions, then it can be waste-
ful of computational resources, and excessively demanding of data, to find the joint
distribution p(x, Ck) when in fact we only really need the posterior probabilities
p(Ck|x), which can be obtained directly through approach (b). Indeed, the class-
conditional densities may contain a lot of structure that has little effect on the pos-
terior probabilities, as illustrated in Figure 1.27. There has been much interest in
exploring the relative merits of generative and discriminative approaches to machine
learning, and in finding ways to combine them (Jebara, 2004; Lasserre et al., 2006).

An even simpler approach is (c) in which we use the training data to find a
discriminant function f(x) that maps each x directly onto a class label, thereby
combining the inference and decision stages into a single learning problem. In the
example of Figure 1.27, this would correspond to finding the value of x shown by
the vertical green line, because this is the decision boundary giving the minimum
probability of misclassification.

With option (c), however, we no longer have access to the posterior probabilities
p(Ck|x). There are many powerful reasons for wanting to compute the posterior
probabilities, even if we subsequently use them to make decisions. These include:

Minimizing risk. Consider a problem in which the elements of the loss matrix are
subjected to revision from time to time (such as might occur in a financial
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application). If we know the posterior probabilities, we can trivially revise the
minimum risk decision criterion by modifying (1.81) appropriately. If we have
only a discriminant function, then any change to the loss matrix would require
that we return to the training data and solve the classification problem afresh.

Reject option. Posterior probabilities allow us to determine a rejection criterion that
will minimize the misclassification rate, or more generally the expected loss,
for a given fraction of rejected data points.

Compensating for class priors. Consider our medical X-ray problem again, and
suppose that we have collected a large number of X-ray images from the gen-
eral population for use as training data in order to build an automated screening
system. Because cancer is rare amongst the general population, we might find
that, say, only 1 in every 1,000 examples corresponds to the presence of can-
cer. If we used such a data set to train an adaptive model, we could run into
severe difficulties due to the small proportion of the cancer class. For instance,
a classifier that assigned every point to the normal class would already achieve
99.9% accuracy and it would be difficult to avoid this trivial solution. Also,
even a large data set will contain very few examples of X-ray images corre-
sponding to cancer, and so the learning algorithm will not be exposed to a
broad range of examples of such images and hence is not likely to generalize
well. A balanced data set in which we have selected equal numbers of exam-
ples from each of the classes would allow us to find a more accurate model.
However, we then have to compensate for the effects of our modifications to
the training data. Suppose we have used such a modified data set and found
models for the posterior probabilities. From Bayes’ theorem (1.82), we see that
the posterior probabilities are proportional to the prior probabilities, which we
can interpret as the fractions of points in each class. We can therefore simply
take the posterior probabilities obtained from our artificially balanced data set
and first divide by the class fractions in that data set and then multiply by the
class fractions in the population to which we wish to apply the model. Finally,
we need to normalize to ensure that the new posterior probabilities sum to one.
Note that this procedure cannot be applied if we have learned a discriminant
function directly instead of determining posterior probabilities.

Combining models. For complex applications, we may wish to break the problem
into a number of smaller subproblems each of which can be tackled by a sep-
arate module. For example, in our hypothetical medical diagnosis problem,
we may have information available from, say, blood tests as well as X-ray im-
ages. Rather than combine all of this heterogeneous information into one huge
input space, it may be more effective to build one system to interpret the X-
ray images and a different one to interpret the blood data. As long as each of
the two models gives posterior probabilities for the classes, we can combine
the outputs systematically using the rules of probability. One simple way to
do this is to assume that, for each class separately, the distributions of inputs
for the X-ray images, denoted by xI, and the blood data, denoted by xB, are
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independent, so that

p(xI,xB|Ck) = p(xI|Ck)p(xB|Ck). (1.84)

This is an example of conditional independence property, because the indepen-Section 8.2
dence holds when the distribution is conditioned on the class Ck. The posterior
probability, given both the X-ray and blood data, is then given by

p(Ck|xI,xB) ∝ p(xI,xB|Ck)p(Ck)
∝ p(xI|Ck)p(xB|Ck)p(Ck)

∝ p(Ck|xI)p(Ck|xB)
p(Ck)

(1.85)

Thus we need the class prior probabilities p(Ck), which we can easily estimate
from the fractions of data points in each class, and then we need to normalize
the resulting posterior probabilities so they sum to one. The particular condi-
tional independence assumption (1.84) is an example of the naive Bayes model.Section 8.2.2
Note that the joint marginal distribution p(xI,xB) will typically not factorize
under this model. We shall see in later chapters how to construct models for
combining data that do not require the conditional independence assumption
(1.84).

1.5.5 Loss functions for regression
So far, we have discussed decision theory in the context of classification prob-

lems. We now turn to the case of regression problems, such as the curve fitting
example discussed earlier. The decision stage consists of choosing a specific esti-Section 1.1
mate y(x) of the value of t for each input x. Suppose that in doing so, we incur a
loss L(t, y(x)). The average, or expected, loss is then given by

E[L] =
∫∫

L(t, y(x))p(x, t) dxdt. (1.86)

A common choice of loss function in regression problems is the squared loss given
by L(t, y(x)) = {y(x) − t}2. In this case, the expected loss can be written

E[L] =
∫∫

{y(x) − t}2p(x, t) dxdt. (1.87)

Our goal is to choose y(x) so as to minimize E[L]. If we assume a completely
flexible function y(x), we can do this formally using the calculus of variations toAppendix D
give

δE[L]
δy(x)

= 2
∫

{y(x) − t}p(x, t) dt = 0. (1.88)

Solving for y(x), and using the sum and product rules of probability, we obtain

y(x) =

∫
tp(x, t) dt

p(x)
=
∫

tp(t|x) dt = Et[t|x] (1.89)
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Figure 1.28 The regression function y(x),
which minimizes the expected
squared loss, is given by the
mean of the conditional distri-
bution p(t|x).

t

xx0

y(x0)

y(x)

p(t|x0)

which is the conditional average of t conditioned on x and is known as the regression
function. This result is illustrated in Figure 1.28. It can readily be extended to mul-
tiple target variables represented by the vector t, in which case the optimal solution
is the conditional average y(x) = Et[t|x].Exercise 1.25

We can also derive this result in a slightly different way, which will also shed
light on the nature of the regression problem. Armed with the knowledge that the
optimal solution is the conditional expectation, we can expand the square term as
follows

{y(x) − t}2 = {y(x) − E[t|x] + E[t|x] − t}2

= {y(x) − E[t|x]}2 + 2{y(x) − E[t|x]}{E[t|x] − t} + {E[t|x] − t}2

where, to keep the notation uncluttered, we use E[t|x] to denote Et[t|x]. Substituting
into the loss function and performing the integral over t, we see that the cross-term
vanishes and we obtain an expression for the loss function in the form

E[L] =
∫

{y(x) − E[t|x]}2
p(x) dx +

∫
{E[t|x] − t}2p(x) dx. (1.90)

The function y(x) we seek to determine enters only in the first term, which will be
minimized when y(x) is equal to E[t|x], in which case this term will vanish. This
is simply the result that we derived previously and that shows that the optimal least
squares predictor is given by the conditional mean. The second term is the variance
of the distribution of t, averaged over x. It represents the intrinsic variability of
the target data and can be regarded as noise. Because it is independent of y(x), it
represents the irreducible minimum value of the loss function.

As with the classification problem, we can either determine the appropriate prob-
abilities and then use these to make optimal decisions, or we can build models that
make decisions directly. Indeed, we can identify three distinct approaches to solving
regression problems given, in order of decreasing complexity, by:

(a) First solve the inference problem of determining the joint density p(x, t). Then
normalize to find the conditional density p(t|x), and finally marginalize to find
the conditional mean given by (1.89).
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(b) First solve the inference problem of determining the conditional density p(t|x),
and then subsequently marginalize to find the conditional mean given by (1.89).

(c) Find a regression function y(x) directly from the training data.

The relative merits of these three approaches follow the same lines as for classifica-
tion problems above.

The squared loss is not the only possible choice of loss function for regression.
Indeed, there are situations in which squared loss can lead to very poor results and
where we need to develop more sophisticated approaches. An important example
concerns situations in which the conditional distribution p(t|x) is multimodal, as
often arises in the solution of inverse problems. Here we consider briefly one simpleSection 5.6
generalization of the squared loss, called the Minkowski loss, whose expectation is
given by

E[Lq] =
∫∫

|y(x) − t|qp(x, t) dxdt (1.91)

which reduces to the expected squared loss for q = 2. The function |y − t|q is
plotted against y − t for various values of q in Figure 1.29. The minimum of E[Lq]
is given by the conditional mean for q = 2, the conditional median for q = 1, and
the conditional mode for q → 0.Exercise 1.27

1.6. Information Theory

In this chapter, we have discussed a variety of concepts from probability theory and
decision theory that will form the foundations for much of the subsequent discussion
in this book. We close this chapter by introducing some additional concepts from
the field of information theory, which will also prove useful in our development of
pattern recognition and machine learning techniques. Again, we shall focus only on
the key concepts, and we refer the reader elsewhere for more detailed discussions
(Viterbi and Omura, 1979; Cover and Thomas, 1991; MacKay, 2003) .

We begin by considering a discrete random variable x and we ask how much
information is received when we observe a specific value for this variable. The
amount of information can be viewed as the ‘degree of surprise’ on learning the
value of x. If we are told that a highly improbable event has just occurred, we will
have received more information than if we were told that some very likely event
has just occurred, and if we knew that the event was certain to happen we would
receive no information. Our measure of information content will therefore depend
on the probability distribution p(x), and we therefore look for a quantity h(x) that
is a monotonic function of the probability p(x) and that expresses the information
content. The form of h(·) can be found by noting that if we have two events x
and y that are unrelated, then the information gain from observing both of them
should be the sum of the information gained from each of them separately, so that
h(x, y) = h(x) + h(y). Two unrelated events will be statistically independent and
so p(x, y) = p(x)p(y). From these two relationships, it is easily shown that h(x)
must be given by the logarithm of p(x) and so we haveExercise 1.28
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Figure 1.29 Plots of the quantity Lq = |y − t|q for various values of q.

h(x) = − log2 p(x) (1.92)

where the negative sign ensures that information is positive or zero. Note that low
probability events x correspond to high information content. The choice of basis
for the logarithm is arbitrary, and for the moment we shall adopt the convention
prevalent in information theory of using logarithms to the base of 2. In this case, as
we shall see shortly, the units of h(x) are bits (‘binary digits’).

Now suppose that a sender wishes to transmit the value of a random variable to
a receiver. The average amount of information that they transmit in the process is
obtained by taking the expectation of (1.92) with respect to the distribution p(x) and
is given by

H[x] = −
∑

x

p(x) log2 p(x). (1.93)

This important quantity is called the entropy of the random variable x. Note that
limp→0 p ln p = 0 and so we shall take p(x) ln p(x) = 0 whenever we encounter a
value for x such that p(x) = 0.

So far we have given a rather heuristic motivation for the definition of informa-
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tion (1.92) and the corresponding entropy (1.93). We now show that these definitions
indeed possess useful properties. Consider a random variable x having 8 possible
states, each of which is equally likely. In order to communicate the value of x to
a receiver, we would need to transmit a message of length 3 bits. Notice that the
entropy of this variable is given by

H[x] = −8 × 1
8

log2

1
8

= 3 bits.

Now consider an example (Cover and Thomas, 1991) of a variable having 8 pos-
sible states {a, b, c, d, e, f, g, h} for which the respective probabilities are given by
( 1
2
, 1

4
, 1

8
, 1

16
, 1

64
, 1

64
, 1

64
, 1

64
). The entropy in this case is given by

H[x] = −1
2

log2

1
2
− 1

4
log2

1
4
− 1

8
log2

1
8
− 1

16
log2

1
16

− 4
64

log2

1
64

= 2 bits.

We see that the nonuniform distribution has a smaller entropy than the uniform one,
and we shall gain some insight into this shortly when we discuss the interpretation of
entropy in terms of disorder. For the moment, let us consider how we would transmit
the identity of the variable’s state to a receiver. We could do this, as before, using
a 3-bit number. However, we can take advantage of the nonuniform distribution by
using shorter codes for the more probable events, at the expense of longer codes for
the less probable events, in the hope of getting a shorter average code length. This
can be done by representing the states {a, b, c, d, e, f, g, h} using, for instance, the
following set of code strings: 0, 10, 110, 1110, 111100, 111101, 111110, 111111.
The average length of the code that has to be transmitted is then

average code length =
1
2
× 1 +

1
4
× 2 +

1
8
× 3 +

1
16

× 4 + 4 × 1
64

× 6 = 2 bits

which again is the same as the entropy of the random variable. Note that shorter code
strings cannot be used because it must be possible to disambiguate a concatenation
of such strings into its component parts. For instance, 11001110 decodes uniquely
into the state sequence c, a, d.

This relation between entropy and shortest coding length is a general one. The
noiseless coding theorem (Shannon, 1948) states that the entropy is a lower bound
on the number of bits needed to transmit the state of a random variable.

From now on, we shall switch to the use of natural logarithms in defining en-
tropy, as this will provide a more convenient link with ideas elsewhere in this book.
In this case, the entropy is measured in units of ‘nats’ instead of bits, which differ
simply by a factor of ln 2.

We have introduced the concept of entropy in terms of the average amount of
information needed to specify the state of a random variable. In fact, the concept of
entropy has much earlier origins in physics where it was introduced in the context
of equilibrium thermodynamics and later given a deeper interpretation as a measure
of disorder through developments in statistical mechanics. We can understand this
alternative view of entropy by considering a set of N identical objects that are to be
divided amongst a set of bins, such that there are ni objects in the ith bin. Consider
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the number of different ways of allocating the objects to the bins. There are N
ways to choose the first object, (N − 1) ways to choose the second object, and
so on, leading to a total of N ! ways to allocate all N objects to the bins, where N !
(pronounced ‘factorial N ’) denotes the product N ×(N −1)×· · ·×2×1. However,
we don’t wish to distinguish between rearrangements of objects within each bin. In
the ith bin there are ni! ways of reordering the objects, and so the total number of
ways of allocating the N objects to the bins is given by

W =
N !∏
i ni!

(1.94)

which is called the multiplicity. The entropy is then defined as the logarithm of the
multiplicity scaled by an appropriate constant

H =
1
N

lnW =
1
N

lnN ! − 1
N

∑
i

lnni!. (1.95)

We now consider the limit N → ∞, in which the fractions ni/N are held fixed, and
apply Stirling’s approximation

lnN ! � N lnN − N (1.96)

which gives

H = − lim
N→∞

∑
i

(ni

N

)
ln
(ni

N

)
= −

∑
i

pi ln pi (1.97)

where we have used
∑

i ni = N . Here pi = limN→∞(ni/N) is the probability
of an object being assigned to the ith bin. In physics terminology, the specific ar-
rangements of objects in the bins is called a microstate, and the overall distribution
of occupation numbers, expressed through the ratios ni/N , is called a macrostate.
The multiplicity W is also known as the weight of the macrostate.

We can interpret the bins as the states xi of a discrete random variable X , where
p(X = xi) = pi. The entropy of the random variable X is then

H[p] = −
∑

i

p(xi) ln p(xi). (1.98)

Distributions p(xi) that are sharply peaked around a few values will have a relatively
low entropy, whereas those that are spread more evenly across many values will
have higher entropy, as illustrated in Figure 1.30. Because 0 � pi � 1, the entropy
is nonnegative, and it will equal its minimum value of 0 when one of the pi =
1 and all other pj �=i = 0. The maximum entropy configuration can be found by
maximizing H using a Lagrange multiplier to enforce the normalization constraintAppendix E
on the probabilities. Thus we maximize

H̃ = −
∑

i

p(xi) ln p(xi) + λ

(∑
i

p(xi) − 1

)
(1.99)
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Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy
H for the broader distribution. The largest entropy would arise from a uniform distribution that would give H =
− ln(1/30) = 3.40.

from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
is then H = lnM . This result can also be derived from Jensen’s inequality (to be
discussed shortly). To verify that the stationary point is indeed a maximum, we canExercise 1.29
evaluate the second derivative of the entropy, which gives

∂H̃
∂p(xi)∂p(xj)

= −Iij
1
pi

(1.100)

where Iij are the elements of the identity matrix.
We can extend the definition of entropy to include distributions p(x) over con-

tinuous variables x as follows. First divide x into bins of width ∆. Then, assuming
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each
such bin, there must exist a value xi such that∫ (i+1)∆

i∆

p(x) dx = p(xi)∆. (1.101)

We can now quantize the continuous variable x by assigning any value x to the value
xi whenever x falls in the ith bin. The probability of observing the value xi is then
p(xi)∆. This gives a discrete distribution for which the entropy takes the form

H∆ = −
∑

i

p(xi)∆ ln (p(xi)∆) = −
∑

i

p(xi)∆ ln p(xi) − ln ∆ (1.102)

where we have used
∑

i p(xi)∆ = 1, which follows from (1.101). We now omit
the second term − ln ∆ on the right-hand side of (1.102) and then consider the limit
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∆ → 0. The first term on the right-hand side of (1.102) will approach the integral of
p(x) ln p(x) in this limit so that

lim
∆→0

{∑
i

p(xi)∆ ln p(xi)

}
= −

∫
p(x) ln p(x) dx (1.103)

where the quantity on the right-hand side is called the differential entropy. We see
that the discrete and continuous forms of the entropy differ by a quantity ln ∆, which
diverges in the limit ∆ → 0. This reflects the fact that to specify a continuous
variable very precisely requires a large number of bits. For a density defined over
multiple continuous variables, denoted collectively by the vector x, the differential
entropy is given by

H[x] = −
∫

p(x) ln p(x) dx. (1.104)

In the case of discrete distributions, we saw that the maximum entropy con-
figuration corresponded to an equal distribution of probabilities across the possible
states of the variable. Let us now consider the maximum entropy configuration for
a continuous variable. In order for this maximum to be well defined, it will be nec-
essary to constrain the first and second moments of p(x) as well as preserving the
normalization constraint. We therefore maximize the differential entropy with the

Ludwig Boltzmann
1844–1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
classical thermodynamics where it

quantifies the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = k ln W in which W represents the
number of possible microstates in a macrostate, and
k � 1.38 × 10−23 (in units of Joules per Kelvin) is
known as Boltzmann’s constant. Boltzmann’s ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn’t fully appreciate Boltzmann’s argu-
ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs. The continued attacks on his work
lead to bouts of depression, and eventually he com-
mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = k ln W is carved on
Boltzmann’s tombstone.
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three constraints ∫ ∞

−∞
p(x) dx = 1 (1.105)∫ ∞

−∞
xp(x) dx = µ (1.106)∫ ∞

−∞
(x − µ)2p(x) dx = σ2. (1.107)

The constrained maximization can be performed using Lagrange multipliers so thatAppendix E
we maximize the following functional with respect to p(x)

−
∫ ∞

−∞
p(x) ln p(x) dx + λ1

(∫ ∞

−∞
p(x) dx − 1

)
+λ2

(∫ ∞

−∞
xp(x) dx − µ

)
+ λ3

(∫ ∞

−∞
(x − µ)2p(x) dx − σ2

)
.

Using the calculus of variations, we set the derivative of this functional to zero givingAppendix D

p(x) = exp
{−1 + λ1 + λ2x + λ3(x − µ)2

}
. (1.108)

The Lagrange multipliers can be found by back substitution of this result into the
three constraint equations, leading finally to the resultExercise 1.34

p(x) =
1

(2πσ2)1/2
exp

{
−(x − µ)2

2σ2

}
(1.109)

and so the distribution that maximizes the differential entropy is the Gaussian. Note
that we did not constrain the distribution to be nonnegative when we maximized the
entropy. However, because the resulting distribution is indeed nonnegative, we see
with hindsight that such a constraint is not necessary.

If we evaluate the differential entropy of the Gaussian, we obtainExercise 1.35

H[x] =
1
2
{
1 + ln(2πσ2)

}
. (1.110)

Thus we see again that the entropy increases as the distribution becomes broader,
i.e., as σ2 increases. This result also shows that the differential entropy, unlike the
discrete entropy, can be negative, because H(x) < 0 in (1.110) for σ2 < 1/(2πe).

Suppose we have a joint distribution p(x,y) from which we draw pairs of values
of x and y. If a value of x is already known, then the additional information needed
to specify the corresponding value of y is given by − ln p(y|x). Thus the average
additional information needed to specify y can be written as

H[y|x] = −
∫∫

p(y,x) ln p(y|x) dy dx (1.111)
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which is called the conditional entropy of y given x. It is easily seen, using the
product rule, that the conditional entropy satisfies the relationExercise 1.37

H[x,y] = H[y|x] + H[x] (1.112)

where H[x,y] is the differential entropy of p(x,y) and H[x] is the differential en-
tropy of the marginal distribution p(x). Thus the information needed to describe x
and y is given by the sum of the information needed to describe x alone plus the
additional information required to specify y given x.

1.6.1 Relative entropy and mutual information
So far in this section, we have introduced a number of concepts from information

theory, including the key notion of entropy. We now start to relate these ideas to
pattern recognition. Consider some unknown distribution p(x), and suppose that
we have modelled this using an approximating distribution q(x). If we use q(x) to
construct a coding scheme for the purpose of transmitting values of x to a receiver,
then the average additional amount of information (in nats) required to specify the
value of x (assuming we choose an efficient coding scheme) as a result of using q(x)
instead of the true distribution p(x) is given by

KL(p‖q) = −
∫

p(x) ln q(x) dx −
(
−
∫

p(x) ln p(x) dx
)

= −
∫

p(x) ln
{

q(x)
p(x)

}
dx. (1.113)

This is known as the relative entropy or Kullback-Leibler divergence, or KL diver-
gence (Kullback and Leibler, 1951), between the distributions p(x) and q(x). Note
that it is not a symmetrical quantity, that is to say KL(p‖q) �≡ KL(q‖p).

We now show that the Kullback-Leibler divergence satisfies KL(p‖q) � 0 with
equality if, and only if, p(x) = q(x). To do this we first introduce the concept of
convex functions. A function f(x) is said to be convex if it has the property that
every chord lies on or above the function, as shown in Figure 1.31. Any value of x
in the interval from x = a to x = b can be written in the form λa + (1 − λ)b where
0 � λ � 1. The corresponding point on the chord is given by λf(a) + (1 − λ)f(b),

Claude Shannon
1916–2001

After graduating from Michigan and
MIT, Shannon joined the AT&T Bell
Telephone laboratories in 1941. His
paper ‘A Mathematical Theory of
Communication’ published in the
Bell System Technical Journal in

1948 laid the foundations for modern information the-

ory. This paper introduced the word ‘bit’, and his con-
cept that information could be sent as a stream of 1s
and 0s paved the way for the communications revo-
lution. It is said that von Neumann recommended to
Shannon that he use the term entropy, not only be-
cause of its similarity to the quantity used in physics,
but also because “nobody knows what entropy really
is, so in any discussion you will always have an advan-
tage”.
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Figure 1.31 A convex function f(x) is one for which ev-
ery chord (shown in blue) lies on or above
the function (shown in red).
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and the corresponding value of the function is f (λa + (1 − λ)b). Convexity then
implies

f(λa + (1 − λ)b) � λf(a) + (1 − λ)f(b). (1.114)

This is equivalent to the requirement that the second derivative of the function be
everywhere positive. Examples of convex functions are x ln x (for x > 0) and x2. AExercise 1.36
function is called strictly convex if the equality is satisfied only for λ = 0 and λ = 1.
If a function has the opposite property, namely that every chord lies on or below the
function, it is called concave, with a corresponding definition for strictly concave. If
a function f(x) is convex, then −f(x) will be concave.

Using the technique of proof by induction, we can show from (1.114) that aExercise 1.38
convex function f(x) satisfies

f

(
M∑
i=1

λixi

)
�

M∑
i=1

λif(xi) (1.115)

where λi � 0 and
∑

i λi = 1, for any set of points {xi}. The result (1.115) is
known as Jensen’s inequality. If we interpret the λi as the probability distribution
over a discrete variable x taking the values {xi}, then (1.115) can be written

f (E[x]) � E[f(x)] (1.116)

where E[·] denotes the expectation. For continuous variables, Jensen’s inequality
takes the form

f

(∫
xp(x) dx

)
�
∫

f(x)p(x) dx. (1.117)

We can apply Jensen’s inequality in the form (1.117) to the Kullback-Leibler
divergence (1.113) to give

KL(p‖q) = −
∫

p(x) ln
{

q(x)
p(x)

}
dx � − ln

∫
q(x) dx = 0 (1.118)
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where we have used the fact that − lnx is a convex function, together with the nor-
malization condition

∫
q(x) dx = 1. In fact, − lnx is a strictly convex function,

so the equality will hold if, and only if, q(x) = p(x) for all x. Thus we can in-
terpret the Kullback-Leibler divergence as a measure of the dissimilarity of the two
distributions p(x) and q(x).

We see that there is an intimate relationship between data compression and den-
sity estimation (i.e., the problem of modelling an unknown probability distribution)
because the most efficient compression is achieved when we know the true distri-
bution. If we use a distribution that is different from the true one, then we must
necessarily have a less efficient coding, and on average the additional information
that must be transmitted is (at least) equal to the Kullback-Leibler divergence be-
tween the two distributions.

Suppose that data is being generated from an unknown distribution p(x) that we
wish to model. We can try to approximate this distribution using some parametric
distribution q(x|θ), governed by a set of adjustable parameters θ, for example a
multivariate Gaussian. One way to determine θ is to minimize the Kullback-Leibler
divergence between p(x) and q(x|θ) with respect to θ. We cannot do this directly
because we don’t know p(x). Suppose, however, that we have observed a finite set
of training points xn, for n = 1, . . . , N , drawn from p(x). Then the expectation
with respect to p(x) can be approximated by a finite sum over these points, using
(1.35), so that

KL(p‖q) �
N∑

n=1

{− ln q(xn|θ) + ln p(xn)} . (1.119)

The second term on the right-hand side of (1.119) is independent of θ, and the first
term is the negative log likelihood function for θ under the distribution q(x|θ) eval-
uated using the training set. Thus we see that minimizing this Kullback-Leibler
divergence is equivalent to maximizing the likelihood function.

Now consider the joint distribution between two sets of variables x and y given
by p(x,y). If the sets of variables are independent, then their joint distribution will
factorize into the product of their marginals p(x,y) = p(x)p(y). If the variables are
not independent, we can gain some idea of whether they are ‘close’ to being indepen-
dent by considering the Kullback-Leibler divergence between the joint distribution
and the product of the marginals, given by

I[x,y] ≡ KL(p(x,y)‖p(x)p(y))

= −
∫∫

p(x,y) ln
(

p(x)p(y)
p(x,y)

)
dxdy (1.120)

which is called the mutual information between the variables x and y. From the
properties of the Kullback-Leibler divergence, we see that I(x,y) � 0 with equal-
ity if, and only if, x and y are independent. Using the sum and product rules of
probability, we see that the mutual information is related to the conditional entropy
throughExercise 1.41

I[x,y] = H[x] − H[x|y] = H[y] − H[y|x]. (1.121)
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Thus we can view the mutual information as the reduction in the uncertainty about x
by virtue of being told the value of y (or vice versa). From a Bayesian perspective,
we can view p(x) as the prior distribution for x and p(x|y) as the posterior distribu-
tion after we have observed new data y. The mutual information therefore represents
the reduction in uncertainty about x as a consequence of the new observation y.

Exercises
1.1 (�) www Consider the sum-of-squares error function given by (1.2) in which

the function y(x,w) is given by the polynomial (1.1). Show that the coefficients
w = {wi} that minimize this error function are given by the solution to the following
set of linear equations

M∑
j=0

Aijwj = Ti (1.122)

where

Aij =
N∑

n=1

(xn)i+j , Ti =
N∑

n=1

(xn)itn. (1.123)

Here a suffix i or j denotes the index of a component, whereas (x)i denotes x raised
to the power of i.

1.2 (�) Write down the set of coupled linear equations, analogous to (1.122), satisfied
by the coefficients wi which minimize the regularized sum-of-squares error function
given by (1.4).

1.3 (� �) Suppose that we have three coloured boxes r (red), b (blue), and g (green).
Box r contains 3 apples, 4 oranges, and 3 limes, box b contains 1 apple, 1 orange,
and 0 limes, and box g contains 3 apples, 3 oranges, and 4 limes. If a box is chosen
at random with probabilities p(r) = 0.2, p(b) = 0.2, p(g) = 0.6, and a piece of
fruit is removed from the box (with equal probability of selecting any of the items in
the box), then what is the probability of selecting an apple? If we observe that the
selected fruit is in fact an orange, what is the probability that it came from the green
box?

1.4 (� �) www Consider a probability density px(x) defined over a continuous vari-
able x, and suppose that we make a nonlinear change of variable using x = g(y),
so that the density transforms according to (1.27). By differentiating (1.27), show
that the location ŷ of the maximum of the density in y is not in general related to the
location x̂ of the maximum of the density over x by the simple functional relation
x̂ = g(ŷ) as a consequence of the Jacobian factor. This shows that the maximum
of a probability density (in contrast to a simple function) is dependent on the choice
of variable. Verify that, in the case of a linear transformation, the location of the
maximum transforms in the same way as the variable itself.

1.5 (�) Using the definition (1.38) show that var[f(x)] satisfies (1.39).
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1.6 (�) Show that if two variables x and y are independent, then their covariance is
zero.

1.7 (� �) www In this exercise, we prove the normalization condition (1.48) for the
univariate Gaussian. To do this consider, the integral

I =
∫ ∞

−∞
exp

(
− 1

2σ2
x2

)
dx (1.124)

which we can evaluate by first writing its square in the form

I2 =
∫ ∞

−∞

∫ ∞

−∞
exp

(
− 1

2σ2
x2 − 1

2σ2
y2

)
dxdy. (1.125)

Now make the transformation from Cartesian coordinates (x, y) to polar coordinates
(r, θ) and then substitute u = r2. Show that, by performing the integrals over θ and
u, and then taking the square root of both sides, we obtain

I =
(
2πσ2

)1/2
. (1.126)

Finally, use this result to show that the Gaussian distribution N (x|µ, σ2) is normal-
ized.

1.8 (� �) www By using a change of variables, verify that the univariate Gaussian
distribution given by (1.46) satisfies (1.49). Next, by differentiating both sides of the
normalization condition ∫ ∞

−∞
N (

x|µ, σ2
)

dx = 1 (1.127)

with respect to σ2, verify that the Gaussian satisfies (1.50). Finally, show that (1.51)
holds.

1.9 (�) www Show that the mode (i.e. the maximum) of the Gaussian distribution
(1.46) is given by µ. Similarly, show that the mode of the multivariate Gaussian
(1.52) is given by µ.

1.10 (�) www Suppose that the two variables x and z are statistically independent.
Show that the mean and variance of their sum satisfies

E[x + z] = E[x] + E[z] (1.128)

var[x + z] = var[x] + var[z]. (1.129)

1.11 (�) By setting the derivatives of the log likelihood function (1.54) with respect to µ
and σ2 equal to zero, verify the results (1.55) and (1.56).
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1.12 (� �) www Using the results (1.49) and (1.50), show that

E[xnxm] = µ2 + Inmσ2 (1.130)

where xn and xm denote data points sampled from a Gaussian distribution with mean
µ and variance σ2, and Inm satisfies Inm = 1 if n = m and Inm = 0 otherwise.
Hence prove the results (1.57) and (1.58).

1.13 (�) Suppose that the variance of a Gaussian is estimated using the result (1.56) but
with the maximum likelihood estimate µML replaced with the true value µ of the
mean. Show that this estimator has the property that its expectation is given by the
true variance σ2.

1.14 (� �) Show that an arbitrary square matrix with elements wij can be written in
the form wij = wS

ij + wA
ij where wS

ij and wA
ij are symmetric and anti-symmetric

matrices, respectively, satisfying wS
ij = wS

ji and wA
ij = −wA

ji for all i and j. Now
consider the second order term in a higher order polynomial in D dimensions, given
by

D∑
i=1

D∑
j=1

wijxixj . (1.131)

Show that
D∑

i=1

D∑
j=1

wijxixj =
D∑

i=1

D∑
j=1

wS
ijxixj (1.132)

so that the contribution from the anti-symmetric matrix vanishes. We therefore see
that, without loss of generality, the matrix of coefficients wij can be chosen to be
symmetric, and so not all of the D2 elements of this matrix can be chosen indepen-
dently. Show that the number of independent parameters in the matrix wS

ij is given
by D(D + 1)/2.

1.15 (� � �) www In this exercise and the next, we explore how the number of indepen-
dent parameters in a polynomial grows with the order M of the polynomial and with
the dimensionality D of the input space. We start by writing down the M th order
term for a polynomial in D dimensions in the form

D∑
i1=1

D∑
i2=1

· · ·
D∑

iM=1

wi1i2···iM
xi1xi2 · · ·xiM

. (1.133)

The coefficients wi1i2···iM
comprise DM elements, but the number of independent

parameters is significantly fewer due to the many interchange symmetries of the
factor xi1xi2 · · ·xiM

. Begin by showing that the redundancy in the coefficients can
be removed by rewriting this M th order term in the form

D∑
i1=1

i1∑
i2=1

· · ·
iM−1∑
iM=1

w̃i1i2···iM
xi1xi2 · · ·xiM

. (1.134)
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Note that the precise relationship between the w̃ coefficients and w coefficients need
not be made explicit. Use this result to show that the number of independent param-
eters n(D, M), which appear at order M , satisfies the following recursion relation

n(D, M) =
D∑

i=1

n(i, M − 1). (1.135)

Next use proof by induction to show that the following result holds

D∑
i=1

(i + M − 2)!
(i − 1)! (M − 1)!

=
(D + M − 1)!
(D − 1)! M !

(1.136)

which can be done by first proving the result for D = 1 and arbitrary M by making
use of the result 0! = 1, then assuming it is correct for dimension D and verifying
that it is correct for dimension D + 1. Finally, use the two previous results, together
with proof by induction, to show

n(D, M) =
(D + M − 1)!
(D − 1)! M !

. (1.137)

To do this, first show that the result is true for M = 2, and any value of D � 1,
by comparison with the result of Exercise 1.14. Then make use of (1.135), together
with (1.136), to show that, if the result holds at order M − 1, then it will also hold at
order M

1.16 (� � �) In Exercise 1.15, we proved the result (1.135) for the number of independent
parameters in the M th order term of a D-dimensional polynomial. We now find an
expression for the total number N(D, M) of independent parameters in all of the
terms up to and including the M6th order. First show that N(D, M) satisfies

N(D, M) =
M∑

m=0

n(D, m) (1.138)

where n(D, m) is the number of independent parameters in the term of order m.
Now make use of the result (1.137), together with proof by induction, to show that

N(d, M) =
(D + M)!

D! M !
. (1.139)

This can be done by first proving that the result holds for M = 0 and arbitrary
D � 1, then assuming that it holds at order M , and hence showing that it holds at
order M + 1. Finally, make use of Stirling’s approximation in the form

n! � nne−n (1.140)

for large n to show that, for D 
 M , the quantity N(D, M) grows like DM ,
and for M 
 D it grows like MD. Consider a cubic (M = 3) polynomial in D
dimensions, and evaluate numerically the total number of independent parameters
for (i) D = 10 and (ii) D = 100, which correspond to typical small-scale and
medium-scale machine learning applications.
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1.17 (� �) www The gamma function is defined by

Γ(x) ≡
∫ ∞

0

ux−1e−u du. (1.141)

Using integration by parts, prove the relation Γ(x + 1) = xΓ(x). Show also that
Γ(1) = 1 and hence that Γ(x + 1) = x! when x is an integer.

1.18 (� �) www We can use the result (1.126) to derive an expression for the surface
area SD, and the volume VD, of a sphere of unit radius in D dimensions. To do this,
consider the following result, which is obtained by transforming from Cartesian to
polar coordinates

D∏
i=1

∫ ∞

−∞
e−x2

i dxi = SD

∫ ∞

0

e−r2
rD−1 dr. (1.142)

Using the definition (1.141) of the Gamma function, together with (1.126), evaluate
both sides of this equation, and hence show that

SD =
2πD/2

Γ(D/2)
. (1.143)

Next, by integrating with respect to radius from 0 to 1, show that the volume of the
unit sphere in D dimensions is given by

VD =
SD

D
. (1.144)

Finally, use the results Γ(1) = 1 and Γ(3/2) =
√

π/2 to show that (1.143) and
(1.144) reduce to the usual expressions for D = 2 and D = 3.

1.19 (� �) Consider a sphere of radius a in D-dimensions together with the concentric
hypercube of side 2a, so that the sphere touches the hypercube at the centres of each
of its sides. By using the results of Exercise 1.18, show that the ratio of the volume
of the sphere to the volume of the cube is given by

volume of sphere
volume of cube

=
πD/2

D2D−1Γ(D/2)
. (1.145)

Now make use of Stirling’s formula in the form

Γ(x + 1) � (2π)1/2e−xxx+1/2 (1.146)

which is valid for x 
 1, to show that, as D → ∞, the ratio (1.145) goes to zero.
Show also that the ratio of the distance from the centre of the hypercube to one of
the corners, divided by the perpendicular distance to one of the sides, is

√
D, which

therefore goes to ∞ as D → ∞. From these results we see that, in a space of high
dimensionality, most of the volume of a cube is concentrated in the large number of
corners, which themselves become very long ‘spikes’!
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1.20 (� �) www In this exercise, we explore the behaviour of the Gaussian distribution
in high-dimensional spaces. Consider a Gaussian distribution in D dimensions given
by

p(x) =
1

(2πσ2)D/2
exp

(
−‖x‖2

2σ2

)
. (1.147)

We wish to find the density with respect to radius in polar coordinates in which the
direction variables have been integrated out. To do this, show that the integral of
the probability density over a thin shell of radius r and thickness ε, where ε � 1, is
given by p(r)ε where

p(r) =
SDrD−1

(2πσ2)D/2
exp

(
− r2

2σ2

)
(1.148)

where SD is the surface area of a unit sphere in D dimensions. Show that the function
p(r) has a single stationary point located, for large D, at r̂ � √

Dσ. By considering
p(r̂ + ε) where ε � r̂, show that for large D,

p(r̂ + ε) = p(r̂) exp
(
− 3ε2

2σ2

)
(1.149)

which shows that r̂ is a maximum of the radial probability density and also that p(r)
decays exponentially away from its maximum at r̂ with length scale σ. We have
already seen that σ � r̂ for large D, and so we see that most of the probability
mass is concentrated in a thin shell at large radius. Finally, show that the probability
density p(x) is larger at the origin than at the radius r̂ by a factor of exp(D/2).
We therefore see that most of the probability mass in a high-dimensional Gaussian
distribution is located at a different radius from the region of high probability density.
This property of distributions in spaces of high dimensionality will have important
consequences when we consider Bayesian inference of model parameters in later
chapters.

1.21 (� �) Consider two nonnegative numbers a and b, and show that, if a � b, then
a � (ab)1/2. Use this result to show that, if the decision regions of a two-class
classification problem are chosen to minimize the probability of misclassification,
this probability will satisfy

p(mistake) �
∫

{p(x, C1)p(x, C2)}1/2 dx. (1.150)

1.22 (�) www Given a loss matrix with elements Lkj , the expected risk is minimized
if, for each x, we choose the class that minimizes (1.81). Verify that, when the
loss matrix is given by Lkj = 1 − Ikj , where Ikj are the elements of the identity
matrix, this reduces to the criterion of choosing the class having the largest posterior
probability. What is the interpretation of this form of loss matrix?

1.23 (�) Derive the criterion for minimizing the expected loss when there is a general
loss matrix and general prior probabilities for the classes.
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1.24 (� �) www Consider a classification problem in which the loss incurred when
an input vector from class Ck is classified as belonging to class Cj is given by the
loss matrix Lkj , and for which the loss incurred in selecting the reject option is λ.
Find the decision criterion that will give the minimum expected loss. Verify that this
reduces to the reject criterion discussed in Section 1.5.3 when the loss matrix is given
by Lkj = 1− Ikj . What is the relationship between λ and the rejection threshold θ?

1.25 (�) www Consider the generalization of the squared loss function (1.87) for a
single target variable t to the case of multiple target variables described by the vector
t given by

E[L(t,y(x))] =
∫∫

‖y(x) − t‖2p(x, t) dxdt. (1.151)

Using the calculus of variations, show that the function y(x) for which this expected
loss is minimized is given by y(x) = Et[t|x]. Show that this result reduces to (1.89)
for the case of a single target variable t.

1.26 (�) By expansion of the square in (1.151), derive a result analogous to (1.90) and
hence show that the function y(x) that minimizes the expected squared loss for the
case of a vector t of target variables is again given by the conditional expectation of
t.

1.27 (� �) www Consider the expected loss for regression problems under the Lq loss
function given by (1.91). Write down the condition that y(x) must satisfy in order
to minimize E[Lq]. Show that, for q = 1, this solution represents the conditional
median, i.e., the function y(x) such that the probability mass for t < y(x) is the
same as for t � y(x). Also show that the minimum expected Lq loss for q → 0 is
given by the conditional mode, i.e., by the function y(x) equal to the value of t that
maximizes p(t|x) for each x.

1.28 (�) In Section 1.6, we introduced the idea of entropy h(x) as the information gained
on observing the value of a random variable x having distribution p(x). We saw
that, for independent variables x and y for which p(x, y) = p(x)p(y), the entropy
functions are additive, so that h(x, y) = h(x) + h(y). In this exercise, we derive the
relation between h and p in the form of a function h(p). First show that h(p2) =
2h(p), and hence by induction that h(pn) = nh(p) where n is a positive integer.
Hence show that h(pn/m) = (n/m)h(p) where m is also a positive integer. This
implies that h(px) = xh(p) where x is a positive rational number, and hence by
continuity when it is a positive real number. Finally, show that this implies h(p)
must take the form h(p) ∝ ln p.

1.29 (�) www Consider an M -state discrete random variable x, and use Jensen’s in-
equality in the form (1.115) to show that the entropy of its distribution p(x) satisfies
H[x] � ln M .

1.30 (� �) Evaluate the Kullback-Leibler divergence (1.113) between two Gaussians
p(x) = N (x|µ, σ2) and q(x) = N (x|m, s2).
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Table 1.3 The joint distribution p(x, y) for two binary variables
x and y used in Exercise 1.39.

y
0 1

x
0 1/3 1/3
1 0 1/3

1.31 (� �) www Consider two variables x and y having joint distribution p(x,y). Show
that the differential entropy of this pair of variables satisfies

H[x,y] � H[x] + H[y] (1.152)

with equality if, and only if, x and y are statistically independent.

1.32 (�) Consider a vector x of continuous variables with distribution p(x) and corre-
sponding entropy H[x]. Suppose that we make a nonsingular linear transformation
of x to obtain a new variable y = Ax. Show that the corresponding entropy is given
by H[y] = H[x] + ln |A| where |A| denotes the determinant of A.

1.33 (� �) Suppose that the conditional entropy H[y|x] between two discrete random
variables x and y is zero. Show that, for all values of x such that p(x) > 0, the
variable y must be a function of x, in other words for each x there is only one value
of y such that p(y|x) �= 0.

1.34 (� �) www Use the calculus of variations to show that the stationary point of the
functional (1.108) is given by (1.108). Then use the constraints (1.105), (1.106),
and (1.107) to eliminate the Lagrange multipliers and hence show that the maximum
entropy solution is given by the Gaussian (1.109).

1.35 (�) www Use the results (1.106) and (1.107) to show that the entropy of the
univariate Gaussian (1.109) is given by (1.110).

1.36 (�) A strictly convex function is defined as one for which every chord lies above
the function. Show that this is equivalent to the condition that the second derivative
of the function be positive.

1.37 (�) Using the definition (1.111) together with the product rule of probability, prove
the result (1.112).

1.38 (� �) www Using proof by induction, show that the inequality (1.114) for convex
functions implies the result (1.115).

1.39 (� � �) Consider two binary variables x and y having the joint distribution given in
Table 1.3.

Evaluate the following quantities

(a) H[x] (c) H[y|x] (e) H[x, y]
(b) H[y] (d) H[x|y] (f) I[x, y].

Draw a diagram to show the relationship between these various quantities.
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1.40 (�) By applying Jensen’s inequality (1.115) with f(x) = lnx, show that the arith-
metic mean of a set of real numbers is never less than their geometrical mean.

1.41 (�) www Using the sum and product rules of probability, show that the mutual
information I(x,y) satisfies the relation (1.121).



2
Probability

Distributions

In Chapter 1, we emphasized the central role played by probability theory in the
solution of pattern recognition problems. We turn now to an exploration of some
particular examples of probability distributions and their properties. As well as be-
ing of great interest in their own right, these distributions can form building blocks
for more complex models and will be used extensively throughout the book. The
distributions introduced in this chapter will also serve another important purpose,
namely to provide us with the opportunity to discuss some key statistical concepts,
such as Bayesian inference, in the context of simple models before we encounter
them in more complex situations in later chapters.

One role for the distributions discussed in this chapter is to model the prob-
ability distribution p(x) of a random variable x, given a finite set x1, . . . ,xN of
observations. This problem is known as density estimation. For the purposes of
this chapter, we shall assume that the data points are independent and identically
distributed. It should be emphasized that the problem of density estimation is fun-

67
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damentally ill-posed, because there are infinitely many probability distributions that
could have given rise to the observed finite data set. Indeed, any distribution p(x)
that is nonzero at each of the data points x1, . . . ,xN is a potential candidate. The
issue of choosing an appropriate distribution relates to the problem of model selec-
tion that has already been encountered in the context of polynomial curve fitting in
Chapter 1 and that is a central issue in pattern recognition.

We begin by considering the binomial and multinomial distributions for discrete
random variables and the Gaussian distribution for continuous random variables.
These are specific examples of parametric distributions, so-called because they are
governed by a small number of adaptive parameters, such as the mean and variance in
the case of a Gaussian for example. To apply such models to the problem of density
estimation, we need a procedure for determining suitable values for the parameters,
given an observed data set. In a frequentist treatment, we choose specific values
for the parameters by optimizing some criterion, such as the likelihood function. By
contrast, in a Bayesian treatment we introduce prior distributions over the parameters
and then use Bayes’ theorem to compute the corresponding posterior distribution
given the observed data.

We shall see that an important role is played by conjugate priors, that lead to
posterior distributions having the same functional form as the prior, and that there-
fore lead to a greatly simplified Bayesian analysis. For example, the conjugate prior
for the parameters of the multinomial distribution is called the Dirichlet distribution,
while the conjugate prior for the mean of a Gaussian is another Gaussian. All of these
distributions are examples of the exponential family of distributions, which possess
a number of important properties, and which will be discussed in some detail.

One limitation of the parametric approach is that it assumes a specific functional
form for the distribution, which may turn out to be inappropriate for a particular
application. An alternative approach is given by nonparametric density estimation
methods in which the form of the distribution typically depends on the size of the data
set. Such models still contain parameters, but these control the model complexity
rather than the form of the distribution. We end this chapter by considering three
nonparametric methods based respectively on histograms, nearest-neighbours, and
kernels.

2.1. Binary Variables

We begin by considering a single binary random variable x ∈ {0, 1}. For example,
x might describe the outcome of flipping a coin, with x = 1 representing ‘heads’,
and x = 0 representing ‘tails’. We can imagine that this is a damaged coin so that
the probability of landing heads is not necessarily the same as that of landing tails.
The probability of x = 1 will be denoted by the parameter µ so that

p(x = 1|µ) = µ (2.1)
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where 0 � µ � 1, from which it follows that p(x = 0|µ) = 1 − µ. The probability
distribution over x can therefore be written in the form

Bern(x|µ) = µx(1 − µ)1−x (2.2)

which is known as the Bernoulli distribution. It is easily verified that this distributionExercise 2.1
is normalized and that it has mean and variance given by

E[x] = µ (2.3)

var[x] = µ(1 − µ). (2.4)

Now suppose we have a data set D = {x1, . . . , xN} of observed values of x.
We can construct the likelihood function, which is a function of µ, on the assumption
that the observations are drawn independently from p(x|µ), so that

p(D|µ) =
N∏

n=1

p(xn|µ) =
N∏

n=1

µxn(1 − µ)1−xn . (2.5)

In a frequentist setting, we can estimate a value for µ by maximizing the likelihood
function, or equivalently by maximizing the logarithm of the likelihood. In the case
of the Bernoulli distribution, the log likelihood function is given by

ln p(D|µ) =
N∑

n=1

ln p(xn|µ) =
N∑

n=1

{xn ln µ + (1 − xn) ln(1 − µ)} . (2.6)

At this point, it is worth noting that the log likelihood function depends on the N
observations xn only through their sum

∑
n xn. This sum provides an example of a

sufficient statistic for the data under this distribution, and we shall study the impor-
tant role of sufficient statistics in some detail. If we set the derivative of ln p(D|µ)Section 2.4
with respect to µ equal to zero, we obtain the maximum likelihood estimator

µML =
1
N

N∑
n=1

xn (2.7)

Jacob Bernoulli
1654–1705

Jacob Bernoulli, also known as
Jacques or James Bernoulli, was a
Swiss mathematician and was the
first of many in the Bernoulli family
to pursue a career in science and
mathematics. Although compelled

to study philosophy and theology against his will by
his parents, he travelled extensively after graduating
in order to meet with many of the leading scientists of

his time, including Boyle and Hooke in England. When
he returned to Switzerland, he taught mechanics and
became Professor of Mathematics at Basel in 1687.
Unfortunately, rivalry between Jacob and his younger
brother Johann turned an initially productive collabora-
tion into a bitter and public dispute. Jacob’s most sig-
nificant contributions to mathematics appeared in The
Art of Conjecture published in 1713, eight years after
his death, which deals with topics in probability the-
ory including what has become known as the Bernoulli
distribution.
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Figure 2.1 Histogram plot of the binomial dis-
tribution (2.9) as a function of m for
N = 10 and µ = 0.25.
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which is also known as the sample mean. If we denote the number of observations
of x = 1 (heads) within this data set by m, then we can write (2.7) in the form

µML =
m

N
(2.8)

so that the probability of landing heads is given, in this maximum likelihood frame-
work, by the fraction of observations of heads in the data set.

Now suppose we flip a coin, say, 3 times and happen to observe 3 heads. Then
N = m = 3 and µML = 1. In this case, the maximum likelihood result would
predict that all future observations should give heads. Common sense tells us that
this is unreasonable, and in fact this is an extreme example of the over-fitting associ-
ated with maximum likelihood. We shall see shortly how to arrive at more sensible
conclusions through the introduction of a prior distribution over µ.

We can also work out the distribution of the number m of observations of x = 1,
given that the data set has size N . This is called the binomial distribution, and
from (2.5) we see that it is proportional to µm(1 − µ)N−m. In order to obtain the
normalization coefficient we note that out of N coin flips, we have to add up all
of the possible ways of obtaining m heads, so that the binomial distribution can be
written

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (2.9)

where (
N

m

)
≡ N !

(N − m)!m!
(2.10)

is the number of ways of choosing m objects out of a total of N identical objects.Exercise 2.3
Figure 2.1 shows a plot of the binomial distribution for N = 10 and µ = 0.25.

The mean and variance of the binomial distribution can be found by using the
result of Exercise 1.10, which shows that for independent events the mean of the
sum is the sum of the means, and the variance of the sum is the sum of the variances.
Because m = x1 + . . . + xN , and for each observation the mean and variance are
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given by (2.3) and (2.4), respectively, we have

E[m] ≡
N∑

m=0

mBin(m|N, µ) = Nµ (2.11)

var[m] ≡
N∑

m=0

(m − E[m])2 Bin(m|N, µ) = Nµ(1 − µ). (2.12)

These results can also be proved directly using calculus.Exercise 2.4

2.1.1 The beta distribution
We have seen in (2.8) that the maximum likelihood setting for the parameter µ

in the Bernoulli distribution, and hence in the binomial distribution, is given by the
fraction of the observations in the data set having x = 1. As we have already noted,
this can give severely over-fitted results for small data sets. In order to develop a
Bayesian treatment for this problem, we need to introduce a prior distribution p(µ)
over the parameter µ. Here we consider a form of prior distribution that has a simple
interpretation as well as some useful analytical properties. To motivate this prior,
we note that the likelihood function takes the form of the product of factors of the
form µx(1 − µ)1−x. If we choose a prior to be proportional to powers of µ and
(1 − µ), then the posterior distribution, which is proportional to the product of the
prior and the likelihood function, will have the same functional form as the prior.
This property is called conjugacy and we will see several examples of it later in this
chapter. We therefore choose a prior, called the beta distribution, given by

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (2.13)

where Γ(x) is the gamma function defined by (1.141), and the coefficient in (2.13)
ensures that the beta distribution is normalized, so thatExercise 2.5 ∫ 1

0

Beta(µ|a, b) dµ = 1. (2.14)

The mean and variance of the beta distribution are given byExercise 2.6

E[µ] =
a

a + b
(2.15)

var[µ] =
ab

(a + b)2(a + b + 1)
. (2.16)

The parameters a and b are often called hyperparameters because they control the
distribution of the parameter µ. Figure 2.2 shows plots of the beta distribution for
various values of the hyperparameters.

The posterior distribution of µ is now obtained by multiplying the beta prior
(2.13) by the binomial likelihood function (2.9) and normalizing. Keeping only the
factors that depend on µ, we see that this posterior distribution has the form

p(µ|m, l, a, b) ∝ µm+a−1(1 − µ)l+b−1 (2.17)
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Figure 2.2 Plots of the beta distribution Beta(µ|a, b) given by (2.13) as a function of µ for various values of the
hyperparameters a and b.

where l = N − m, and therefore corresponds to the number of ‘tails’ in the coin
example. We see that (2.17) has the same functional dependence on µ as the prior
distribution, reflecting the conjugacy properties of the prior with respect to the like-
lihood function. Indeed, it is simply another beta distribution, and its normalization
coefficient can therefore be obtained by comparison with (2.13) to give

p(µ|m, l, a, b) =
Γ(m + a + l + b)
Γ(m + a)Γ(l + b)

µm+a−1(1 − µ)l+b−1. (2.18)

We see that the effect of observing a data set of m observations of x = 1 and
l observations of x = 0 has been to increase the value of a by m, and the value of
b by l, in going from the prior distribution to the posterior distribution. This allows
us to provide a simple interpretation of the hyperparameters a and b in the prior as
an effective number of observations of x = 1 and x = 0, respectively. Note that
a and b need not be integers. Furthermore, the posterior distribution can act as the
prior if we subsequently observe additional data. To see this, we can imagine taking
observations one at a time and after each observation updating the current posterior
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Figure 2.3 Illustration of one step of sequential Bayesian inference. The prior is given by a beta distribution
with parameters a = 2, b = 2, and the likelihood function, given by (2.9) with N = m = 1, corresponds to a
single observation of x = 1, so that the posterior is given by a beta distribution with parameters a = 3, b = 2.

distribution by multiplying by the likelihood function for the new observation and
then normalizing to obtain the new, revised posterior distribution. At each stage, the
posterior is a beta distribution with some total number of (prior and actual) observed
values for x = 1 and x = 0 given by the parameters a and b. Incorporation of an
additional observation of x = 1 simply corresponds to incrementing the value of a
by 1, whereas for an observation of x = 0 we increment b by 1. Figure 2.3 illustrates
one step in this process.

We see that this sequential approach to learning arises naturally when we adopt
a Bayesian viewpoint. It is independent of the choice of prior and of the likelihood
function and depends only on the assumption of i.i.d. data. Sequential methods make
use of observations one at a time, or in small batches, and then discard them before
the next observations are used. They can be used, for example, in real-time learning
scenarios where a steady stream of data is arriving, and predictions must be made
before all of the data is seen. Because they do not require the whole data set to be
stored or loaded into memory, sequential methods are also useful for large data sets.
Maximum likelihood methods can also be cast into a sequential framework.Section 2.3.5

If our goal is to predict, as best we can, the outcome of the next trial, then we
must evaluate the predictive distribution of x, given the observed data set D. From
the sum and product rules of probability, this takes the form

p(x = 1|D) =
∫ 1

0

p(x = 1|µ)p(µ|D) dµ =
∫ 1

0

µp(µ|D) dµ = E[µ|D]. (2.19)

Using the result (2.18) for the posterior distribution p(µ|D), together with the result
(2.15) for the mean of the beta distribution, we obtain

p(x = 1|D) =
m + a

m + a + l + b
(2.20)

which has a simple interpretation as the total fraction of observations (both real ob-
servations and fictitious prior observations) that correspond to x = 1. Note that in
the limit of an infinitely large data set m, l → ∞ the result (2.20) reduces to the
maximum likelihood result (2.8). As we shall see, it is a very general property that
the Bayesian and maximum likelihood results will agree in the limit of an infinitely
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large data set. For a finite data set, the posterior mean for µ always lies between the
prior mean and the maximum likelihood estimate for µ corresponding to the relative
frequencies of events given by (2.7).Exercise 2.7

From Figure 2.2, we see that as the number of observations increases, so the
posterior distribution becomes more sharply peaked. This can also be seen from
the result (2.16) for the variance of the beta distribution, in which we see that the
variance goes to zero for a → ∞ or b → ∞. In fact, we might wonder whether it is
a general property of Bayesian learning that, as we observe more and more data, the
uncertainty represented by the posterior distribution will steadily decrease.

To address this, we can take a frequentist view of Bayesian learning and show
that, on average, such a property does indeed hold. Consider a general Bayesian
inference problem for a parameter θ for which we have observed a data set D, de-
scribed by the joint distribution p(θ,D). The following resultExercise 2.8

Eθ[θ] = ED [Eθ[θ|D]] (2.21)

where

Eθ[θ] ≡
∫

p(θ)θ dθ (2.22)

ED[Eθ[θ|D]] ≡
∫ {∫

θp(θ|D) dθ

}
p(D) dD (2.23)

says that the posterior mean of θ, averaged over the distribution generating the data,
is equal to the prior mean of θ. Similarly, we can show that

varθ[θ] = ED [varθ[θ|D]] + varD [Eθ[θ|D]] . (2.24)

The term on the left-hand side of (2.24) is the prior variance of θ. On the right-
hand side, the first term is the average posterior variance of θ, and the second term
measures the variance in the posterior mean of θ. Because this variance is a positive
quantity, this result shows that, on average, the posterior variance of θ is smaller than
the prior variance. The reduction in variance is greater if the variance in the posterior
mean is greater. Note, however, that this result only holds on average, and that for a
particular observed data set it is possible for the posterior variance to be larger than
the prior variance.

2.2. Multinomial Variables

Binary variables can be used to describe quantities that can take one of two possible
values. Often, however, we encounter discrete variables that can take on one of K
possible mutually exclusive states. Although there are various alternative ways to
express such variables, we shall see shortly that a particularly convenient represen-
tation is the 1-of-K scheme in which the variable is represented by a K-dimensional
vector x in which one of the elements xk equals 1, and all remaining elements equal
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0. So, for instance if we have a variable that can take K = 6 states and a particular
observation of the variable happens to correspond to the state where x3 = 1, then x
will be represented by

x = (0, 0, 1, 0, 0, 0)T. (2.25)

Note that such vectors satisfy
∑K

k=1 xk = 1. If we denote the probability of xk = 1
by the parameter µk, then the distribution of x is given

p(x|µ) =
K∏

k=1

µxk

k (2.26)

where µ = (µ1, . . . , µK)T, and the parameters µk are constrained to satisfy µk � 0
and

∑
k µk = 1, because they represent probabilities. The distribution (2.26) can be

regarded as a generalization of the Bernoulli distribution to more than two outcomes.
It is easily seen that the distribution is normalized

∑
x

p(x|µ) =
K∑

k=1

µk = 1 (2.27)

and that
E[x|µ] =

∑
x

p(x|µ)x = (µ1, . . . , µM )T = µ. (2.28)

Now consider a data set D of N independent observations x1, . . . ,xN . The
corresponding likelihood function takes the form

p(D|µ) =
N∏

n=1

K∏
k=1

µxnk

k =
K∏

k=1

µ
(P

n xnk)
k =

K∏
k=1

µmk

k . (2.29)

We see that the likelihood function depends on the N data points only through the
K quantities

mk =
∑

n

xnk (2.30)

which represent the number of observations of xk = 1. These are called the sufficient
statistics for this distribution.Section 2.4

In order to find the maximum likelihood solution for µ, we need to maximize
ln p(D|µ) with respect to µk taking account of the constraint that the µk must sum
to one. This can be achieved using a Lagrange multiplier λ and maximizingAppendix E

K∑
k=1

mk lnµk + λ

(
K∑

k=1

µk − 1

)
. (2.31)

Setting the derivative of (2.31) with respect to µk to zero, we obtain

µk = −mk/λ. (2.32)
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We can solve for the Lagrange multiplier λ by substituting (2.32) into the constraint∑
k µk = 1 to give λ = −N . Thus we obtain the maximum likelihood solution in

the form
µML

k =
mk

N
(2.33)

which is the fraction of the N observations for which xk = 1.
We can consider the joint distribution of the quantities m1, . . . , mK , conditioned

on the parameters µ and on the total number N of observations. From (2.29) this
takes the form

Mult(m1, m2, . . . , mK |µ, N) =
(

N

m1m2 . . . mK

) K∏
k=1

µmk

k (2.34)

which is known as the multinomial distribution. The normalization coefficient is the
number of ways of partitioning N objects into K groups of size m1, . . . , mK and is
given by (

N

m1m2 . . . mK

)
=

N !
m1!m2! . . . mK !

. (2.35)

Note that the variables mk are subject to the constraint

K∑
k=1

mk = N. (2.36)

2.2.1 The Dirichlet distribution
We now introduce a family of prior distributions for the parameters {µk} of

the multinomial distribution (2.34). By inspection of the form of the multinomial
distribution, we see that the conjugate prior is given by

p(µ|α) ∝
K∏

k=1

µαk−1
k (2.37)

where 0 � µk � 1 and
∑

k µk = 1. Here α1, . . . , αK are the parameters of the
distribution, and α denotes (α1, . . . , αK)T. Note that, because of the summation
constraint, the distribution over the space of the {µk} is confined to a simplex of
dimensionality K − 1, as illustrated for K = 3 in Figure 2.4.

The normalized form for this distribution is byExercise 2.9

Dir(µ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏
k=1

µαk−1
k (2.38)

which is called the Dirichlet distribution. Here Γ(x) is the gamma function defined
by (1.141) while

α0 =
K∑

k=1

αk. (2.39)
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Figure 2.4 The Dirichlet distribution over three variables µ1, µ2, µ3

is confined to a simplex (a bounded linear manifold) of
the form shown, as a consequence of the constraints
0 � µk � 1 and

P
k µk = 1.

µ1

µ2

µ3

Plots of the Dirichlet distribution over the simplex, for various settings of the param-
eters αk, are shown in Figure 2.5.

Multiplying the prior (2.38) by the likelihood function (2.34), we obtain the
posterior distribution for the parameters {µk} in the form

p(µ|D, α) ∝ p(D|µ)p(µ|α) ∝
K∏

k=1

µαk+mk−1
k . (2.40)

We see that the posterior distribution again takes the form of a Dirichlet distribution,
confirming that the Dirichlet is indeed a conjugate prior for the multinomial. This
allows us to determine the normalization coefficient by comparison with (2.38) so
that

p(µ|D, α) = Dir(µ|α + m)

=
Γ(α0 + N)

Γ(α1 + m1) · · ·Γ(αK + mK)

K∏
k=1

µαk+mk−1
k (2.41)

where we have denoted m = (m1, . . . , mK)T. As for the case of the binomial
distribution with its beta prior, we can interpret the parameters αk of the Dirichlet
prior as an effective number of observations of xk = 1.

Note that two-state quantities can either be represented as binary variables and

Lejeune Dirichlet
1805–1859

Johann Peter Gustav Lejeune
Dirichlet was a modest and re-
served mathematician who made
contributions in number theory, me-
chanics, and astronomy, and who
gave the first rigorous analysis of

Fourier series. His family originated from Richelet
in Belgium, and the name Lejeune Dirichlet comes

from ‘le jeune de Richelet’ (the young person from
Richelet). Dirichlet’s first paper, which was published
in 1825, brought him instant fame. It concerned Fer-
mat’s last theorem, which claims that there are no
positive integer solutions to xn + yn = zn for n > 2.
Dirichlet gave a partial proof for the case n = 5, which
was sent to Legendre for review and who in turn com-
pleted the proof. Later, Dirichlet gave a complete proof
for n = 14, although a full proof of Fermat’s last theo-
rem for arbitrary n had to wait until the work of Andrew
Wiles in the closing years of the 20th century.
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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can
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Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N . We
observe that as N increases, the distribution tends towards a Gaussian.

illustrate this by considering N variables x1, . . . , xN each of which has a uniform
distribution over the interval [0, 1] and then considering the distribution of the mean
(x1 + · · ·+ xN )/N . For large N , this distribution tends to a Gaussian, as illustrated
in Figure 2.6. In practice, the convergence to a Gaussian as N increases can be
very rapid. One consequence of this result is that the binomial distribution (2.9),
which is a distribution over m defined by the sum of N observations of the random
binary variable x, will tend to a Gaussian as N → ∞ (see Figure 2.1 for the case of
N = 10).

The Gaussian distribution has many important analytical properties, and we shall
consider several of these in detail. As a result, this section will be rather more tech-
nically involved than some of the earlier sections, and will require familiarity with
various matrix identities. However, we strongly encourage the reader to become pro-Appendix C
ficient in manipulating Gaussian distributions using the techniques presented here as
this will prove invaluable in understanding the more complex models presented in
later chapters.

We begin by considering the geometrical form of the Gaussian distribution. The

Carl Friedrich Gauss
1777–1855

It is said that when Gauss went
to elementary school at age 7, his
teacher Büttner, trying to keep the
class occupied, asked the pupils to
sum the integers from 1 to 100. To
the teacher’s amazement, Gauss

arrived at the answer in a matter of moments by noting
that the sum can be represented as 50 pairs (1 + 100,
2+99, etc.) each of which added to 101, giving the an-
swer 5,050. It is now believed that the problem which
was actually set was of the same form but somewhat
harder in that the sequence had a larger starting value
and a larger increment. Gauss was a German math-

ematician and scientist with a reputation for being a
hard-working perfectionist. One of his many contribu-
tions was to show that least squares can be derived
under the assumption of normally distributed errors.
He also created an early formulation of non-Euclidean
geometry (a self-consistent geometrical theory that vi-
olates the axioms of Euclid) but was reluctant to dis-
cuss it openly for fear that his reputation might suffer
if it were seen that he believed in such a geometry.
At one point, Gauss was asked to conduct a geodetic
survey of the state of Hanover, which led to his for-
mulation of the normal distribution, now also known
as the Gaussian. After his death, a study of his di-
aries revealed that he had discovered several impor-
tant mathematical results years or even decades be-
fore they were published by others.
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functional dependence of the Gaussian on x is through the quadratic form

∆2 = (x − µ)TΣ−1(x − µ) (2.44)

which appears in the exponent. The quantity ∆ is called the Mahalanobis distance
from µ to x and reduces to the Euclidean distance when Σ is the identity matrix. The
Gaussian distribution will be constant on surfaces in x-space for which this quadratic
form is constant.

First of all, we note that the matrix Σ can be taken to be symmetric, without
loss of generality, because any antisymmetric component would disappear from the
exponent. Now consider the eigenvector equation for the covariance matrixExercise 2.17

Σui = λiui (2.45)

where i = 1, . . . , D. Because Σ is a real, symmetric matrix its eigenvalues will be
real, and its eigenvectors can be chosen to form an orthonormal set, so thatExercise 2.18

uT
i uj = Iij (2.46)

where Iij is the i, j element of the identity matrix and satisfies

Iij =
{

1, if i = j
0, otherwise. (2.47)

The covariance matrix Σ can be expressed as an expansion in terms of its eigenvec-
tors in the formExercise 2.19

Σ =
D∑

i=1

λiuiuT
i (2.48)

and similarly the inverse covariance matrix Σ−1 can be expressed as

Σ−1 =
D∑

i=1

1
λi

uiuT
i . (2.49)

Substituting (2.49) into (2.44), the quadratic form becomes

∆2 =
D∑

i=1

y2
i

λi
(2.50)

where we have defined
yi = uT

i (x − µ). (2.51)

We can interpret {yi} as a new coordinate system defined by the orthonormal vectors
ui that are shifted and rotated with respect to the original xi coordinates. Forming
the vector y = (y1, . . . , yD)T, we have

y = U(x − µ) (2.52)
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Figure 2.7 The red curve shows the ellip-
tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(x1, x2) on which the density
is exp(−1/2) of its value at
x = µ. The major axes of
the ellipse are defined by the
eigenvectors ui of the covari-
ance matrix, with correspond-
ing eigenvalues λi.
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where U is a matrix whose rows are given by uT
i . From (2.46) it follows that U is

an orthogonal matrix, i.e., it satisfies UUT = I, and hence also UTU = I, where IAppendix C
is the identity matrix.

The quadratic form, and hence the Gaussian density, will be constant on surfaces
for which (2.51) is constant. If all of the eigenvalues λi are positive, then these
surfaces represent ellipsoids, with their centres at µ and their axes oriented along ui,
and with scaling factors in the directions of the axes given by λ

1/2
i , as illustrated in

Figure 2.7.
For the Gaussian distribution to be well defined, it is necessary for all of the

eigenvalues λi of the covariance matrix to be strictly positive, otherwise the dis-
tribution cannot be properly normalized. A matrix whose eigenvalues are strictly
positive is said to be positive definite. In Chapter 12, we will encounter Gaussian
distributions for which one or more of the eigenvalues are zero, in which case the
distribution is singular and is confined to a subspace of lower dimensionality. If all
of the eigenvalues are nonnegative, then the covariance matrix is said to be positive
semidefinite.

Now consider the form of the Gaussian distribution in the new coordinate system
defined by the yi. In going from the x to the y coordinate system, we have a Jacobian
matrix J with elements given by

Jij =
∂xi

∂yj
= Uji (2.53)

where Uji are the elements of the matrix UT. Using the orthonormality property of
the matrix U, we see that the square of the determinant of the Jacobian matrix is

|J|2 =
∣∣UT

∣∣2 =
∣∣UT

∣∣ |U| =
∣∣UTU

∣∣ = |I| = 1 (2.54)

and hence |J| = 1. Also, the determinant |Σ| of the covariance matrix can be written
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as the product of its eigenvalues, and hence

|Σ|1/2 =
D∏

j=1

λ
1/2
j . (2.55)

Thus in the yj coordinate system, the Gaussian distribution takes the form

p(y) = p(x)|J| =
D∏

j=1

1
(2πλj)1/2

exp
{
− y2

j

2λj

}
(2.56)

which is the product of D independent univariate Gaussian distributions. The eigen-
vectors therefore define a new set of shifted and rotated coordinates with respect
to which the joint probability distribution factorizes into a product of independent
distributions. The integral of the distribution in the y coordinate system is then∫

p(y) dy =
D∏

j=1

∫ ∞

−∞

1
(2πλj)1/2

exp
{
− y2

j

2λj

}
dyj = 1 (2.57)

where we have used the result (1.48) for the normalization of the univariate Gaussian.
This confirms that the multivariate Gaussian (2.43) is indeed normalized.

We now look at the moments of the Gaussian distribution and thereby provide an
interpretation of the parameters µ and Σ. The expectation of x under the Gaussian
distribution is given by

E[x] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xdx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ) dz (2.58)

where we have changed variables using z = x − µ. We now note that the exponent
is an even function of the components of z and, because the integrals over these are
taken over the range (−∞,∞), the term in z in the factor (z + µ) will vanish by
symmetry. Thus

E[x] = µ (2.59)

and so we refer to µ as the mean of the Gaussian distribution.
We now consider second order moments of the Gaussian. In the univariate case,

we considered the second order moment given by E[x2]. For the multivariate Gaus-
sian, there are D2 second order moments given by E[xixj ], which we can group
together to form the matrix E[xxT]. This matrix can be written as

E[xxT] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xxT dx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ)(z + µ)T dz
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where again we have changed variables using z = x − µ. Note that the cross-terms
involving µzT and µTz will again vanish by symmetry. The term µµT is constant
and can be taken outside the integral, which itself is unity because the Gaussian
distribution is normalized. Consider the term involving zzT. Again, we can make
use of the eigenvector expansion of the covariance matrix given by (2.45), together
with the completeness of the set of eigenvectors, to write

z =
D∑

j=1

yjuj (2.60)

where yj = uT
j z, which gives

1
(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
zzT dz

=
1

(2π)D/2

1
|Σ|1/2

D∑
i=1

D∑
j=1

uiuT
j

∫
exp

{
−

D∑
k=1

y2
k

2λk

}
yiyj dy

=
D∑

i=1

uiuT
i λi = Σ (2.61)

where we have made use of the eigenvector equation (2.45), together with the fact
that the integral on the right-hand side of the middle line vanishes by symmetry
unless i = j, and in the final line we have made use of the results (1.50) and (2.55),
together with (2.48). Thus we have

E[xxT] = µµT + Σ. (2.62)

For single random variables, we subtracted the mean before taking second mo-
ments in order to define a variance. Similarly, in the multivariate case it is again
convenient to subtract off the mean, giving rise to the covariance of a random vector
x defined by

cov[x] = E
[
(x − E[x])(x − E[x])T

]
. (2.63)

For the specific case of a Gaussian distribution, we can make use of E[x] = µ,
together with the result (2.62), to give

cov[x] = Σ. (2.64)

Because the parameter matrix Σ governs the covariance of x under the Gaussian
distribution, it is called the covariance matrix.

Although the Gaussian distribution (2.43) is widely used as a density model, it
suffers from some significant limitations. Consider the number of free parameters in
the distribution. A general symmetric covariance matrix Σ will have D(D + 1)/2
independent parameters, and there are another D independent parameters in µ, giv-Exercise 2.21
ing D(D + 3)/2 parameters in total. For large D, the total number of parameters
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Figure 2.8 Contours of constant
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.

x1

x2

(a)

x1

x2

(b)

x1

x2
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa

µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24 (

A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition(

Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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2.3.2 Marginal Gaussian distributions
We have seen that if a joint distribution p(xa,xb) is Gaussian, then the condi-

tional distribution p(xa|xb) will again be Gaussian. Now we turn to a discussion of
the marginal distribution given by

p(xa) =
∫

p(xa,xb) dxb (2.83)

which, as we shall see, is also Gaussian. Once again, our strategy for evaluating this
distribution efficiently will be to focus on the quadratic form in the exponent of the
joint distribution and thereby to identify the mean and covariance of the marginal
distribution p(xa).

The quadratic form for the joint distribution can be expressed, using the par-
titioned precision matrix, in the form (2.70). Because our goal is to integrate out
xb, this is most easily achieved by first considering the terms involving xb and then
completing the square in order to facilitate integration. Picking out just those terms
that involve xb, we have

−1
2
xT

b Λbbxb+xT
b m = −1

2
(xb−Λ−1

bb m)TΛbb(xb−Λ−1
bb m)+

1
2
mTΛ−1

bb m (2.84)

where we have defined

m = Λbbµb − Λba(xa − µa). (2.85)

We see that the dependence on xb has been cast into the standard quadratic form of a
Gaussian distribution corresponding to the first term on the right-hand side of (2.84),
plus a term that does not depend on xb (but that does depend on xa). Thus, when
we take the exponential of this quadratic form, we see that the integration over xb

required by (2.83) will take the form∫
exp

{
−1

2
(xb − Λ−1

bb m)TΛbb(xb − Λ−1
bb m)

}
dxb. (2.86)

This integration is easily performed by noting that it is the integral over an unnor-
malized Gaussian, and so the result will be the reciprocal of the normalization co-
efficient. We know from the form of the normalized Gaussian given by (2.43), that
this coefficient is independent of the mean and depends only on the determinant of
the covariance matrix. Thus, by completing the square with respect to xb, we can
integrate out xb and the only term remaining from the contributions on the left-hand
side of (2.84) that depends on xa is the last term on the right-hand side of (2.84) in
which m is given by (2.85). Combining this term with the remaining terms from
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(2.70) that depend on xa, we obtain

1
2

[Λbbµb − Λba(xa − µa)]T Λ−1
bb [Λbbµb − Λba(xa − µa)]

−1
2
xT

a Λaaxa + xT
a (Λaaµa + Λabµb) + const

= −1
2
xT

a (Λaa − ΛabΛ−1
bb Λba)xa

+xT
a (Λaa − ΛabΛ−1

bb Λba)−1µa + const (2.87)

where ‘const’ denotes quantities independent of xa. Again, by comparison with
(2.71), we see that the covariance of the marginal distribution of p(xa) is given by

Σa = (Λaa − ΛabΛ−1
bb Λba)−1. (2.88)

Similarly, the mean is given by

Σa(Λaa − ΛabΛ−1
bb Λba)µa = µa (2.89)

where we have used (2.88). The covariance in (2.88) is expressed in terms of the
partitioned precision matrix given by (2.69). We can rewrite this in terms of the
corresponding partitioning of the covariance matrix given by (2.67), as we did for
the conditional distribution. These partitioned matrices are related by(

Λaa Λab

Λba Λbb

)−1

=
(

Σaa Σab

Σba Σbb

)
(2.90)

Making use of (2.76), we then have(
Λaa − ΛabΛ−1

bb Λba

)−1
= Σaa. (2.91)

Thus we obtain the intuitively satisfying result that the marginal distribution p(xa)
has mean and covariance given by

E[xa] = µa (2.92)

cov[xa] = Σaa. (2.93)

We see that for a marginal distribution, the mean and covariance are most simply ex-
pressed in terms of the partitioned covariance matrix, in contrast to the conditional
distribution for which the partitioned precision matrix gives rise to simpler expres-
sions.

Our results for the marginal and conditional distributions of a partitioned Gaus-
sian are summarized below.

Partitioned Gaussians

Given a joint Gaussian distribution N (x|µ,Σ) with Λ ≡ Σ−1 and

x =
(

xa

xb

)
, µ =

(
µa

µb

)
(2.94)
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xa

xb = 0.7
xb

p(xa, xb)
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Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(xa, xb) over two variables, and
the plot on the right shows the marginal distribution p(xa) (blue curve) and the conditional distribution p(xa|xb)
for xb = 0.7 (red curve).

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
. (2.95)

Conditional distribution:

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (2.96)

µa|b = µa − Λ−1
aa Λab(xb − µb). (2.97)

Marginal distribution:

p(xa) = N (xa|µa,Σaa). (2.98)

We illustrate the idea of conditional and marginal distributions associated with
a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes’ theorem for Gaussian variables
In Sections 2.3.1 and 2.3.2, we considered a Gaussian p(x) in which we parti-

tioned the vector x into two subvectors x = (xa,xb) and then found expressions for
the conditional distribution p(xa|xb) and the marginal distribution p(xa). We noted
that the mean of the conditional distribution p(xa|xb) was a linear function of xb.
Here we shall suppose that we are given a Gaussian marginal distribution p(x) and a
Gaussian conditional distribution p(y|x) in which p(y|x) has a mean that is a linear
function of x, and a covariance which is independent of x. This is an example of
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a linear Gaussian model (Roweis and Ghahramani, 1999), which we shall study in
greater generality in Section 8.1.4. We wish to find the marginal distribution p(y)
and the conditional distribution p(x|y). This is a problem that will arise frequently
in subsequent chapters, and it will prove convenient to derive the general results here.

We shall take the marginal and conditional distributions to be

p(x) = N (
x|µ,Λ−1

)
(2.99)

p(y|x) = N (
y|Ax + b,L−1

)
(2.100)

where µ, A, and b are parameters governing the means, and Λ and L are precision
matrices. If x has dimensionality M and y has dimensionality D, then the matrix A
has size D × M .

First we find an expression for the joint distribution over x and y. To do this, we
define

z =
(

x
y

)
(2.101)

and then consider the log of the joint distribution

ln p(z) = ln p(x) + ln p(y|x)

= −1
2
(x − µ)TΛ(x − µ)

−1
2
(y − Ax − b)TL(y − Ax − b) + const (2.102)

where ‘const’ denotes terms independent of x and y. As before, we see that this is a
quadratic function of the components of z, and hence p(z) is Gaussian distribution.
To find the precision of this Gaussian, we consider the second order terms in (2.102),
which can be written as

−1
2
xT(Λ + ATLA)x − 1

2
yTLy +

1
2
yTLAx +

1
2
xTATLy

= −1
2

(
x
y

)T(
Λ + ATLA −ATL

−LA L

)(
x
y

)
= −1

2
zTRz (2.103)

and so the Gaussian distribution over z has precision (inverse covariance) matrix
given by

R =
(

Λ + ATLA −ATL
−LA L

)
. (2.104)

The covariance matrix is found by taking the inverse of the precision, which can be
done using the matrix inversion formula (2.76) to giveExercise 2.29

cov[z] = R−1 =
(

Λ−1 Λ−1AT

AΛ−1 L−1 + AΛ−1AT

)
. (2.105)
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Similarly, we can find the mean of the Gaussian distribution over z by identify-
ing the linear terms in (2.102), which are given by

xTΛµ − xTATLb + yTLb =
(

x
y

)T(
Λµ − ATLb

Lb

)
. (2.106)

Using our earlier result (2.71) obtained by completing the square over the quadratic
form of a multivariate Gaussian, we find that the mean of z is given by

E[z] = R−1

(
Λµ − ATLb

Lb

)
. (2.107)

Making use of (2.105), we then obtainExercise 2.30

E[z] =
(

µ
Aµ + b

)
. (2.108)

Next we find an expression for the marginal distribution p(y) in which we have
marginalized over x. Recall that the marginal distribution over a subset of the com-
ponents of a Gaussian random vector takes a particularly simple form when ex-
pressed in terms of the partitioned covariance matrix. Specifically, its mean andSection 2.3
covariance are given by (2.92) and (2.93), respectively. Making use of (2.105) and
(2.108) we see that the mean and covariance of the marginal distribution p(y) are
given by

E[y] = Aµ + b (2.109)

cov[y] = L−1 + AΛ−1AT. (2.110)

A special case of this result is when A = I, in which case it reduces to the convolu-
tion of two Gaussians, for which we see that the mean of the convolution is the sum
of the mean of the two Gaussians, and the covariance of the convolution is the sum
of their covariances.

Finally, we seek an expression for the conditional p(x|y). Recall that the results
for the conditional distribution are most easily expressed in terms of the partitioned
precision matrix, using (2.73) and (2.75). Applying these results to (2.105) andSection 2.3
(2.108) we see that the conditional distribution p(x|y) has mean and covariance
given by

E[x|y] = (Λ + ATLA)−1
{
ATL(y − b) + Λµ

}
(2.111)

cov[x|y] = (Λ + ATLA)−1. (2.112)

The evaluation of this conditional can be seen as an example of Bayes’ theorem.
We can interpret the distribution p(x) as a prior distribution over x. If the variable
y is observed, then the conditional distribution p(x|y) represents the corresponding
posterior distribution over x. Having found the marginal and conditional distribu-
tions, we effectively expressed the joint distribution p(z) = p(x)p(y|x) in the form
p(x|y)p(y). These results are summarized below.
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Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for y given x in the form

p(x) = N (x|µ,Λ−1) (2.113)

p(y|x) = N (y|Ax + b,L−1) (2.114)

the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (2.115)

p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (2.116)

where
Σ = (Λ + ATLA)−1. (2.117)

2.3.4 Maximum likelihood for the Gaussian
Given a data set X = (x1, . . . ,xN )T in which the observations {xn} are as-

sumed to be drawn independently from a multivariate Gaussian distribution, we can
estimate the parameters of the distribution by maximum likelihood. The log likeli-
hood function is given by

ln p(X|µ,Σ) = −ND

2
ln(2π)−N

2
ln |Σ|−1

2

N∑
n=1

(xn−µ)TΣ−1(xn−µ). (2.118)

By simple rearrangement, we see that the likelihood function depends on the data set
only through the two quantities

N∑
n=1

xn,

N∑
n=1

xnxT
n . (2.119)

These are known as the sufficient statistics for the Gaussian distribution. Using
(C.19), the derivative of the log likelihood with respect to µ is given byAppendix C

∂

∂µ
ln p(X|µ,Σ) =

N∑
n=1

Σ−1(xn − µ) (2.120)

and setting this derivative to zero, we obtain the solution for the maximum likelihood
estimate of the mean given by

µML =
1
N

N∑
n=1

xn (2.121)
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which is the mean of the observed set of data points. The maximization of (2.118)
with respect to Σ is rather more involved. The simplest approach is to ignore the
symmetry constraint and show that the resulting solution is symmetric as required.Exercise 2.34
Alternative derivations of this result, which impose the symmetry and positive defi-
niteness constraints explicitly, can be found in Magnus and Neudecker (1999). The
result is as expected and takes the form

ΣML =
1
N

N∑
n=1

(xn − µML)(xn − µML)T (2.122)

which involves µML because this is the result of a joint maximization with respect
to µ and Σ. Note that the solution (2.121) for µML does not depend on ΣML, and so
we can first evaluate µML and then use this to evaluate ΣML.

If we evaluate the expectations of the maximum likelihood solutions under the
true distribution, we obtain the following resultsExercise 2.35

E[µML] = µ (2.123)

E[ΣML] =
N − 1

N
Σ. (2.124)

We see that the expectation of the maximum likelihood estimate for the mean is equal
to the true mean. However, the maximum likelihood estimate for the covariance has
an expectation that is less than the true value, and hence it is biased. We can correct
this bias by defining a different estimator Σ̃ given by

Σ̃ =
1

N − 1

N∑
n=1

(xn − µML)(xn − µML)T. (2.125)

Clearly from (2.122) and (2.124), the expectation of Σ̃ is equal to Σ.

2.3.5 Sequential estimation
Our discussion of the maximum likelihood solution for the parameters of a Gaus-

sian distribution provides a convenient opportunity to give a more general discussion
of the topic of sequential estimation for maximum likelihood. Sequential methods
allow data points to be processed one at a time and then discarded and are important
for on-line applications, and also where large data sets are involved so that batch
processing of all data points at once is infeasible.

Consider the result (2.121) for the maximum likelihood estimator of the mean
µML, which we will denote by µ

(N)
ML when it is based on N observations. If we
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Figure 2.10 A schematic illustration of two correlated ran-
dom variables z and θ, together with the
regression function f(θ) given by the con-
ditional expectation E[z|θ]. The Robbins-
Monro algorithm provides a general sequen-
tial procedure for finding the root θ� of such
functions. θ

z

θ�

f(θ)

dissect out the contribution from the final data point xN , we obtain

µ
(N)
ML =

1
N

N∑
n=1

xn

=
1
N

xN +
1
N

N−1∑
n=1

xn

=
1
N

xN +
N − 1

N
µ

(N−1)
ML

= µ
(N−1)
ML +

1
N

(xN − µ
(N−1)
ML ). (2.126)

This result has a nice interpretation, as follows. After observing N − 1 data points
we have estimated µ by µ

(N−1)
ML . We now observe data point xN , and we obtain our

revised estimate µ
(N)
ML by moving the old estimate a small amount, proportional to

1/N , in the direction of the ‘error signal’ (xN −µ
(N−1)
ML ). Note that, as N increases,

so the contribution from successive data points gets smaller.
The result (2.126) will clearly give the same answer as the batch result (2.121)

because the two formulae are equivalent. However, we will not always be able to de-
rive a sequential algorithm by this route, and so we seek a more general formulation
of sequential learning, which leads us to the Robbins-Monro algorithm. Consider a
pair of random variables θ and z governed by a joint distribution p(z, θ). The con-
ditional expectation of z given θ defines a deterministic function f(θ) that is given
by

f(θ) ≡ E[z|θ] =
∫

zp(z|θ) dz (2.127)

and is illustrated schematically in Figure 2.10. Functions defined in this way are
called regression functions.

Our goal is to find the root θ� at which f(θ�) = 0. If we had a large data set
of observations of z and θ, then we could model the regression function directly and
then obtain an estimate of its root. Suppose, however, that we observe values of
z one at a time and we wish to find a corresponding sequential estimation scheme
for θ�. The following general procedure for solving such problems was given by
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Robbins and Monro (1951). We shall assume that the conditional variance of z is
finite so that

E
[
(z − f)2 | θ] < ∞ (2.128)

and we shall also, without loss of generality, consider the case where f(θ) > 0 for
θ > θ� and f(θ) < 0 for θ < θ�, as is the case in Figure 2.10. The Robbins-Monro
procedure then defines a sequence of successive estimates of the root θ� given by

θ(N) = θ(N−1) + aN−1z(θ(N−1)) (2.129)

where z(θ(N)) is an observed value of z when θ takes the value θ(N). The coefficients
{aN} represent a sequence of positive numbers that satisfy the conditions

lim
N→∞

aN = 0 (2.130)

∞∑
N=1

aN = ∞ (2.131)

∞∑
N=1

a2
N < ∞. (2.132)

It can then be shown (Robbins and Monro, 1951; Fukunaga, 1990) that the sequence
of estimates given by (2.129) does indeed converge to the root with probability one.
Note that the first condition (2.130) ensures that the successive corrections decrease
in magnitude so that the process can converge to a limiting value. The second con-
dition (2.131) is required to ensure that the algorithm does not converge short of the
root, and the third condition (2.132) is needed to ensure that the accumulated noise
has finite variance and hence does not spoil convergence.

Now let us consider how a general maximum likelihood problem can be solved
sequentially using the Robbins-Monro algorithm. By definition, the maximum like-
lihood solution θML is a stationary point of the log likelihood function and hence
satisfies

∂

∂θ

{
1
N

N∑
n=1

ln p(xn|θ)
}∣∣∣∣∣

θML

= 0. (2.133)

Exchanging the derivative and the summation, and taking the limit N → ∞ we have

lim
N→∞

1
N

N∑
n=1

∂

∂θ
ln p(xn|θ) = Ex

[
∂

∂θ
ln p(x|θ)

]
(2.134)

and so we see that finding the maximum likelihood solution corresponds to find-
ing the root of a regression function. We can therefore apply the Robbins-Monro
procedure, which now takes the form

θ(N) = θ(N−1) + aN−1
∂

∂θ(N−1)
ln p(xN |θ(N−1)). (2.135)
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Figure 2.11 In the case of a Gaussian distribution, with θ
corresponding to the mean µ, the regression
function illustrated in Figure 2.10 takes the form
of a straight line, as shown in red. In this
case, the random variable z corresponds to the
derivative of the log likelihood function and is
given by (x−µML)/σ2, and its expectation that
defines the regression function is a straight line
given by (µ − µML)/σ2. The root of the regres-
sion function corresponds to the maximum like-
lihood estimator µML.

µ

z

p(z|µ)

µML

As a specific example, we consider once again the sequential estimation of the
mean of a Gaussian distribution, in which case the parameter θ(N) is the estimate
µ

(N)
ML of the mean of the Gaussian, and the random variable z is given by

z =
∂

∂µML

ln p(x|µML, σ2) =
1
σ2

(x − µML). (2.136)

Thus the distribution of z is Gaussian with mean µ − µML, as illustrated in Fig-
ure 2.11. Substituting (2.136) into (2.135), we obtain the univariate form of (2.126),
provided we choose the coefficients aN to have the form aN = σ2/N . Note that
although we have focussed on the case of a single variable, the same technique,
together with the same restrictions (2.130)–(2.132) on the coefficients aN , apply
equally to the multivariate case (Blum, 1965).

2.3.6 Bayesian inference for the Gaussian
The maximum likelihood framework gave point estimates for the parameters µ

and Σ. Now we develop a Bayesian treatment by introducing prior distributions
over these parameters. Let us begin with a simple example in which we consider a
single Gaussian random variable x. We shall suppose that the variance σ2 is known,
and we consider the task of inferring the mean µ given a set of N observations
X = {x1, . . . , xN}. The likelihood function, that is the probability of the observed
data given µ, viewed as a function of µ, is given by

p(X|µ) =
N∏

n=1

p(xn|µ) =
1

(2πσ2)N/2
exp

{
− 1

2σ2

N∑
n=1

(xn − µ)2
}

. (2.137)

Again we emphasize that the likelihood function p(X|µ) is not a probability distri-
bution over µ and is not normalized.

We see that the likelihood function takes the form of the exponential of a quad-
ratic form in µ. Thus if we choose a prior p(µ) given by a Gaussian, it will be a
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conjugate distribution for this likelihood function because the corresponding poste-
rior will be a product of two exponentials of quadratic functions of µ and hence will
also be Gaussian. We therefore take our prior distribution to be

p(µ) = N (
µ|µ0, σ

2
0

)
(2.138)

and the posterior distribution is given by

p(µ|X) ∝ p(X|µ)p(µ). (2.139)

Simple manipulation involving completing the square in the exponent shows that theExercise 2.38
posterior distribution is given by

p(µ|X) = N (
µ|µN , σ2

N

)
(2.140)

where

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML (2.141)

1
σ2

N

=
1
σ2

0

+
N

σ2
(2.142)

in which µML is the maximum likelihood solution for µ given by the sample mean

µML =
1
N

N∑
n=1

xn. (2.143)

It is worth spending a moment studying the form of the posterior mean and
variance. First of all, we note that the mean of the posterior distribution given by
(2.141) is a compromise between the prior mean µ0 and the maximum likelihood
solution µML. If the number of observed data points N = 0, then (2.141) reduces
to the prior mean as expected. For N → ∞, the posterior mean is given by the
maximum likelihood solution. Similarly, consider the result (2.142) for the variance
of the posterior distribution. We see that this is most naturally expressed in terms
of the inverse variance, which is called the precision. Furthermore, the precisions
are additive, so that the precision of the posterior is given by the precision of the
prior plus one contribution of the data precision from each of the observed data
points. As we increase the number of observed data points, the precision steadily
increases, corresponding to a posterior distribution with steadily decreasing variance.
With no observed data points, we have the prior variance, whereas if the number of
data points N → ∞, the variance σ2

N goes to zero and the posterior distribution
becomes infinitely peaked around the maximum likelihood solution. We therefore
see that the maximum likelihood result of a point estimate for µ given by (2.143) is
recovered precisely from the Bayesian formalism in the limit of an infinite number
of observations. Note also that for finite N , if we take the limit σ2

0 → ∞ in which the
prior has infinite variance then the posterior mean (2.141) reduces to the maximum
likelihood result, while from (2.142) the posterior variance is given by σ2

N = σ2/N .
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Figure 2.12 Illustration of Bayesian inference for
the mean µ of a Gaussian distri-
bution, in which the variance is as-
sumed to be known. The curves
show the prior distribution over µ
(the curve labelled N = 0), which
in this case is itself Gaussian, along
with the posterior distribution given
by (2.140) for increasing numbers N
of data points. The data points are
generated from a Gaussian of mean
0.8 and variance 0.1, and the prior is
chosen to have mean 0. In both the
prior and the likelihood function, the
variance is set to the true value.

N = 0

N = 1

N = 2

N = 10

−1 0 1
0
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We illustrate our analysis of Bayesian inference for the mean of a Gaussian
distribution in Figure 2.12. The generalization of this result to the case of a D-
dimensional Gaussian random variable x with known covariance and unknown mean
is straightforward.Exercise 2.40

We have already seen how the maximum likelihood expression for the mean of
a Gaussian can be re-cast as a sequential update formula in which the mean afterSection 2.3.5
observing N data points was expressed in terms of the mean after observing N − 1
data points together with the contribution from data point xN . In fact, the Bayesian
paradigm leads very naturally to a sequential view of the inference problem. To see
this in the context of the inference of the mean of a Gaussian, we write the posterior
distribution with the contribution from the final data point xN separated out so that

p(µ|D) ∝
[
p(µ)

N−1∏
n=1

p(xn|µ)

]
p(xN |µ). (2.144)

The term in square brackets is (up to a normalization coefficient) just the posterior
distribution after observing N − 1 data points. We see that this can be viewed as
a prior distribution, which is combined using Bayes’ theorem with the likelihood
function associated with data point xN to arrive at the posterior distribution after
observing N data points. This sequential view of Bayesian inference is very general
and applies to any problem in which the observed data are assumed to be independent
and identically distributed.

So far, we have assumed that the variance of the Gaussian distribution over the
data is known and our goal is to infer the mean. Now let us suppose that the mean
is known and we wish to infer the variance. Again, our calculations will be greatly
simplified if we choose a conjugate form for the prior distribution. It turns out to be
most convenient to work with the precision λ ≡ 1/σ2. The likelihood function for λ
takes the form

p(X|λ) =
N∏

n=1

N (xn|µ, λ−1) ∝ λN/2 exp

{
−λ

2

N∑
n=1

(xn − µ)2
}

. (2.145)
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Figure 2.13 Plot of the gamma distribution Gam(λ|a, b) defined by (2.146) for various values of the parameters
a and b.

The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a � 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42

E[λ] =
a

b
(2.147)

var[λ] =
a

b2
. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ

2

N∑
n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N

2
(2.150)

bN = b0 +
1
2

N∑
n=1

(xn − µ)2 = b0 +
N

2
σ2

ML (2.151)

where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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From (2.150), we see that the effect of observing N data points is to increase
the value of the coefficient a by N/2. Thus we can interpret the parameter a0 in
the prior in terms of 2a0 ‘effective’ prior observations. Similarly, from (2.151) we
see that the N data points contribute Nσ2

ML/2 to the parameter b, where σ2
ML is

the variance, and so we can interpret the parameter b0 in the prior as arising from
the 2a0 ‘effective’ prior observations having variance 2b0/(2a0) = b0/a0. Recall
that we made an analogous interpretation for the Dirichlet prior. These distributionsSection 2.2
are examples of the exponential family, and we shall see that the interpretation of
a conjugate prior in terms of effective fictitious data points is a general one for the
exponential family of distributions.

Instead of working with the precision, we can consider the variance itself. The
conjugate prior in this case is called the inverse gamma distribution, although we
shall not discuss this further because we will find it more convenient to work with
the precision.

Now suppose that both the mean and the precision are unknown. To find a
conjugate prior, we consider the dependence of the likelihood function on µ and λ

p(X|µ, λ) =
N∏

n=1

(
λ

2π

)1/2

exp
{
−λ

2
(xn − µ)2

}

∝
[
λ1/2 exp

(
−λµ2

2

)]N

exp

{
λµ

N∑
n=1

xn − λ

2

N∑
n=1

x2
n

}
. (2.152)

We now wish to identify a prior distribution p(µ, λ) that has the same functional
dependence on µ and λ as the likelihood function and that should therefore take the
form

p(µ, λ) ∝
[
λ1/2 exp

(
−λµ2

2

)]β

exp {cλµ − dλ}

= exp
{
−βλ

2
(µ − c/β)2

}
λβ/2 exp

{
−
(

d − c2

2β

)
λ

}
(2.153)

where c, d, and β are constants. Since we can always write p(µ, λ) = p(µ|λ)p(λ),
we can find p(µ|λ) and p(λ) by inspection. In particular, we see that p(µ|λ) is a
Gaussian whose precision is a linear function of λ and that p(λ) is a gamma distri-
bution, so that the normalized prior takes the form

p(µ, λ) = N (µ|µ0, (βλ)−1)Gam(λ|a, b) (2.154)

where we have defined new constants given by µ0 = c/β, a = 1 + β/2, b =
d−c2/2β. The distribution (2.154) is called the normal-gamma or Gaussian-gamma
distribution and is plotted in Figure 2.14. Note that this is not simply the product
of an independent Gaussian prior over µ and a gamma prior over λ, because the
precision of µ is a linear function of λ. Even if we chose a prior in which µ and λ
were independent, the posterior distribution would exhibit a coupling between the
precision of µ and the value of λ.
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Figure 2.14 Contour plot of the normal-gamma
distribution (2.154) for parameter
values µ0 = 0, β = 2, a = 5 and
b = 6.
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In the case of the multivariate Gaussian distribution N (
x|µ,Λ−1

)
for a D-

dimensional variable x, the conjugate prior distribution for the mean µ, assuming
the precision is known, is again a Gaussian. For known mean and unknown precision
matrix Λ, the conjugate prior is the Wishart distribution given byExercise 2.45

W(Λ|W, ν) = B|Λ|(ν−D−1)/2 exp
(
−1

2
Tr(W−1Λ)

)
(2.155)

where ν is called the number of degrees of freedom of the distribution, W is a D×D
scale matrix, and Tr(·) denotes the trace. The normalization constant B is given by

B(W, ν) = |W|−ν/2

(
2νD/2 πD(D−1)/4

D∏
i=1

Γ
(

ν + 1 − i

2

))−1

. (2.156)

Again, it is also possible to define a conjugate prior over the covariance matrix itself,
rather than over the precision matrix, which leads to the inverse Wishart distribu-
tion, although we shall not discuss this further. If both the mean and the precision
are unknown, then, following a similar line of reasoning to the univariate case, the
conjugate prior is given by

p(µ,Λ|µ0, β,W, ν) = N (µ|µ0, (βΛ)−1)W(Λ|W, ν) (2.157)

which is known as the normal-Wishart or Gaussian-Wishart distribution.

2.3.7 Student’s t-distribution
We have seen that the conjugate prior for the precision of a Gaussian is given

by a gamma distribution. If we have a univariate Gaussian N (x|µ, τ−1) togetherSection 2.3.6
with a Gamma prior Gam(τ |a, b) and we integrate out the precision, we obtain the
marginal distribution of x in the formExercise 2.46
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Figure 2.15 Plot of Student’s t-distribution (2.159)
for µ = 0 and λ = 1 for various values
of ν. The limit ν → ∞ corresponds
to a Gaussian distribution with mean
µ and precision λ.
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p(x|µ, a, b) =
∫ ∞

0

N (x|µ, τ−1)Gam(τ |a, b) dτ (2.158)

=
∫ ∞

0

bae(−bτ)τa−1

Γ(a)

( τ

2π

)1/2

exp
{
−τ

2
(x − µ)2

}
dτ

=
ba

Γ(a)

(
1
2π

)1/2 [
b +

(x − µ)2

2

]−a−1/2

Γ(a + 1/2)

where we have made the change of variable z = τ [b + (x − µ)2/2]. By convention
we define new parameters given by ν = 2a and λ = a/b, in terms of which the
distribution p(x|µ, a, b) takes the form

St(x|µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(x − µ)2

ν

]−ν/2−1/2

(2.159)

which is known as Student’s t-distribution. The parameter λ is sometimes called the
precision of the t-distribution, even though it is not in general equal to the inverse
of the variance. The parameter ν is called the degrees of freedom, and its effect is
illustrated in Figure 2.15. For the particular case of ν = 1, the t-distribution reduces
to the Cauchy distribution, while in the limit ν → ∞ the t-distribution St(x|µ, λ, ν)
becomes a Gaussian N (x|µ, λ−1) with mean µ and precision λ.Exercise 2.47

From (2.158), we see that Student’s t-distribution is obtained by adding up an
infinite number of Gaussian distributions having the same mean but different preci-
sions. This can be interpreted as an infinite mixture of Gaussians (Gaussian mixtures
will be discussed in detail in Section 2.3.9. The result is a distribution that in gen-
eral has longer ‘tails’ than a Gaussian, as was seen in Figure 2.15. This gives the t-
distribution an important property called robustness, which means that it is much less
sensitive than the Gaussian to the presence of a few data points which are outliers.
The robustness of the t-distribution is illustrated in Figure 2.16, which compares the
maximum likelihood solutions for a Gaussian and a t-distribution. Note that the max-
imum likelihood solution for the t-distribution can be found using the expectation-
maximization (EM) algorithm. Here we see that the effect of a small number ofExercise 12.24
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Figure 2.16 Illustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.

outliers is much less significant for the t-distribution than for the Gaussian. Outliers
can arise in practical applications either because the process that generates the data
corresponds to a distribution having a heavy tail or simply through mislabelled data.
Robustness is also an important property for regression problems. Unsurprisingly,
the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters ν = 2a, λ =
a/b, and η = τb/a, we see that the t-distribution can be written in the form

St(x|µ, λ, ν) =
∫ ∞

0

N (
x|µ, (ηλ)−1

)
Gam(η|ν/2, ν/2) dη. (2.160)

We can then generalize this to a multivariate Gaussian N (x|µ,Λ) to obtain the cor-
responding multivariate Student’s t-distribution in the form

St(x|µ,Λ, ν) =
∫ ∞

0

N (x|µ, (ηΛ)−1)Gam(η|ν/2, ν/2) dη. (2.161)

Using the same technique as for the univariate case, we can evaluate this integral to
giveExercise 2.48
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St(x|µ,Λ, ν) =
Γ(D/2 + ν/2)

Γ(ν/2)
|Λ|1/2

(πν)D/2

[
1 +

∆2

ν

]−D/2−ν/2

(2.162)

where D is the dimensionality of x, and ∆2 is the squared Mahalanobis distance
defined by

∆2 = (x − µ)TΛ(x − µ). (2.163)

This is the multivariate form of Student’s t-distribution and satisfies the following
propertiesExercise 2.49

E[x] = µ, if ν > 1 (2.164)

cov[x] =
ν

(ν − 2)
Λ−1, if ν > 2 (2.165)

mode[x] = µ (2.166)

with corresponding results for the univariate case.

2.3.8 Periodic variables
Although Gaussian distributions are of great practical significance, both in their

own right and as building blocks for more complex probabilistic models, there are
situations in which they are inappropriate as density models for continuous vari-
ables. One important case, which arises in practical applications, is that of periodic
variables.

An example of a periodic variable would be the wind direction at a particular
geographical location. We might, for instance, measure values of wind direction on a
number of days and wish to summarize this using a parametric distribution. Another
example is calendar time, where we may be interested in modelling quantities that
are believed to be periodic over 24 hours or over an annual cycle. Such quantities
can conveniently be represented using an angular (polar) coordinate 0 � θ < 2π.

We might be tempted to treat periodic variables by choosing some direction
as the origin and then applying a conventional distribution such as the Gaussian.
Such an approach, however, would give results that were strongly dependent on the
arbitrary choice of origin. Suppose, for instance, that we have two observations at
θ1 = 1◦ and θ2 = 359◦, and we model them using a standard univariate Gaussian
distribution. If we choose the origin at 0◦, then the sample mean of this data set
will be 180◦ with standard deviation 179◦, whereas if we choose the origin at 180◦,
then the mean will be 0◦ and the standard deviation will be 1◦. We clearly need to
develop a special approach for the treatment of periodic variables.

Let us consider the problem of evaluating the mean of a set of observations
D = {θ1, . . . , θN} of a periodic variable. From now on, we shall assume that θ is
measured in radians. We have already seen that the simple average (θ1+· · ·+θN )/N
will be strongly coordinate dependent. To find an invariant measure of the mean, we
note that the observations can be viewed as points on the unit circle and can therefore
be described instead by two-dimensional unit vectors x1, . . . ,xN where ‖xn‖ = 1
for n = 1, . . . , N , as illustrated in Figure 2.17. We can average the vectors {xn}
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Figure 2.17 Illustration of the representation of val-
ues θn of a periodic variable as two-
dimensional vectors xn living on the unit
circle. Also shown is the average x of
those vectors.
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x̄
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instead to give

x =
1
N

N∑
n=1

xn (2.167)

and then find the corresponding angle θ of this average. Clearly, this definition will
ensure that the location of the mean is independent of the origin of the angular coor-
dinate. Note that x will typically lie inside the unit circle. The Cartesian coordinates
of the observations are given by xn = (cos θn, sin θn), and we can write the Carte-
sian coordinates of the sample mean in the form x = (r cos θ, r sin θ). Substituting
into (2.167) and equating the x1 and x2 components then gives

r cos θ =
1
N

N∑
n=1

cos θn, r sin θ =
1
N

N∑
n=1

sin θn. (2.168)

Taking the ratio, and using the identity tan θ = sin θ/ cos θ, we can solve for θ to
give

θ = tan−1

{∑
n sin θn∑
n cos θn

}
. (2.169)

Shortly, we shall see how this result arises naturally as the maximum likelihood
estimator for an appropriately defined distribution over a periodic variable.

We now consider a periodic generalization of the Gaussian called the von Mises
distribution. Here we shall limit our attention to univariate distributions, although
periodic distributions can also be found over hyperspheres of arbitrary dimension.
For an extensive discussion of periodic distributions, see Mardia and Jupp (2000).

By convention, we will consider distributions p(θ) that have period 2π. Any
probability density p(θ) defined over θ must not only be nonnegative and integrate
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Figure 2.18 The von Mises distribution can be derived by considering
a two-dimensional Gaussian of the form (2.173), whose
density contours are shown in blue and conditioning on
the unit circle shown in red.

x1

x2

p(x)

r = 1

to one, but it must also be periodic. Thus p(θ) must satisfy the three conditions

p(θ) � 0 (2.170)∫ 2π

0

p(θ) dθ = 1 (2.171)

p(θ + 2π) = p(θ). (2.172)

From (2.172), it follows that p(θ + M2π) = p(θ) for any integer M .
We can easily obtain a Gaussian-like distribution that satisfies these three prop-

erties as follows. Consider a Gaussian distribution over two variables x = (x1, x2)
having mean µ = (µ1, µ2) and a covariance matrix Σ = σ2I where I is the 2 × 2
identity matrix, so that

p(x1, x2) =
1

2πσ2
exp

{
−(x1 − µ1)2 + (x2 − µ2)2

2σ2

}
. (2.173)

The contours of constant p(x) are circles, as illustrated in Figure 2.18. Now suppose
we consider the value of this distribution along a circle of fixed radius. Then by con-
struction this distribution will be periodic, although it will not be normalized. We can
determine the form of this distribution by transforming from Cartesian coordinates
(x1, x2) to polar coordinates (r, θ) so that

x1 = r cos θ, x2 = r sin θ. (2.174)

We also map the mean µ into polar coordinates by writing

µ1 = r0 cos θ0, µ2 = r0 sin θ0. (2.175)

Next we substitute these transformations into the two-dimensional Gaussian distribu-
tion (2.173), and then condition on the unit circle r = 1, noting that we are interested
only in the dependence on θ. Focussing on the exponent in the Gaussian distribution
we have

− 1
2σ2

{
(r cos θ − r0 cos θ0)2 + (r sin θ − r0 sin θ0)2

}
= − 1

2σ2

{
1 + r2

0 − 2r0 cos θ cos θ0 − 2r0 sin θ sin θ0

}
=

r0

σ2
cos(θ − θ0) + const (2.176)
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m = 5, θ0 = π/4

m = 1, θ0 = 3π/4

2π

0

π/4

3π/4

m = 5, θ0 = π/4
m = 1, θ0 = 3π/4

Figure 2.19 The von Mises distribution plotted for two different parameter values, shown as a Cartesian plot
on the left and as the corresponding polar plot on the right.

where ‘const’ denotes terms independent of θ, and we have made use of the following
trigonometrical identitiesExercise 2.51

cos2 A + sin2 A = 1 (2.177)

cos A cos B + sinA sin B = cos(A − B). (2.178)

If we now define m = r0/σ2, we obtain our final expression for the distribution of
p(θ) along the unit circle r = 1 in the form

p(θ|θ0, m) =
1

2πI0(m)
exp {m cos(θ − θ0)} (2.179)

which is called the von Mises distribution, or the circular normal. Here the param-
eter θ0 corresponds to the mean of the distribution, while m, which is known as
the concentration parameter, is analogous to the inverse variance (precision) for the
Gaussian. The normalization coefficient in (2.179) is expressed in terms of I0(m),
which is the zeroth-order Bessel function of the first kind (Abramowitz and Stegun,
1965) and is defined by

I0(m) =
1
2π

∫ 2π

0

exp {m cos θ} dθ. (2.180)

For large m, the distribution becomes approximately Gaussian. The von Mises dis-Exercise 2.52
tribution is plotted in Figure 2.19, and the function I0(m) is plotted in Figure 2.20.

Now consider the maximum likelihood estimators for the parameters θ0 and m
for the von Mises distribution. The log likelihood function is given by

ln p(D|θ0, m) = −N ln(2π) − N ln I0(m) + m

N∑
n=1

cos(θn − θ0). (2.181)
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Figure 2.20 Plot of the Bessel function I0(m) defined by (2.180), together with the function A(m) defined by
(2.186).

Setting the derivative with respect to θ0 equal to zero gives

N∑
n=1

sin(θn − θ0) = 0. (2.182)

To solve for θ0, we make use of the trigonometric identity

sin(A − B) = cos B sin A − cos A sin B (2.183)

from which we obtainExercise 2.53

θML
0 = tan−1

{∑
n sin θn∑
n cos θn

}
(2.184)

which we recognize as the result (2.169) obtained earlier for the mean of the obser-
vations viewed in a two-dimensional Cartesian space.

Similarly, maximizing (2.181) with respect to m, and making use of I ′0(m) =
I1(m) (Abramowitz and Stegun, 1965), we have

A(m) =
1
N

N∑
n=1

cos(θn − θML
0 ) (2.185)

where we have substituted for the maximum likelihood solution for θML
0 (recalling

that we are performing a joint optimization over θ and m), and we have defined

A(m) =
I1(m)
I0(m)

. (2.186)

The function A(m) is plotted in Figure 2.20. Making use of the trigonometric iden-
tity (2.178), we can write (2.185) in the form

A(mML) =

(
1
N

N∑
n=1

cos θn

)
cos θML

0 −
(

1
N

N∑
n=1

sin θn

)
sin θML

0 . (2.187)
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Figure 2.21 Plots of the ‘old faith-
ful’ data in which the blue curves
show contours of constant proba-
bility density. On the left is a
single Gaussian distribution which
has been fitted to the data us-
ing maximum likelihood. Note that
this distribution fails to capture the
two clumps in the data and indeed
places much of its probability mass
in the central region between the
clumps where the data are relatively
sparse. On the right the distribution
is given by a linear combination of
two Gaussians which has been fitted
to the data by maximum likelihood
using techniques discussed Chap-
ter 9, and which gives a better rep-
resentation of the data.
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The right-hand side of (2.187) is easily evaluated, and the function A(m) can be
inverted numerically.

For completeness, we mention briefly some alternative techniques for the con-
struction of periodic distributions. The simplest approach is to use a histogram of
observations in which the angular coordinate is divided into fixed bins. This has the
virtue of simplicity and flexibility but also suffers from significant limitations, as we
shall see when we discuss histogram methods in more detail in Section 2.5. Another
approach starts, like the von Mises distribution, from a Gaussian distribution over a
Euclidean space but now marginalizes onto the unit circle rather than conditioning
(Mardia and Jupp, 2000). However, this leads to more complex forms of distribution
and will not be discussed further. Finally, any valid distribution over the real axis
(such as a Gaussian) can be turned into a periodic distribution by mapping succes-
sive intervals of width 2π onto the periodic variable (0, 2π), which corresponds to
‘wrapping’ the real axis around unit circle. Again, the resulting distribution is more
complex to handle than the von Mises distribution.

One limitation of the von Mises distribution is that it is unimodal. By forming
mixtures of von Mises distributions, we obtain a flexible framework for modelling
periodic variables that can handle multimodality. For an example of a machine learn-
ing application that makes use of von Mises distributions, see Lawrence et al. (2002),
and for extensions to modelling conditional densities for regression problems, see
Bishop and Nabney (1996).

2.3.9 Mixtures of Gaussians
While the Gaussian distribution has some important analytical properties, it suf-

fers from significant limitations when it comes to modelling real data sets. Consider
the example shown in Figure 2.21. This is known as the ‘Old Faithful’ data set,
and comprises 272 measurements of the eruption of the Old Faithful geyser at Yel-
lowstone National Park in the USA. Each measurement comprises the duration ofAppendix A
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Figure 2.22 Example of a Gaussian mixture distribution
in one dimension showing three Gaussians
(each scaled by a coefficient) in blue and
their sum in red.

x

p(x)

the eruption in minutes (horizontal axis) and the time in minutes to the next erup-
tion (vertical axis). We see that the data set forms two dominant clumps, and that
a simple Gaussian distribution is unable to capture this structure, whereas a linear
superposition of two Gaussians gives a better characterization of the data set.

Such superpositions, formed by taking linear combinations of more basic dis-
tributions such as Gaussians, can be formulated as probabilistic models known as
mixture distributions (McLachlan and Basford, 1988; McLachlan and Peel, 2000).
In Figure 2.22 we see that a linear combination of Gaussians can give rise to very
complex densities. By using a sufficient number of Gaussians, and by adjusting their
means and covariances as well as the coefficients in the linear combination, almost
any continuous density can be approximated to arbitrary accuracy.

We therefore consider a superposition of K Gaussian densities of the form

p(x) =
K∑

k=1

πkN (x|µk,Σk) (2.188)

which is called a mixture of Gaussians. Each Gaussian density N (x|µk,Σk) is
called a component of the mixture and has its own mean µk and covariance Σk.
Contour and surface plots for a Gaussian mixture having 3 components are shown in
Figure 2.23.

In this section we shall consider Gaussian components to illustrate the frame-
work of mixture models. More generally, mixture models can comprise linear com-
binations of other distributions. For instance, in Section 9.3.3 we shall consider
mixtures of Bernoulli distributions as an example of a mixture model for discrete
variables.Section 9.3.3

The parameters πk in (2.188) are called mixing coefficients. If we integrate both
sides of (2.188) with respect to x, and note that both p(x) and the individual Gaussian
components are normalized, we obtain

K∑
k=1

πk = 1. (2.189)

Also, the requirement that p(x) � 0, together with N (x|µk,Σk) � 0, implies
πk � 0 for all k. Combining this with the condition (2.189) we obtain

0 � πk � 1. (2.190)
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Figure 2.23 Illustration of a mixture of 3 Gaussians in a two-dimensional space. (a) Contours of constant
density for each of the mixture components, in which the 3 components are denoted red, blue and green, and
the values of the mixing coefficients are shown below each component. (b) Contours of the marginal probability
density p(x) of the mixture distribution. (c) A surface plot of the distribution p(x).

We therefore see that the mixing coefficients satisfy the requirements to be probabil-
ities.

From the sum and product rules, the marginal density is given by

p(x) =
K∑

k=1

p(k)p(x|k) (2.191)

which is equivalent to (2.188) in which we can view πk = p(k) as the prior prob-
ability of picking the kth component, and the density N (x|µk,Σk) = p(x|k) as
the probability of x conditioned on k. As we shall see in later chapters, an impor-
tant role is played by the posterior probabilities p(k|x), which are also known as
responsibilities. From Bayes’ theorem these are given by

γk(x) ≡ p(k|x)

=
p(k)p(x|k)∑

l p(l)p(x|l)
=

πkN (x|µk,Σk)∑
l πlN (x|µl,Σl)

. (2.192)

We shall discuss the probabilistic interpretation of the mixture distribution in greater
detail in Chapter 9.

The form of the Gaussian mixture distribution is governed by the parameters π,
µ and Σ, where we have used the notation π ≡ {π1, . . . , πK}, µ ≡ {µ1, . . . ,µK}
and Σ ≡ {Σ1, . . .ΣK}. One way to set the values of these parameters is to use
maximum likelihood. From (2.188) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(2.193)
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where X = {x1, . . . ,xN}. We immediately see that the situation is now much
more complex than with a single Gaussian, due to the presence of the summation
over k inside the logarithm. As a result, the maximum likelihood solution for the
parameters no longer has a closed-form analytical solution. One approach to maxi-
mizing the likelihood function is to use iterative numerical optimization techniques
(Fletcher, 1987; Nocedal and Wright, 1999; Bishop and Nabney, 2008). Alterna-
tively we can employ a powerful framework called expectation maximization, which
will be discussed at length in Chapter 9.

2.4. The Exponential Family

The probability distributions that we have studied so far in this chapter (with the
exception of the Gaussian mixture) are specific examples of a broad class of distri-
butions called the exponential family (Duda and Hart, 1973; Bernardo and Smith,
1994). Members of the exponential family have many important properties in com-
mon, and it is illuminating to discuss these properties in some generality.

The exponential family of distributions over x, given parameters η, is defined to
be the set of distributions of the form

p(x|η) = h(x)g(η) exp
{
ηTu(x)

}
(2.194)

where x may be scalar or vector, and may be discrete or continuous. Here η are
called the natural parameters of the distribution, and u(x) is some function of x.
The function g(η) can be interpreted as the coefficient that ensures that the distribu-
tion is normalized and therefore satisfies

g(η)
∫

h(x) exp
{
ηTu(x)

}
dx = 1 (2.195)

where the integration is replaced by summation if x is a discrete variable.
We begin by taking some examples of the distributions introduced earlier in

the chapter and showing that they are indeed members of the exponential family.
Consider first the Bernoulli distribution

p(x|µ) = Bern(x|µ) = µx(1 − µ)1−x. (2.196)

Expressing the right-hand side as the exponential of the logarithm, we have

p(x|µ) = exp {x lnµ + (1 − x) ln(1 − µ)}
= (1 − µ) exp

{
ln
(

µ

1 − µ

)
x

}
. (2.197)

Comparison with (2.194) allows us to identify

η = ln
(

µ

1 − µ

)
(2.198)
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which we can solve for µ to give µ = σ(η), where

σ(η) =
1

1 + exp(−η)
(2.199)

is called the logistic sigmoid function. Thus we can write the Bernoulli distribution
using the standard representation (2.194) in the form

p(x|η) = σ(−η) exp(ηx) (2.200)

where we have used 1 − σ(η) = σ(−η), which is easily proved from (2.199). Com-
parison with (2.194) shows that

u(x) = x (2.201)

h(x) = 1 (2.202)

g(η) = σ(−η). (2.203)

Next consider the multinomial distribution that, for a single observation x, takes
the form

p(x|µ) =
M∏

k=1

µxk

k = exp

{
M∑

k=1

xk ln µk

}
(2.204)

where x = (x1, . . . , xN )T. Again, we can write this in the standard representation
(2.194) so that

p(x|η) = exp(ηTx) (2.205)

where ηk = lnµk, and we have defined η = (η1, . . . , ηM )T. Again, comparing with
(2.194) we have

u(x) = x (2.206)

h(x) = 1 (2.207)

g(η) = 1. (2.208)

Note that the parameters ηk are not independent because the parameters µk are sub-
ject to the constraint

M∑
k=1

µk = 1 (2.209)

so that, given any M − 1 of the parameters µk, the value of the remaining parameter
is fixed. In some circumstances, it will be convenient to remove this constraint by
expressing the distribution in terms of only M − 1 parameters. This can be achieved
by using the relationship (2.209) to eliminate µM by expressing it in terms of the
remaining {µk} where k = 1, . . . , M − 1, thereby leaving M − 1 parameters. Note
that these remaining parameters are still subject to the constraints

0 � µk � 1,

M−1∑
k=1

µk � 1. (2.210)
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Making use of the constraint (2.209), the multinomial distribution in this representa-
tion then becomes

exp

{
M∑

k=1

xk ln µk

}

= exp

{
M−1∑
k=1

xk lnµk +

(
1 −

M−1∑
k=1

xk

)
ln

(
1 −

M−1∑
k=1

µk

)}

= exp

{
M−1∑
k=1

xk ln

(
µk

1 −∑M−1

j=1 µj

)
+ ln

(
1 −

M−1∑
k=1

µk

)}
. (2.211)

We now identify

ln

(
µk

1 −∑
j µj

)
= ηk (2.212)

which we can solve for µk by first summing both sides over k and then rearranging
and back-substituting to give

µk =
exp(ηk)

1 +
∑

j exp(ηj)
. (2.213)

This is called the softmax function, or the normalized exponential. In this represen-
tation, the multinomial distribution therefore takes the form

p(x|η) =

(
1 +

M−1∑
k=1

exp(ηk)

)−1

exp(ηTx). (2.214)

This is the standard form of the exponential family, with parameter vector η =
(η1, . . . , ηM−1)T in which

u(x) = x (2.215)

h(x) = 1 (2.216)

g(η) =

(
1 +

M−1∑
k=1

exp(ηk)

)−1

. (2.217)

Finally, let us consider the Gaussian distribution. For the univariate Gaussian,
we have

p(x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.218)

=
1

(2πσ2)1/2
exp

{
− 1

2σ2
x2 +

µ

σ2
x − 1

2σ2
µ2

}
(2.219)
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which, after some simple rearrangement, can be cast in the standard exponential
family form (2.194) withExercise 2.57

η =
(

µ/σ2

−1/2σ2

)
(2.220)

u(x) =
(

x
x2

)
(2.221)

h(x) = (2π)−1/2 (2.222)

g(η) = (−2η2)1/2 exp
(

η2
1

4η2

)
. (2.223)

2.4.1 Maximum likelihood and sufficient statistics
Let us now consider the problem of estimating the parameter vector η in the gen-

eral exponential family distribution (2.194) using the technique of maximum likeli-
hood. Taking the gradient of both sides of (2.195) with respect to η, we have

∇g(η)
∫

h(x) exp
{
ηTu(x)

}
dx

+ g(η)
∫

h(x) exp
{
ηTu(x)

}
u(x) dx = 0. (2.224)

Rearranging, and making use again of (2.195) then gives

− 1
g(η)

∇g(η) = g(η)
∫

h(x) exp
{
ηTu(x)

}
u(x) dx = E[u(x)] (2.225)

where we have used (2.194). We therefore obtain the result

−∇ ln g(η) = E[u(x)]. (2.226)

Note that the covariance of u(x) can be expressed in terms of the second derivatives
of g(η), and similarly for higher order moments. Thus, provided we can normalize aExercise 2.58
distribution from the exponential family, we can always find its moments by simple
differentiation.

Now consider a set of independent identically distributed data denoted by X =
{x1, . . . ,xn}, for which the likelihood function is given by

p(X|η) =

(
N∏

n=1

h(xn)

)
g(η)N exp

{
ηT

N∑
n=1

u(xn)

}
. (2.227)

Setting the gradient of ln p(X|η) with respect to η to zero, we get the following
condition to be satisfied by the maximum likelihood estimator ηML

−∇ ln g(ηML) =
1
N

N∑
n=1

u(xn) (2.228)
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which can in principle be solved to obtain ηML. We see that the solution for the
maximum likelihood estimator depends on the data only through

∑
n u(xn), which

is therefore called the sufficient statistic of the distribution (2.194). We do not need
to store the entire data set itself but only the value of the sufficient statistic. For
the Bernoulli distribution, for example, the function u(x) is given just by x and
so we need only keep the sum of the data points {xn}, whereas for the Gaussian
u(x) = (x, x2)T, and so we should keep both the sum of {xn} and the sum of {x2

n}.
If we consider the limit N → ∞, then the right-hand side of (2.228) becomes

E[u(x)], and so by comparing with (2.226) we see that in this limit ηML will equal
the true value η.

In fact, this sufficiency property holds also for Bayesian inference, although
we shall defer discussion of this until Chapter 8 when we have equipped ourselves
with the tools of graphical models and can thereby gain a deeper insight into these
important concepts.

2.4.2 Conjugate priors
We have already encountered the concept of a conjugate prior several times, for

example in the context of the Bernoulli distribution (for which the conjugate prior
is the beta distribution) or the Gaussian (where the conjugate prior for the mean is
a Gaussian, and the conjugate prior for the precision is the Wishart distribution). In
general, for a given probability distribution p(x|η), we can seek a prior p(η) that is
conjugate to the likelihood function, so that the posterior distribution has the same
functional form as the prior. For any member of the exponential family (2.194), there
exists a conjugate prior that can be written in the form

p(η|χ, ν) = f(χ, ν)g(η)ν exp
{
νηTχ

}
(2.229)

where f(χ, ν) is a normalization coefficient, and g(η) is the same function as ap-
pears in (2.194). To see that this is indeed conjugate, let us multiply the prior (2.229)
by the likelihood function (2.227) to obtain the posterior distribution, up to a nor-
malization coefficient, in the form

p(η|X, χ, ν) ∝ g(η)ν+N exp

{
ηT

(
N∑

n=1

u(xn) + νχ

)}
. (2.230)

This again takes the same functional form as the prior (2.229), confirming conjugacy.
Furthermore, we see that the parameter ν can be interpreted as a effective number of
pseudo-observations in the prior, each of which has a value for the sufficient statistic
u(x) given by χ.

2.4.3 Noninformative priors
In some applications of probabilistic inference, we may have prior knowledge

that can be conveniently expressed through the prior distribution. For example, if
the prior assigns zero probability to some value of variable, then the posterior dis-
tribution will necessarily also assign zero probability to that value, irrespective of
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any subsequent observations of data. In many cases, however, we may have little
idea of what form the distribution should take. We may then seek a form of prior
distribution, called a noninformative prior, which is intended to have as little influ-
ence on the posterior distribution as possible (Jeffries, 1946; Box and Tao, 1973;
Bernardo and Smith, 1994). This is sometimes referred to as ‘letting the data speak
for themselves’.

If we have a distribution p(x|λ) governed by a parameter λ, we might be tempted
to propose a prior distribution p(λ) = const as a suitable prior. If λ is a discrete
variable with K states, this simply amounts to setting the prior probability of each
state to 1/K. In the case of continuous parameters, however, there are two potential
difficulties with this approach. The first is that, if the domain of λ is unbounded,
this prior distribution cannot be correctly normalized because the integral over λ
diverges. Such priors are called improper. In practice, improper priors can often
be used provided the corresponding posterior distribution is proper, i.e., that it can
be correctly normalized. For instance, if we put a uniform prior distribution over
the mean of a Gaussian, then the posterior distribution for the mean, once we have
observed at least one data point, will be proper.

A second difficulty arises from the transformation behaviour of a probability
density under a nonlinear change of variables, given by (1.27). If a function h(λ)
is constant, and we change variables to λ = η2, then ĥ(η) = h(η2) will also be
constant. However, if we choose the density pλ(λ) to be constant, then the density
of η will be given, from (1.27), by

pη(η) = pλ(λ)
∣∣∣∣ dλ

dη

∣∣∣∣ = pλ(η2)2η ∝ η (2.231)

and so the density over η will not be constant. This issue does not arise when we use
maximum likelihood, because the likelihood function p(x|λ) is a simple function of
λ and so we are free to use any convenient parameterization. If, however, we are to
choose a prior distribution that is constant, we must take care to use an appropriate
representation for the parameters.

Here we consider two simple examples of noninformative priors (Berger, 1985).
First of all, if a density takes the form

p(x|µ) = f(x − µ) (2.232)

then the parameter µ is known as a location parameter. This family of densities
exhibits translation invariance because if we shift x by a constant to give x̂ = x+ c,
then

p(x̂|µ̂) = f(x̂ − µ̂) (2.233)

where we have defined µ̂ = µ + c. Thus the density takes the same form in the
new variable as in the original one, and so the density is independent of the choice
of origin. We would like to choose a prior distribution that reflects this translation
invariance property, and so we choose a prior that assigns equal probability mass to
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an interval A � µ � B as to the shifted interval A − c � µ � B − c. This implies∫ B

A

p(µ) dµ =
∫ B−c

A−c

p(µ) dµ =
∫ B

A

p(µ − c) dµ (2.234)

and because this must hold for all choices of A and B, we have

p(µ − c) = p(µ) (2.235)

which implies that p(µ) is constant. An example of a location parameter would be
the mean µ of a Gaussian distribution. As we have seen, the conjugate prior distri-
bution for µ in this case is a Gaussian p(µ|µ0, σ

2
0) = N (µ|µ0, σ

2
0), and we obtain a

noninformative prior by taking the limit σ2
0 → ∞. Indeed, from (2.141) and (2.142)

we see that this gives a posterior distribution over µ in which the contributions from
the prior vanish.

As a second example, consider a density of the form

p(x|σ) =
1
σ

f
(x

σ

)
(2.236)

where σ > 0. Note that this will be a normalized density provided f(x) is correctly
normalized. The parameter σ is known as a scale parameter, and the density exhibitsExercise 2.59
scale invariance because if we scale x by a constant to give x̂ = cx, then

p(x̂|σ̂) =
1
σ̂

f

(
x̂

σ̂

)
(2.237)

where we have defined σ̂ = cσ. This transformation corresponds to a change of
scale, for example from meters to kilometers if x is a length, and we would like
to choose a prior distribution that reflects this scale invariance. If we consider an
interval A � σ � B, and a scaled interval A/c � σ � B/c, then the prior should
assign equal probability mass to these two intervals. Thus we have∫ B

A

p(σ) dσ =
∫ B/c

A/c

p(σ) dσ =
∫ B

A

p

(
1
c
σ

)
1
c

dσ (2.238)

and because this must hold for choices of A and B, we have

p(σ) = p

(
1
c
σ

)
1
c

(2.239)

and hence p(σ) ∝ 1/σ. Note that again this is an improper prior because the integral
of the distribution over 0 � σ � ∞ is divergent. It is sometimes also convenient
to think of the prior distribution for a scale parameter in terms of the density of the
log of the parameter. Using the transformation rule (1.27) for densities we see that
p(lnσ) = const. Thus, for this prior there is the same probability mass in the range
1 � σ � 10 as in the range 10 � σ � 100 and in 100 � σ � 1000.
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An example of a scale parameter would be the standard deviation σ of a Gaussian
distribution, after we have taken account of the location parameter µ, because

N (x|µ, σ2) ∝ σ−1 exp
{−(x̃/σ)2

}
(2.240)

where x̃ = x − µ. As discussed earlier, it is often more convenient to work in terms
of the precision λ = 1/σ2 rather than σ itself. Using the transformation rule for
densities, we see that a distribution p(σ) ∝ 1/σ corresponds to a distribution over λ
of the form p(λ) ∝ 1/λ. We have seen that the conjugate prior for λ was the gamma
distribution Gam(λ|a0, b0) given by (2.146). The noninformative prior is obtainedSection 2.3
as the special case a0 = b0 = 0. Again, if we examine the results (2.150) and (2.151)
for the posterior distribution of λ, we see that for a0 = b0 = 0, the posterior depends
only on terms arising from the data and not from the prior.

2.5. Nonparametric Methods

Throughout this chapter, we have focussed on the use of probability distributions
having specific functional forms governed by a small number of parameters whose
values are to be determined from a data set. This is called the parametric approach
to density modelling. An important limitation of this approach is that the chosen
density might be a poor model of the distribution that generates the data, which can
result in poor predictive performance. For instance, if the process that generates the
data is multimodal, then this aspect of the distribution can never be captured by a
Gaussian, which is necessarily unimodal.

In this final section, we consider some nonparametric approaches to density es-
timation that make few assumptions about the form of the distribution. Here we shall
focus mainly on simple frequentist methods. The reader should be aware, however,
that nonparametric Bayesian methods are attracting increasing interest (Walker et al.,
1999; Neal, 2000; Müller and Quintana, 2004; Teh et al., 2006).

Let us start with a discussion of histogram methods for density estimation, which
we have already encountered in the context of marginal and conditional distributions
in Figure 1.11 and in the context of the central limit theorem in Figure 2.6. Here we
explore the properties of histogram density models in more detail, focussing on the
case of a single continuous variable x. Standard histograms simply partition x into
distinct bins of width ∆i and then count the number ni of observations of x falling
in bin i. In order to turn this count into a normalized probability density, we simply
divide by the total number N of observations and by the width ∆i of the bins to
obtain probability values for each bin given by

pi =
ni

N∆i
(2.241)

for which it is easily seen that
∫

p(x) dx = 1. This gives a model for the density
p(x) that is constant over the width of each bin, and often the bins are chosen to have
the same width ∆i = ∆.
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Figure 2.24 An illustration of the histogram approach
to density estimation, in which a data set
of 50 data points is generated from the
distribution shown by the green curve.
Histogram density estimates, based on
(2.241), with a common bin width ∆ are
shown for various values of ∆.
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In Figure 2.24, we show an example of histogram density estimation. Here
the data is drawn from the distribution, corresponding to the green curve, which is
formed from a mixture of two Gaussians. Also shown are three examples of his-
togram density estimates corresponding to three different choices for the bin width
∆. We see that when ∆ is very small (top figure), the resulting density model is very
spiky, with a lot of structure that is not present in the underlying distribution that
generated the data set. Conversely, if ∆ is too large (bottom figure) then the result is
a model that is too smooth and that consequently fails to capture the bimodal prop-
erty of the green curve. The best results are obtained for some intermediate value
of ∆ (middle figure). In principle, a histogram density model is also dependent on
the choice of edge location for the bins, though this is typically much less significant
than the value of ∆.

Note that the histogram method has the property (unlike the methods to be dis-
cussed shortly) that, once the histogram has been computed, the data set itself can
be discarded, which can be advantageous if the data set is large. Also, the histogram
approach is easily applied if the data points are arriving sequentially.

In practice, the histogram technique can be useful for obtaining a quick visual-
ization of data in one or two dimensions but is unsuited to most density estimation
applications. One obvious problem is that the estimated density has discontinuities
that are due to the bin edges rather than any property of the underlying distribution
that generated the data. Another major limitation of the histogram approach is its
scaling with dimensionality. If we divide each variable in a D-dimensional space
into M bins, then the total number of bins will be MD. This exponential scaling
with D is an example of the curse of dimensionality. In a space of high dimensional-Section 1.4
ity, the quantity of data needed to provide meaningful estimates of local probability
density would be prohibitive.

The histogram approach to density estimation does, however, teach us two im-
portant lessons. First, to estimate the probability density at a particular location,
we should consider the data points that lie within some local neighbourhood of that
point. Note that the concept of locality requires that we assume some form of dis-
tance measure, and here we have been assuming Euclidean distance. For histograms,
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this neighbourhood property was defined by the bins, and there is a natural ‘smooth-
ing’ parameter describing the spatial extent of the local region, in this case the bin
width. Second, the value of the smoothing parameter should be neither too large nor
too small in order to obtain good results. This is reminiscent of the choice of model
complexity in polynomial curve fitting discussed in Chapter 1 where the degree M
of the polynomial, or alternatively the value α of the regularization parameter, was
optimal for some intermediate value, neither too large nor too small. Armed with
these insights, we turn now to a discussion of two widely used nonparametric tech-
niques for density estimation, kernel estimators and nearest neighbours, which have
better scaling with dimensionality than the simple histogram model.

2.5.1 Kernel density estimators
Let us suppose that observations are being drawn from some unknown probabil-

ity density p(x) in some D-dimensional space, which we shall take to be Euclidean,
and we wish to estimate the value of p(x). From our earlier discussion of locality,
let us consider some small region R containing x. The probability mass associated
with this region is given by

P =
∫
R

p(x) dx. (2.242)

Now suppose that we have collected a data set comprising N observations drawn
from p(x). Because each data point has a probability P of falling within R, the total
number K of points that lie inside R will be distributed according to the binomial
distributionSection 2.1

Bin(K|N, P ) =
N !

K!(N − K)!
PK(1 − P )1−K . (2.243)

Using (2.11), we see that the mean fraction of points falling inside the region is
E[K/N ] = P , and similarly using (2.12) we see that the variance around this mean
is var[K/N ] = P (1 − P )/N . For large N , this distribution will be sharply peaked
around the mean and so

K � NP. (2.244)

If, however, we also assume that the region R is sufficiently small that the probability
density p(x) is roughly constant over the region, then we have

P � p(x)V (2.245)

where V is the volume of R. Combining (2.244) and (2.245), we obtain our density
estimate in the form

p(x) =
K

NV
. (2.246)

Note that the validity of (2.246) depends on two contradictory assumptions, namely
that the region R be sufficiently small that the density is approximately constant over
the region and yet sufficiently large (in relation to the value of that density) that the
number K of points falling inside the region is sufficient for the binomial distribution
to be sharply peaked.
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We can exploit the result (2.246) in two different ways. Either we can fix K and
determine the value of V from the data, which gives rise to the K-nearest-neighbour
technique discussed shortly, or we can fix V and determine K from the data, giv-
ing rise to the kernel approach. It can be shown that both the K-nearest-neighbour
density estimator and the kernel density estimator converge to the true probability
density in the limit N → ∞ provided V shrinks suitably with N , and K grows with
N (Duda and Hart, 1973).

We begin by discussing the kernel method in detail, and to start with we take
the region R to be a small hypercube centred on the point x at which we wish to
determine the probability density. In order to count the number K of points falling
within this region, it is convenient to define the following function

k(u) =
{

1, |ui| � 1/2, i = 1, . . . , D,
0, otherwise (2.247)

which represents a unit cube centred on the origin. The function k(u) is an example
of a kernel function, and in this context is also called a Parzen window. From (2.247),
the quantity k((x−xn)/h) will be one if the data point xn lies inside a cube of side
h centred on x, and zero otherwise. The total number of data points lying inside this
cube will therefore be

K =
N∑

n=1

k
(x − xn

h

)
. (2.248)

Substituting this expression into (2.246) then gives the following result for the esti-
mated density at x

p(x) =
1
N

N∑
n=1

1
hD

k
(x − xn

h

)
(2.249)

where we have used V = hD for the volume of a hypercube of side h in D di-
mensions. Using the symmetry of the function k(u), we can now re-interpret this
equation, not as a single cube centred on x but as the sum over N cubes centred on
the N data points xn.

As it stands, the kernel density estimator (2.249) will suffer from one of the same
problems that the histogram method suffered from, namely the presence of artificial
discontinuities, in this case at the boundaries of the cubes. We can obtain a smoother
density model if we choose a smoother kernel function, and a common choice is the
Gaussian, which gives rise to the following kernel density model

p(x) =
1
N

N∑
n=1

1
(2πh2)1/2

exp
{
−‖x − xn‖2

2h2

}
(2.250)

where h represents the standard deviation of the Gaussian components. Thus our
density model is obtained by placing a Gaussian over each data point and then adding
up the contributions over the whole data set, and then dividing by N so that the den-
sity is correctly normalized. In Figure 2.25, we apply the model (2.250) to the data
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Figure 2.25 Illustration of the kernel density model
(2.250) applied to the same data set used
to demonstrate the histogram approach in
Figure 2.24. We see that h acts as a
smoothing parameter and that if it is set
too small (top panel), the result is a very
noisy density model, whereas if it is set
too large (bottom panel), then the bimodal
nature of the underlying distribution from
which the data is generated (shown by the
green curve) is washed out. The best den-
sity model is obtained for some intermedi-
ate value of h (middle panel).
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set used earlier to demonstrate the histogram technique. We see that, as expected,
the parameter h plays the role of a smoothing parameter, and there is a trade-off
between sensitivity to noise at small h and over-smoothing at large h. Again, the
optimization of h is a problem in model complexity, analogous to the choice of bin
width in histogram density estimation, or the degree of the polynomial used in curve
fitting.

We can choose any other kernel function k(u) in (2.249) subject to the condi-
tions

k(u) � 0, (2.251)∫
k(u) du = 1 (2.252)

which ensure that the resulting probability distribution is nonnegative everywhere
and integrates to one. The class of density model given by (2.249) is called a kernel
density estimator, or Parzen estimator. It has a great merit that there is no compu-
tation involved in the ‘training’ phase because this simply requires storage of the
training set. However, this is also one of its great weaknesses because the computa-
tional cost of evaluating the density grows linearly with the size of the data set.

2.5.2 Nearest-neighbour methods
One of the difficulties with the kernel approach to density estimation is that the

parameter h governing the kernel width is fixed for all kernels. In regions of high
data density, a large value of h may lead to over-smoothing and a washing out of
structure that might otherwise be extracted from the data. However, reducing h may
lead to noisy estimates elsewhere in data space where the density is smaller. Thus
the optimal choice for h may be dependent on location within the data space. This
issue is addressed by nearest-neighbour methods for density estimation.

We therefore return to our general result (2.246) for local density estimation,
and instead of fixing V and determining the value of K from the data, we consider
a fixed value of K and use the data to find an appropriate value for V . To do this,
we consider a small sphere centred on the point x at which we wish to estimate the
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Figure 2.26 Illustration of K-nearest-neighbour den-
sity estimation using the same data set
as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree
of smoothing, so that a small value of
K leads to a very noisy density model
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the
green curve) from which the data set was
generated.
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density p(x), and we allow the radius of the sphere to grow until it contains precisely
K data points. The estimate of the density p(x) is then given by (2.246) with V set to
the volume of the resulting sphere. This technique is known as K nearest neighbours
and is illustrated in Figure 2.26, for various choices of the parameter K, using the
same data set as used in Figure 2.24 and Figure 2.25. We see that the value of K
now governs the degree of smoothing and that again there is an optimum choice for
K that is neither too large nor too small. Note that the model produced by K nearest
neighbours is not a true density model because the integral over all space diverges.Exercise 2.61

We close this chapter by showing how the K-nearest-neighbour technique for
density estimation can be extended to the problem of classification. To do this, we
apply the K-nearest-neighbour density estimation technique to each class separately
and then make use of Bayes’ theorem. Let us suppose that we have a data set com-
prising Nk points in class Ck with N points in total, so that

∑
k Nk = N . If we

wish to classify a new point x, we draw a sphere centred on x containing precisely
K points irrespective of their class. Suppose this sphere has volume V and contains
Kk points from class Ck. Then (2.246) provides an estimate of the density associated
with each class

p(x|Ck) =
Kk

NkV
. (2.253)

Similarly, the unconditional density is given by

p(x) =
K

NV
(2.254)

while the class priors are given by

p(Ck) =
Nk

N
. (2.255)

We can now combine (2.253), (2.254), and (2.255) using Bayes’ theorem to obtain
the posterior probability of class membership

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

Kk

K
. (2.256)
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Figure 2.27 (a) In the K-nearest-
neighbour classifier, a new point,
shown by the black diamond, is clas-
sified according to the majority class
membership of the K closest train-
ing data points, in this case K =
3. (b) In the nearest-neighbour
(K = 1) approach to classification,
the resulting decision boundary is
composed of hyperplanes that form
perpendicular bisectors of pairs of
points from different classes.
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If we wish to minimize the probability of misclassification, this is done by assigning
the test point x to the class having the largest posterior probability, corresponding to
the largest value of Kk/K. Thus to classify a new point, we identify the K nearest
points from the training data set and then assign the new point to the class having the
largest number of representatives amongst this set. Ties can be broken at random.
The particular case of K = 1 is called the nearest-neighbour rule, because a test
point is simply assigned to the same class as the nearest point from the training set.
These concepts are illustrated in Figure 2.27.

In Figure 2.28, we show the results of applying the K-nearest-neighbour algo-
rithm to the oil flow data, introduced in Chapter 1, for various values of K. As
expected, we see that K controls the degree of smoothing, so that small K produces
many small regions of each class, whereas large K leads to fewer larger regions.
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Figure 2.28 Plot of 200 data points from the oil data set showing values of x6 plotted against x7, where the
red, green, and blue points correspond to the ‘laminar’, ‘annular’, and ‘homogeneous’ classes, respectively. Also
shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values
of K.
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An interesting property of the nearest-neighbour (K = 1) classifier is that, in the
limit N → ∞, the error rate is never more than twice the minimum achievable error
rate of an optimal classifier, i.e., one that uses the true class distributions (Cover and
Hart, 1967) .

As discussed so far, both the K-nearest-neighbour method, and the kernel den-
sity estimator, require the entire training data set to be stored, leading to expensive
computation if the data set is large. This effect can be offset, at the expense of some
additional one-off computation, by constructing tree-based search structures to allow
(approximate) near neighbours to be found efficiently without doing an exhaustive
search of the data set. Nevertheless, these nonparametric methods are still severely
limited. On the other hand, we have seen that simple parametric models are very
restricted in terms of the forms of distribution that they can represent. We therefore
need to find density models that are very flexible and yet for which the complexity
of the models can be controlled independently of the size of the training set, and we
shall see in subsequent chapters how to achieve this.

Exercises
2.1 (�) www Verify that the Bernoulli distribution (2.2) satisfies the following prop-

erties

1∑
x=0

p(x|µ) = 1 (2.257)

E[x] = µ (2.258)

var[x] = µ(1 − µ). (2.259)

Show that the entropy H[x] of a Bernoulli distributed random binary variable x is
given by

H[x] = −µ ln µ − (1 − µ) ln(1 − µ). (2.260)

2.2 (� �) The form of the Bernoulli distribution given by (2.2) is not symmetric be-
tween the two values of x. In some situations, it will be more convenient to use an
equivalent formulation for which x ∈ {−1, 1}, in which case the distribution can be
written

p(x|µ) =
(

1 − µ

2

)(1−x)/2(1 + µ

2

)(1+x)/2

(2.261)

where µ ∈ [−1, 1]. Show that the distribution (2.261) is normalized, and evaluate its
mean, variance, and entropy.

2.3 (� �) www In this exercise, we prove that the binomial distribution (2.9) is nor-
malized. First use the definition (2.10) of the number of combinations of m identical
objects chosen from a total of N to show that(

N

m

)
+
(

N

m − 1

)
=
(

N + 1
m

)
. (2.262)
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Use this result to prove by induction the following result

(1 + x)N =
N∑

m=0

(
N

m

)
xm (2.263)

which is known as the binomial theorem, and which is valid for all real values of x.
Finally, show that the binomial distribution is normalized, so that

N∑
m=0

(
N

m

)
µm(1 − µ)N−m = 1 (2.264)

which can be done by first pulling out a factor (1 − µ)N out of the summation and
then making use of the binomial theorem.

2.4 (� �) Show that the mean of the binomial distribution is given by (2.11). To do this,
differentiate both sides of the normalization condition (2.264) with respect to µ and
then rearrange to obtain an expression for the mean of n. Similarly, by differentiating
(2.264) twice with respect to µ and making use of the result (2.11) for the mean of
the binomial distribution prove the result (2.12) for the variance of the binomial.

2.5 (� �) www In this exercise, we prove that the beta distribution, given by (2.13), is
correctly normalized, so that (2.14) holds. This is equivalent to showing that∫ 1

0

µa−1(1 − µ)b−1 dµ =
Γ(a)Γ(b)
Γ(a + b)

. (2.265)

From the definition (1.141) of the gamma function, we have

Γ(a)Γ(b) =
∫ ∞

0

exp(−x)xa−1 dx

∫ ∞

0

exp(−y)yb−1 dy. (2.266)

Use this expression to prove (2.265) as follows. First bring the integral over y inside
the integrand of the integral over x, next make the change of variable t = y + x
where x is fixed, then interchange the order of the x and t integrations, and finally
make the change of variable x = tµ where t is fixed.

2.6 (�) Make use of the result (2.265) to show that the mean, variance, and mode of the
beta distribution (2.13) are given respectively by

E[µ] =
a

a + b
(2.267)

var[µ] =
ab

(a + b)2(a + b + 1)
(2.268)

mode[µ] =
a − 1

a + b − 2
. (2.269)
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2.7 (� �) Consider a binomial random variable x given by (2.9), with prior distribution
for µ given by the beta distribution (2.13), and suppose we have observed m occur-
rences of x = 1 and l occurrences of x = 0. Show that the posterior mean value of x
lies between the prior mean and the maximum likelihood estimate for µ. To do this,
show that the posterior mean can be written as λ times the prior mean plus (1 − λ)
times the maximum likelihood estimate, where 0 � λ � 1. This illustrates the con-
cept of the posterior distribution being a compromise between the prior distribution
and the maximum likelihood solution.

2.8 (�) Consider two variables x and y with joint distribution p(x, y). Prove the follow-
ing two results

E[x] = Ey [Ex[x|y]] (2.270)

var[x] = Ey [varx[x|y]] + vary [Ex[x|y]] . (2.271)

Here Ex[x|y] denotes the expectation of x under the conditional distribution p(x|y),
with a similar notation for the conditional variance.

2.9 (� � �) www . In this exercise, we prove the normalization of the Dirichlet dis-
tribution (2.38) using induction. We have already shown in Exercise 2.5 that the
beta distribution, which is a special case of the Dirichlet for M = 2, is normalized.
We now assume that the Dirichlet distribution is normalized for M − 1 variables
and prove that it is normalized for M variables. To do this, consider the Dirichlet
distribution over M variables, and take account of the constraint

∑M
k=1 µk = 1 by

eliminating µM , so that the Dirichlet is written

pM (µ1, . . . , µM−1) = CM

M−1∏
k=1

µαk−1
k

(
1 −

M−1∑
j=1

µj

)αM−1

(2.272)

and our goal is to find an expression for CM . To do this, integrate over µM−1, taking
care over the limits of integration, and then make a change of variable so that this
integral has limits 0 and 1. By assuming the correct result for CM−1 and making use
of (2.265), derive the expression for CM .

2.10 (� �) Using the property Γ(x + 1) = xΓ(x) of the gamma function, derive the
following results for the mean, variance, and covariance of the Dirichlet distribution
given by (2.38)

E[µj ] =
αj

α0

(2.273)

var[µj ] =
αj(α0 − αj)
α2

0(α0 + 1)
(2.274)

cov[µjµl] = − αjαl

α2
0(α0 + 1)

, j 	= l (2.275)

where α0 is defined by (2.39).
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2.11 (�) www By expressing the expectation of lnµj under the Dirichlet distribution
(2.38) as a derivative with respect to αj , show that

E[lnµj ] = ψ(αj) − ψ(α0) (2.276)

where α0 is given by (2.39) and

ψ(a) ≡ d

da
ln Γ(a) (2.277)

is the digamma function.

2.12 (�) The uniform distribution for a continuous variable x is defined by

U(x|a, b) =
1

b − a
, a � x � b. (2.278)

Verify that this distribution is normalized, and find expressions for its mean and
variance.

2.13 (� �) Evaluate the Kullback-Leibler divergence (1.113) between two Gaussians
p(x) = N (x|µ,Σ) and q(x) = N (x|m,L).

2.14 (� �) www This exercise demonstrates that the multivariate distribution with max-
imum entropy, for a given covariance, is a Gaussian. The entropy of a distribution
p(x) is given by

H[x] = −
∫

p(x) ln p(x) dx. (2.279)

We wish to maximize H[x] over all distributions p(x) subject to the constraints that
p(x) be normalized and that it have a specific mean and covariance, so that∫

p(x) dx = 1 (2.280)∫
p(x)xdx = µ (2.281)∫
p(x)(x − µ)(x − µ)T dx = Σ. (2.282)

By performing a variational maximization of (2.279) and using Lagrange multipliers
to enforce the constraints (2.280), (2.281), and (2.282), show that the maximum
likelihood distribution is given by the Gaussian (2.43).

2.15 (� �) Show that the entropy of the multivariate Gaussian N (x|µ,Σ) is given by

H[x] =
1
2

ln |Σ| + D

2
(1 + ln(2π)) (2.283)

where D is the dimensionality of x.
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2.16 (� � �) www Consider two random variables x1 and x2 having Gaussian distri-
butions with means µ1, µ2 and precisions τ1, τ2 respectively. Derive an expression
for the differential entropy of the variable x = x1 + x2. To do this, first find the
distribution of x by using the relation

p(x) =
∫ ∞

−∞
p(x|x2)p(x2) dx2 (2.284)

and completing the square in the exponent. Then observe that this represents the
convolution of two Gaussian distributions, which itself will be Gaussian, and finally
make use of the result (1.110) for the entropy of the univariate Gaussian.

2.17 (�) www Consider the multivariate Gaussian distribution given by (2.43). By
writing the precision matrix (inverse covariance matrix) Σ−1 as the sum of a sym-
metric and an anti-symmetric matrix, show that the anti-symmetric term does not
appear in the exponent of the Gaussian, and hence that the precision matrix may be
taken to be symmetric without loss of generality. Because the inverse of a symmetric
matrix is also symmetric (see Exercise 2.22), it follows that the covariance matrix
may also be chosen to be symmetric without loss of generality.

2.18 (� � �) Consider a real, symmetric matrix Σ whose eigenvalue equation is given
by (2.45). By taking the complex conjugate of this equation and subtracting the
original equation, and then forming the inner product with eigenvector ui, show that
the eigenvalues λi are real. Similarly, use the symmetry property of Σ to show that
two eigenvectors ui and uj will be orthogonal provided λj 	= λi. Finally, show that
without loss of generality, the set of eigenvectors can be chosen to be orthonormal,
so that they satisfy (2.46), even if some of the eigenvalues are zero.

2.19 (� �) Show that a real, symmetric matrix Σ having the eigenvector equation (2.45)
can be expressed as an expansion in the eigenvectors, with coefficients given by the
eigenvalues, of the form (2.48). Similarly, show that the inverse matrix Σ−1 has a
representation of the form (2.49).

2.20 (� �) www A positive definite matrix Σ can be defined as one for which the
quadratic form

aTΣa (2.285)

is positive for any real value of the vector a. Show that a necessary and sufficient
condition for Σ to be positive definite is that all of the eigenvalues λi of Σ, defined
by (2.45), are positive.

2.21 (�) Show that a real, symmetric matrix of size D×D has D(D +1)/2 independent
parameters.

2.22 (�) www Show that the inverse of a symmetric matrix is itself symmetric.

2.23 (� �) By diagonalizing the coordinate system using the eigenvector expansion (2.45),
show that the volume contained within the hyperellipsoid corresponding to a constant
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Mahalanobis distance ∆ is given by

VD|Σ|1/2∆D (2.286)

where VD is the volume of the unit sphere in D dimensions, and the Mahalanobis
distance is defined by (2.44).

2.24 (� �) www Prove the identity (2.76) by multiplying both sides by the matrix(
A B
C D

)
(2.287)

and making use of the definition (2.77).

2.25 (� �) In Sections 2.3.1 and 2.3.2, we considered the conditional and marginal distri-
butions for a multivariate Gaussian. More generally, we can consider a partitioning
of the components of x into three groups xa, xb, and xc, with a corresponding par-
titioning of the mean vector µ and of the covariance matrix Σ in the form

µ =

(
µa

µb

µc

)
, Σ =

(
Σaa Σab Σac

Σba Σbb Σbc

Σca Σcb Σcc

)
. (2.288)

By making use of the results of Section 2.3, find an expression for the conditional
distribution p(xa|xb) in which xc has been marginalized out.

2.26 (� �) A very useful result from linear algebra is the Woodbury matrix inversion
formula given by

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (2.289)

By multiplying both sides by (A + BCD) prove the correctness of this result.

2.27 (�) Let x and z be two independent random vectors, so that p(x, z) = p(x)p(z).
Show that the mean of their sum y = x+z is given by the sum of the means of each
of the variable separately. Similarly, show that the covariance matrix of y is given by
the sum of the covariance matrices of x and z. Confirm that this result agrees with
that of Exercise 1.10.

2.28 (� � �) www Consider a joint distribution over the variable

z =
(

x
y

)
(2.290)

whose mean and covariance are given by (2.108) and (2.105) respectively. By mak-
ing use of the results (2.92) and (2.93) show that the marginal distribution p(x) is
given (2.99). Similarly, by making use of the results (2.81) and (2.82) show that the
conditional distribution p(y|x) is given by (2.100).
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2.29 (� �) Using the partitioned matrix inversion formula (2.76), show that the inverse of
the precision matrix (2.104) is given by the covariance matrix (2.105).

2.30 (�) By starting from (2.107) and making use of the result (2.105), verify the result
(2.108).

2.31 (� �) Consider two multidimensional random vectors x and z having Gaussian
distributions p(x) = N (x|µx,Σx) and p(z) = N (z|µz,Σz) respectively, together
with their sum y = x+z. Use the results (2.109) and (2.110) to find an expression for
the marginal distribution p(y) by considering the linear-Gaussian model comprising
the product of the marginal distribution p(x) and the conditional distribution p(y|x).

2.32 (� � �) www This exercise and the next provide practice at manipulating the
quadratic forms that arise in linear-Gaussian models, as well as giving an indepen-
dent check of results derived in the main text. Consider a joint distribution p(x,y)
defined by the marginal and conditional distributions given by (2.99) and (2.100).
By examining the quadratic form in the exponent of the joint distribution, and using
the technique of ‘completing the square’ discussed in Section 2.3, find expressions
for the mean and covariance of the marginal distribution p(y) in which the variable
x has been integrated out. To do this, make use of the Woodbury matrix inversion
formula (2.289). Verify that these results agree with (2.109) and (2.110) obtained
using the results of Chapter 2.

2.33 (� � �) Consider the same joint distribution as in Exercise 2.32, but now use the
technique of completing the square to find expressions for the mean and covariance
of the conditional distribution p(x|y). Again, verify that these agree with the corre-
sponding expressions (2.111) and (2.112).

2.34 (� �) www To find the maximum likelihood solution for the covariance matrix
of a multivariate Gaussian, we need to maximize the log likelihood function (2.118)
with respect to Σ, noting that the covariance matrix must be symmetric and positive
definite. Here we proceed by ignoring these constraints and doing a straightforward
maximization. Using the results (C.21), (C.26), and (C.28) from Appendix C, show
that the covariance matrix Σ that maximizes the log likelihood function (2.118) is
given by the sample covariance (2.122). We note that the final result is necessarily
symmetric and positive definite (provided the sample covariance is nonsingular).

2.35 (� �) Use the result (2.59) to prove (2.62). Now, using the results (2.59), and (2.62),
show that

E[xnxm] = µµT + InmΣ (2.291)

where xn denotes a data point sampled from a Gaussian distribution with mean µ
and covariance Σ, and Inm denotes the (n, m) element of the identity matrix. Hence
prove the result (2.124).

2.36 (� �) www Using an analogous procedure to that used to obtain (2.126), derive
an expression for the sequential estimation of the variance of a univariate Gaussian
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distribution, by starting with the maximum likelihood expression

σ2
ML =

1
N

N∑
n=1

(xn − µ)2. (2.292)

Verify that substituting the expression for a Gaussian distribution into the Robbins-
Monro sequential estimation formula (2.135) gives a result of the same form, and
hence obtain an expression for the corresponding coefficients aN .

2.37 (� �) Using an analogous procedure to that used to obtain (2.126), derive an ex-
pression for the sequential estimation of the covariance of a multivariate Gaussian
distribution, by starting with the maximum likelihood expression (2.122). Verify that
substituting the expression for a Gaussian distribution into the Robbins-Monro se-
quential estimation formula (2.135) gives a result of the same form, and hence obtain
an expression for the corresponding coefficients aN .

2.38 (�) Use the technique of completing the square for the quadratic form in the expo-
nent to derive the results (2.141) and (2.142).

2.39 (� �) Starting from the results (2.141) and (2.142) for the posterior distribution
of the mean of a Gaussian random variable, dissect out the contributions from the
first N − 1 data points and hence obtain expressions for the sequential update of
µN and σ2

N . Now derive the same results starting from the posterior distribution
p(µ|x1, . . . , xN−1) = N (µ|µN−1, σ

2
N−1) and multiplying by the likelihood func-

tion p(xN |µ) = N (xN |µ, σ2) and then completing the square and normalizing to
obtain the posterior distribution after N observations.

2.40 (� �) www Consider a D-dimensional Gaussian random variable x with distribu-
tion N (x|µ,Σ) in which the covariance Σ is known and for which we wish to infer
the mean µ from a set of observations X = {x1, . . . ,xN}. Given a prior distribution
p(µ) = N (µ|µ0,Σ0), find the corresponding posterior distribution p(µ|X).

2.41 (�) Use the definition of the gamma function (1.141) to show that the gamma dis-
tribution (2.146) is normalized.

2.42 (� �) Evaluate the mean, variance, and mode of the gamma distribution (2.146).

2.43 (�) The following distribution

p(x|σ2, q) =
q

2(2σ2)1/qΓ(1/q)
exp

(
−|x|q

2σ2

)
(2.293)

is a generalization of the univariate Gaussian distribution. Show that this distribution
is normalized so that ∫ ∞

−∞
p(x|σ2, q) dx = 1 (2.294)

and that it reduces to the Gaussian when q = 2. Consider a regression model in
which the target variable is given by t = y(x,w) + ε and ε is a random noise



Exercises 135

variable drawn from the distribution (2.293). Show that the log likelihood function
over w and σ2, for an observed data set of input vectors X = {x1, . . . ,xN} and
corresponding target variables t = (t1, . . . , tN )T, is given by

ln p(t|X,w, σ2) = − 1
2σ2

N∑
n=1

|y(xn,w) − tn|q − N

q
ln(2σ2) + const (2.295)

where ‘const’ denotes terms independent of both w and σ2. Note that, as a function
of w, this is the Lq error function considered in Section 1.5.5.

2.44 (� �) Consider a univariate Gaussian distribution N (x|µ, τ−1) having conjugate
Gaussian-gamma prior given by (2.154), and a data set x = {x1, . . . , xN} of i.i.d.
observations. Show that the posterior distribution is also a Gaussian-gamma distri-
bution of the same functional form as the prior, and write down expressions for the
parameters of this posterior distribution.

2.45 (�) Verify that the Wishart distribution defined by (2.155) is indeed a conjugate
prior for the precision matrix of a multivariate Gaussian.

2.46 (�) www Verify that evaluating the integral in (2.158) leads to the result (2.159).

2.47 (�) www Show that in the limit ν → ∞, the t-distribution (2.159) becomes a
Gaussian. Hint: ignore the normalization coefficient, and simply look at the depen-
dence on x.

2.48 (�) By following analogous steps to those used to derive the univariate Student’s
t-distribution (2.159), verify the result (2.162) for the multivariate form of the Stu-
dent’s t-distribution, by marginalizing over the variable η in (2.161). Using the
definition (2.161), show by exchanging integration variables that the multivariate
t-distribution is correctly normalized.

2.49 (� �) By using the definition (2.161) of the multivariate Student’s t-distribution as a
convolution of a Gaussian with a gamma distribution, verify the properties (2.164),
(2.165), and (2.166) for the multivariate t-distribution defined by (2.162).

2.50 (�) Show that in the limit ν → ∞, the multivariate Student’s t-distribution (2.162)
reduces to a Gaussian with mean µ and precision Λ.

2.51 (�) www The various trigonometric identities used in the discussion of periodic
variables in this chapter can be proven easily from the relation

exp(iA) = cos A + i sin A (2.296)

in which i is the square root of minus one. By considering the identity

exp(iA) exp(−iA) = 1 (2.297)

prove the result (2.177). Similarly, using the identity

cos(A − B) = 
 exp{i(A − B)} (2.298)
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where 
 denotes the real part, prove (2.178). Finally, by using sin(A − B) =
� exp{i(A − B)}, where � denotes the imaginary part, prove the result (2.183).

2.52 (� �) For large m, the von Mises distribution (2.179) becomes sharply peaked
around the mode θ0. By defining ξ = m1/2(θ − θ0) and making the Taylor ex-
pansion of the cosine function given by

cos α = 1 − α2

2
+ O(α4) (2.299)

show that as m → ∞, the von Mises distribution tends to a Gaussian.

2.53 (�) Using the trigonometric identity (2.183), show that solution of (2.182) for θ0 is
given by (2.184).

2.54 (�) By computing first and second derivatives of the von Mises distribution (2.179),
and using I0(m) > 0 for m > 0, show that the maximum of the distribution occurs
when θ = θ0 and that the minimum occurs when θ = θ0 + π (mod 2π).

2.55 (�) By making use of the result (2.168), together with (2.184) and the trigonometric
identity (2.178), show that the maximum likelihood solution mML for the concentra-
tion of the von Mises distribution satisfies A(mML) = r where r is the radius of the
mean of the observations viewed as unit vectors in the two-dimensional Euclidean
plane, as illustrated in Figure 2.17.

2.56 (� �) www Express the beta distribution (2.13), the gamma distribution (2.146),
and the von Mises distribution (2.179) as members of the exponential family (2.194)
and thereby identify their natural parameters.

2.57 (�) Verify that the multivariate Gaussian distribution can be cast in exponential
family form (2.194) and derive expressions for η, u(x), h(x) and g(η) analogous to
(2.220)–(2.223).

2.58 (�) The result (2.226) showed that the negative gradient of ln g(η) for the exponen-
tial family is given by the expectation of u(x). By taking the second derivatives of
(2.195), show that

−∇∇ ln g(η) = E[u(x)u(x)T] − E[u(x)]E[u(x)T] = cov[u(x)]. (2.300)

2.59 (�) By changing variables using y = x/σ, show that the density (2.236) will be
correctly normalized, provided f(x) is correctly normalized.

2.60 (� �) www Consider a histogram-like density model in which the space x is di-
vided into fixed regions for which the density p(x) takes the constant value hi over
the ith region, and that the volume of region i is denoted ∆i. Suppose we have a set
of N observations of x such that ni of these observations fall in region i. Using a
Lagrange multiplier to enforce the normalization constraint on the density, derive an
expression for the maximum likelihood estimator for the {hi}.

2.61 (�) Show that the K-nearest-neighbour density model defines an improper distribu-
tion whose integral over all space is divergent.



3
Linear

Models for
Regression

The focus so far in this book has been on unsupervised learning, including topics
such as density estimation and data clustering. We turn now to a discussion of super-
vised learning, starting with regression. The goal of regression is to predict the value
of one or more continuous target variables t given the value of a D-dimensional vec-
tor x of input variables. We have already encountered an example of a regression
problem when we considered polynomial curve fitting in Chapter 1. The polynomial
is a specific example of a broad class of functions called linear regression models,
which share the property of being linear functions of the adjustable parameters, and
which will form the focus of this chapter. The simplest form of linear regression
models are also linear functions of the input variables. However, we can obtain a
much more useful class of functions by taking linear combinations of a fixed set of
nonlinear functions of the input variables, known as basis functions. Such models
are linear functions of the parameters, which gives them simple analytical properties,
and yet can be nonlinear with respect to the input variables.

137
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Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑
j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑
j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,
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or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ε (3.7)

where ε is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑
n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)
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Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =

⎛⎜⎜⎝
φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞⎟⎟⎠ . (3.16)

The quantity
Φ† ≡ (

ΦTΦ
)−1

ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑
n=1

{tn − w0 −
M−1∑
j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑
j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑
n=1

tn, φj =
1
N

N∑
n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑
n=1

{tn − wT
MLφ(xn)}2 (3.21)
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Figure 3.2 Geometrical interpretation of the least-squares
solution, in an N -dimensional space whose axes
are the values of t1, . . . , tN . The least-squares
regression function is obtained by finding the or-
thogonal projection of the data vector t onto the
subspace spanned by the basis functions φj(x)
in which each basis function is viewed as a vec-
tor ϕj of length N with elements φj(xn).

S
t

yϕ1

ϕ2

and so we see that the inverse of the noise precision is given by the residual variance
of the target values around the regression function.

3.1.2 Geometry of least squares
At this point, it is instructive to consider the geometrical interpretation of the

least-squares solution. To do this we consider an N -dimensional space whose axes
are given by the tn, so that t = (t1, . . . , tN )T is a vector in this space. Each basis
function φj(xn), evaluated at the N data points, can also be represented as a vector in
the same space, denoted by ϕj , as illustrated in Figure 3.2. Note that ϕj corresponds
to the jth column of Φ, whereas φ(xn) corresponds to the nth row of Φ. If the
number M of basis functions is smaller than the number N of data points, then the
M vectors φj(xn) will span a linear subspace S of dimensionality M . We define
y to be an N -dimensional vector whose nth element is given by y(xn,w), where
n = 1, . . . , N . Because y is an arbitrary linear combination of the vectors ϕj , it can
live anywhere in the M -dimensional subspace. The sum-of-squares error (3.12) is
then equal (up to a factor of 1/2) to the squared Euclidean distance between y and
t. Thus the least-squares solution for w corresponds to that choice of y that lies in
subspace S and that is closest to t. Intuitively, from Figure 3.2, we anticipate that
this solution corresponds to the orthogonal projection of t onto the subspace S. This
is indeed the case, as can easily be verified by noting that the solution for y is given
by ΦwML, and then confirming that this takes the form of an orthogonal projection.Exercise 3.2

In practice, a direct solution of the normal equations can lead to numerical diffi-
culties when ΦTΦ is close to singular. In particular, when two or more of the basis
vectors ϕj are co-linear, or nearly so, the resulting parameter values can have large
magnitudes. Such near degeneracies will not be uncommon when dealing with real
data sets. The resulting numerical difficulties can be addressed using the technique
of singular value decomposition, or SVD (Press et al., 1992; Bishop and Nabney,
2008). Note that the addition of a regularization term ensures that the matrix is non-
singular, even in the presence of degeneracies.

3.1.3 Sequential learning
Batch techniques, such as the maximum likelihood solution (3.15), which in-

volve processing the entire training set in one go, can be computationally costly for
large data sets. As we have discussed in Chapter 1, if the data set is sufficiently large,
it may be worthwhile to use sequential algorithms, also known as on-line algorithms,
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in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑
n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑
n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards
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q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑
n=1

{tn − wTφ(xn)}2 +
λ

2

M∑
j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑
j=1

|wj |q � η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.
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Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w�.
The lasso gives a sparse solution in
which w�

1 = 0.

w1

w2

w�

w1

w2

w�

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln
(

β

2π

)
− β

2

N∑
n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)
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As before, we can maximize this function with respect to W, giving

WML =
(
ΦTΦ

)−1
ΦTT. (3.34)

If we examine this result for each target variable tk, we have

wk =
(
ΦTΦ

)−1
ΦTtk = Φ†tk (3.35)

where tk is an N -dimensional column vector with components tnk for n = 1, . . . N .
Thus the solution to the regression problem decouples between the different target
variables, and we need only compute a single pseudo-inverse matrix Φ†, which is
shared by all of the vectors wk.

The extension to general Gaussian noise distributions having arbitrary covari-
ance matrices is straightforward. Again, this leads to a decoupling into K inde-Exercise 3.6
pendent regression problems. This result is unsurprising because the parameters W
define only the mean of the Gaussian noise distribution, and we know from Sec-
tion 2.3.4 that the maximum likelihood solution for the mean of a multivariate Gaus-
sian is independent of the covariance. From now on, we shall therefore consider a
single target variable t for simplicity.

3.2. The Bias-Variance Decomposition

So far in our discussion of linear models for regression, we have assumed that the
form and number of basis functions are both fixed. As we have seen in Chapter 1,
the use of maximum likelihood, or equivalently least squares, can lead to severe
over-fitting if complex models are trained using data sets of limited size. However,
limiting the number of basis functions in order to avoid over-fitting has the side
effect of limiting the flexibility of the model to capture interesting and important
trends in the data. Although the introduction of regularization terms can control
over-fitting for models with many parameters, this raises the question of how to
determine a suitable value for the regularization coefficient λ. Seeking the solution
that minimizes the regularized error function with respect to both the weight vector
w and the regularization coefficient λ is clearly not the right approach since this
leads to the unregularized solution with λ = 0.

As we have seen in earlier chapters, the phenomenon of over-fitting is really an
unfortunate property of maximum likelihood and does not arise when we marginalize
over parameters in a Bayesian setting. In this chapter, we shall consider the Bayesian
view of model complexity in some depth. Before doing so, however, it is instructive
to consider a frequentist viewpoint of the model complexity issue, known as the bias-
variance trade-off. Although we shall introduce this concept in the context of linear
basis function models, where it is easy to illustrate the ideas using simple examples,
the discussion has more general applicability.

In Section 1.5.5, when we discussed decision theory for regression problems,
we considered various loss functions each of which leads to a corresponding optimal
prediction once we are given the conditional distribution p(t|x). A popular choice is
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the squared loss function, for which the optimal prediction is given by the conditional
expectation, which we denote by h(x) and which is given by

h(x) = E[t|x] =
∫

tp(t|x) dt. (3.36)

At this point, it is worth distinguishing between the squared loss function arising
from decision theory and the sum-of-squares error function that arose in the maxi-
mum likelihood estimation of model parameters. We might use more sophisticated
techniques than least squares, for example regularization or a fully Bayesian ap-
proach, to determine the conditional distribution p(t|x). These can all be combined
with the squared loss function for the purpose of making predictions.

We showed in Section 1.5.5 that the expected squared loss can be written in the
form

E[L] =
∫

{y(x) − h(x)}2
p(x) dx +

∫
{h(x) − t}2p(x, t) dxdt. (3.37)

Recall that the second term, which is independent of y(x), arises from the intrinsic
noise on the data and represents the minimum achievable value of the expected loss.
The first term depends on our choice for the function y(x), and we will seek a so-
lution for y(x) which makes this term a minimum. Because it is nonnegative, the
smallest that we can hope to make this term is zero. If we had an unlimited supply of
data (and unlimited computational resources), we could in principle find the regres-
sion function h(x) to any desired degree of accuracy, and this would represent the
optimal choice for y(x). However, in practice we have a data set D containing only
a finite number N of data points, and consequently we do not know the regression
function h(x) exactly.

If we model the h(x) using a parametric function y(x,w) governed by a pa-
rameter vector w, then from a Bayesian perspective the uncertainty in our model is
expressed through a posterior distribution over w. A frequentist treatment, however,
involves making a point estimate of w based on the data set D, and tries instead
to interpret the uncertainty of this estimate through the following thought experi-
ment. Suppose we had a large number of data sets each of size N and each drawn
independently from the distribution p(t,x). For any given data set D, we can run
our learning algorithm and obtain a prediction function y(x;D). Different data sets
from the ensemble will give different functions and consequently different values of
the squared loss. The performance of a particular learning algorithm is then assessed
by taking the average over this ensemble of data sets.

Consider the integrand of the first term in (3.37), which for a particular data set
D takes the form

{y(x;D) − h(x)}2. (3.38)

Because this quantity will be dependent on the particular data set D, we take its aver-
age over the ensemble of data sets. If we add and subtract the quantity ED[y(x;D)]
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inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x;D)]}{ED[y(x;D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[{y(x;D) − h(x)}2

]
= {ED[y(x;D)] − h(x)}2︸ ︷︷ ︸

(bias)2

+ ED
[{y(x;D) − ED[y(x;D)]}2

]︸ ︷︷ ︸
variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x;D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =
∫

{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =
∫

ED
[{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =
∫

{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we
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Figure 3.5 Illustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter λ, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of ln λ (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).
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Figure 3.6 Plot of squared bias and variance,
together with their sum, correspond-
ing to the results shown in Fig-
ure 3.5. Also shown is the average
test set error for a test data set size
of 1000 points. The minimum value
of (bias)2 + variance occurs around
ln λ = −0.31, which is close to the
value that gives the minimum error
on the test data.
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fit a model with 24 Gaussian basis functions by minimizing the regularized error
function (3.27) to give a prediction function y(l)(x) as shown in Figure 3.5. The
top row corresponds to a large value of the regularization coefficient λ that gives low
variance (because the red curves in the left plot look similar) but high bias (because
the two curves in the right plot are very different). Conversely on the bottom row, for
which λ is small, there is large variance (shown by the high variability between the
red curves in the left plot) but low bias (shown by the good fit between the average
model fit and the original sinusoidal function). Note that the result of averaging many
solutions for the complex model with M = 25 is a very good fit to the regression
function, which suggests that averaging may be a beneficial procedure. Indeed, a
weighted averaging of multiple solutions lies at the heart of a Bayesian approach,
although the averaging is with respect to the posterior distribution of parameters, not
with respect to multiple data sets.

We can also examine the bias-variance trade-off quantitatively for this example.
The average prediction is estimated from

y(x) =
1
L

L∑
l=1

y(l)(x) (3.45)

and the integrated squared bias and integrated variance are then given by

(bias)2 =
1
N

N∑
n=1

{y(xn) − h(xn)}2 (3.46)

variance =
1
N

N∑
n=1

1
L

L∑
l=1

{
y(l)(xn) − y(xn)

}2
(3.47)

where the integral over x weighted by the distribution p(x) is approximated by a
finite sum over data points drawn from that distribution. These quantities, along
with their sum, are plotted as a function of lnλ in Figure 3.6. We see that small
values of λ allow the model to become finely tuned to the noise on each individual
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data set leading to large variance. Conversely, a large value of λ pulls the weight
parameters towards zero leading to large bias.

Although the bias-variance decomposition may provide some interesting in-
sights into the model complexity issue from a frequentist perspective, it is of lim-
ited practical value, because the bias-variance decomposition is based on averages
with respect to ensembles of data sets, whereas in practice we have only the single
observed data set. If we had a large number of independent training sets of a given
size, we would be better off combining them into a single large training set, which
of course would reduce the level of over-fitting for a given model complexity.

Given these limitations, we turn in the next section to a Bayesian treatment of
linear basis function models, which not only provides powerful insights into the
issues of over-fitting but which also leads to practical techniques for addressing the
question model complexity.

3.3. Bayesian Linear Regression

In our discussion of maximum likelihood for setting the parameters of a linear re-
gression model, we have seen that the effective model complexity, governed by the
number of basis functions, needs to be controlled according to the size of the data
set. Adding a regularization term to the log likelihood function means the effective
model complexity can then be controlled by the value of the regularization coeffi-
cient, although the choice of the number and form of the basis functions is of course
still important in determining the overall behaviour of the model.

This leaves the issue of deciding the appropriate model complexity for the par-
ticular problem, which cannot be decided simply by maximizing the likelihood func-
tion, because this always leads to excessively complex models and over-fitting. In-
dependent hold-out data can be used to determine model complexity, as discussed
in Section 1.3, but this can be both computationally expensive and wasteful of valu-
able data. We therefore turn to a Bayesian treatment of linear regression, which will
avoid the over-fitting problem of maximum likelihood, and which will also lead to
automatic methods of determining model complexity using the training data alone.
Again, for simplicity we will focus on the case of a single target variable t. Ex-
tension to multiple target variables is straightforward and follows the discussion of
Section 3.1.5.

3.3.1 Parameter distribution
We begin our discussion of the Bayesian treatment of linear regression by in-

troducing a prior probability distribution over the model parameters w. For the mo-
ment, we shall treat the noise precision parameter β as a known constant. First note
that the likelihood function p(t|w) defined by (3.10) is the exponential of a quadratic
function of w. The corresponding conjugate prior is therefore given by a Gaussian
distribution of the form

p(w) = N (w|m0,S0) (3.48)

having mean m0 and covariance S0.
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Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN ) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)

S−1
N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑
n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the
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Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.



156 3. LINEAR MODELS FOR REGRESSION

posterior distribution would become a delta function centred on the true parameter
values, shown by the white cross.

Other forms of prior over the parameters can be considered. For instance, we
can generalize the Gaussian prior to give

p(w|α) =
[

q

2

(α

2

)1/q 1
Γ(1/q)

]M

exp

(
−α

2

M∑
j=1

|wj |q
)

(3.56)

in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q 	= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in

making predictions of t for new values of x. This requires that we evaluate the
predictive distribution defined by

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β) dw (3.57)

in which t is the vector of target values from the training set, and we have omitted the
corresponding input vectors from the right-hand side of the conditioning statements
to simplify the notation. The conditional distribution p(t|x,w, β) of the target vari-
able is given by (3.8), and the posterior weight distribution is given by (3.49). We
see that (3.57) involves the convolution of two Gaussian distributions, and so making
use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
takes the formExercise 3.10

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ2

N (x)) (3.58)

where the variance σ2
N (x) of the predictive distribution is given by

σ2
N (x) =

1
β

+ φ(x)TSNφ(x). (3.59)

The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) �
σ2

N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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Figure 3.9 Plots of the function y(x,w) using samples from the posterior distributions over w corresponding to
the plots in Figure 3.8.

If we used localized basis functions such as Gaussians, then in regions away
from the basis function centres, the contribution from the second term in the predic-
tive variance (3.59) will go to zero, leaving only the noise contribution β−1. Thus,
the model becomes very confident in its predictions when extrapolating outside the
region occupied by the basis functions, which is generally an undesirable behaviour.
This problem can be avoided by adopting an alternative Bayesian approach to re-
gression known as a Gaussian process.Section 6.4

Note that, if both w and β are treated as unknown, then we can introduce a
conjugate prior distribution p(w, β) that, from the discussion in Section 2.3.6, will
be given by a Gaussian-gamma distribution (Denison et al., 2002). In this case, theExercise 3.12
predictive distribution is a Student’s t-distribution.Exercise 3.13



3.3. Bayesian Linear Regression 159

Figure 3.10 The equivalent ker-
nel k(x, x′) for the Gaussian basis
functions in Figure 3.1, shown as
a plot of x versus x′, together with
three slices through this matrix cor-
responding to three different values
of x. The data set used to generate
this kernel comprised 200 values of
x equally spaced over the interval
(−1, 1).

3.3.3 Equivalent kernel
The posterior mean solution (3.53) for the linear basis function model has an in-

teresting interpretation that will set the stage for kernel methods, including Gaussian
processes. If we substitute (3.53) into the expression (3.3), we see that the predictiveChapter 6
mean can be written in the form

y(x,mN ) = mT
Nφ(x) = βφ(x)TSNΦTt =

N∑
n=1

βφ(x)TSNφ(xn)tn (3.60)

where SN is defined by (3.51). Thus the mean of the predictive distribution at a point
x is given by a linear combination of the training set target variables tn, so that we
can write

y(x,mN ) =
N∑

n=1

k(x,xn)tn (3.61)

where the function
k(x,x′) = βφ(x)TSNφ(x′) (3.62)

is known as the smoother matrix or the equivalent kernel. Regression functions, such
as this, which make predictions by taking linear combinations of the training set
target values are known as linear smoothers. Note that the equivalent kernel depends
on the input values xn from the data set because these appear in the definition of
SN . The equivalent kernel is illustrated for the case of Gaussian basis functions in
Figure 3.10 in which the kernel functions k(x, x′) have been plotted as a function of
x′ for three different values of x. We see that they are localized around x, and so the
mean of the predictive distribution at x, given by y(x,mN ), is obtained by forming
a weighted combination of the target values in which data points close to x are given
higher weight than points further removed from x. Intuitively, it seems reasonable
that we should weight local evidence more strongly than distant evidence. Note that
this localization property holds not only for the localized Gaussian basis functions
but also for the nonlocal polynomial and sigmoidal basis functions, as illustrated in
Figure 3.11.
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Figure 3.11 Examples of equiva-
lent kernels k(x, x′) for x = 0
plotted as a function of x′, corre-
sponding (left) to the polynomial ba-
sis functions and (right) to the sig-
moidal basis functions shown in Fig-
ure 3.1. Note that these are local-
ized functions of x′ even though the
corresponding basis functions are
nonlocal. −1 0 1
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Further insight into the role of the equivalent kernel can be obtained by consid-
ering the covariance between y(x) and y(x′), which is given by

cov[y(x), y(x′)] = cov[φ(x)Tw,wTφ(x′)]
= φ(x)TSNφ(x′) = β−1k(x,x′) (3.63)

where we have made use of (3.49) and (3.62). From the form of the equivalent
kernel, we see that the predictive mean at nearby points will be highly correlated,
whereas for more distant pairs of points the correlation will be smaller.

The predictive distribution shown in Figure 3.8 allows us to visualize the point-
wise uncertainty in the predictions, governed by (3.59). However, by drawing sam-
ples from the posterior distribution over w, and plotting the corresponding model
functions y(x,w) as in Figure 3.9, we are visualizing the joint uncertainty in the
posterior distribution between the y values at two (or more) x values, as governed by
the equivalent kernel.

The formulation of linear regression in terms of a kernel function suggests an
alternative approach to regression as follows. Instead of introducing a set of basis
functions, which implicitly determines an equivalent kernel, we can instead define
a localized kernel directly and use this to make predictions for new input vectors x,
given the observed training set. This leads to a practical framework for regression
(and classification) called Gaussian processes, which will be discussed in detail in
Section 6.4.

We have seen that the effective kernel defines the weights by which the training
set target values are combined in order to make a prediction at a new value of x, and
it can be shown that these weights sum to one, in other words

N∑
n=1

k(x,xn) = 1 (3.64)

for all values of x. This intuitively pleasing result can easily be proven informallyExercise 3.14
by noting that the summation is equivalent to considering the predictive mean ŷ(x)
for a set of target data in which tn = 1 for all n. Provided the basis functions are
linearly independent, that there are more data points than basis functions, and that
one of the basis functions is constant (corresponding to the bias parameter), then it is
clear that we can fit the training data exactly and hence that the predictive mean will



3.4. Bayesian Model Comparison 161

be simply ŷ(x) = 1, from which we obtain (3.64). Note that the kernel function can
be negative as well as positive, so although it satisfies a summation constraint, the
corresponding predictions are not necessarily convex combinations of the training
set target variables.

Finally, we note that the equivalent kernel (3.62) satisfies an important property
shared by kernel functions in general, namely that it can be expressed in the form anChapter 6
inner product with respect to a vector ψ(x) of nonlinear functions, so that

k(x, z) = ψ(x)Tψ(z) (3.65)

where ψ(x) = β1/2S1/2
N φ(x).

3.4. Bayesian Model Comparison

In Chapter 1, we highlighted the problem of over-fitting as well as the use of cross-
validation as a technique for setting the values of regularization parameters or for
choosing between alternative models. Here we consider the problem of model se-
lection from a Bayesian perspective. In this section, our discussion will be very
general, and then in Section 3.5 we shall see how these ideas can be applied to the
determination of regularization parameters in linear regression.

As we shall see, the over-fitting associated with maximum likelihood can be
avoided by marginalizing (summing or integrating) over the model parameters in-
stead of making point estimates of their values. Models can then be compared di-
rectly on the training data, without the need for a validation set. This allows all
available data to be used for training and avoids the multiple training runs for each
model associated with cross-validation. It also allows multiple complexity parame-
ters to be determined simultaneously as part of the training process. For example,
in Chapter 7 we shall introduce the relevance vector machine, which is a Bayesian
model having one complexity parameter for every training data point.

The Bayesian view of model comparison simply involves the use of probabilities
to represent uncertainty in the choice of model, along with a consistent application
of the sum and product rules of probability. Suppose we wish to compare a set of L
models {Mi} where i = 1, . . . , L. Here a model refers to a probability distribution
over the observed data D. In the case of the polynomial curve-fitting problem, the
distribution is defined over the set of target values t, while the set of input values X
is assumed to be known. Other types of model define a joint distributions over X
and t. We shall suppose that the data is generated from one of these models but weSection 1.5.4
are uncertain which one. Our uncertainty is expressed through a prior probability
distribution p(Mi). Given a training set D, we then wish to evaluate the posterior
distribution

p(Mi|D) ∝ p(Mi)p(D|Mi). (3.66)

The prior allows us to express a preference for different models. Let us simply
assume that all models are given equal prior probability. The interesting term is
the model evidence p(D|Mi) which expresses the preference shown by the data for



162 3. LINEAR MODELS FOR REGRESSION

different models, and we shall examine this term in more detail shortly. The model
evidence is sometimes also called the marginal likelihood because it can be viewed
as a likelihood function over the space of models, in which the parameters have been
marginalized out. The ratio of model evidences p(D|Mi)/p(D|Mj) for two models
is known as a Bayes factor (Kass and Raftery, 1995).

Once we know the posterior distribution over models, the predictive distribution
is given, from the sum and product rules, by

p(t|x,D) =
L∑

i=1

p(t|x,Mi,D)p(Mi|D). (3.67)

This is an example of a mixture distribution in which the overall predictive distribu-
tion is obtained by averaging the predictive distributions p(t|x,Mi,D) of individual
models, weighted by the posterior probabilities p(Mi|D) of those models. For in-
stance, if we have two models that are a-posteriori equally likely and one predicts
a narrow distribution around t = a while the other predicts a narrow distribution
around t = b, the overall predictive distribution will be a bimodal distribution with
modes at t = a and t = b, not a single model at t = (a + b)/2.

A simple approximation to model averaging is to use the single most probable
model alone to make predictions. This is known as model selection.

For a model governed by a set of parameters w, the model evidence is given,
from the sum and product rules of probability, by

p(D|Mi) =
∫

p(D|w,Mi)p(w|Mi) dw. (3.68)

From a sampling perspective, the marginal likelihood can be viewed as the proba-Chapter 11
bility of generating the data set D from a model whose parameters are sampled at
random from the prior. It is also interesting to note that the evidence is precisely the
normalizing term that appears in the denominator in Bayes’ theorem when evaluating
the posterior distribution over parameters because

p(w|D,Mi) =
p(D|w,Mi)p(w|Mi)

p(D|Mi)
. (3.69)

We can obtain some insight into the model evidence by making a simple approx-
imation to the integral over parameters. Consider first the case of a model having a
single parameter w. The posterior distribution over parameters is proportional to
p(D|w)p(w), where we omit the dependence on the model Mi to keep the notation
uncluttered. If we assume that the posterior distribution is sharply peaked around the
most probable value wMAP, with width ∆wposterior, then we can approximate the in-
tegral by the value of the integrand at its maximum times the width of the peak. If we
further assume that the prior is flat with width ∆wprior so that p(w) = 1/∆wprior,
then we have

p(D) =
∫

p(D|w)p(w) dw � p(D|wMAP)
∆wposterior

∆wprior

(3.70)
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Figure 3.12 We can obtain a rough approximation to
the model evidence if we assume that
the posterior distribution over parame-
ters is sharply peaked around its mode
wMAP.

∆wposterior

∆wprior

wMAP w

and so taking logs we obtain

ln p(D) � ln p(D|wMAP) + ln
(

∆wposterior

∆wprior

)
. (3.71)

This approximation is illustrated in Figure 3.12. The first term represents the fit to
the data given by the most probable parameter values, and for a flat prior this would
correspond to the log likelihood. The second term penalizes the model according to
its complexity. Because ∆wposterior < ∆wprior this term is negative, and it increases
in magnitude as the ratio ∆wposterior/∆wprior gets smaller. Thus, if parameters are
finely tuned to the data in the posterior distribution, then the penalty term is large.

For a model having a set of M parameters, we can make a similar approximation
for each parameter in turn. Assuming that all parameters have the same ratio of
∆wposterior/∆wprior, we obtain

ln p(D) � ln p(D|wMAP) + M ln
(

∆wposterior

∆wprior

)
. (3.72)

Thus, in this very simple approximation, the size of the complexity penalty increases
linearly with the number M of adaptive parameters in the model. As we increase
the complexity of the model, the first term will typically decrease, because a more
complex model is better able to fit the data, whereas the second term will increase
due to the dependence on M . The optimal model complexity, as determined by
the maximum evidence, will be given by a trade-off between these two competing
terms. We shall later develop a more refined version of this approximation, based on
a Gaussian approximation to the posterior distribution.Section 4.4.1

We can gain further insight into Bayesian model comparison and understand
how the marginal likelihood can favour models of intermediate complexity by con-
sidering Figure 3.13. Here the horizontal axis is a one-dimensional representation
of the space of possible data sets, so that each point on this axis corresponds to a
specific data set. We now consider three models M1, M2 and M3 of successively
increasing complexity. Imagine running these models generatively to produce exam-
ple data sets, and then looking at the distribution of data sets that result. Any given
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Figure 3.13 Schematic illustration of the
distribution of data sets for
three models of different com-
plexity, in which M1 is the
simplest and M3 is the most
complex. Note that the dis-
tributions are normalized. In
this example, for the partic-
ular observed data set D0,
the model M2 with intermedi-
ate complexity has the largest
evidence.

p(D)

DD0

M1

M2

M3

model can generate a variety of different data sets since the parameters are governed
by a prior probability distribution, and for any choice of the parameters there may
be random noise on the target variables. To generate a particular data set from a spe-
cific model, we first choose the values of the parameters from their prior distribution
p(w), and then for these parameter values we sample the data from p(D|w). A sim-
ple model (for example, based on a first order polynomial) has little variability and
so will generate data sets that are fairly similar to each other. Its distribution p(D)
is therefore confined to a relatively small region of the horizontal axis. By contrast,
a complex model (such as a ninth order polynomial) can generate a great variety of
different data sets, and so its distribution p(D) is spread over a large region of the
space of data sets. Because the distributions p(D|Mi) are normalized, we see that
the particular data set D0 can have the highest value of the evidence for the model
of intermediate complexity. Essentially, the simpler model cannot fit the data well,
whereas the more complex model spreads its predictive probability over too broad a
range of data sets and so assigns relatively small probability to any one of them.

Implicit in the Bayesian model comparison framework is the assumption that
the true distribution from which the data are generated is contained within the set of
models under consideration. Provided this is so, we can show that Bayesian model
comparison will on average favour the correct model. To see this, consider two
models M1 and M2 in which the truth corresponds to M1. For a given finite data
set, it is possible for the Bayes factor to be larger for the incorrect model. However, if
we average the Bayes factor over the distribution of data sets, we obtain the expected
Bayes factor in the form ∫

p(D|M1) ln
p(D|M1)
p(D|M2)

dD (3.73)

where the average has been taken with respect to the true distribution of the data.
This quantity is an example of the Kullback-Leibler divergence and satisfies the prop-Section 1.6.1
erty of always being positive unless the two distributions are equal in which case it
is zero. Thus on average the Bayes factor will always favour the correct model.

We have seen that the Bayesian framework avoids the problem of over-fitting
and allows models to be compared on the basis of the training data alone. However,
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a Bayesian approach, like any approach to pattern recognition, needs to make as-
sumptions about the form of the model, and if these are invalid then the results can
be misleading. In particular, we see from Figure 3.12 that the model evidence can
be sensitive to many aspects of the prior, such as the behaviour in the tails. Indeed,
the evidence is not defined if the prior is improper, as can be seen by noting that
an improper prior has an arbitrary scaling factor (in other words, the normalization
coefficient is not defined because the distribution cannot be normalized). If we con-
sider a proper prior and then take a suitable limit in order to obtain an improper prior
(for example, a Gaussian prior in which we take the limit of infinite variance) then
the evidence will go to zero, as can be seen from (3.70) and Figure 3.12. It may,
however, be possible to consider the evidence ratio between two models first and
then take a limit to obtain a meaningful answer.

In a practical application, therefore, it will be wise to keep aside an independent
test set of data on which to evaluate the overall performance of the final system.

3.5. The Evidence Approximation

In a fully Bayesian treatment of the linear basis function model, we would intro-
duce prior distributions over the hyperparameters α and β and make predictions by
marginalizing with respect to these hyperparameters as well as with respect to the
parameters w. However, although we can integrate analytically over either w or
over the hyperparameters, the complete marginalization over all of these variables
is analytically intractable. Here we discuss an approximation in which we set the
hyperparameters to specific values determined by maximizing the marginal likeli-
hood function obtained by first integrating over the parameters w. This framework
is known in the statistics literature as empirical Bayes (Bernardo and Smith, 1994;
Gelman et al., 2004), or type 2 maximum likelihood (Berger, 1985), or generalized
maximum likelihood (Wahba, 1975), and in the machine learning literature is also
called the evidence approximation (Gull, 1989; MacKay, 1992a).

If we introduce hyperpriors over α and β, the predictive distribution is obtained
by marginalizing over w, α and β so that

p(t|t) =
∫∫∫

p(t|w, β)p(w|t, α, β)p(α, β|t) dw dα dβ (3.74)

where p(t|w, β) is given by (3.8) and p(w|t, α, β) is given by (3.49) with mN and
SN defined by (3.53) and (3.54) respectively. Here we have omitted the dependence
on the input variable x to keep the notation uncluttered. If the posterior distribution
p(α, β|t) is sharply peaked around values α̂ and β̂, then the predictive distribution is
obtained simply by marginalizing over w in which α and β are fixed to the values α̂

and β̂, so that

p(t|t) � p(t|t, α̂, β̂) =
∫

p(t|w, β̂)p(w|t, α̂, β̂) dw. (3.75)
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From Bayes’ theorem, the posterior distribution for α and β is given by

p(α, β|t) ∝ p(t|α, β)p(α, β). (3.76)

If the prior is relatively flat, then in the evidence framework the values of α̂ and
β̂ are obtained by maximizing the marginal likelihood function p(t|α, β). We shall
proceed by evaluating the marginal likelihood for the linear basis function model and
then finding its maxima. This will allow us to determine values for these hyperpa-
rameters from the training data alone, without recourse to cross-validation. Recall
that the ratio α/β is analogous to a regularization parameter.

As an aside it is worth noting that, if we define conjugate (Gamma) prior distri-
butions over α and β, then the marginalization over these hyperparameters in (3.74)
can be performed analytically to give a Student’s t-distribution over w (see Sec-
tion 2.3.7). Although the resulting integral over w is no longer analytically tractable,
it might be thought that approximating this integral, for example using the Laplace
approximation discussed (Section 4.4) which is based on a local Gaussian approxi-
mation centred on the mode of the posterior distribution, might provide a practical
alternative to the evidence framework (Buntine and Weigend, 1991). However, the
integrand as a function of w typically has a strongly skewed mode so that the Laplace
approximation fails to capture the bulk of the probability mass, leading to poorer re-
sults than those obtained by maximizing the evidence (MacKay, 1999).

Returning to the evidence framework, we note that there are two approaches that
we can take to the maximization of the log evidence. We can evaluate the evidence
function analytically and then set its derivative equal to zero to obtain re-estimation
equations for α and β, which we shall do in Section 3.5.2. Alternatively we use a
technique called the expectation maximization (EM) algorithm, which will be dis-
cussed in Section 9.3.4 where we shall also show that these two approaches converge
to the same solution.

3.5.1 Evaluation of the evidence function
The marginal likelihood function p(t|α, β) is obtained by integrating over the

weight parameters w, so that

p(t|α, β) =
∫

p(t|w, β)p(w|α) dw. (3.77)

One way to evaluate this integral is to make use once again of the result (2.115)
for the conditional distribution in a linear-Gaussian model. Here we shall evaluateExercise 3.16
the integral instead by completing the square in the exponent and making use of the
standard form for the normalization coefficient of a Gaussian.

From (3.11), (3.12), and (3.52), we can write the evidence function in the formExercise 3.17

p(t|α, β) =
(

β

2π

)N/2 ( α

2π

)M/2
∫

exp {−E(w)} dw (3.78)
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where M is the dimensionality of w, and we have defined

E(w) = βED(w) + αEW (w)

=
β

2
‖t − Φw‖2 +

α

2
wTw. (3.79)

We recognize (3.79) as being equal, up to a constant of proportionality, to the reg-
ularized sum-of-squares error function (3.27). We now complete the square over wExercise 3.18
giving

E(w) = E(mN ) +
1
2
(w − mN )TA(w − mN ) (3.80)

where we have introduced
A = αI + βΦTΦ (3.81)

together with

E(mN ) =
β

2
‖t − ΦmN‖2 +

α

2
mT

NmN . (3.82)

Note that A corresponds to the matrix of second derivatives of the error function

A = ∇∇E(w) (3.83)

and is known as the Hessian matrix. Here we have also defined mN given by

mN = βA−1ΦTt. (3.84)

Using (3.54), we see that A = S−1
N , and hence (3.84) is equivalent to the previous

definition (3.53), and therefore represents the mean of the posterior distribution.
The integral over w can now be evaluated simply by appealing to the standard

result for the normalization coefficient of a multivariate Gaussian, givingExercise 3.19 ∫
exp {−E(w)} dw

= exp{−E(mN )}
∫

exp
{
−1

2
(w − mN )TA(w − mN )

}
dw

= exp{−E(mN )}(2π)M/2|A|−1/2. (3.85)

Using (3.78) we can then write the log of the marginal likelihood in the form

ln p(t|α, β) =
M

2
ln α +

N

2
lnβ − E(mN ) − 1

2
ln |A| − N

2
ln(2π) (3.86)

which is the required expression for the evidence function.
Returning to the polynomial regression problem, we can plot the model evidence

against the order of the polynomial, as shown in Figure 3.14. Here we have assumed
a prior of the form (1.65) with the parameter α fixed at α = 5 × 10−3. The form
of this plot is very instructive. Referring back to Figure 1.4, we see that the M = 0
polynomial has very poor fit to the data and consequently gives a relatively low value
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Figure 3.14 Plot of the model evidence versus
the order M , for the polynomial re-
gression model, showing that the
evidence favours the model with
M = 3.
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for the evidence. Going to the M = 1 polynomial greatly improves the data fit, and
hence the evidence is significantly higher. However, in going to M = 2, the data
fit is improved only very marginally, due to the fact that the underlying sinusoidal
function from which the data is generated is an odd function and so has no even terms
in a polynomial expansion. Indeed, Figure 1.5 shows that the residual data error is
reduced only slightly in going from M = 1 to M = 2. Because this richer model
suffers a greater complexity penalty, the evidence actually falls in going from M = 1
to M = 2. When we go to M = 3 we obtain a significant further improvement in
data fit, as seen in Figure 1.4, and so the evidence is increased again, giving the
highest overall evidence for any of the polynomials. Further increases in the value
of M produce only small improvements in the fit to the data but suffer increasing
complexity penalty, leading overall to a decrease in the evidence values. Looking
again at Figure 1.5, we see that the generalization error is roughly constant between
M = 3 and M = 8, and it would be difficult to choose between these models on
the basis of this plot alone. The evidence values, however, show a clear preference
for M = 3, since this is the simplest model which gives a good explanation for the
observed data.

3.5.2 Maximizing the evidence function
Let us first consider the maximization of p(t|α, β) with respect to α. This can

be done by first defining the following eigenvector equation(
βΦTΦ

)
ui = λiui. (3.87)

From (3.81), it then follows that A has eigenvalues α+λi. Now consider the deriva-
tive of the term involving ln |A| in (3.86) with respect to α. We have

d

dα
ln |A| =

d

dα
ln
∏

i

(λi + α) =
d

dα

∑
i

ln(λi + α) =
∑

i

1
λi + α

. (3.88)

Thus the stationary points of (3.86) with respect to α satisfy

0 =
M

2α
− 1

2
mT

NmN − 1
2

∑
i

1
λi + α

. (3.89)
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Multiplying through by 2α and rearranging, we obtain

αmT
NmN = M − α

∑
i

1
λi + α

= γ. (3.90)

Since there are M terms in the sum over i, the quantity γ can be written

γ =
∑

i

λi

α + λi
. (3.91)

The interpretation of the quantity γ will be discussed shortly. From (3.90) we see
that the value of α that maximizes the marginal likelihood satisfiesExercise 3.20

α =
γ

mT
NmN

. (3.92)

Note that this is an implicit solution for α not only because γ depends on α, but also
because the mode mN of the posterior distribution itself depends on the choice of
α. We therefore adopt an iterative procedure in which we make an initial choice for
α and use this to find mN , which is given by (3.53), and also to evaluate γ, which
is given by (3.91). These values are then used to re-estimate α using (3.92), and the
process repeated until convergence. Note that because the matrix ΦTΦ is fixed, we
can compute its eigenvalues once at the start and then simply multiply these by β to
obtain the λi.

It should be emphasized that the value of α has been determined purely by look-
ing at the training data. In contrast to maximum likelihood methods, no independent
data set is required in order to optimize the model complexity.

We can similarly maximize the log marginal likelihood (3.86) with respect to β.
To do this, we note that the eigenvalues λi defined by (3.87) are proportional to β,
and hence dλi/dβ = λi/β giving

d

dβ
ln |A| =

d

dβ

∑
i

ln(λi + α) =
1
β

∑
i

λi

λi + α
=

γ

β
. (3.93)

The stationary point of the marginal likelihood therefore satisfies

0 =
N

2β
− 1

2

N∑
n=1

{
tn − mT

Nφ(xn)
}2 − γ

2β
(3.94)

and rearranging we obtainExercise 3.22

1
β

=
1

N − γ

N∑
n=1

{
tn − mT

Nφ(xn)
}2

. (3.95)

Again, this is an implicit solution for β and can be solved by choosing an initial
value for β and then using this to calculate mN and γ and then re-estimate β using
(3.95), repeating until convergence. If both α and β are to be determined from the
data, then their values can be re-estimated together after each update of γ.
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Figure 3.15 Contours of the likelihood function (red)
and the prior (green) in which the axes in parameter
space have been rotated to align with the eigenvectors
ui of the Hessian. For α = 0, the mode of the poste-
rior is given by the maximum likelihood solution wML,
whereas for nonzero α the mode is at wMAP = mN . In
the direction w1 the eigenvalue λ1, defined by (3.87), is
small compared with α and so the quantity λ1/(λ1 + α)
is close to zero, and the corresponding MAP value of
w1 is also close to zero. By contrast, in the direction w2

the eigenvalue λ2 is large compared with α and so the
quantity λ2/(λ2 +α) is close to unity, and the MAP value
of w2 is close to its maximum likelihood value.

u1

u2

w1

w2

wMAP

wML

3.5.3 Effective number of parameters
The result (3.92) has an elegant interpretation (MacKay, 1992a), which provides

insight into the Bayesian solution for α. To see this, consider the contours of the like-
lihood function and the prior as illustrated in Figure 3.15. Here we have implicitly
transformed to a rotated set of axes in parameter space aligned with the eigenvec-
tors ui defined in (3.87). Contours of the likelihood function are then axis-aligned
ellipses. The eigenvalues λi measure the curvature of the likelihood function, and
so in Figure 3.15 the eigenvalue λ1 is small compared with λ2 (because a smaller
curvature corresponds to a greater elongation of the contours of the likelihood func-
tion). Because βΦTΦ is a positive definite matrix, it will have positive eigenvalues,
and so the ratio λi/(λi + α) will lie between 0 and 1. Consequently, the quantity γ
defined by (3.91) will lie in the range 0 � γ � M . For directions in which λi � α,
the corresponding parameter wi will be close to its maximum likelihood value, and
the ratio λi/(λi + α) will be close to 1. Such parameters are called well determined
because their values are tightly constrained by the data. Conversely, for directions
in which λi  α, the corresponding parameters wi will be close to zero, as will the
ratios λi/(λi +α). These are directions in which the likelihood function is relatively
insensitive to the parameter value and so the parameter has been set to a small value
by the prior. The quantity γ defined by (3.91) therefore measures the effective total
number of well determined parameters.

We can obtain some insight into the result (3.95) for re-estimating β by com-
paring it with the corresponding maximum likelihood result given by (3.21). Both
of these formulae express the variance (the inverse precision) as an average of the
squared differences between the targets and the model predictions. However, they
differ in that the number of data points N in the denominator of the maximum like-
lihood result is replaced by N − γ in the Bayesian result. We recall from (1.56) that
the maximum likelihood estimate of the variance for a Gaussian distribution over a
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single variable x is given by

σ2
ML =

1
N

N∑
n=1

(xn − µML)2 (3.96)

and that this estimate is biased because the maximum likelihood solution µML for
the mean has fitted some of the noise on the data. In effect, this has used up one
degree of freedom in the model. The corresponding unbiased estimate is given by
(1.59) and takes the form

σ2
MAP =

1
N − 1

N∑
n=1

(xn − µML)2. (3.97)

We shall see in Section 10.1.3 that this result can be obtained from a Bayesian treat-
ment in which we marginalize over the unknown mean. The factor of N − 1 in the
denominator of the Bayesian result takes account of the fact that one degree of free-
dom has been used in fitting the mean and removes the bias of maximum likelihood.
Now consider the corresponding results for the linear regression model. The mean
of the target distribution is now given by the function wTφ(x), which contains M
parameters. However, not all of these parameters are tuned to the data. The effective
number of parameters that are determined by the data is γ, with the remaining M−γ
parameters set to small values by the prior. This is reflected in the Bayesian result
for the variance that has a factor N − γ in the denominator, thereby correcting for
the bias of the maximum likelihood result.

We can illustrate the evidence framework for setting hyperparameters using the
sinusoidal synthetic data set from Section 1.1, together with the Gaussian basis func-
tion model comprising 9 basis functions, so that the total number of parameters in
the model is given by M = 10 including the bias. Here, for simplicity of illustra-
tion, we have set β to its true value of 11.1 and then used the evidence framework to
determine α, as shown in Figure 3.16.

We can also see how the parameter α controls the magnitude of the parameters
{wi}, by plotting the individual parameters versus the effective number γ of param-
eters, as shown in Figure 3.17.

If we consider the limit N � M in which the number of data points is large in
relation to the number of parameters, then from (3.87) all of the parameters will be
well determined by the data because ΦTΦ involves an implicit sum over data points,
and so the eigenvalues λi increase with the size of the data set. In this case, γ = M ,
and the re-estimation equations for α and β become

α =
M

2EW (mN )
(3.98)

β =
N

2ED(mN )
(3.99)

where EW and ED are defined by (3.25) and (3.26), respectively. These results
can be used as an easy-to-compute approximation to the full evidence re-estimation
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Figure 3.16 The left plot shows γ (red curve) and 2αEW (mN ) (blue curve) versus ln α for the sinusoidal
synthetic data set. It is the intersection of these two curves that defines the optimum value for α given by the
evidence procedure. The right plot shows the corresponding graph of log evidence ln p(t|α, β) versus ln α (red
curve) showing that the peak coincides with the crossing point of the curves in the left plot. Also shown is the
test set error (blue curve) showing that the evidence maximum occurs close to the point of best generalization.

formulae, because they do not require evaluation of the eigenvalue spectrum of the
Hessian.

Figure 3.17 Plot of the 10 parameters wi

from the Gaussian basis function
model versus the effective num-
ber of parameters γ, in which the
hyperparameter α is varied in the
range 0 � α � ∞ causing γ to
vary in the range 0 � γ � M .
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3.6. Limitations of Fixed Basis Functions

Throughout this chapter, we have focussed on models comprising a linear combina-
tion of fixed, nonlinear basis functions. We have seen that the assumption of linearity
in the parameters led to a range of useful properties including closed-form solutions
to the least-squares problem, as well as a tractable Bayesian treatment. Furthermore,
for a suitable choice of basis functions, we can model arbitrary nonlinearities in the
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mapping from input variables to targets. In the next chapter, we shall study an anal-
ogous class of models for classification.

It might appear, therefore, that such linear models constitute a general purpose
framework for solving problems in pattern recognition. Unfortunately, there are
some significant shortcomings with linear models, which will cause us to turn in
later chapters to more complex models such as support vector machines and neural
networks.

The difficulty stems from the assumption that the basis functions φj(x) are fixed
before the training data set is observed and is a manifestation of the curse of dimen-
sionality discussed in Section 1.4. As a consequence, the number of basis functions
needs to grow rapidly, often exponentially, with the dimensionality D of the input
space.

Fortunately, there are two properties of real data sets that we can exploit to help
alleviate this problem. First of all, the data vectors {xn} typically lie close to a non-
linear manifold whose intrinsic dimensionality is smaller than that of the input space
as a result of strong correlations between the input variables. We will see an example
of this when we consider images of handwritten digits in Chapter 12. If we are using
localized basis functions, we can arrange that they are scattered in input space only
in regions containing data. This approach is used in radial basis function networks
and also in support vector and relevance vector machines. Neural network models,
which use adaptive basis functions having sigmoidal nonlinearities, can adapt the
parameters so that the regions of input space over which the basis functions vary
corresponds to the data manifold. The second property is that target variables may
have significant dependence on only a small number of possible directions within the
data manifold. Neural networks can exploit this property by choosing the directions
in input space to which the basis functions respond.

Exercises
3.1 (�) www Show that the ‘tanh’ function and the logistic sigmoid function (3.6)

are related by
tanh(a) = 2σ(2a) − 1. (3.100)

Hence show that a general linear combination of logistic sigmoid functions of the
form

y(x,w) = w0 +
M∑

j=1

wjσ
(x − µj

s

)
(3.101)

is equivalent to a linear combination of ‘tanh’ functions of the form

y(x,u) = u0 +
M∑

j=1

uj tanh
(x − µj

s

)
(3.102)

and find expressions to relate the new parameters {u1, . . . , uM} to the original pa-
rameters {w1, . . . , wM}.
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3.2 (� �) Show that the matrix
Φ(ΦTΦ)−1ΦT (3.103)

takes any vector v and projects it onto the space spanned by the columns of Φ. Use
this result to show that the least-squares solution (3.15) corresponds to an orthogonal
projection of the vector t onto the manifold S as shown in Figure 3.2.

3.3 (�) Consider a data set in which each data point tn is associated with a weighting
factor rn > 0, so that the sum-of-squares error function becomes

ED(w) =
1
2

N∑
n=1

rn

{
tn − wTφ(xn)

}2
. (3.104)

Find an expression for the solution w� that minimizes this error function. Give two
alternative interpretations of the weighted sum-of-squares error function in terms of
(i) data dependent noise variance and (ii) replicated data points.

3.4 (�) www Consider a linear model of the form

y(x,w) = w0 +
D∑

i=1

wixi (3.105)

together with a sum-of-squares error function of the form

ED(w) =
1
2

N∑
n=1

{y(xn,w) − tn}2
. (3.106)

Now suppose that Gaussian noise εi with zero mean and variance σ2 is added in-
dependently to each of the input variables xi. By making use of E[εi] = 0 and
E[εiεj ] = δijσ

2, show that minimizing ED averaged over the noise distribution is
equivalent to minimizing the sum-of-squares error for noise-free input variables with
the addition of a weight-decay regularization term, in which the bias parameter w0

is omitted from the regularizer.

3.5 (�) www Using the technique of Lagrange multipliers, discussed in Appendix E,
show that minimization of the regularized error function (3.29) is equivalent to mini-
mizing the unregularized sum-of-squares error (3.12) subject to the constraint (3.30).
Discuss the relationship between the parameters η and λ.

3.6 (�) www Consider a linear basis function regression model for a multivariate
target variable t having a Gaussian distribution of the form

p(t|W,Σ) = N (t|y(x,W),Σ) (3.107)

where
y(x,W) = WTφ(x) (3.108)
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together with a training data set comprising input basis vectors φ(xn) and corre-
sponding target vectors tn, with n = 1, . . . , N . Show that the maximum likelihood
solution WML for the parameter matrix W has the property that each column is
given by an expression of the form (3.15), which was the solution for an isotropic
noise distribution. Note that this is independent of the covariance matrix Σ. Show
that the maximum likelihood solution for Σ is given by

Σ =
1
N

N∑
n=1

(
tn − WT

MLφ(xn)
) (

tn − WT
MLφ(xn)

)T
. (3.109)

3.7 (�) By using the technique of completing the square, verify the result (3.49) for the
posterior distribution of the parameters w in the linear basis function model in which
mN and SN are defined by (3.50) and (3.51) respectively.

3.8 (� �) www Consider the linear basis function model in Section 3.1, and suppose
that we have already observed N data points, so that the posterior distribution over
w is given by (3.49). This posterior can be regarded as the prior for the next obser-
vation. By considering an additional data point (xN+1, tN+1), and by completing
the square in the exponential, show that the resulting posterior distribution is again
given by (3.49) but with SN replaced by SN+1 and mN replaced by mN+1.

3.9 (� �) Repeat the previous exercise but instead of completing the square by hand,
make use of the general result for linear-Gaussian models given by (2.116).

3.10 (� �) www By making use of the result (2.115) to evaluate the integral in (3.57),
verify that the predictive distribution for the Bayesian linear regression model is
given by (3.58) in which the input-dependent variance is given by (3.59).

3.11 (� �) We have seen that, as the size of a data set increases, the uncertainty associated
with the posterior distribution over model parameters decreases. Make use of the
matrix identity (Appendix C)

(
M + vvT

)−1
= M−1 − (M−1v)

(
vTM−1

)
1 + vTM−1v

(3.110)

to show that the uncertainty σ2
N (x) associated with the linear regression function

given by (3.59) satisfies
σ2

N+1(x) � σ2
N (x). (3.111)

3.12 (� �) We saw in Section 2.3.6 that the conjugate prior for a Gaussian distribution
with unknown mean and unknown precision (inverse variance) is a normal-gamma
distribution. This property also holds for the case of the conditional Gaussian dis-
tribution p(t|x,w, β) of the linear regression model. If we consider the likelihood
function (3.10), then the conjugate prior for w and β is given by

p(w, β) = N (w|m0, β
−1S0)Gam(β|a0, b0). (3.112)
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Show that the corresponding posterior distribution takes the same functional form,
so that

p(w, β|t) = N (w|mN , β−1SN )Gam(β|aN , bN ) (3.113)

and find expressions for the posterior parameters mN , SN , aN , and bN .

3.13 (� �) Show that the predictive distribution p(t|x, t) for the model discussed in Ex-
ercise 3.12 is given by a Student’s t-distribution of the form

p(t|x, t) = St(t|µ, λ, ν) (3.114)

and obtain expressions for µ, λ and ν.

3.14 (� �) In this exercise, we explore in more detail the properties of the equivalent
kernel defined by (3.62), where SN is defined by (3.54). Suppose that the basis
functions φj(x) are linearly independent and that the number N of data points is
greater than the number M of basis functions. Furthermore, let one of the basis
functions be constant, say φ0(x) = 1. By taking suitable linear combinations of
these basis functions, we can construct a new basis set ψj(x) spanning the same
space but that are orthonormal, so that

N∑
n=1

ψj(xn)ψk(xn) = Ijk (3.115)

where Ijk is defined to be 1 if j = k and 0 otherwise, and we take ψ0(x) = 1. Show
that for α = 0, the equivalent kernel can be written as k(x,x′) = ψ(x)Tψ(x′)
where ψ = (ψ1, . . . , ψM )T. Use this result to show that the kernel satisfies the
summation constraint

N∑
n=1

k(x,xn) = 1. (3.116)

3.15 (�) www Consider a linear basis function model for regression in which the pa-
rameters α and β are set using the evidence framework. Show that the function
E(mN ) defined by (3.82) satisfies the relation 2E(mN ) = N .

3.16 (� �) Derive the result (3.86) for the log evidence function p(t|α, β) of the linear
regression model by making use of (2.115) to evaluate the integral (3.77) directly.

3.17 (�) Show that the evidence function for the Bayesian linear regression model can
be written in the form (3.78) in which E(w) is defined by (3.79).

3.18 (� �) www By completing the square over w, show that the error function (3.79)
in Bayesian linear regression can be written in the form (3.80).

3.19 (� �) Show that the integration over w in the Bayesian linear regression model gives
the result (3.85). Hence show that the log marginal likelihood is given by (3.86).
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3.20 (� �) www Starting from (3.86) verify all of the steps needed to show that maxi-
mization of the log marginal likelihood function (3.86) with respect to α leads to the
re-estimation equation (3.92).

3.21 (� �) An alternative way to derive the result (3.92) for the optimal value of α in the
evidence framework is to make use of the identity

d

dα
ln |A| = Tr

(
A−1 d

dα
A
)

. (3.117)

Prove this identity by considering the eigenvalue expansion of a real, symmetric
matrix A, and making use of the standard results for the determinant and trace of
A expressed in terms of its eigenvalues (Appendix C). Then make use of (3.117) to
derive (3.92) starting from (3.86).

3.22 (� �) Starting from (3.86) verify all of the steps needed to show that maximiza-
tion of the log marginal likelihood function (3.86) with respect to β leads to the
re-estimation equation (3.95).

3.23 (� �) www Show that the marginal probability of the data, in other words the
model evidence, for the model described in Exercise 3.12 is given by

p(t) =
1

(2π)N/2

ba0
0

baN

N

Γ(aN )
Γ(a0)

|SN |1/2

|S0|1/2
(3.118)

by first marginalizing with respect to w and then with respect to β.

3.24 (� �) Repeat the previous exercise but now use Bayes’ theorem in the form

p(t) =
p(t|w, β)p(w, β)

p(w, β|t) (3.119)

and then substitute for the prior and posterior distributions and the likelihood func-
tion in order to derive the result (3.118).



4
Linear

Models for
Classification

In the previous chapter, we explored a class of regression models having particularly
simple analytical and computational properties. We now discuss an analogous class
of models for solving classification problems. The goal in classification is to take an
input vector x and to assign it to one of K discrete classes Ck where k = 1, . . . , K.
In the most common scenario, the classes are taken to be disjoint, so that each input is
assigned to one and only one class. The input space is thereby divided into decision
regions whose boundaries are called decision boundaries or decision surfaces. In
this chapter, we consider linear models for classification, by which we mean that the
decision surfaces are linear functions of the input vector x and hence are defined
by (D − 1)-dimensional hyperplanes within the D-dimensional input space. Data
sets whose classes can be separated exactly by linear decision surfaces are said to be
linearly separable.

For regression problems, the target variable t was simply the vector of real num-
bers whose values we wish to predict. In the case of classification, there are various

179
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ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable t ∈ {0, 1} such that t = 1 represents class C1

and t = 0 represents class C2. We can interpret the value of t as the probability that
the class is C1, with the values of probability taking only the extreme values of 0 and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero
except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (4.1)

Again, we can interpret the value of tk as the probability that the class is Ck. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ck|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f( · ) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f( · ) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models
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(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) � 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
‖w‖ = − w0

‖w‖ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider
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Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/‖w‖.
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an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
‖w‖ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
‖w‖ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an
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Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class Ck from points not in class Ck. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Ck and Cj .

example involving three classes where this approach leads to regions of input space
that are ambiguously classified.

An alternative is to introduce K(K − 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single K-class discriminant
comprising K linear functions of the form

yk(x) = wT
k x + wk0 (4.9)

and then assigning a point x to class Ck if yk(x) > yj(x) for all j 	= k. The decision
boundary between class Ck and class Cj is therefore given by yk(x) = yj(x) and
hence corresponds to a (D − 1)-dimensional hyperplane defined by

(wk − wj)Tx + (wk0 − wj0) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points xA and xB both of which lie inside decision
region Rk, as illustrated in Figure 4.3. Any point x̂ that lies on the line connecting
xA and xB can be expressed in the form

x̂ = λxA + (1 − λ)xB (4.11)
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Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.

Ri

Rj

Rk

xA

xB

x̂

where 0 � λ � 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j 	= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = wT
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)



4.1. Discriminant Functions 185

where W̃ is a matrix whose kth column comprises the D + 1-dimensional vector
w̃k = (wk0,wT

k )T and x̃ is the corresponding augmented input vector (1,xT)T with
a dummy input x0 = 1. This representation was discussed in detail in Section 3.1. A
new input x is then assigned to the class for which the output yk = w̃T

k x̃ is largest.

We now determine the parameter matrix W̃ by minimizing a sum-of-squares
error function, as we did for regression in Chapter 3. Consider a training data set
{xn, tn} where n = 1, . . . , N , and define a matrix T whose nth row is the vector tT

n ,
together with a matrix X̃ whose nth row is x̃T

n . The sum-of-squares error function
can then be written as

ED(W̃) =
1
2

Tr
{

(X̃W̃ − T)T(X̃W̃ − T)
}

. (4.15)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (4.16)

where X̃† is the pseudo-inverse of the matrix X̃, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

y(x) = W̃Tx̃ = TT
(
X̃†

)T

x̃. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 4.2

aTy(x) + b = 0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutionsSection 2.3.7
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y � −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑
n∈C1

xn, m2 =
1

N2

∑
n∈C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑
n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5
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J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑
n∈C1

(xn − m1)(xn − m1)T +
∑
n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W

we then obtain
w ∝ S−1

W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) � y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for
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the weights becomes equivalent to the Fisher solution (Duda and Hart, 1973). In
particular, we shall take the targets for class C1 to be N/N1, where N1 is the number
of patterns in class C1, and N is the total number of patterns. This target value
approximates the reciprocal of the prior probability for class C1. For class C2, we
shall take the targets to be −N/N2, where N2 is the number of patterns in class C2.

The sum-of-squares error function can be written

E =
1
2

N∑
n=1

(
wTxn + w0 − tn

)2
. (4.31)

Setting the derivatives of E with respect to w0 and w to zero, we obtain respectively

N∑
n=1

(
wTxn + w0 − tn

)
= 0 (4.32)

N∑
n=1

(
wTxn + w0 − tn

)
xn = 0. (4.33)

From (4.32), and making use of our choice of target coding scheme for the tn, we
obtain an expression for the bias in the form

w0 = −wTm (4.34)

where we have used
N∑

n=1

tn = N1
N

N1

− N2
N

N2

= 0 (4.35)

and where m is the mean of the total data set and is given by

m =
1
N

N∑
n=1

xn =
1
N

(N1m1 + N2m2). (4.36)

After some straightforward algebra, and again making use of the choice of tn, the
second equation (4.33) becomesExercise 4.6 (

SW +
N1N2

N
SB

)
w = N(m1 − m2) (4.37)

where SW is defined by (4.28), SB is defined by (4.27), and we have substituted for
the bias using (4.34). Using (4.27), we note that SBw is always in the direction of
(m2 − m1). Thus we can write

w ∝ S−1
W (m2 − m1) (4.38)

where we have ignored irrelevant scale factors. Thus the weight vector coincides
with that found from the Fisher criterion. In addition, we have also found an expres-
sion for the bias value w0 given by (4.34). This tells us that a new vector x should be
classified as belonging to class C1 if y(x) = wT(x−m) > 0 and class C2 otherwise.
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4.1.6 Fisher’s discriminant for multiple classes
We now consider the generalization of the Fisher discriminant to K > 2 classes,

and we shall assume that the dimensionality D of the input space is greater than the
number K of classes. Next, we introduce D′ > 1 linear ‘features’ yk = wT

k x, where
k = 1, . . . , D′. These feature values can conveniently be grouped together to form
a vector y. Similarly, the weight vectors {wk} can be considered to be the columns
of a matrix W, so that

y = WTx. (4.39)

Note that again we are not including any bias parameters in the definition of y. The
generalization of the within-class covariance matrix to the case of K classes follows
from (4.28) to give

SW =
K∑

k=1

Sk (4.40)

where

Sk =
∑
n∈Ck

(xn − mk)(xn − mk)T (4.41)

mk =
1

Nk

∑
n∈Ck

xn (4.42)

and Nk is the number of patterns in class Ck. In order to find a generalization of the
between-class covariance matrix, we follow Duda and Hart (1973) and consider first
the total covariance matrix

ST =
N∑

n=1

(xn − m)(xn − m)T (4.43)

where m is the mean of the total data set

m =
1
N

N∑
n=1

xn =
1
N

K∑
k=1

Nkmk (4.44)

and N =
∑

k Nk is the total number of data points. The total covariance matrix can
be decomposed into the sum of the within-class covariance matrix, given by (4.40)
and (4.41), plus an additional matrix SB, which we identify as a measure of the
between-class covariance

ST = SW + SB (4.45)

where

SB =
K∑

k=1

Nk(mk − m)(mk − m)T. (4.46)
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These covariance matrices have been defined in the original x-space. We can now
define similar matrices in the projected D′-dimensional y-space

sW =
K∑

k=1

∑
n∈Ck

(yn − µk)(yn − µk)T (4.47)

and

sB =
K∑

k=1

Nk(µk − µ)(µk − µ)T (4.48)

where

µk =
1

Nk

∑
n∈Ck

yn, µ =
1
N

K∑
k=1

Nkµk. (4.49)

Again we wish to construct a scalar that is large when the between-class covariance
is large and when the within-class covariance is small. There are now many possible
choices of criterion (Fukunaga, 1990). One example is given by

J(W) = Tr
{
s−1
W sB

}
. (4.50)

This criterion can then be rewritten as an explicit function of the projection matrix
W in the form

J(w) = Tr
{
(WSWWT)−1(WSBWT)

}
. (4.51)

Maximization of such criteria is straightforward, though somewhat involved, and is
discussed at length in Fukunaga (1990). The weight values are determined by those
eigenvectors of S−1

W SB that correspond to the D′ largest eigenvalues.
There is one important result that is common to all such criteria, which is worth

emphasizing. We first note from (4.46) that SB is composed of the sum of K ma-
trices, each of which is an outer product of two vectors and therefore of rank 1. In
addition, only (K − 1) of these matrices are independent as a result of the constraint
(4.44). Thus, SB has rank at most equal to (K − 1) and so there are at most (K − 1)
nonzero eigenvalues. This shows that the projection onto the (K − 1)-dimensional
subspace spanned by the eigenvectors of SB does not alter the value of J(w), and
so we are therefore unable to find more than (K − 1) linear ‘features’ by this means
(Fukunaga, 1990).

4.1.7 The perceptron algorithm
Another example of a linear discriminant model is the perceptron of Rosenblatt

(1962), which occupies an important place in the history of pattern recognition al-
gorithms. It corresponds to a two-class model in which the input vector x is first
transformed using a fixed nonlinear transformation to give a feature vector φ(x),
and this is then used to construct a generalized linear model of the form

y(x) = f
(
wTφ(x)

)
(4.52)
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where the nonlinear activation function f(·) is given by a step function of the form

f(a) =
{

+1, a � 0
−1, a < 0. (4.53)

The vector φ(x) will typically include a bias component φ0(x) = 1. In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which t ∈ {0, 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C1 and t = −1 for class C2, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns xn in class C1 will have wTφ(xn) > 0, whereas patterns xn in class C2

have wTφ(xn) < 0. Using the t ∈ {−1, +1} target coding scheme it follows that
we would like all patterns to satisfy wTφ(xn)tn > 0. The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern xn it tries to minimize the quantity −wTφ(xn)tn. The perceptron
criterion is therefore given by

EP(w) = −
∑

n∈M
wTφntn (4.54)

Frank Rosenblatt
1928–1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.



194 4. LINEAR MODELS FOR CLASSIFICATION

where M denotes the set of all misclassified patterns. The contribution to the error
associated with a particular misclassified pattern is a linear function of w in regions
of w space where the pattern is misclassified and zero in regions where it is correctly
classified. The total error function is therefore piecewise linear.

We now apply the stochastic gradient descent algorithm to this error function.Section 3.1.3
The change in the weight vector w is then given by

w(τ+1) = w(τ) − η∇EP(w) = w(τ) + ηφntn (4.55)

where η is the learning rate parameter and τ is an integer that indexes the steps of
the algorithm. Because the perceptron function y(x,w) is unchanged if we multiply
w by a constant, we can set the learning rate parameter η equal to 1 without of
generality. Note that, as the weight vector evolves during training, the set of patterns
that are misclassified will change.

The perceptron learning algorithm has a simple interpretation, as follows. We
cycle through the training patterns in turn, and for each pattern xn we evaluate the
perceptron function (4.52). If the pattern is correctly classified, then the weight
vector remains unchanged, whereas if it is incorrectly classified, then for class C1

we add the vector φ(xn) onto the current estimate of weight vector w while for
class C2 we subtract the vector φ(xn) from w. The perceptron learning algorithm is
illustrated in Figure 4.7.

If we consider the effect of a single update in the perceptron learning algorithm,
we see that the contribution to the error from a misclassified pattern will be reduced
because from (4.55) we have

−w(τ+1)Tφntn = −w(τ)Tφntn − (φntn)Tφntn < −w(τ)Tφntn (4.56)

where we have set η = 1, and made use of ‖φntn‖2 > 0. Of course, this does
not imply that the contribution to the error function from the other misclassified
patterns will have been reduced. Furthermore, the change in weight vector may have
caused some previously correctly classified patterns to become misclassified. Thus
the perceptron learning rule is not guaranteed to reduce the total error function at
each stage.

However, the perceptron convergence theorem states that if there exists an ex-
act solution (in other words, if the training data set is linearly separable), then the
perceptron learning algorithm is guaranteed to find an exact solution in a finite num-
ber of steps. Proofs of this theorem can be found for example in Rosenblatt (1962),
Block (1962), Nilsson (1965), Minsky and Papert (1969), Hertz et al. (1991), and
Bishop (1995a). Note, however, that the number of steps required to achieve con-
vergence could still be substantial, and in practice, until convergence is achieved,
we will not be able to distinguish between a nonseparable problem and one that is
simply slow to converge.

Even when the data set is linearly separable, there may be many solutions, and
which one is found will depend on the initialization of the parameters and on the or-
der of presentation of the data points. Furthermore, for data sets that are not linearly
separable, the perceptron learning algorithm will never converge.
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Figure 4.7 Illustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space (φ1, φ2). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered,
indicated by the green circle, and its feature vector is again added to the weight vector giving the decision
boundary shown in the bottom right plot for which all data points are correctly classified.
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Figure 4.8 Illustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs
were obtained using a simple camera system in which an input scene, in this case a printed character, was
illuminated by powerful lights, and an image focussed onto a 20 × 20 array of cadmium sulphide photocells,
giving a primitive 400 pixel image. The perceptron also had a patch board, shown in the middle photograph,
which allowed different configurations of input features to be tried. Often these were wired up at random to
demonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modern
digital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was
implemented using a rotary variable resistor, also called a potentiometer, driven by an electric motor thereby
allowing the value of the weight to be adjusted automatically by the learning algorithm.

Aside from difficulties with the learning algorithm, the perceptron does not pro-
vide probabilistic outputs, nor does it generalize readily to K > 2 classes. The most
important limitation, however, arises from the fact that (in common with all of the
models discussed in this chapter and the previous one) it is based on linear com-
binations of fixed basis functions. More detailed discussions of the limitations of
perceptrons can be found in Minsky and Papert (1969) and Bishop (1995a).

Analogue hardware implementations of the perceptron were built by Rosenblatt,
based on motor-driven variable resistors to implement the adaptive parameters wj .
These are illustrated in Figure 4.8. The inputs were obtained from a simple camera
system based on an array of photo-sensors, while the basis functions φ could be
chosen in a variety of ways, for example based on simple fixed functions of randomly
chosen subsets of pixels from the input image. Typical applications involved learning
to discriminate simple shapes or characters.

At the same time that the perceptron was being developed, a closely related
system called the adaline, which is short for ‘adaptive linear element’, was being
explored by Widrow and co-workers. The functional form of the model was the same
as for the perceptron, but a different approach to training was adopted (Widrow and
Hoff, 1960; Widrow and Lehr, 1990).

4.2. Probabilistic Generative Models

We turn next to a probabilistic view of classification and show how models with
linear decision boundaries arise from simple assumptions about the distribution of
the data. In Section 1.5.4, we discussed the distinction between the discriminative
and the generative approaches to classification. Here we shall adopt a generative
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Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.
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approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
( σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.
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Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak � aj for all j 	= k, then
p(Ck|x) � 1, and p(Cj |x) � 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting
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Figure 4.10 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue.
On the right is the corresponding posterior probability p(C1|x), which is given by a logistic sigmoid of a linear
function of x. The surface in the right-hand plot is coloured using a proportion of red ink given by p(C1|x) and a
proportion of blue ink given by p(C2|x) = 1 − p(C1|x).

decision boundaries correspond to surfaces along which the posterior probabilities
p(Ck|x) are constant and so will be given by linear functions of x, and therefore
the decision boundaries are linear in input space. The prior probabilities p(Ck) enter
only through the bias parameter w0 so that changes in the priors have the effect of
making parallel shifts of the decision boundary and more generally of the parallel
contours of constant posterior probability.

For the general case of K classes we have, from (4.62) and (4.63),

ak(x) = wT
k x + wk0 (4.68)

where we have defined

wk = Σ−1µk (4.69)

wk0 = −1
2
µT

k Σ−1µk + ln p(Ck). (4.70)

We see that the ak(x) are again linear functions of x as a consequence of the cancel-
lation of the quadratic terms due to the shared covariances. The resulting decision
boundaries, corresponding to the minimum misclassification rate, will occur when
two of the posterior probabilities (the two largest) are equal, and so will be defined
by linear functions of x, and so again we have a generalized linear model.

If we relax the assumption of a shared covariance matrix and allow each class-
conditional density p(x|Ck) to have its own covariance matrix Σk, then the earlier
cancellations will no longer occur, and we will obtain quadratic functions of x, giv-
ing rise to a quadratic discriminant. The linear and quadratic decision boundaries
are illustrated in Figure 4.11.
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in
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the log likelihood function that depend on π are

N∑
n=1

{tn lnπ + (1 − tn) ln(1 − π)} . (4.72)

Setting the derivative with respect to π equal to zero and rearranging, we obtain

π =
1
N

N∑
n=1

tn =
N1

N
=

N1

N1 + N2

(4.73)

where N1 denotes the total number of data points in class C1, and N2 denotes the total
number of data points in class C2. Thus the maximum likelihood estimate for π is
simply the fraction of points in class C1 as expected. This result is easily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class Ck is given by the fraction of the training set points
assigned to that class.Exercise 4.9

Now consider the maximization with respect to µ1. Again we can pick out of
the log likelihood function those terms that depend on µ1 giving

N∑
n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑
n=1

tn(xn − µ1)
TΣ−1(xn − µ1) + const. (4.74)

Setting the derivative with respect to µ1 to zero and rearranging, we obtain

µ1 =
1

N1

N∑
n=1

tnxn (4.75)

which is simply the mean of all the input vectors xn assigned to class C1. By a
similar argument, the corresponding result for µ2 is given by

µ2 =
1

N2

N∑
n=1

(1 − tn)xn (4.76)

which again is the mean of all the input vectors xn assigned to class C2.
Finally, consider the maximum likelihood solution for the shared covariance

matrix Σ. Picking out the terms in the log likelihood function that depend on Σ, we
have

−1
2

N∑
n=1

tn ln |Σ| − 1
2

N∑
n=1

tn(xn − µ1)
TΣ−1(xn − µ1)

−1
2

N∑
n=1

(1 − tn) ln |Σ| − 1
2

N∑
n=1

(1 − tn)(xn − µ2)
TΣ−1(xn − µ2)

= −N

2
ln |Σ| − N

2
Tr
{
Σ−1S

}
(4.77)
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where we have defined

S =
N1

N
S1 +

N2

N
S2 (4.78)

S1 =
1

N1

∑
n∈C1

(xn − µ1)(xn − µ1)
T (4.79)

S2 =
1

N2

∑
n∈C2

(xn − µ2)(xn − µ2)
T. (4.80)

Using the standard result for the maximum likelihood solution for a Gaussian distri-
bution, we see that Σ = S, which represents a weighted average of the covariance
matrices associated with each of the two classes separately.

This result is easily extended to the K class problem to obtain the corresponding
maximum likelihood solutions for the parameters in which each class-conditional
density is Gaussian with a shared covariance matrix. Note that the approach of fittingExercise 4.10
Gaussian distributions to the classes is not robust to outliers, because the maximum
likelihood estimation of a Gaussian is not robust.Section 2.3.7

4.2.3 Discrete features
Let us now consider the case of discrete feature values xi. For simplicity, we

begin by looking at binary feature values xi ∈ {0, 1} and discuss the extension to
more general discrete features shortly. If there are D inputs, then a general distribu-
tion would correspond to a table of 2D numbers for each class, containing 2D − 1
independent variables (due to the summation constraint). Because this grows expo-
nentially with the number of features, we might seek a more restricted representa-
tion. Here we will make the naive Bayes assumption in which the feature values areSection 8.2.2
treated as independent, conditioned on the class Ck. Thus we have class-conditional
distributions of the form

p(x|Ck) =
D∏

i=1

µxi

ki(1 − µki)1−xi (4.81)

which contain D independent parameters for each class. Substituting into (4.63) then
gives

ak(x) =
D∑

i=1

{xi ln µki + (1 − xi) ln(1 − µki)} + ln p(Ck) (4.82)

which again are linear functions of the input values xi. For the case of K = 2 classes,
we can alternatively consider the logistic sigmoid formulation given by (4.57). Anal-
ogous results are obtained for discrete variables each of which can take M > 2
states.Exercise 4.11

4.2.4 Exponential family
As we have seen, for both Gaussian distributed and discrete inputs, the posterior

class probabilities are given by generalized linear models with logistic sigmoid (K =
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2 classes) or softmax (K � 2 classes) activation functions. These are particular cases
of a more general result obtained by assuming that the class-conditional densities
p(x|Ck) are members of the exponential family of distributions.

Using the form (2.194) for members of the exponential family, we see that the
distribution of x can be written in the form

p(x|λk) = h(x)g(λk) exp
{
λT

k u(x)
}

. (4.83)

We now restrict attention to the subclass of such distributions for which u(x) = x.
Then we make use of (2.236) to introduce a scaling parameter s, so that we obtain
the restricted set of exponential family class-conditional densities of the form

p(x|λk, s) =
1
s
h

(
1
s
x
)

g(λk) exp
{

1
s
λT

k x
}

. (4.84)

Note that we are allowing each class to have its own parameter vector λk but we are
assuming that the classes share the same scale parameter s.

For the two-class problem, we substitute this expression for the class-conditional
densities into (4.58) and we see that the posterior class probability is again given by
a logistic sigmoid acting on a linear function a(x) which is given by

a(x) = (λ1 − λ2)Tx + ln g(λ1) − ln g(λ2) + ln p(C1) − ln p(C2). (4.85)

Similarly, for the K-class problem, we substitute the class-conditional density ex-
pression into (4.63) to give

ak(x) = λT
k x + ln g(λk) + ln p(Ck) (4.86)

and so again is a linear function of x.

4.3. Probabilistic Discriminative Models

For the two-class classification problem, we have seen that the posterior probability
of class C1 can be written as a logistic sigmoid acting on a linear function of x, for a
wide choice of class-conditional distributions p(x|Ck). Similarly, for the multiclass
case, the posterior probability of class Ck is given by a softmax transformation of a
linear function of x. For specific choices of the class-conditional densities p(x|Ck),
we have used maximum likelihood to determine the parameters of the densities as
well as the class priors p(Ck) and then used Bayes’ theorem to find the posterior class
probabilities.

However, an alternative approach is to use the functional form of the generalized
linear model explicitly and to determine its parameters directly by using maximum
likelihood. We shall see that there is an efficient algorithm finding such solutions
known as iterative reweighted least squares, or IRLS.

The indirect approach to finding the parameters of a generalized linear model,
by fitting class-conditional densities and class priors separately and then applying



204 4. LINEAR MODELS FOR CLASSIFICATION

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(φ1, φ2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions φ(x). The resulting decision boundaries will be linear in
the feature space φ, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space φ(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the
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basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)
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For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN )T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.
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4.3.3 Iterative reweighted least squares
In the case of the linear regression models discussed in Chapter 3, the maxi-

mum likelihood solution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameter vector w. For logistic regression, there
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum. Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function E(w), takes the form (Fletcher, 1987; Bishop and
Nabney, 2008)

w(new) = w(old) − H−1∇E(w). (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w.

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

∇E(w) =
N∑

n=1

(wTφn − tn)φn = ΦTΦw − ΦTt (4.93)

H = ∇∇E(w) =
N∑

n=1

φnφT
n = ΦTΦ (4.94)

where Φ is the N × M design matrix, whose nth row is given by φT
n . The Newton-Section 3.1.1

Raphson update then takes the form

w(new) = w(old) − (ΦTΦ)−1
{
ΦTΦw(old) − ΦTt

}
= (ΦTΦ)−1ΦTt (4.95)

which we recognize as the standard least-squares solution. Note that the error func-
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function
(4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

∇E(w) =
N∑

n=1

(yn − tn)φn = ΦT(y − t) (4.96)

H = ∇∇E(w) =
N∑

n=1

yn(1 − yn)φnφT
n = ΦTRΦ (4.97)
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where we have made use of (4.88). Also, we have introduced the N × N diagonal
matrix R with elements

Rnn = yn(1 − yn). (4.98)

We see that the Hessian is no longer constant but depends on w through the weight-
ing matrix R, corresponding to the fact that the error function is no longer quadratic.
Using the property 0 < yn < 1, which follows from the form of the logistic sigmoid
function, we see that uTHu > 0 for an arbitrary vector u, and so the Hessian matrix
H is positive definite. It follows that the error function is a concave function of w
and hence has a unique minimum.Exercise 4.15

The Newton-Raphson update formula for the logistic regression model then be-
comes

w(new) = w(old) − (ΦTRΦ)−1ΦT(y − t)

= (ΦTRΦ)−1
{
ΦTRΦw(old) − ΦT(y − t)

}
= (ΦTRΦ)−1ΦTRz (4.99)

where z is an N -dimensional vector with elements

z = Φw(old) − R−1(y − t). (4.100)

We see that the update formula (4.99) takes the form of a set of normal equations for a
weighted least-squares problem. Because the weighing matrix R is not constant but
depends on the parameter vector w, we must apply the normal equations iteratively,
each time using the new weight vector w to compute a revised weighing matrix
R. For this reason, the algorithm is known as iterative reweighted least squares, or
IRLS (Rubin, 1983). As in the weighted least-squares problem, the elements of the
diagonal weighting matrix R can be interpreted as variances because the mean and
variance of t in the logistic regression model are given by

E[t] = σ(x) = y (4.101)

var[t] = E[t2] − E[t]2 = σ(x) − σ(x)2 = y(1 − y) (4.102)

where we have used the property t2 = t for t ∈ {0, 1}. In fact, we can interpret IRLS
as the solution to a linearized problem in the space of the variable a = wTφ. The
quantity zn, which corresponds to the nth element of z, can then be given a simple
interpretation as an effective target value in this space obtained by making a local
linear approximation to the logistic sigmoid function around the current operating
point w(old)

an(w) � an(w(old)) +
dan

dyn

∣∣∣∣
w(old)

(tn − yn)

= φT
nw(old) − (yn − tn)

yn(1 − yn)
= zn. (4.103)
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4.3.4 Multiclass logistic regression
In our discussion of generative models for multiclass classification, we haveSection 4.2

seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(4.104)

where the ‘activations’ ak are given by

ak = wT
k φ. (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all of
the activations aj . These are given byExercise 4.17

∂yk

∂aj
= yk(Ikj − yj) (4.106)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn

belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏
k=1

p(Ck|φn)tnk =
N∏

n=1

K∏
k=1

ytnk

nk (4.107)

where ynk = yk(φn), and T is an N × K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑
k=1

tnk ln ynk (4.108)

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (4.106) for the derivatives of the softmax
function, we obtainExercise 4.18

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (4.109)
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where we have made use of
∑

k tnk = 1. Once again, we see the same form arising
for the gradient as was found for the sum-of-squares error function with the linear
model and the cross-entropy error for the logistic regression model, namely the prod-
uct of the error (ynj − tnj) times the basis function φn. Again, we could use this
to formulate a sequential algorithm in which patterns are presented one at a time, in
which each of the weight vectors is updated using (3.22).

We have seen that the derivative of the log likelihood function for a linear regres-
sion model with respect to the parameter vector w for a data point n took the form
of the ‘error’ yn − tn times the feature vector φn. Similarly, for the combination
of logistic sigmoid activation function and cross-entropy error function (4.90), and
for the softmax activation function with the multiclass cross-entropy error function
(4.108), we again obtain this same simple form. This is an example of a more general
result, as we shall see in Section 4.3.6.

To find a batch algorithm, we again appeal to the Newton-Raphson update to
obtain the corresponding IRLS algorithm for the multiclass problem. This requires
evaluation of the Hessian matrix that comprises blocks of size M × M in which
block j, k is given by

∇wk
∇wjE(w1, . . . ,wK) = −

N∑
n=1

ynk(Ikj − ynj)φnφT
n . (4.110)

As with the two-class problem, the Hessian matrix for the multiclass logistic regres-
sion model is positive definite and so the error function again has a unique minimum.Exercise 4.20
Practical details of IRLS for the multiclass case can be found in Bishop and Nabney
(2008).

4.3.5 Probit regression
We have seen that, for a broad range of class-conditional distributions, described

by the exponential family, the resulting posterior class probabilities are given by a
logistic (or softmax) transformation acting on a linear function of the feature vari-
ables. However, not all choices of class-conditional density give rise to such a simple
form for the posterior probabilities (for instance, if the class-conditional densities are
modelled using Gaussian mixtures). This suggests that it might be worth exploring
other types of discriminative probabilistic model. For the purposes of this chapter,
however, we shall return to the two-class case, and again remain within the frame-
work of generalized linear models so that

p(t = 1|a) = f(a) (4.111)

where a = wTφ, and f(·) is the activation function.
One way to motivate an alternative choice for the link function is to consider a

noisy threshold model, as follows. For each input φn, we evaluate an = wTφn and
then we set the target value according to{

tn = 1 if an � θ

tn = 0 otherwise.
(4.112)
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Figure 4.13 Schematic example of a probability density p(θ)
shown by the blue curve, given in this example by a mixture
of two Gaussians, along with its cumulative distribution function
f(a), shown by the red curve. Note that the value of the blue
curve at any point, such as that indicated by the vertical green
line, corresponds to the slope of the red curve at the same point.
Conversely, the value of the red curve at this point corresponds
to the area under the blue curve indicated by the shaded green
region. In the stochastic threshold model, the class label takes
the value t = 1 if the value of a = wTφ exceeds a threshold, oth-
erwise it takes the value t = 0. This is equivalent to an activation
function given by the cumulative distribution function f(a).
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If the value of θ is drawn from a probability density p(θ), then the corresponding
activation function will be given by the cumulative distribution function

f(a) =
∫ a

−∞
p(θ) dθ (4.113)

as illustrated in Figure 4.13.
As a specific example, suppose that the density p(θ) is given by a zero mean,

unit variance Gaussian. The corresponding cumulative distribution function is given
by

Φ(a) =
∫ a

−∞
N (θ|0, 1) dθ (4.114)

which is known as the probit function. It has a sigmoidal shape and is compared
with the logistic sigmoid function in Figure 4.9. Note that the use of a more gen-
eral Gaussian distribution does not change the model because this is equivalent to
a re-scaling of the linear coefficients w. Many numerical packages provide for the
evaluation of a closely related function defined by

erf(a) =
2√
π

∫ a

0

exp(−θ2/2) dθ (4.115)

and known as the erf function or error function (not to be confused with the error
function of a machine learning model). It is related to the probit function byExercise 4.21

Φ(a) =
1
2

{
1 +

1√
2
erf(a)

}
. (4.116)

The generalized linear model based on a probit activation function is known as probit
regression.

We can determine the parameters of this model using maximum likelihood, by a
straightforward extension of the ideas discussed earlier. In practice, the results found
using probit regression tend to be similar to those of logistic regression. We shall,
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however, find another use for the probit model when we discuss Bayesian treatments
of logistic regression in Section 4.5.

One issue that can occur in practical applications is that of outliers, which can
arise for instance through errors in measuring the input vector x or through misla-
belling of the target value t. Because such points can lie a long way to the wrong side
of the ideal decision boundary, they can seriously distort the classifier. Note that the
logistic and probit regression models behave differently in this respect because the
tails of the logistic sigmoid decay asymptotically like exp(−x) for x → ∞, whereas
for the probit activation function they decay like exp(−x2), and so the probit model
can be significantly more sensitive to outliers.

However, both the logistic and the probit models assume the data is correctly
labelled. The effect of mislabelling is easily incorporated into a probabilistic model
by introducing a probability ε that the target value t has been flipped to the wrong
value (Opper and Winther, 2000a), leading to a target value distribution for data point
x of the form

p(t|x) = (1 − ε)σ(x) + ε(1 − σ(x))
= ε + (1 − 2ε)σ(x) (4.117)

where σ(x) is the activation function with input vector x. Here ε may be set in
advance, or it may be treated as a hyperparameter whose value is inferred from the
data.

4.3.6 Canonical link functions
For the linear regression model with a Gaussian noise distribution, the error

function, corresponding to the negative log likelihood, is given by (3.12). If we take
the derivative with respect to the parameter vector w of the contribution to the error
function from a data point n, this takes the form of the ‘error’ yn − tn times the
feature vector φn, where yn = wTφn. Similarly, for the combination of the logistic
sigmoid activation function and the cross-entropy error function (4.90), and for the
softmax activation function with the multiclass cross-entropy error function (4.108),
we again obtain this same simple form. We now show that this is a general result
of assuming a conditional distribution for the target variable from the exponential
family, along with a corresponding choice for the activation function known as the
canonical link function.

We again make use of the restricted form (4.84) of exponential family distribu-
tions. Note that here we are applying the assumption of exponential family distribu-
tion to the target variable t, in contrast to Section 4.2.4 where we applied it to the
input vector x. We therefore consider conditional distributions of the target variable
of the form

p(t|η, s) =
1
s
h
( t

s

)
g(η) exp

{ηt

s

}
. (4.118)

Using the same line of argument as led to the derivation of the result (2.226), we see
that the conditional mean of t, which we denote by y, is given by

y ≡ E[t|η] = −s
d

dη
ln g(η). (4.119)



4.4. The Laplace Approximation 213

Thus y and η must related, and we denote this relation through η = ψ(y).
Following Nelder and Wedderburn (1972), we define a generalized linear model

to be one for which y is a nonlinear function of a linear combination of the input (or
feature) variables so that

y = f(wTφ) (4.120)

where f(·) is known as the activation function in the machine learning literature, and
f−1(·) is known as the link function in statistics.

Now consider the log likelihood function for this model, which, as a function of
η, is given by

ln p(t|η, s) =
N∑

n=1

ln p(tn|η, s) =
N∑

n=1

{
ln g(ηn) +

ηntn
s

}
+ const (4.121)

where we are assuming that all observations share a common scale parameter (which
corresponds to the noise variance for a Gaussian distribution for instance) and so s
is independent of n. The derivative of the log likelihood with respect to the model
parameters w is then given by

∇w ln p(t|η, s) =
N∑

n=1

{
d

dηn
ln g(ηn) +

tn
s

}
dηn

dyn

dyn

dan
∇an

=
N∑

n=1

1
s
{tn − yn}ψ′(yn)f ′(an)φn (4.122)

where an = wTφn, and we have used yn = f(an) together with the result (4.119)
for E[t|η]. We now see that there is a considerable simplification if we choose a
particular form for the link function f−1(y) given by

f−1(y) = ψ(y) (4.123)

which gives f(ψ(y)) = y and hence f ′(ψ)ψ′(y) = 1. Also, because a = f−1(y),
we have a = ψ and hence f ′(a)ψ′(y) = 1. In this case, the gradient of the error
function reduces to

∇ lnE(w) =
1
s

N∑
n=1

{yn − tn}φn. (4.124)

For the Gaussian s = β−1, whereas for the logistic model s = 1.

4.4. The Laplace Approximation

In Section 4.5 we shall discuss the Bayesian treatment of logistic regression. As
we shall see, this is more complex than the Bayesian treatment of linear regression
models, discussed in Sections 3.3 and 3.5. In particular, we cannot integrate exactly
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over the parameter vector w since the posterior distribution is no longer Gaussian.
It is therefore necessary to introduce some form of approximation. Later in the
book we shall consider a range of techniques based on analytical approximationsChapter 10
and numerical sampling.Chapter 11

Here we introduce a simple, but widely used, framework called the Laplace ap-
proximation, that aims to find a Gaussian approximation to a probability density
defined over a set of continuous variables. Consider first the case of a single contin-
uous variable z, and suppose the distribution p(z) is defined by

p(z) =
1
Z

f(z) (4.125)

where Z =
∫

f(z) dz is the normalization coefficient. We shall suppose that the
value of Z is unknown. In the Laplace method the goal is to find a Gaussian approx-
imation q(z) which is centred on a mode of the distribution p(z). The first step is to
find a mode of p(z), in other words a point z0 such that p′(z0) = 0, or equivalently

df(z)
dz

∣∣∣∣
z=z0

= 0. (4.126)

A Gaussian distribution has the property that its logarithm is a quadratic function
of the variables. We therefore consider a Taylor expansion of ln f(z) centred on the
mode z0 so that

ln f(z) � ln f(z0) − 1
2
A(z − z0)2 (4.127)

where

A = − d2

dz2
ln f(z)

∣∣∣∣
z=z0

. (4.128)

Note that the first-order term in the Taylor expansion does not appear since z0 is a
local maximum of the distribution. Taking the exponential we obtain

f(z) � f(z0) exp
{
−A

2
(z − z0)2

}
. (4.129)

We can then obtain a normalized distribution q(z) by making use of the standard
result for the normalization of a Gaussian, so that

q(z) =
(

A

2π

)1/2

exp
{
−A

2
(z − z0)2

}
. (4.130)

The Laplace approximation is illustrated in Figure 4.14. Note that the Gaussian
approximation will only be well defined if its precision A > 0, in other words the
stationary point z0 must be a local maximum, so that the second derivative of f(z)
at the point z0 is negative.
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Figure 4.14 Illustration of the Laplace approximation applied to the distribution p(z) ∝ exp(−z2/2)σ(20z + 4)
where σ(z) is the logistic sigmoid function defined by σ(z) = (1 + e−z)−1. The left plot shows the normalized
distribution p(z) in yellow, together with the Laplace approximation centred on the mode z0 of p(z) in red. The
right plot shows the negative logarithms of the corresponding curves.

We can extend the Laplace method to approximate a distribution p(z) = f(z)/Z
defined over an M -dimensional space z. At a stationary point z0 the gradient ∇f(z)
will vanish. Expanding around this stationary point we have

ln f(z) � ln f(z0) − 1
2
(z − z0)TA(z − z0) (4.131)

where the M × M Hessian matrix A is defined by

A = − ∇∇ ln f(z)|z=z0
(4.132)

and ∇ is the gradient operator. Taking the exponential of both sides we obtain

f(z) � f(z0) exp
{
−1

2
(z − z0)TA(z − z0)

}
. (4.133)

The distribution q(z) is proportional to f(z) and the appropriate normalization coef-
ficient can be found by inspection, using the standard result (2.43) for a normalized
multivariate Gaussian, giving

q(z) =
|A|1/2

(2π)M/2
exp

{
−1

2
(z − z0)TA(z − z0)

}
= N (z|z0,A−1) (4.134)

where |A| denotes the determinant of A. This Gaussian distribution will be well
defined provided its precision matrix, given by A, is positive definite, which implies
that the stationary point z0 must be a local maximum, not a minimum or a saddle
point.

In order to apply the Laplace approximation we first need to find the mode z0,
and then evaluate the Hessian matrix at that mode. In practice a mode will typi-
cally be found by running some form of numerical optimization algorithm (Bishop
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and Nabney, 2008). Many of the distributions encountered in practice will be mul-
timodal and so there will be different Laplace approximations according to which
mode is being considered. Note that the normalization constant Z of the true distri-
bution does not need to be known in order to apply the Laplace method. As a result
of the central limit theorem, the posterior distribution for a model is expected to
become increasingly better approximated by a Gaussian as the number of observed
data points is increased, and so we would expect the Laplace approximation to be
most useful in situations where the number of data points is relatively large.

One major weakness of the Laplace approximation is that, since it is based on a
Gaussian distribution, it is only directly applicable to real variables. In other cases
it may be possible to apply the Laplace approximation to a transformation of the
variable. For instance if 0 � τ < ∞ then we can consider a Laplace approximation
of ln τ . The most serious limitation of the Laplace framework, however, is that
it is based purely on the aspects of the true distribution at a specific value of the
variable, and so can fail to capture important global properties. In Chapter 10 we
shall consider alternative approaches which adopt a more global perspective.

4.4.1 Model comparison and BIC
As well as approximating the distribution p(z) we can also obtain an approxi-

mation to the normalization constant Z. Using the approximation (4.133) we have

Z =
∫

f(z) dz

� f(z0)
∫

exp
{
−1

2
(z − z0)TA(z − z0)

}
dz

= f(z0)
(2π)M/2

|A|1/2
(4.135)

where we have noted that the integrand is Gaussian and made use of the standard
result (2.43) for a normalized Gaussian distribution. We can use the result (4.135) to
obtain an approximation to the model evidence which, as discussed in Section 3.4,
plays a central role in Bayesian model comparison.

Consider a data set D and a set of models {Mi} having parameters {θi}. For
each model we define a likelihood function p(D|θi,Mi). If we introduce a prior
p(θi|Mi) over the parameters, then we are interested in computing the model evi-
dence p(D|Mi) for the various models. From now on we omit the conditioning on
Mi to keep the notation uncluttered. From Bayes’ theorem the model evidence is
given by

p(D) =
∫

p(D|θ)p(θ) dθ. (4.136)

Identifying f(θ) = p(D|θ)p(θ) and Z = p(D), and applying the result (4.135), we
obtainExercise 4.22

ln p(D) � ln p(D|θMAP) + ln p(θMAP) +
M

2
ln(2π) − 1

2
ln |A|︸ ︷︷ ︸

Occam factor

(4.137)
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where θMAP is the value of θ at the mode of the posterior distribution, and A is the
Hessian matrix of second derivatives of the negative log posterior

A = −∇∇ ln p(D|θMAP)p(θMAP) = −∇∇ ln p(θMAP|D). (4.138)

The first term on the right hand side of (4.137) represents the log likelihood evalu-
ated using the optimized parameters, while the remaining three terms comprise the
‘Occam factor’ which penalizes model complexity.

If we assume that the Gaussian prior distribution over parameters is broad, and
that the Hessian has full rank, then we can approximate (4.137) very roughly usingExercise 4.23

ln p(D) � ln p(D|θMAP) − 1
2
M lnN (4.139)

where N is the number of data points, M is the number of parameters in θ and
we have omitted additive constants. This is known as the Bayesian Information
Criterion (BIC) or the Schwarz criterion (Schwarz, 1978). Note that, compared to
AIC given by (1.73), this penalizes model complexity more heavily.

Complexity measures such as AIC and BIC have the virtue of being easy to
evaluate, but can also give misleading results. In particular, the assumption that the
Hessian matrix has full rank is often not valid since many of the parameters are not
‘well-determined’. We can use the result (4.137) to obtain a more accurate estimateSection 3.5.3
of the model evidence starting from the Laplace approximation, as we illustrate in
the context of neural networks in Section 5.7.

4.5. Bayesian Logistic Regression

We now turn to a Bayesian treatment of logistic regression. Exact Bayesian infer-
ence for logistic regression is intractable. In particular, evaluation of the posterior
distribution would require normalization of the product of a prior distribution and a
likelihood function that itself comprises a product of logistic sigmoid functions, one
for every data point. Evaluation of the predictive distribution is similarly intractable.
Here we consider the application of the Laplace approximation to the problem of
Bayesian logistic regression (Spiegelhalter and Lauritzen, 1990; MacKay, 1992b).

4.5.1 Laplace approximation
Recall from Section 4.4 that the Laplace approximation is obtained by finding

the mode of the posterior distribution and then fitting a Gaussian centred at that
mode. This requires evaluation of the second derivatives of the log posterior, which
is equivalent to finding the Hessian matrix.

Because we seek a Gaussian representation for the posterior distribution, it is
natural to begin with a Gaussian prior, which we write in the general form

p(w) = N (w|m0,S0) (4.140)
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where m0 and S0 are fixed hyperparameters. The posterior distribution over w is
given by

p(w|t) ∝ p(w)p(t|w) (4.141)

where t = (t1, . . . , tN )T. Taking the log of both sides, and substituting for the prior
distribution using (4.140), and for the likelihood function using (4.89), we obtain

ln p(w|t) = −1
2
(w − m0)TS−1

0 (w − m0)

+
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} + const (4.142)

where yn = σ(wTφn). To obtain a Gaussian approximation to the posterior dis-
tribution, we first maximize the posterior distribution to give the MAP (maximum
posterior) solution wMAP, which defines the mean of the Gaussian. The covariance
is then given by the inverse of the matrix of second derivatives of the negative log
likelihood, which takes the form

SN = −∇∇ ln p(w|t) = S−1
0 +

N∑
n=1

yn(1 − yn)φnφT
n . (4.143)

The Gaussian approximation to the posterior distribution therefore takes the form

q(w) = N (w|wMAP,SN ). (4.144)

Having obtained a Gaussian approximation to the posterior distribution, there
remains the task of marginalizing with respect to this distribution in order to make
predictions.

4.5.2 Predictive distribution
The predictive distribution for class C1, given a new feature vector φ(x), is

obtained by marginalizing with respect to the posterior distribution p(w|t), which is
itself approximated by a Gaussian distribution q(w) so that

p(C1|φ, t) =
∫

p(C1|φ,w)p(w|t) dw �
∫

σ(wTφ)q(w) dw (4.145)

with the corresponding probability for class C2 given by p(C2|φ, t) = 1−p(C1|φ, t).
To evaluate the predictive distribution, we first note that the function σ(wTφ) de-
pends on w only through its projection onto φ. Denoting a = wTφ, we have

σ(wTφ) =
∫

δ(a − wTφ)σ(a) da (4.146)

where δ(·) is the Dirac delta function. From this we obtain∫
σ(wTφ)q(w) dw =

∫
σ(a)p(a) da (4.147)
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where

p(a) =
∫

δ(a − wTφ)q(w) dw. (4.148)

We can evaluate p(a) by noting that the delta function imposes a linear constraint
on w and so forms a marginal distribution from the joint distribution q(w) by inte-
grating out all directions orthogonal to φ. Because q(w) is Gaussian, we know from
Section 2.3.2 that the marginal distribution will also be Gaussian. We can evaluate
the mean and covariance of this distribution by taking moments, and interchanging
the order of integration over a and w, so that

µa = E[a] =
∫

p(a)ada =
∫

q(w)wTφ dw = wT
MAPφ (4.149)

where we have used the result (4.144) for the variational posterior distribution q(w).
Similarly

σ2
a = var[a] =

∫
p(a)

{
a2 − E[a]2

}
da

=
∫

q(w)
{
(wTφ)2 − (mT

Nφ)2
}

dw = φTSNφ. (4.150)

Note that the distribution of a takes the same form as the predictive distribution
(3.58) for the linear regression model, with the noise variance set to zero. Thus our
variational approximation to the predictive distribution becomes

p(C1|t) =
∫

σ(a)p(a) da =
∫

σ(a)N (a|µa, σ2
a) da. (4.151)

This result can also be derived directly by making use of the results for the marginal
of a Gaussian distribution given in Section 2.3.2.Exercise 4.24

The integral over a represents the convolution of a Gaussian with a logistic sig-
moid, and cannot be evaluated analytically. We can, however, obtain a good approx-
imation (Spiegelhalter and Lauritzen, 1990; MacKay, 1992b; Barber and Bishop,
1998a) by making use of the close similarity between the logistic sigmoid function
σ(a) defined by (4.59) and the probit function Φ(a) defined by (4.114). In order to
obtain the best approximation to the logistic function we need to re-scale the hori-
zontal axis, so that we approximate σ(a) by Φ(λa). We can find a suitable value of
λ by requiring that the two functions have the same slope at the origin, which gives
λ2 = π/8. The similarity of the logistic sigmoid and the probit function, for thisExercise 4.25
choice of λ, is illustrated in Figure 4.9.

The advantage of using a probit function is that its convolution with a Gaussian
can be expressed analytically in terms of another probit function. Specifically we
can show thatExercise 4.26 ∫

Φ(λa)N (a|µ, σ2) da = Φ
(

µ

(λ−2 + σ2)1/2

)
. (4.152)
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We now apply the approximation σ(a) � Φ(λa) to the probit functions appearing
on both sides of this equation, leading to the following approximation for the convo-
lution of a logistic sigmoid with a Gaussian∫

σ(a)N (a|µ, σ2) da � σ
(
κ(σ2)µ

)
(4.153)

where we have defined
κ(σ2) = (1 + πσ2/8)−1/2. (4.154)

Applying this result to (4.151) we obtain the approximate predictive distribution
in the form

p(C1|φ, t) = σ
(
κ(σ2

a)µa

)
(4.155)

where µa and σ2
a are defined by (4.149) and (4.150), respectively, and κ(σ2

a) is de-
fined by (4.154).

Note that the decision boundary corresponding to p(C1|φ, t) = 0.5 is given by
µa = 0, which is the same as the decision boundary obtained by using the MAP
value for w. Thus if the decision criterion is based on minimizing misclassifica-
tion rate, with equal prior probabilities, then the marginalization over w has no ef-
fect. However, for more complex decision criteria it will play an important role.
Marginalization of the logistic sigmoid model under a Gaussian approximation to
the posterior distribution will be illustrated in the context of variational inference in
Figure 10.13.

Exercises
4.1 (� �) Given a set of data points {xn}, we can define the convex hull to be the set of

all points x given by

x =
∑

n

αnxn (4.156)

where αn � 0 and
∑

n αn = 1. Consider a second set of points {yn} together with
their corresponding convex hull. By definition, the two sets of points will be linearly
separable if there exists a vector ŵ and a scalar w0 such that ŵTxn + w0 > 0 for all
xn, and ŵTyn +w0 < 0 for all yn. Show that if their convex hulls intersect, the two
sets of points cannot be linearly separable, and conversely that if they are linearly
separable, their convex hulls do not intersect.

4.2 (� �) www Consider the minimization of a sum-of-squares error function (4.15),
and suppose that all of the target vectors in the training set satisfy a linear constraint

aTtn + b = 0 (4.157)

where tn corresponds to the nth row of the matrix T in (4.15). Show that as a
consequence of this constraint, the elements of the model prediction y(x) given by
the least-squares solution (4.17) also satisfy this constraint, so that

aTy(x) + b = 0. (4.158)
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To do so, assume that one of the basis functions φ0(x) = 1 so that the corresponding
parameter w0 plays the role of a bias.

4.3 (� �) Extend the result of Exercise 4.2 to show that if multiple linear constraints
are satisfied simultaneously by the target vectors, then the same constraints will also
be satisfied by the least-squares prediction of a linear model.

4.4 (�) www Show that maximization of the class separation criterion given by (4.23)
with respect to w, using a Lagrange multiplier to enforce the constraint wTw = 1,
leads to the result that w ∝ (m2 − m1).

4.5 (�) By making use of (4.20), (4.23), and (4.24), show that the Fisher criterion (4.25)
can be written in the form (4.26).

4.6 (�) Using the definitions of the between-class and within-class covariance matrices
given by (4.27) and (4.28), respectively, together with (4.34) and (4.36) and the
choice of target values described in Section 4.1.5, show that the expression (4.33)
that minimizes the sum-of-squares error function can be written in the form (4.37).

4.7 (�) www Show that the logistic sigmoid function (4.59) satisfies the property
σ(−a) = 1 − σ(a) and that its inverse is given by σ−1(y) = ln {y/(1 − y)}.

4.8 (�) Using (4.57) and (4.58), derive the result (4.65) for the posterior class probability
in the two-class generative model with Gaussian densities, and verify the results
(4.66) and (4.67) for the parameters w and w0.

4.9 (�) www Consider a generative classification model for K classes defined by
prior class probabilities p(Ck) = πk and general class-conditional densities p(φ|Ck)
where φ is the input feature vector. Suppose we are given a training data set {φn, tn}
where n = 1, . . . , N , and tn is a binary target vector of length K that uses the 1-of-
K coding scheme, so that it has components tnj = Ijk if pattern n is from class Ck.
Assuming that the data points are drawn independently from this model, show that
the maximum-likelihood solution for the prior probabilities is given by

πk =
Nk

N
(4.159)

where Nk is the number of data points assigned to class Ck.

4.10 (� �) Consider the classification model of Exercise 4.9 and now suppose that the
class-conditional densities are given by Gaussian distributions with a shared covari-
ance matrix, so that

p(φ|Ck) = N (φ|µk,Σ). (4.160)

Show that the maximum likelihood solution for the mean of the Gaussian distribution
for class Ck is given by

µk =
1

Nk

N∑
n=1

tnkφn (4.161)
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which represents the mean of those feature vectors assigned to class Ck. Similarly,
show that the maximum likelihood solution for the shared covariance matrix is given
by

Σ =
K∑

k=1

Nk

N
Sk (4.162)

where

Sk =
1

Nk

N∑
n=1

tnk(φn − µk)(φn − µk)T. (4.163)

Thus Σ is given by a weighted average of the covariances of the data associated with
each class, in which the weighting coefficients are given by the prior probabilities of
the classes.

4.11 (� �) Consider a classification problem with K classes for which the feature vector
φ has M components each of which can take L discrete states. Let the values of the
components be represented by a 1-of-L binary coding scheme. Further suppose that,
conditioned on the class Ck, the M components of φ are independent, so that the
class-conditional density factorizes with respect to the feature vector components.
Show that the quantities ak given by (4.63), which appear in the argument to the
softmax function describing the posterior class probabilities, are linear functions of
the components of φ. Note that this represents an example of the naive Bayes model
which is discussed in Section 8.2.2.

4.12 (�) www Verify the relation (4.88) for the derivative of the logistic sigmoid func-
tion defined by (4.59).

4.13 (�) www By making use of the result (4.88) for the derivative of the logistic sig-
moid, show that the derivative of the error function (4.90) for the logistic regression
model is given by (4.91).

4.14 (�) Show that for a linearly separable data set, the maximum likelihood solution
for the logistic regression model is obtained by finding a vector w whose decision
boundary wTφ(x) = 0 separates the classes and then taking the magnitude of w to
infinity.

4.15 (� �) Show that the Hessian matrix H for the logistic regression model, given by
(4.97), is positive definite. Here R is a diagonal matrix with elements yn(1 − yn),
and yn is the output of the logistic regression model for input vector xn. Hence show
that the error function is a concave function of w and that it has a unique minimum.

4.16 (�) Consider a binary classification problem in which each observation xn is known
to belong to one of two classes, corresponding to t = 0 and t = 1, and suppose that
the procedure for collecting training data is imperfect, so that training points are
sometimes mislabelled. For every data point xn, instead of having a value t for the
class label, we have instead a value πn representing the probability that tn = 1.
Given a probabilistic model p(t = 1|φ), write down the log likelihood function
appropriate to such a data set.
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4.17 (�) www Show that the derivatives of the softmax activation function (4.104),
where the ak are defined by (4.105), are given by (4.106).

4.18 (�) Using the result (4.91) for the derivatives of the softmax activation function,
show that the gradients of the cross-entropy error (4.108) are given by (4.109).

4.19 (�) www Write down expressions for the gradient of the log likelihood, as well
as the corresponding Hessian matrix, for the probit regression model defined in Sec-
tion 4.3.5. These are the quantities that would be required to train such a model using
IRLS.

4.20 (� �) Show that the Hessian matrix for the multiclass logistic regression problem,
defined by (4.110), is positive semidefinite. Note that the full Hessian matrix for
this problem is of size MK × MK, where M is the number of parameters and K
is the number of classes. To prove the positive semidefinite property, consider the
product uTHu where u is an arbitrary vector of length MK, and then apply Jensen’s
inequality.

4.21 (�) Show that the probit function (4.114) and the erf function (4.115) are related by
(4.116).

4.22 (�) Using the result (4.135), derive the expression (4.137) for the log model evi-
dence under the Laplace approximation.

4.23 (� �) www In this exercise, we derive the BIC result (4.139) starting from the
Laplace approximation to the model evidence given by (4.137). Show that if the
prior over parameters is Gaussian of the form p(θ) = N (θ|m,V0), the log model
evidence under the Laplace approximation takes the form

ln p(D) � ln p(D|θMAP) − 1
2
(θMAP − m)TV−1

0 (θMAP − m) − 1
2

ln |H| + const

where H is the matrix of second derivatives of the log likelihood ln p(D|θ) evaluated
at θMAP. Now assume that the prior is broad so that V−1

0 is small and the second
term on the right-hand side above can be neglected. Furthermore, consider the case
of independent, identically distributed data so that H is the sum of terms one for each
data point. Show that the log model evidence can then be written approximately in
the form of the BIC expression (4.139).

4.24 (� �) Use the results from Section 2.3.2 to derive the result (4.151) for the marginal-
ization of the logistic regression model with respect to a Gaussian posterior distribu-
tion over the parameters w.

4.25 (� �) Suppose we wish to approximate the logistic sigmoid σ(a) defined by (4.59)
by a scaled probit function Φ(λa), where Φ(a) is defined by (4.114). Show that if
λ is chosen so that the derivatives of the two functions are equal at a = 0, then
λ2 = π/8.
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4.26 (� �) In this exercise, we prove the relation (4.152) for the convolution of a probit
function with a Gaussian distribution. To do this, show that the derivative of the left-
hand side with respect to µ is equal to the derivative of the right-hand side, and then
integrate both sides with respect to µ and then show that the constant of integration
vanishes. Note that before differentiating the left-hand side, it is convenient first
to introduce a change of variable given by a = µ + σz so that the integral over a
is replaced by an integral over z. When we differentiate the left-hand side of the
relation (4.152), we will then obtain a Gaussian integral over z that can be evaluated
analytically.



5
Neural

Networks

In Chapters 3 and 4 we considered models for regression and classification that com-
prised linear combinations of fixed basis functions. We saw that such models have
useful analytical and computational properties but that their practical applicability
was limited by the curse of dimensionality. In order to apply such models to large-
scale problems, it is necessary to adapt the basis functions to the data.

Support vector machines (SVMs), discussed in Chapter 7, address this by first
defining basis functions that are centred on the training data points and then selecting
a subset of these during training. One advantage of SVMs is that, although the
training involves nonlinear optimization, the objective function is convex, and so the
solution of the optimization problem is relatively straightforward. The number of
basis functions in the resulting models is generally much smaller than the number of
training points, although it is often still relatively large and typically increases with
the size of the training set. The relevance vector machine, discussed in Section 7.2,
also chooses a subset from a fixed set of basis functions and typically results in much

225
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sparser models. Unlike the SVM it also produces probabilistic outputs, although this
is at the expense of a nonconvex optimization during training.

An alternative approach is to fix the number of basis functions in advance but
allow them to be adaptive, in other words to use parametric forms for the basis func-
tions in which the parameter values are adapted during training. The most successful
model of this type in the context of pattern recognition is the feed-forward neural
network, also known as the multilayer perceptron, discussed in this chapter. In fact,
‘multilayer perceptron’ is really a misnomer, because the model comprises multi-
ple layers of logistic regression models (with continuous nonlinearities) rather than
multiple perceptrons (with discontinuous nonlinearities). For many applications, the
resulting model can be significantly more compact, and hence faster to evaluate, than
a support vector machine having the same generalization performance. The price to
be paid for this compactness, as with the relevance vector machine, is that the like-
lihood function, which forms the basis for network training, is no longer a convex
function of the model parameters. In practice, however, it is often worth investing
substantial computational resources during the training phase in order to obtain a
compact model that is fast at processing new data.

The term ‘neural network’ has its origins in attempts to find mathematical rep-
resentations of information processing in biological systems (McCulloch and Pitts,
1943; Widrow and Hoff, 1960; Rosenblatt, 1962; Rumelhart et al., 1986). Indeed,
it has been used very broadly to cover a wide range of different models, many of
which have been the subject of exaggerated claims regarding their biological plau-
sibility. From the perspective of practical applications of pattern recognition, how-
ever, biological realism would impose entirely unnecessary constraints. Our focus in
this chapter is therefore on neural networks as efficient models for statistical pattern
recognition. In particular, we shall restrict our attention to the specific class of neu-
ral networks that have proven to be of greatest practical value, namely the multilayer
perceptron.

We begin by considering the functional form of the network model, including
the specific parameterization of the basis functions, and we then discuss the prob-
lem of determining the network parameters within a maximum likelihood frame-
work, which involves the solution of a nonlinear optimization problem. This requires
the evaluation of derivatives of the log likelihood function with respect to the net-
work parameters, and we shall see how these can be obtained efficiently using the
technique of error backpropagation. We shall also show how the backpropagation
framework can be extended to allow other derivatives to be evaluated, such as the
Jacobian and Hessian matrices. Next we discuss various approaches to regulariza-
tion of neural network training and the relationships between them. We also consider
some extensions to the neural network model, and in particular we describe a gen-
eral framework for modelling conditional probability distributions known as mixture
density networks. Finally, we discuss the use of Bayesian treatments of neural net-
works. Additional background on neural network models can be found in Bishop
(1995a).
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5.1. Feed-forward Network Functions

The linear models for regression and classification discussed in Chapters 3 and 4, re-
spectively, are based on linear combinations of fixed nonlinear basis functions φj(x)
and take the form

y(x,w) = f

(
M∑

j=1

wjφj(x)

)
(5.1)

where f(·) is a nonlinear activation function in the case of classification and is the
identity in the case of regression. Our goal is to extend this model by making the
basis functions φj(x) depend on parameters and then to allow these parameters to
be adjusted, along with the coefficients {wj}, during training. There are, of course,
many ways to construct parametric nonlinear basis functions. Neural networks use
basis functions that follow the same form as (5.1), so that each basis function is itself
a nonlinear function of a linear combination of the inputs, where the coefficients in
the linear combination are adaptive parameters.

This leads to the basic neural network model, which can be described a series
of functional transformations. First we construct M linear combinations of the input
variables x1, . . . , xD in the form

aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0 (5.2)

where j = 1, . . . , M , and the superscript (1) indicates that the corresponding param-
eters are in the first ‘layer’ of the network. We shall refer to the parameters w

(1)
ji as

weights and the parameters w
(1)
j0 as biases, following the nomenclature of Chapter 3.

The quantities aj are known as activations. Each of them is then transformed using
a differentiable, nonlinear activation function h(·) to give

zj = h(aj). (5.3)

These quantities correspond to the outputs of the basis functions in (5.1) that, in the
context of neural networks, are called hidden units. The nonlinear functions h(·) are
generally chosen to be sigmoidal functions such as the logistic sigmoid or the ‘tanh’
function. Following (5.1), these values are again linearly combined to give outputExercise 5.1
unit activations

ak =
M∑

j=1

w
(2)
kj zj + w

(2)
k0 (5.4)

where k = 1, . . . , K, and K is the total number of outputs. This transformation cor-
responds to the second layer of the network, and again the w

(2)
k0 are bias parameters.

Finally, the output unit activations are transformed using an appropriate activation
function to give a set of network outputs yk. The choice of activation function is
determined by the nature of the data and the assumed distribution of target variables
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Figure 5.1 Network diagram for the two-
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables x0 and
z0. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.
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and follows the same considerations as for linear models discussed in Chapters 3 and
4. Thus for standard regression problems, the activation function is the identity so
that yk = ak. Similarly, for multiple binary classification problems, each output unit
activation is transformed using a logistic sigmoid function so that

yk = σ(ak) (5.5)

where

σ(a) =
1

1 + exp(−a)
. (5.6)

Finally, for multiclass problems, a softmax activation function of the form (4.62)
is used. The choice of output unit activation function is discussed in detail in Sec-
tion 5.2.

We can combine these various stages to give the overall network function that,
for sigmoidal output unit activation functions, takes the form

yk(x,w) = σ

(
M∑

j=1

w
(2)
kj h

(
D∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(5.7)

where the set of all weight and bias parameters have been grouped together into a
vector w. Thus the neural network model is simply a nonlinear function from a set
of input variables {xi} to a set of output variables {yk} controlled by a vector w of
adjustable parameters.

This function can be represented in the form of a network diagram as shown
in Figure 5.1. The process of evaluating (5.7) can then be interpreted as a forward
propagation of information through the network. It should be emphasized that these
diagrams do not represent probabilistic graphical models of the kind to be consid-
ered in Chapter 8 because the internal nodes represent deterministic variables rather
than stochastic ones. For this reason, we have adopted a slightly different graphical
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notation for the two kinds of model. We shall see later how to give a probabilistic
interpretation to a neural network.

As discussed in Section 3.1, the bias parameters in (5.2) can be absorbed into
the set of weight parameters by defining an additional input variable x0 whose value
is clamped at x0 = 1, so that (5.2) takes the form

aj =
D∑

i=0

w
(1)
ji xi. (5.8)

We can similarly absorb the second-layer biases into the second-layer weights, so
that the overall network function becomes

yk(x,w) = σ

(
M∑

j=0

w
(2)
kj h

(
D∑

i=0

w
(1)
ji xi

))
. (5.9)

As can be seen from Figure 5.1, the neural network model comprises two stages
of processing, each of which resembles the perceptron model of Section 4.1.7, and
for this reason the neural network is also known as the multilayer perceptron, or
MLP. A key difference compared to the perceptron, however, is that the neural net-
work uses continuous sigmoidal nonlinearities in the hidden units, whereas the per-
ceptron uses step-function nonlinearities. This means that the neural network func-
tion is differentiable with respect to the network parameters, and this property will
play a central role in network training.

If the activation functions of all the hidden units in a network are taken to be
linear, then for any such network we can always find an equivalent network without
hidden units. This follows from the fact that the composition of successive linear
transformations is itself a linear transformation. However, if the number of hidden
units is smaller than either the number of input or output units, then the transforma-
tions that the network can generate are not the most general possible linear trans-
formations from inputs to outputs because information is lost in the dimensionality
reduction at the hidden units. In Section 12.4.2, we show that networks of linear
units give rise to principal component analysis. In general, however, there is little
interest in multilayer networks of linear units.

The network architecture shown in Figure 5.1 is the most commonly used one
in practice. However, it is easily generalized, for instance by considering additional
layers of processing each consisting of a weighted linear combination of the form
(5.4) followed by an element-wise transformation using a nonlinear activation func-
tion. Note that there is some confusion in the literature regarding the terminology
for counting the number of layers in such networks. Thus the network in Figure 5.1
may be described as a 3-layer network (which counts the number of layers of units,
and treats the inputs as units) or sometimes as a single-hidden-layer network (which
counts the number of layers of hidden units). We recommend a terminology in which
Figure 5.1 is called a two-layer network, because it is the number of layers of adap-
tive weights that is important for determining the network properties.

Another generalization of the network architecture is to include skip-layer con-
nections, each of which is associated with a corresponding adaptive parameter. For
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Figure 5.2 Example of a neural network having a
general feed-forward topology. Note that
each hidden and output unit has an
associated bias parameter (omitted for
clarity).
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instance, in a two-layer network these would go directly from inputs to outputs. In
principle, a network with sigmoidal hidden units can always mimic skip layer con-
nections (for bounded input values) by using a sufficiently small first-layer weight
that, over its operating range, the hidden unit is effectively linear, and then com-
pensating with a large weight value from the hidden unit to the output. In practice,
however, it may be advantageous to include skip-layer connections explicitly.

Furthermore, the network can be sparse, with not all possible connections within
a layer being present. We shall see an example of a sparse network architecture when
we consider convolutional neural networks in Section 5.5.6.

Because there is a direct correspondence between a network diagram and its
mathematical function, we can develop more general network mappings by con-
sidering more complex network diagrams. However, these must be restricted to a
feed-forward architecture, in other words to one having no closed directed cycles, to
ensure that the outputs are deterministic functions of the inputs. This is illustrated
with a simple example in Figure 5.2. Each (hidden or output) unit in such a network
computes a function given by

zk = h

(∑
j

wkjzj

)
(5.10)

where the sum runs over all units that send connections to unit k (and a bias param-
eter is included in the summation). For a given set of values applied to the inputs of
the network, successive application of (5.10) allows the activations of all units in the
network to be evaluated including those of the output units.

The approximation properties of feed-forward networks have been widely stud-
ied (Funahashi, 1989; Cybenko, 1989; Hornik et al., 1989; Stinchecombe and White,
1989; Cotter, 1990; Ito, 1991; Hornik, 1991; Kreinovich, 1991; Ripley, 1996) and
found to be very general. Neural networks are therefore said to be universal ap-
proximators. For example, a two-layer network with linear outputs can uniformly
approximate any continuous function on a compact input domain to arbitrary accu-
racy provided the network has a sufficiently large number of hidden units. This result
holds for a wide range of hidden unit activation functions, but excluding polynomi-
als. Although such theorems are reassuring, the key problem is how to find suitable
parameter values given a set of training data, and in later sections of this chapter we
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Figure 5.3 Illustration of the ca-
pability of a multilayer perceptron
to approximate four different func-
tions comprising (a) f(x) = x2, (b)
f(x) = sin(x), (c), f(x) = |x|,
and (d) f(x) = H(x) where H(x)
is the Heaviside step function. In
each case, N = 50 data points,
shown as blue dots, have been sam-
pled uniformly in x over the interval
(−1, 1) and the corresponding val-
ues of f(x) evaluated. These data
points are then used to train a two-
layer network having 3 hidden units
with ‘tanh’ activation functions and
linear output units. The resulting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the
three dashed curves.

(a) (b)

(c) (d)

will show that there exist effective solutions to this problem based on both maximum
likelihood and Bayesian approaches.

The capability of a two-layer network to model a broad range of functions is
illustrated in Figure 5.3. This figure also shows how individual hidden units work
collaboratively to approximate the final function. The role of hidden units in a simple
classification problem is illustrated in Figure 5.4 using the synthetic classification
data set described in Appendix A.

5.1.1 Weight-space symmetries
One property of feed-forward networks, which will play a role when we consider

Bayesian model comparison, is that multiple distinct choices for the weight vector
w can all give rise to the same mapping function from inputs to outputs (Chen et al.,
1993). Consider a two-layer network of the form shown in Figure 5.1 with M hidden
units having ‘tanh’ activation functions and full connectivity in both layers. If we
change the sign of all of the weights and the bias feeding into a particular hidden
unit, then, for a given input pattern, the sign of the activation of the hidden unit will
be reversed, because ‘tanh’ is an odd function, so that tanh(−a) = − tanh(a). This
transformation can be exactly compensated by changing the sign of all of the weights
leading out of that hidden unit. Thus, by changing the signs of a particular group of
weights (and a bias), the input–output mapping function represented by the network
is unchanged, and so we have found two different weight vectors that give rise to
the same mapping function. For M hidden units, there will be M such ‘sign-flip’
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Figure 5.4 Example of the solution of a simple two-
class classification problem involving
synthetic data using a neural network
having two inputs, two hidden units with
‘tanh’ activation functions, and a single
output having a logistic sigmoid activa-
tion function. The dashed blue lines
show the z = 0.5 contours for each of
the hidden units, and the red line shows
the y = 0.5 decision surface for the net-
work. For comparison, the green line
denotes the optimal decision boundary
computed from the distributions used to
generate the data.
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symmetries, and thus any given weight vector will be one of a set 2M equivalent
weight vectors .

Similarly, imagine that we interchange the values of all of the weights (and the
bias) leading both into and out of a particular hidden unit with the corresponding
values of the weights (and bias) associated with a different hidden unit. Again, this
clearly leaves the network input–output mapping function unchanged, but it corre-
sponds to a different choice of weight vector. For M hidden units, any given weight
vector will belong to a set of M ! equivalent weight vectors associated with this inter-
change symmetry, corresponding to the M ! different orderings of the hidden units.
The network will therefore have an overall weight-space symmetry factor of M !2M .
For networks with more than two layers of weights, the total level of symmetry will
be given by the product of such factors, one for each layer of hidden units.

It turns out that these factors account for all of the symmetries in weight space
(except for possible accidental symmetries due to specific choices for the weight val-
ues). Furthermore, the existence of these symmetries is not a particular property of
the ‘tanh’ function but applies to a wide range of activation functions (Ku̇rková and
Kainen, 1994). In many cases, these symmetries in weight space are of little practi-
cal consequence, although in Section 5.7 we shall encounter a situation in which we
need to take them into account.

5.2. Network Training

So far, we have viewed neural networks as a general class of parametric nonlinear
functions from a vector x of input variables to a vector y of output variables. A
simple approach to the problem of determining the network parameters is to make an
analogy with the discussion of polynomial curve fitting in Section 1.1, and therefore
to minimize a sum-of-squares error function. Given a training set comprising a set
of input vectors {xn}, where n = 1, . . . , N , together with a corresponding set of
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target vectors {tn}, we minimize the error function

E(w) =
1
2

N∑
n=1

‖y(xn,w) − tn‖2. (5.11)

However, we can provide a much more general view of network training by first
giving a probabilistic interpretation to the network outputs. We have already seen
many advantages of using probabilistic predictions in Section 1.5.4. Here it will also
provide us with a clearer motivation both for the choice of output unit nonlinearity
and the choice of error function.

We start by discussing regression problems, and for the moment we consider
a single target variable t that can take any real value. Following the discussions
in Section 1.2.5 and 3.1, we assume that t has a Gaussian distribution with an x-
dependent mean, which is given by the output of the neural network, so that

p(t|x,w) = N (
t|y(x,w), β−1

)
(5.12)

where β is the precision (inverse variance) of the Gaussian noise. Of course this
is a somewhat restrictive assumption, and in Section 5.6 we shall see how to extend
this approach to allow for more general conditional distributions. For the conditional
distribution given by (5.12), it is sufficient to take the output unit activation function
to be the identity, because such a network can approximate any continuous function
from x to y. Given a data set of N independent, identically distributed observations
X = {x1, . . . ,xN}, along with corresponding target values t = {t1, . . . , tN}, we
can construct the corresponding likelihood function

p(t|X,w, β) =
N∏

n=1

p(tn|xn,w, β).

Taking the negative logarithm, we obtain the error function

β

2

N∑
n=1

{y(xn,w) − tn}2 − N

2
lnβ +

N

2
ln(2π) (5.13)

which can be used to learn the parameters w and β. In Section 5.7, we shall dis-
cuss the Bayesian treatment of neural networks, while here we consider a maximum
likelihood approach. Note that in the neural networks literature, it is usual to con-
sider the minimization of an error function rather than the maximization of the (log)
likelihood, and so here we shall follow this convention. Consider first the determi-
nation of w. Maximizing the likelihood function is equivalent to minimizing the
sum-of-squares error function given by

E(w) =
1
2

N∑
n=1

{y(xn,w) − tn}2 (5.14)
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where we have discarded additive and multiplicative constants. The value of w found
by minimizing E(w) will be denoted wML because it corresponds to the maximum
likelihood solution. In practice, the nonlinearity of the network function y(xn,w)
causes the error E(w) to be nonconvex, and so in practice local maxima of the
likelihood may be found, corresponding to local minima of the error function, as
discussed in Section 5.2.1.

Having found wML, the value of β can be found by minimizing the negative log
likelihood to give

1
βML

=
1
N

N∑
n=1

{y(xn,wML) − tn}2. (5.15)

Note that this can be evaluated once the iterative optimization required to find wML

is completed. If we have multiple target variables, and we assume that they are inde-
pendent conditional on x and w with shared noise precision β, then the conditional
distribution of the target values is given by

p(t|x,w) = N (
t|y(x,w), β−1I

)
. (5.16)

Following the same argument as for a single target variable, we see that the maximum
likelihood weights are determined by minimizing the sum-of-squares error function
(5.11). The noise precision is then given byExercise 5.2

1
βML

=
1

NK

N∑
n=1

‖y(xn,wML) − tn‖2 (5.17)

where K is the number of target variables. The assumption of independence can be
dropped at the expense of a slightly more complex optimization problem.Exercise 5.3

Recall from Section 4.3.6 that there is a natural pairing of the error function
(given by the negative log likelihood) and the output unit activation function. In the
regression case, we can view the network as having an output activation function that
is the identity, so that yk = ak. The corresponding sum-of-squares error function
has the property

∂E

∂ak
= yk − tk (5.18)

which we shall make use of when discussing error backpropagation in Section 5.3.
Now consider the case of binary classification in which we have a single target

variable t such that t = 1 denotes class C1 and t = 0 denotes class C2. Following
the discussion of canonical link functions in Section 4.3.6, we consider a network
having a single output whose activation function is a logistic sigmoid

y = σ(a) ≡ 1
1 + exp(−a)

(5.19)

so that 0 � y(x,w) � 1. We can interpret y(x,w) as the conditional probability
p(C1|x), with p(C2|x) given by 1 − y(x,w). The conditional distribution of targets
given inputs is then a Bernoulli distribution of the form

p(t|x,w) = y(x,w)t {1 − y(x,w)}1−t
. (5.20)
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If we consider a training set of independent observations, then the error function,
which is given by the negative log likelihood, is then a cross-entropy error function
of the form

E(w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (5.21)

where yn denotes y(xn,w). Note that there is no analogue of the noise precision β
because the target values are assumed to be correctly labelled. However, the model
is easily extended to allow for labelling errors. Simard et al. (2003) found that usingExercise 5.4
the cross-entropy error function instead of the sum-of-squares for a classification
problem leads to faster training as well as improved generalization.

If we have K separate binary classifications to perform, then we can use a net-
work having K outputs each of which has a logistic sigmoid activation function.
Associated with each output is a binary class label tk ∈ {0, 1}, where k = 1, . . . , K.
If we assume that the class labels are independent, given the input vector, then the
conditional distribution of the targets is

p(t|x,w) =
K∏

k=1

yk(x,w)tk [1 − yk(x,w)]1−tk . (5.22)

Taking the negative logarithm of the corresponding likelihood function then gives
the following error functionExercise 5.5

E(w) = −
N∑

n=1

K∑
k=1

{tnk ln ynk + (1 − tnk) ln(1 − ynk)} (5.23)

where ynk denotes yk(xn,w). Again, the derivative of the error function with re-
spect to the activation for a particular output unit takes the form (5.18) just as in theExercise 5.6
regression case.

It is interesting to contrast the neural network solution to this problem with the
corresponding approach based on a linear classification model of the kind discussed
in Chapter 4. Suppose that we are using a standard two-layer network of the kind
shown in Figure 5.1. We see that the weight parameters in the first layer of the
network are shared between the various outputs, whereas in the linear model each
classification problem is solved independently. The first layer of the network can
be viewed as performing a nonlinear feature extraction, and the sharing of features
between the different outputs can save on computation and can also lead to improved
generalization.

Finally, we consider the standard multiclass classification problem in which each
input is assigned to one of K mutually exclusive classes. The binary target variables
tk ∈ {0, 1} have a 1-of-K coding scheme indicating the class, and the network
outputs are interpreted as yk(x,w) = p(tk = 1|x), leading to the following error
function

E(w) = −
N∑

n=1

K∑
k=1

tkn ln yk(xn,w). (5.24)
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Figure 5.5 Geometrical view of the error function E(w) as
a surface sitting over weight space. Point wA is
a local minimum and wB is the global minimum.
At any point wC , the local gradient of the error
surface is given by the vector ∇E.

w1

w2

E(w)

wA wB wC

∇E

Following the discussion of Section 4.3.4, we see that the output unit activation
function, which corresponds to the canonical link, is given by the softmax function

yk(x,w) =
exp(ak(x,w))∑

j

exp(aj(x,w))
(5.25)

which satisfies 0 � yk � 1 and
∑

k yk = 1. Note that the yk(x,w) are unchanged
if a constant is added to all of the ak(x,w), causing the error function to be constant
for some directions in weight space. This degeneracy is removed if an appropriate
regularization term (Section 5.5) is added to the error function.

Once again, the derivative of the error function with respect to the activation for
a particular output unit takes the familiar form (5.18).Exercise 5.7

In summary, there is a natural choice of both output unit activation function
and matching error function, according to the type of problem being solved. For re-
gression we use linear outputs and a sum-of-squares error, for (multiple independent)
binary classifications we use logistic sigmoid outputs and a cross-entropy error func-
tion, and for multiclass classification we use softmax outputs with the corresponding
multiclass cross-entropy error function. For classification problems involving two
classes, we can use a single logistic sigmoid output, or alternatively we can use a
network with two outputs having a softmax output activation function.

5.2.1 Parameter optimization
We turn next to the task of finding a weight vector w which minimizes the

chosen function E(w). At this point, it is useful to have a geometrical picture of the
error function, which we can view as a surface sitting over weight space as shown in
Figure 5.5. First note that if we make a small step in weight space from w to w+δw
then the change in the error function is δE � δwT∇E(w), where the vector ∇E(w)
points in the direction of greatest rate of increase of the error function. Because the
error E(w) is a smooth continuous function of w, its smallest value will occur at a
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point in weight space such that the gradient of the error function vanishes, so that

∇E(w) = 0 (5.26)

as otherwise we could make a small step in the direction of −∇E(w) and thereby
further reduce the error. Points at which the gradient vanishes are called stationary
points, and may be further classified into minima, maxima, and saddle points.

Our goal is to find a vector w such that E(w) takes its smallest value. How-
ever, the error function typically has a highly nonlinear dependence on the weights
and bias parameters, and so there will be many points in weight space at which the
gradient vanishes (or is numerically very small). Indeed, from the discussion in Sec-
tion 5.1.1 we see that for any point w that is a local minimum, there will be other
points in weight space that are equivalent minima. For instance, in a two-layer net-
work of the kind shown in Figure 5.1, with M hidden units, each point in weight
space is a member of a family of M !2M equivalent points.Section 5.1.1

Furthermore, there will typically be multiple inequivalent stationary points and
in particular multiple inequivalent minima. A minimum that corresponds to the
smallest value of the error function for any weight vector is said to be a global
minimum. Any other minima corresponding to higher values of the error function
are said to be local minima. For a successful application of neural networks, it may
not be necessary to find the global minimum (and in general it will not be known
whether the global minimum has been found) but it may be necessary to compare
several local minima in order to find a sufficiently good solution.

Because there is clearly no hope of finding an analytical solution to the equa-
tion ∇E(w) = 0 we resort to iterative numerical procedures. The optimization of
continuous nonlinear functions is a widely studied problem and there exists an ex-
tensive literature on how to solve it efficiently. Most techniques involve choosing
some initial value w(0) for the weight vector and then moving through weight space
in a succession of steps of the form

w(τ+1) = w(τ) + ∆w(τ) (5.27)

where τ labels the iteration step. Different algorithms involve different choices for
the weight vector update ∆w(τ). Many algorithms make use of gradient information
and therefore require that, after each update, the value of ∇E(w) is evaluated at
the new weight vector w(τ+1). In order to understand the importance of gradient
information, it is useful to consider a local approximation to the error function based
on a Taylor expansion.

5.2.2 Local quadratic approximation
Insight into the optimization problem, and into the various techniques for solv-

ing it, can be obtained by considering a local quadratic approximation to the error
function.

Consider the Taylor expansion of E(w) around some point ŵ in weight space

E(w) � E(ŵ) + (w − ŵ)Tb +
1
2
(w − ŵ)TH(w − ŵ) (5.28)
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where cubic and higher terms have been omitted. Here b is defined to be the gradient
of E evaluated at ŵ

b ≡ ∇E|w=bw (5.29)

and the Hessian matrix H = ∇∇E has elements

(H)ij ≡ ∂E

∂wi∂wj

∣∣∣∣
w=bw

. (5.30)

From (5.28), the corresponding local approximation to the gradient is given by

∇E � b + H(w − ŵ). (5.31)

For points w that are sufficiently close to ŵ, these expressions will give reasonable
approximations for the error and its gradient.

Consider the particular case of a local quadratic approximation around a point
w� that is a minimum of the error function. In this case there is no linear term,
because ∇E = 0 at w�, and (5.28) becomes

E(w) = E(w�) +
1
2
(w − w�)TH(w − w�) (5.32)

where the Hessian H is evaluated at w�. In order to interpret this geometrically,
consider the eigenvalue equation for the Hessian matrix

Hui = λiui (5.33)

where the eigenvectors ui form a complete orthonormal set (Appendix C) so that

uT
i uj = δij . (5.34)

We now expand (w − w�) as a linear combination of the eigenvectors in the form

w − w� =
∑

i

αiui. (5.35)

This can be regarded as a transformation of the coordinate system in which the origin
is translated to the point w�, and the axes are rotated to align with the eigenvectors
(through the orthogonal matrix whose columns are the ui), and is discussed in more
detail in Appendix C. Substituting (5.35) into (5.32), and using (5.33) and (5.34),
allows the error function to be written in the form

E(w) = E(w�) +
1
2

∑
i

λiα
2
i . (5.36)

A matrix H is said to be positive definite if, and only if,

vTHv > 0 for all v. (5.37)
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Figure 5.6 In the neighbourhood of a min-
imum w�, the error function
can be approximated by a
quadratic. Contours of con-
stant error are then ellipses
whose axes are aligned with
the eigenvectors ui of the Hes-
sian matrix, with lengths that
are inversely proportional to the
square roots of the correspond-
ing eigenvectors λi.
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Because the eigenvectors {ui} form a complete set, an arbitrary vector v can be
written in the form

v =
∑

i

ciui. (5.38)

From (5.33) and (5.34), we then have

vTHv =
∑

i

c2
i λi (5.39)

and so H will be positive definite if, and only if, all of its eigenvalues are positive.Exercise 5.10
In the new coordinate system, whose basis vectors are given by the eigenvectors
{ui}, the contours of constant E are ellipses centred on the origin, as illustratedExercise 5.11
in Figure 5.6. For a one-dimensional weight space, a stationary point w� will be a
minimum if

∂2E

∂w2

∣∣∣∣
w�

> 0. (5.40)

The corresponding result in D-dimensions is that the Hessian matrix, evaluated at
w�, should be positive definite.Exercise 5.12

5.2.3 Use of gradient information
As we shall see in Section 5.3, it is possible to evaluate the gradient of an error

function efficiently by means of the backpropagation procedure. The use of this
gradient information can lead to significant improvements in the speed with which
the minima of the error function can be located. We can see why this is so, as follows.

In the quadratic approximation to the error function, given in (5.28), the error
surface is specified by the quantities b and H, which contain a total of W (W +
3)/2 independent elements (because the matrix H is symmetric), where W is theExercise 5.13
dimensionality of w (i.e., the total number of adaptive parameters in the network).
The location of the minimum of this quadratic approximation therefore depends on
O(W 2) parameters, and we should not expect to be able to locate the minimum until
we have gathered O(W 2) independent pieces of information. If we do not make
use of gradient information, we would expect to have to perform O(W 2) function
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evaluations, each of which would require O(W ) steps. Thus, the computational
effort needed to find the minimum using such an approach would be O(W 3).

Now compare this with an algorithm that makes use of the gradient information.
Because each evaluation of ∇E brings W items of information, we might hope to
find the minimum of the function in O(W ) gradient evaluations. As we shall see,
by using error backpropagation, each such evaluation takes only O(W ) steps and so
the minimum can now be found in O(W 2) steps. For this reason, the use of gradient
information forms the basis of practical algorithms for training neural networks.

5.2.4 Gradient descent optimization
The simplest approach to using gradient information is to choose the weight

update in (5.27) to comprise a small step in the direction of the negative gradient, so
that

w(τ+1) = w(τ) − η∇E(w(τ)) (5.41)

where the parameter η > 0 is known as the learning rate. After each such update, the
gradient is re-evaluated for the new weight vector and the process repeated. Note that
the error function is defined with respect to a training set, and so each step requires
that the entire training set be processed in order to evaluate ∇E. Techniques that
use the whole data set at once are called batch methods. At each step the weight
vector is moved in the direction of the greatest rate of decrease of the error function,
and so this approach is known as gradient descent or steepest descent. Although
such an approach might intuitively seem reasonable, in fact it turns out to be a poor
algorithm, for reasons discussed in Bishop and Nabney (2008).

For batch optimization, there are more efficient methods, such as conjugate gra-
dients and quasi-Newton methods, which are much more robust and much faster
than simple gradient descent (Gill et al., 1981; Fletcher, 1987; Nocedal and Wright,
1999). Unlike gradient descent, these algorithms have the property that the error
function always decreases at each iteration unless the weight vector has arrived at a
local or global minimum.

In order to find a sufficiently good minimum, it may be necessary to run a
gradient-based algorithm multiple times, each time using a different randomly cho-
sen starting point, and comparing the resulting performance on an independent vali-
dation set.

There is, however, an on-line version of gradient descent that has proved useful
in practice for training neural networks on large data sets (Le Cun et al., 1989).
Error functions based on maximum likelihood for a set of independent observations
comprise a sum of terms, one for each data point

E(w) =
N∑

n=1

En(w). (5.42)

On-line gradient descent, also known as sequential gradient descent or stochastic
gradient descent, makes an update to the weight vector based on one data point at a
time, so that

w(τ+1) = w(τ) − η∇En(w(τ)). (5.43)
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This update is repeated by cycling through the data either in sequence or by selecting
points at random with replacement. There are of course intermediate scenarios in
which the updates are based on batches of data points.

One advantage of on-line methods compared to batch methods is that the former
handle redundancy in the data much more efficiently. To see, this consider an ex-
treme example in which we take a data set and double its size by duplicating every
data point. Note that this simply multiplies the error function by a factor of 2 and so
is equivalent to using the original error function. Batch methods will require double
the computational effort to evaluate the batch error function gradient, whereas on-
line methods will be unaffected. Another property of on-line gradient descent is the
possibility of escaping from local minima, since a stationary point with respect to
the error function for the whole data set will generally not be a stationary point for
each data point individually.

Nonlinear optimization algorithms, and their practical application to neural net-
work training, are discussed in detail in Bishop and Nabney (2008).

5.3. Error Backpropagation

Our goal in this section is to find an efficient technique for evaluating the gradient
of an error function E(w) for a feed-forward neural network. We shall see that
this can be achieved using a local message passing scheme in which information is
sent alternately forwards and backwards through the network and is known as error
backpropagation, or sometimes simply as backprop.

It should be noted that the term backpropagation is used in the neural com-
puting literature to mean a variety of different things. For instance, the multilayer
perceptron architecture is sometimes called a backpropagation network. The term
backpropagation is also used to describe the training of a multilayer perceptron us-
ing gradient descent applied to a sum-of-squares error function. In order to clarify
the terminology, it is useful to consider the nature of the training process more care-
fully. Most training algorithms involve an iterative procedure for minimization of an
error function, with adjustments to the weights being made in a sequence of steps. At
each such step, we can distinguish between two distinct stages. In the first stage, the
derivatives of the error function with respect to the weights must be evaluated. As
we shall see, the important contribution of the backpropagation technique is in pro-
viding a computationally efficient method for evaluating such derivatives. Because
it is at this stage that errors are propagated backwards through the network, we shall
use the term backpropagation specifically to describe the evaluation of derivatives.
In the second stage, the derivatives are then used to compute the adjustments to be
made to the weights. The simplest such technique, and the one originally considered
by Rumelhart et al. (1986), involves gradient descent. It is important to recognize
that the two stages are distinct. Thus, the first stage, namely the propagation of er-
rors backwards through the network in order to evaluate derivatives, can be applied
to many other kinds of network and not just the multilayer perceptron. It can also be
applied to error functions other that just the simple sum-of-squares, and to the eval-
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uation of other derivatives such as the Jacobian and Hessian matrices, as we shall
see later in this chapter. Similarly, the second stage of weight adjustment using the
calculated derivatives can be tackled using a variety of optimization schemes, many
of which are substantially more powerful than simple gradient descent.

5.3.1 Evaluation of error-function derivatives
We now derive the backpropagation algorithm for a general network having ar-

bitrary feed-forward topology, arbitrary differentiable nonlinear activation functions,
and a broad class of error function. The resulting formulae will then be illustrated
using a simple layered network structure having a single layer of sigmoidal hidden
units together with a sum-of-squares error.

Many error functions of practical interest, for instance those defined by maxi-
mum likelihood for a set of i.i.d. data, comprise a sum of terms, one for each data
point in the training set, so that

E(w) =
N∑

n=1

En(w). (5.44)

Here we shall consider the problem of evaluating ∇En(w) for one such term in the
error function. This may be used directly for sequential optimization, or the results
can be accumulated over the training set in the case of batch methods.

Consider first a simple linear model in which the outputs yk are linear combina-
tions of the input variables xi so that

yk =
∑

i

wkixi (5.45)

together with an error function that, for a particular input pattern n, takes the form

En =
1
2

∑
k

(ynk − tnk)2 (5.46)

where ynk = yk(xn,w). The gradient of this error function with respect to a weight
wji is given by

∂En

∂wji
= (ynj − tnj)xni (5.47)

which can be interpreted as a ‘local’ computation involving the product of an ‘error
signal’ ynj − tnj associated with the output end of the link wji and the variable xni

associated with the input end of the link. In Section 4.3.2, we saw how a similar
formula arises with the logistic sigmoid activation function together with the cross
entropy error function, and similarly for the softmax activation function together
with its matching cross-entropy error function. We shall now see how this simple
result extends to the more complex setting of multilayer feed-forward networks.

In a general feed-forward network, each unit computes a weighted sum of its
inputs of the form

aj =
∑

i

wjizi (5.48)
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where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)
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Figure 5.7 Illustration of the calculation of δj for hidden unit j by
backpropagation of the δ’s from those units k to which
unit j sends connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red arrows indicate the backward propagation
of error information.
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provided we are using the canonical link as the output-unit activation function. To
evaluate the δ’s for hidden units, we again make use of the chain rule for partial
derivatives,

δj ≡ ∂En

∂aj
=
∑

k

∂En

∂ak

∂ak

∂aj
(5.55)

where the sum runs over all units k to which unit j sends connections. The arrange-
ment of units and weights is illustrated in Figure 5.7. Note that the units labelled k
could include other hidden units and/or output units. In writing down (5.55), we are
making use of the fact that variations in aj give rise to variations in the error func-
tion only through variations in the variables ak. If we now substitute the definition
of δ given by (5.51) into (5.55), and make use of (5.48) and (5.49), we obtain the
following backpropagation formula

δj = h′(aj)
∑

k

wkjδk (5.56)

which tells us that the value of δ for a particular hidden unit can be obtained by
propagating the δ’s backwards from units higher up in the network, as illustrated
in Figure 5.7. Note that the summation in (5.56) is taken over the first index on
wkj (corresponding to backward propagation of information through the network),
whereas in the forward propagation equation (5.10) it is taken over the second index.
Because we already know the values of the δ’s for the output units, it follows that
by recursively applying (5.56) we can evaluate the δ’s for all of the hidden units in a
feed-forward network, regardless of its topology.

The backpropagation procedure can therefore be summarized as follows.

Error Backpropagation

1. Apply an input vector xn to the network and forward propagate through
the network using (5.48) and (5.49) to find the activations of all the hidden
and output units.

2. Evaluate the δk for all the output units using (5.54).

3. Backpropagate the δ’s using (5.56) to obtain δj for each hidden unit in the
network.

4. Use (5.53) to evaluate the required derivatives.
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For batch methods, the derivative of the total error E can then be obtained by
repeating the above steps for each pattern in the training set and then summing over
all patterns:

∂E

∂wji
=
∑

n

∂En

∂wji
. (5.57)

In the above derivation we have implicitly assumed that each hidden or output unit in
the network has the same activation function h(·). The derivation is easily general-
ized, however, to allow different units to have individual activation functions, simply
by keeping track of which form of h(·) goes with which unit.

5.3.2 A simple example
The above derivation of the backpropagation procedure allowed for general

forms for the error function, the activation functions, and the network topology. In
order to illustrate the application of this algorithm, we shall consider a particular
example. This is chosen both for its simplicity and for its practical importance, be-
cause many applications of neural networks reported in the literature make use of
this type of network. Specifically, we shall consider a two-layer network of the form
illustrated in Figure 5.1, together with a sum-of-squares error, in which the output
units have linear activation functions, so that yk = ak, while the hidden units have
logistic sigmoid activation functions given by

h(a) ≡ tanh(a) (5.58)

where

tanh(a) =
ea − e−a

ea + e−a
. (5.59)

A useful feature of this function is that its derivative can be expressed in a par-
ticularly simple form:

h′(a) = 1 − h(a)2. (5.60)

We also consider a standard sum-of-squares error function, so that for pattern n the
error is given by

En =
1
2

K∑
k=1

(yk − tk)2 (5.61)

where yk is the activation of output unit k, and tk is the corresponding target, for a
particular input pattern xn.

For each pattern in the training set in turn, we first perform a forward propagation
using

aj =
D∑

i=0

w
(1)
ji xi (5.62)

zj = tanh(aj) (5.63)

yk =
M∑

j=0

w
(2)
kj zj . (5.64)
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Next we compute the δ’s for each output unit using

δk = yk − tk. (5.65)

Then we backpropagate these to obtain δs for the hidden units using

δj = (1 − z2
j )

K∑
k=1

wkjδk. (5.66)

Finally, the derivatives with respect to the first-layer and second-layer weights are
given by

∂En

∂w
(1)
ji

= δjxi,
∂En

∂w
(2)
kj

= δkzj . (5.67)

5.3.3 Efficiency of backpropagation
One of the most important aspects of backpropagation is its computational effi-

ciency. To understand this, let us examine how the number of computer operations
required to evaluate the derivatives of the error function scales with the total number
W of weights and biases in the network. A single evaluation of the error function
(for a given input pattern) would require O(W ) operations, for sufficiently large W .
This follows from the fact that, except for a network with very sparse connections,
the number of weights is typically much greater than the number of units, and so the
bulk of the computational effort in forward propagation is concerned with evaluat-
ing the sums in (5.48), with the evaluation of the activation functions representing a
small overhead. Each term in the sum in (5.48) requires one multiplication and one
addition, leading to an overall computational cost that is O(W ).

An alternative approach to backpropagation for computing the derivatives of the
error function is to use finite differences. This can be done by perturbing each weight
in turn, and approximating the derivatives by the expression

∂En

∂wji
=

En(wji + ε) − En(wji)
ε

+ O(ε) (5.68)

where ε  1. In a software simulation, the accuracy of the approximation to the
derivatives can be improved by making ε smaller, until numerical roundoff problems
arise. The accuracy of the finite differences method can be improved significantly
by using symmetrical central differences of the form

∂En

∂wji
=

En(wji + ε) − En(wji − ε)
2ε

+ O(ε2). (5.69)

In this case, the O(ε) corrections cancel, as can be verified by Taylor expansion onExercise 5.14
the right-hand side of (5.69), and so the residual corrections are O(ε2). The number
of computational steps is, however, roughly doubled compared with (5.68).

The main problem with numerical differentiation is that the highly desirable
O(W ) scaling has been lost. Each forward propagation requires O(W ) steps, and
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Figure 5.8 Illustration of a modular pattern
recognition system in which the
Jacobian matrix can be used
to backpropagate error signals
from the outputs through to ear-
lier modules in the system.
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there are W weights in the network each of which must be perturbed individually, so
that the overall scaling is O(W 2).

However, numerical differentiation plays an important role in practice, because a
comparison of the derivatives calculated by backpropagation with those obtained us-
ing central differences provides a powerful check on the correctness of any software
implementation of the backpropagation algorithm. When training networks in prac-
tice, derivatives should be evaluated using backpropagation, because this gives the
greatest accuracy and numerical efficiency. However, the results should be compared
with numerical differentiation using (5.69) for some test cases in order to check the
correctness of the implementation.

5.3.4 The Jacobian matrix
We have seen how the derivatives of an error function with respect to the weights

can be obtained by the propagation of errors backwards through the network. The
technique of backpropagation can also be applied to the calculation of other deriva-
tives. Here we consider the evaluation of the Jacobian matrix, whose elements are
given by the derivatives of the network outputs with respect to the inputs

Jki ≡ ∂yk

∂xi
(5.70)

where each such derivative is evaluated with all other inputs held fixed. Jacobian
matrices play a useful role in systems built from a number of distinct modules, as
illustrated in Figure 5.8. Each module can comprise a fixed or adaptive function,
which can be linear or nonlinear, so long as it is differentiable. Suppose we wish
to minimize an error function E with respect to the parameter w in Figure 5.8. The
derivative of the error function is given by

∂E

∂w
=
∑
k,j

∂E

∂yk

∂yk

∂zj

∂zj

∂w
(5.71)

in which the Jacobian matrix for the red module in Figure 5.8 appears in the middle
term.

Because the Jacobian matrix provides a measure of the local sensitivity of the
outputs to changes in each of the input variables, it also allows any known errors ∆xi
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associated with the inputs to be propagated through the trained network in order to
estimate their contribution ∆yk to the errors at the outputs, through the relation

∆yk �
∑

i

∂yk

∂xi
∆xi (5.72)

which is valid provided the |∆xi| are small. In general, the network mapping rep-
resented by a trained neural network will be nonlinear, and so the elements of the
Jacobian matrix will not be constants but will depend on the particular input vector
used. Thus (5.72) is valid only for small perturbations of the inputs, and the Jacobian
itself must be re-evaluated for each new input vector.

The Jacobian matrix can be evaluated using a backpropagation procedure that is
similar to the one derived earlier for evaluating the derivatives of an error function
with respect to the weights. We start by writing the element Jki in the form

Jki =
∂yk

∂xi
=

∑
j

∂yk

∂aj

∂aj

∂xi

=
∑

j

wji
∂yk

∂aj
(5.73)

where we have made use of (5.48). The sum in (5.73) runs over all units j to which
the input unit i sends connections (for example, over all units in the first hidden
layer in the layered topology considered earlier). We now write down a recursive
backpropagation formula to determine the derivatives ∂yk/∂aj

∂yk

∂aj
=

∑
l

∂yk

∂al

∂al

∂aj

= h′(aj)
∑

l

wlj
∂yk

∂al
(5.74)

where the sum runs over all units l to which unit j sends connections (corresponding
to the first index of wlj). Again, we have made use of (5.48) and (5.49). This
backpropagation starts at the output units for which the required derivatives can be
found directly from the functional form of the output-unit activation function. For
instance, if we have individual sigmoidal activation functions at each output unit,
then

∂yk

∂aj
= δkjσ

′(aj) (5.75)

whereas for softmax outputs we have

∂yk

∂aj
= δkjyk − ykyj . (5.76)

We can summarize the procedure for evaluating the Jacobian matrix as follows.
Apply the input vector corresponding to the point in input space at which the Ja-
cobian matrix is to be found, and forward propagate in the usual way to obtain the
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activations of all of the hidden and output units in the network. Next, for each row
k of the Jacobian matrix, corresponding to the output unit k, backpropagate using
the recursive relation (5.74), starting with (5.75) or (5.76), for all of the hidden units
in the network. Finally, use (5.73) to do the backpropagation to the inputs. The
Jacobian can also be evaluated using an alternative forward propagation formalism,
which can be derived in an analogous way to the backpropagation approach given
here.Exercise 5.15

Again, the implementation of such algorithms can be checked by using numeri-
cal differentiation in the form

∂yk

∂xi
=

yk(xi + ε) − yk(xi − ε)
2ε

+ O(ε2) (5.77)

which involves 2D forward propagations for a network having D inputs.

5.4. The Hessian Matrix

We have shown how the technique of backpropagation can be used to obtain the first
derivatives of an error function with respect to the weights in the network. Back-
propagation can also be used to evaluate the second derivatives of the error, given
by

∂2E

∂wji∂wlk
. (5.78)

Note that it is sometimes convenient to consider all of the weight and bias parameters
as elements wi of a single vector, denoted w, in which case the second derivatives
form the elements Hij of the Hessian matrix H, where i, j ∈ {1, . . . , W} and W is
the total number of weights and biases. The Hessian plays an important role in many
aspects of neural computing, including the following:

1. Several nonlinear optimization algorithms used for training neural networks
are based on considerations of the second-order properties of the error surface,
which are controlled by the Hessian matrix (Bishop and Nabney, 2008).

2. The Hessian forms the basis of a fast procedure for re-training a feed-forward
network following a small change in the training data (Bishop, 1991).

3. The inverse of the Hessian has been used to identify the least significant weights
in a network as part of network ‘pruning’ algorithms (Le Cun et al., 1990).

4. The Hessian plays a central role in the Laplace approximation for a Bayesian
neural network (see Section 5.7). Its inverse is used to determine the predic-
tive distribution for a trained network, its eigenvalues determine the values of
hyperparameters, and its determinant is used to evaluate the model evidence.

Various approximation schemes have been used to evaluate the Hessian matrix
for a neural network. However, the Hessian can also be calculated exactly using an
extension of the backpropagation technique.
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An important consideration for many applications of the Hessian is the efficiency
with which it can be evaluated. If there are W parameters (weights and biases) in the
network, then the Hessian matrix has dimensions W × W and so the computational
effort needed to evaluate the Hessian will scale like O(W 2) for each pattern in the
data set. As we shall see, there are efficient methods for evaluating the Hessian
whose scaling is indeed O(W 2).

5.4.1 Diagonal approximation
Some of the applications for the Hessian matrix discussed above require the

inverse of the Hessian, rather than the Hessian itself. For this reason, there has
been some interest in using a diagonal approximation to the Hessian, in other words
one that simply replaces the off-diagonal elements with zeros, because its inverse is
trivial to evaluate. Again, we shall consider an error function that consists of a sum
of terms, one for each pattern in the data set, so that E =

∑
n En. The Hessian can

then be obtained by considering one pattern at a time, and then summing the results
over all patterns. From (5.48), the diagonal elements of the Hessian, for pattern n,
can be written

∂2En

∂w2
ji

=
∂2En

∂a2
j

z2
i . (5.79)

Using (5.48) and (5.49), the second derivatives on the right-hand side of (5.79) can
be found recursively using the chain rule of differential calculus to give a backprop-
agation equation of the form

∂2En

∂a2
j

= h′(aj)2
∑

k

∑
k′

wkjwk′j
∂2En

∂ak∂ak′
+ h′′(aj)

∑
k

wkj
∂En

∂ak
. (5.80)

If we now neglect off-diagonal elements in the second-derivative terms, we obtain
(Becker and Le Cun, 1989; Le Cun et al., 1990)

∂2En

∂a2
j

= h′(aj)2
∑

k

w2
kj

∂2En

∂a2
k

+ h′′(aj)
∑

k

wkj
∂En

∂ak
. (5.81)

Note that the number of computational steps required to evaluate this approximation
is O(W ), where W is the total number of weight and bias parameters in the network,
compared with O(W 2) for the full Hessian.

Ricotti et al. (1988) also used the diagonal approximation to the Hessian, but
they retained all terms in the evaluation of ∂2En/∂a2

j and so obtained exact expres-
sions for the diagonal terms. Note that this no longer has O(W ) scaling. The major
problem with diagonal approximations, however, is that in practice the Hessian is
typically found to be strongly nondiagonal, and so these approximations, which are
driven mainly be computational convenience, must be treated with care.
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5.4.2 Outer product approximation
When neural networks are applied to regression problems, it is common to use

a sum-of-squares error function of the form

E =
1
2

N∑
n=1

(yn − tn)2 (5.82)

where we have considered the case of a single output in order to keep the notation
simple (the extension to several outputs is straightforward). We can then write theExercise 5.16
Hessian matrix in the form

H = ∇∇E =
N∑

n=1

∇yn∇yn +
N∑

n=1

(yn − tn)∇∇yn. (5.83)

If the network has been trained on the data set, and its outputs yn happen to be very
close to the target values tn, then the second term in (5.83) will be small and can
be neglected. More generally, however, it may be appropriate to neglect this term
by the following argument. Recall from Section 1.5.5 that the optimal function that
minimizes a sum-of-squares loss is the conditional average of the target data. The
quantity (yn − tn) is then a random variable with zero mean. If we assume that its
value is uncorrelated with the value of the second derivative term on the right-hand
side of (5.83), then the whole term will average to zero in the summation over n.Exercise 5.17

By neglecting the second term in (5.83), we arrive at the Levenberg–Marquardt
approximation or outer product approximation (because the Hessian matrix is built
up from a sum of outer products of vectors), given by

H �
N∑

n=1

bnbT
n (5.84)

where bn = ∇yn = ∇an because the activation function for the output units is
simply the identity. Evaluation of the outer product approximation for the Hessian
is straightforward as it only involves first derivatives of the error function, which
can be evaluated efficiently in O(W ) steps using standard backpropagation. The
elements of the matrix can then be found in O(W 2) steps by simple multiplication.
It is important to emphasize that this approximation is only likely to be valid for a
network that has been trained appropriately, and that for a general network mapping
the second derivative terms on the right-hand side of (5.83) will typically not be
negligible.

In the case of the cross-entropy error function for a network with logistic sigmoid
output-unit activation functions, the corresponding approximation is given byExercise 5.19

H �
N∑

n=1

yn(1 − yn)bnbT
n . (5.85)

An analogous result can be obtained for multiclass networks having softmax output-
unit activation functions.Exercise 5.20
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5.4.3 Inverse Hessian
We can use the outer-product approximation to develop a computationally ef-

ficient procedure for approximating the inverse of the Hessian (Hassibi and Stork,
1993). First we write the outer-product approximation in matrix notation as

HN =
N∑

n=1

bnbT
n (5.86)

where bn ≡ ∇wan is the contribution to the gradient of the output unit activation
arising from data point n. We now derive a sequential procedure for building up the
Hessian by including data points one at a time. Suppose we have already obtained
the inverse Hessian using the first L data points. By separating off the contribution
from data point L + 1, we obtain

HL+1 = HL + bL+1bT
L+1. (5.87)

In order to evaluate the inverse of the Hessian, we now consider the matrix identity(
M + vvT

)−1
= M−1 − (M−1v)

(
vTM−1

)
1 + vTM−1v

(5.88)

where I is the unit matrix, which is simply a special case of the Woodbury identity
(C.7). If we now identify HL with M and bL+1 with v, we obtain

H−1
L+1 = H−1

L − H−1
L bL+1bT

L+1H
−1
L

1 + bT
L+1H

−1
L bL+1

. (5.89)

In this way, data points are sequentially absorbed until L+1 = N and the whole data
set has been processed. This result therefore represents a procedure for evaluating
the inverse of the Hessian using a single pass through the data set. The initial matrix
H0 is chosen to be αI, where α is a small quantity, so that the algorithm actually
finds the inverse of H + αI. The results are not particularly sensitive to the precise
value of α. Extension of this algorithm to networks having more than one output is
straightforward.Exercise 5.21

We note here that the Hessian matrix can sometimes be calculated indirectly as
part of the network training algorithm. In particular, quasi-Newton nonlinear opti-
mization algorithms gradually build up an approximation to the inverse of the Hes-
sian during training. Such algorithms are discussed in detail in Bishop and Nabney
(2008).

5.4.4 Finite differences
As in the case of the first derivatives of the error function, we can find the second

derivatives by using finite differences, with accuracy limited by numerical precision.
If we perturb each possible pair of weights in turn, we obtain

∂2E

∂wji∂wlk
=

1
4ε2

{E(wji + ε, wlk + ε) − E(wji + ε, wlk − ε)

−E(wji − ε, wlk + ε) + E(wji − ε, wlk − ε)} + O(ε2). (5.90)
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Again, by using a symmetrical central differences formulation, we ensure that the
residual errors are O(ε2) rather than O(ε). Because there are W 2 elements in the
Hessian matrix, and because the evaluation of each element requires four forward
propagations each needing O(W ) operations (per pattern), we see that this approach
will require O(W 3) operations to evaluate the complete Hessian. It therefore has
poor scaling properties, although in practice it is very useful as a check on the soft-
ware implementation of backpropagation methods.

A more efficient version of numerical differentiation can be found by applying
central differences to the first derivatives of the error function, which are themselves
calculated using backpropagation. This gives

∂2E

∂wji∂wlk
=

1
2ε

{
∂E

∂wji
(wlk + ε) − ∂E

∂wji
(wlk − ε)

}
+ O(ε2). (5.91)

Because there are now only W weights to be perturbed, and because the gradients
can be evaluated in O(W ) steps, we see that this method gives the Hessian in O(W 2)
operations.

5.4.5 Exact evaluation of the Hessian
So far, we have considered various approximation schemes for evaluating the

Hessian matrix or its inverse. The Hessian can also be evaluated exactly, for a net-
work of arbitrary feed-forward topology, using extension of the technique of back-
propagation used to evaluate first derivatives, which shares many of its desirable
features including computational efficiency (Bishop, 1991; Bishop, 1992). It can be
applied to any differentiable error function that can be expressed as a function of
the network outputs and to networks having arbitrary differentiable activation func-
tions. The number of computational steps needed to evaluate the Hessian scales
like O(W 2). Similar algorithms have also been considered by Buntine and Weigend
(1993).

Here we consider the specific case of a network having two layers of weights,
for which the required equations are easily derived. We shall use indices i and i′Exercise 5.22
to denote inputs, indices j and j′ to denoted hidden units, and indices k and k′ to
denote outputs. We first define

δk =
∂En

∂ak
, Mkk′ ≡ ∂2En

∂ak∂ak′
(5.92)

where En is the contribution to the error from data point n. The Hessian matrix for
this network can then be considered in three separate blocks as follows.

1. Both weights in the second layer:

∂2En

∂w
(2)
kj ∂w

(2)
k′j′

= zjzj′Mkk′ . (5.93)
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2. Both weights in the first layer:

∂2En

∂w
(1)
ji ∂w

(1)
j′i′

= xixi′h
′′(aj′)Ijj′

∑
k

w
(2)
kj′δk

+xixi′h
′(aj′)h′(aj)

∑
k

∑
k′

w
(2)
k′j′w

(2)
kj Mkk′ . (5.94)

3. One weight in each layer:

∂2En

∂w
(1)
ji ∂w

(2)
kj′

= xih
′(aj′)

{
δkIjj′ + zj

∑
k′

w
(2)
k′j′Hkk′

}
. (5.95)

Here Ijj′ is the j, j′ element of the identity matrix. If one or both of the weights is
a bias term, then the corresponding expressions are obtained simply by setting the
appropriate activation(s) to 1. Inclusion of skip-layer connections is straightforward.Exercise 5.23

5.4.6 Fast multiplication by the Hessian
For many applications of the Hessian, the quantity of interest is not the Hessian

matrix H itself but the product of H with some vector v. We have seen that the
evaluation of the Hessian takes O(W 2) operations, and it also requires storage that is
O(W 2). The vector vTH that we wish to calculate, however, has only W elements,
so instead of computing the Hessian as an intermediate step, we can instead try to
find an efficient approach to evaluating vTH directly in a way that requires only
O(W ) operations.

To do this, we first note that

vTH = vT∇(∇E) (5.96)

where ∇ denotes the gradient operator in weight space. We can then write down
the standard forward-propagation and backpropagation equations for the evaluation
of ∇E and apply (5.96) to these equations to give a set of forward-propagation and
backpropagation equations for the evaluation of vTH (Møller, 1993; Pearlmutter,
1994). This corresponds to acting on the original forward-propagation and back-
propagation equations with a differential operator vT∇. Pearlmutter (1994) used the
notation R{·} to denote the operator vT∇, and we shall follow this convention. The
analysis is straightforward and makes use of the usual rules of differential calculus,
together with the result

R{w} = v. (5.97)

The technique is best illustrated with a simple example, and again we choose a
two-layer network of the form shown in Figure 5.1, with linear output units and a
sum-of-squares error function. As before, we consider the contribution to the error
function from one pattern in the data set. The required vector is then obtained as
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usual by summing over the contributions from each of the patterns separately. For
the two-layer network, the forward-propagation equations are given by

aj =
∑

i

wjixi (5.98)

zj = h(aj) (5.99)

yk =
∑

j

wkjzj . (5.100)

We now act on these equations using the R{·} operator to obtain a set of forward
propagation equations in the form

R{aj} =
∑

i

vjixi (5.101)

R{zj} = h′(aj)R{aj} (5.102)

R{yk} =
∑

j

wkjR{zj} +
∑

j

vkjzj (5.103)

where vji is the element of the vector v that corresponds to the weight wji. Quan-
tities of the form R{zj}, R{aj} and R{yk} are to be regarded as new variables
whose values are found using the above equations.

Because we are considering a sum-of-squares error function, we have the fol-
lowing standard backpropagation expressions:

δk = yk − tk (5.104)

δj = h′(aj)
∑

k

wkjδk. (5.105)

Again, we act on these equations with the R{·} operator to obtain a set of backprop-
agation equations in the form

R{δk} = R{yk} (5.106)

R{δj} = h′′(aj)R{aj}
∑

k

wkjδk

+ h′(aj)
∑

k

vkjδk + h′(aj)
∑

k

wkjR{δk}. (5.107)

Finally, we have the usual equations for the first derivatives of the error

∂E

∂wkj
= δkzj (5.108)

∂E

∂wji
= δjxi (5.109)
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and acting on these with the R{·} operator, we obtain expressions for the elements
of the vector vTH

R
{

∂E

∂wkj

}
= R{δk}zj + δkR{zj} (5.110)

R
{

∂E

∂wji

}
= xiR{δj}. (5.111)

The implementation of this algorithm involves the introduction of additional
variables R{aj}, R{zj} and R{δj} for the hidden units and R{δk} and R{yk}
for the output units. For each input pattern, the values of these quantities can be
found using the above results, and the elements of vTH are then given by (5.110)
and (5.111). An elegant aspect of this technique is that the equations for evaluating
vTH mirror closely those for standard forward and backward propagation, and so the
extension of existing software to compute this product is typically straightforward.

If desired, the technique can be used to evaluate the full Hessian matrix by
choosing the vector v to be given successively by a series of unit vectors of the
form (0, 0, . . . , 1, . . . , 0) each of which picks out one column of the Hessian. This
leads to a formalism that is analytically equivalent to the backpropagation procedure
of Bishop (1992), as described in Section 5.4.5, though with some loss of efficiency
due to redundant calculations.

5.5. Regularization in Neural Networks

The number of input and outputs units in a neural network is generally determined
by the dimensionality of the data set, whereas the number M of hidden units is a free
parameter that can be adjusted to give the best predictive performance. Note that M
controls the number of parameters (weights and biases) in the network, and so we
might expect that in a maximum likelihood setting there will be an optimum value
of M that gives the best generalization performance, corresponding to the optimum
balance between under-fitting and over-fitting. Figure 5.9 shows an example of the
effect of different values of M for the sinusoidal regression problem.

The generalization error, however, is not a simple function of M due to the
presence of local minima in the error function, as illustrated in Figure 5.10. Here
we see the effect of choosing multiple random initializations for the weight vector
for a range of values of M . The overall best validation set performance in this
case occurred for a particular solution having M = 8. In practice, one approach to
choosing M is in fact to plot a graph of the kind shown in Figure 5.10 and then to
choose the specific solution having the smallest validation set error.

There are, however, other ways to control the complexity of a neural network
model in order to avoid over-fitting. From our discussion of polynomial curve fitting
in Chapter 1, we see that an alternative approach is to choose a relatively large value
for M and then to control complexity by the addition of a regularization term to the
error function. The simplest regularizer is the quadratic, giving a regularized error
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Figure 5.9 Examples of two-layer networks trained on 10 data points drawn from the sinusoidal data set. The
graphs show the result of fitting networks having M = 1, 3 and 10 hidden units, respectively, by minimizing a
sum-of-squares error function using a scaled conjugate-gradient algorithm.

of the form

Ẽ(w) = E(w) +
λ

2
wTw. (5.112)

This regularizer is also known as weight decay and has been discussed at length
in Chapter 3. The effective model complexity is then determined by the choice of
the regularization coefficient λ. As we have seen previously, this regularizer can be
interpreted as the negative logarithm of a zero-mean Gaussian prior distribution over
the weight vector w.

5.5.1 Consistent Gaussian priors
One of the limitations of simple weight decay in the form (5.112) is that is

inconsistent with certain scaling properties of network mappings. To illustrate this,
consider a multilayer perceptron network having two layers of weights and linear
output units, which performs a mapping from a set of input variables {xi} to a set
of output variables {yk}. The activations of the hidden units in the first hidden layer

Figure 5.10 Plot of the sum-of-squares test-set
error for the polynomial data set ver-
sus the number of hidden units in the
network, with 30 random starts for
each network size, showing the ef-
fect of local minima. For each new
start, the weight vector was initial-
ized by sampling from an isotropic
Gaussian distribution having a mean
of zero and a variance of 10.
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take the form

zj = h

(∑
i

wjixi + wj0

)
(5.113)

while the activations of the output units are given by

yk =
∑

j

wkjzj + wk0. (5.114)

Suppose we perform a linear transformation of the input data of the form

xi → x̃i = axi + b. (5.115)

Then we can arrange for the mapping performed by the network to be unchanged
by making a corresponding linear transformation of the weights and biases from the
inputs to the units in the hidden layer of the formExercise 5.24

wji → w̃ji =
1
a
wji (5.116)

wj0 → w̃j0 = wj0 − b

a

∑
i

wji. (5.117)

Similarly, a linear transformation of the output variables of the network of the form

yk → ỹk = cyk + d (5.118)

can be achieved by making a transformation of the second-layer weights and biases
using

wkj → w̃kj = cwkj (5.119)

wk0 → w̃k0 = cwk0 + d. (5.120)

If we train one network using the original data and one network using data for which
the input and/or target variables are transformed by one of the above linear transfor-
mations, then consistency requires that we should obtain equivalent networks that
differ only by the linear transformation of the weights as given. Any regularizer
should be consistent with this property, otherwise it arbitrarily favours one solution
over another, equivalent one. Clearly, simple weight decay (5.112), that treats all
weights and biases on an equal footing, does not satisfy this property.

We therefore look for a regularizer which is invariant under the linear trans-
formations (5.116), (5.117), (5.119) and (5.120). These require that the regularizer
should be invariant to re-scaling of the weights and to shifts of the biases. Such a
regularizer is given by

λ1

2

∑
w∈W1

w2 +
λ2

2

∑
w∈W2

w2 (5.121)

where W1 denotes the set of weights in the first layer, W2 denotes the set of weights
in the second layer, and biases are excluded from the summations. This regularizer
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will remain unchanged under the weight transformations provided the regularization
parameters are re-scaled using λ1 → a1/2λ1 and λ2 → c−1/2λ2.

The regularizer (5.121) corresponds to a prior of the form

p(w|α1, α2) ∝ exp

(
−α1

2

∑
w∈W1

w2 − α2

2

∑
w∈W2

w2

)
. (5.122)

Note that priors of this form are improper (they cannot be normalized) because the
bias parameters are unconstrained. The use of improper priors can lead to difficulties
in selecting regularization coefficients and in model comparison within the Bayesian
framework, because the corresponding evidence is zero. It is therefore common to
include separate priors for the biases (which then break shift invariance) having their
own hyperparameters. We can illustrate the effect of the resulting four hyperpa-
rameters by drawing samples from the prior and plotting the corresponding network
functions, as shown in Figure 5.11.

More generally, we can consider priors in which the weights are divided into
any number of groups Wk so that

p(w) ∝ exp

(
−1

2

∑
k

αk‖w‖2
k

)
(5.123)

where
‖w‖2

k =
∑

j∈Wk

w2
j . (5.124)

As a special case of this prior, if we choose the groups to correspond to the sets
of weights associated with each of the input units, and we optimize the marginal
likelihood with respect to the corresponding parameters αk, we obtain automatic
relevance determination as discussed in Section 7.2.2.

5.5.2 Early stopping
An alternative to regularization as a way of controlling the effective complexity

of a network is the procedure of early stopping. The training of nonlinear network
models corresponds to an iterative reduction of the error function defined with re-
spect to a set of training data. For many of the optimization algorithms used for
network training, such as conjugate gradients, the error is a nonincreasing function
of the iteration index. However, the error measured with respect to independent data,
generally called a validation set, often shows a decrease at first, followed by an in-
crease as the network starts to over-fit. Training can therefore be stopped at the point
of smallest error with respect to the validation data set, as indicated in Figure 5.12,
in order to obtain a network having good generalization performance.

The behaviour of the network in this case is sometimes explained qualitatively
in terms of the effective number of degrees of freedom in the network, in which this
number starts out small and then to grows during the training process, corresponding
to a steady increase in the effective complexity of the model. Halting training before
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Figure 5.11 Illustration of the effect of the hyperparameters governing the prior distribution over weights and
biases in a two-layer network having a single input, a single linear output, and 12 hidden units having ‘tanh’
activation functions. The priors are governed by four hyperparameters αb

1 , αw
1 , αb

2 , and αw
2 , which represent

the precisions of the Gaussian distributions of the first-layer biases, first-layer weights, second-layer biases, and
second-layer weights, respectively. We see that the parameter αw

2 governs the vertical scale of functions (note
the different vertical axis ranges on the top two diagrams), αw

1 governs the horizontal scale of variations in the
function values, and αb

1 governs the horizontal range over which variations occur. The parameter αb
2 , whose

effect is not illustrated here, governs the range of vertical offsets of the functions.

a minimum of the training error has been reached then represents a way of limiting
the effective network complexity.

In the case of a quadratic error function, we can verify this insight, and show
that early stopping should exhibit similar behaviour to regularization using a sim-
ple weight-decay term. This can be understood from Figure 5.13, in which the axes
in weight space have been rotated to be parallel to the eigenvectors of the Hessian
matrix. If, in the absence of weight decay, the weight vector starts at the origin and
proceeds during training along a path that follows the local negative gradient vec-
tor, then the weight vector will move initially parallel to the w2 axis through a point
corresponding roughly to w̃ and then move towards the minimum of the error func-
tion wML. This follows from the shape of the error surface and the widely differing
eigenvalues of the Hessian. Stopping at a point near w̃ is therefore similar to weight
decay. The relationship between early stopping and weight decay can be made quan-
titative, thereby showing that the quantity τη (where τ is the iteration index, and ηExercise 5.25
is the learning rate parameter) plays the role of the reciprocal of the regularization
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Figure 5.12 An illustration of the behaviour of training set error (left) and validation set error (right) during a
typical training session, as a function of the iteration step, for the sinusoidal data set. The goal of achieving
the best generalization performance suggests that training should be stopped at the point shown by the vertical
dashed lines, corresponding to the minimum of the validation set error.

parameter λ. The effective number of parameters in the network therefore grows
during the course of training.

5.5.3 Invariances
In many applications of pattern recognition, it is known that predictions should

be unchanged, or invariant, under one or more transformations of the input vari-
ables. For example, in the classification of objects in two-dimensional images, such
as handwritten digits, a particular object should be assigned the same classification
irrespective of its position within the image (translation invariance) or of its size
(scale invariance). Such transformations produce significant changes in the raw
data, expressed in terms of the intensities at each of the pixels in the image, and
yet should give rise to the same output from the classification system. Similarly
in speech recognition, small levels of nonlinear warping along the time axis, which
preserve temporal ordering, should not change the interpretation of the signal.

If sufficiently large numbers of training patterns are available, then an adaptive
model such as a neural network can learn the invariance, at least approximately. This
involves including within the training set a sufficiently large number of examples of
the effects of the various transformations. Thus, for translation invariance in an im-
age, the training set should include examples of objects at many different positions.

This approach may be impractical, however, if the number of training examples
is limited, or if there are several invariants (because the number of combinations of
transformations grows exponentially with the number of such transformations). We
therefore seek alternative approaches for encouraging an adaptive model to exhibit
the required invariances. These can broadly be divided into four categories:

1. The training set is augmented using replicas of the training patterns, trans-
formed according to the desired invariances. For instance, in our digit recog-
nition example, we could make multiple copies of each example in which the
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Figure 5.13 A schematic illustration of why
early stopping can give similar
results to weight decay in the
case of a quadratic error func-
tion. The ellipse shows a con-
tour of constant error, and wML

denotes the minimum of the er-
ror function. If the weight vector
starts at the origin and moves ac-
cording to the local negative gra-
dient direction, then it will follow
the path shown by the curve. By
stopping training early, a weight
vector ew is found that is qual-
itatively similar to that obtained
with a simple weight-decay reg-
ularizer and training to the mini-
mum of the regularized error, as
can be seen by comparing with
Figure 3.15.

w1

w2

w̃

wML

digit is shifted to a different position in each image.

2. A regularization term is added to the error function that penalizes changes in
the model output when the input is transformed. This leads to the technique of
tangent propagation, discussed in Section 5.5.4.

3. Invariance is built into the pre-processing by extracting features that are invari-
ant under the required transformations. Any subsequent regression or classi-
fication system that uses such features as inputs will necessarily also respect
these invariances.

4. The final option is to build the invariance properties into the structure of a neu-
ral network (or into the definition of a kernel function in the case of techniques
such as the relevance vector machine). One way to achieve this is through the
use of local receptive fields and shared weights, as discussed in the context of
convolutional neural networks in Section 5.5.6.

Approach 1 is often relatively easy to implement and can be used to encourage com-
plex invariances such as those illustrated in Figure 5.14. For sequential training
algorithms, this can be done by transforming each input pattern before it is presented
to the model so that, if the patterns are being recycled, a different transformation
(drawn from an appropriate distribution) is added each time. For batch methods, a
similar effect can be achieved by replicating each data point a number of times and
transforming each copy independently. The use of such augmented data can lead to
significant improvements in generalization (Simard et al., 2003), although it can also
be computationally costly.

Approach 2 leaves the data set unchanged but modifies the error function through
the addition of a regularizer. In Section 5.5.5, we shall show that this approach is
closely related to approach 2.
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Figure 5.14 Illustration of the synthetic warping of a handwritten digit. The original image is shown on the
left. On the right, the top row shows three examples of warped digits, with the corresponding displacement
fields shown on the bottom row. These displacement fields are generated by sampling random displacements
∆x, ∆y ∈ (0, 1) at each pixel and then smoothing by convolution with Gaussians of width 0.01, 30 and 60
respectively.

One advantage of approach 3 is that it can correctly extrapolate well beyond the
range of transformations included in the training set. However, it can be difficult
to find hand-crafted features with the required invariances that do not also discard
information that can be useful for discrimination.

5.5.4 Tangent propagation
We can use regularization to encourage models to be invariant to transformations

of the input through the technique of tangent propagation (Simard et al., 1992).
Consider the effect of a transformation on a particular input vector xn. Provided the
transformation is continuous (such as translation or rotation, but not mirror reflection
for instance), then the transformed pattern will sweep out a manifold M within the
D-dimensional input space. This is illustrated in Figure 5.15, for the case of D =
2 for simplicity. Suppose the transformation is governed by a single parameter ξ
(which might be rotation angle for instance). Then the subspace M swept out by xn

Figure 5.15 Illustration of a two-dimensional input space
showing the effect of a continuous transforma-
tion on a particular input vector xn. A one-
dimensional transformation, parameterized by
the continuous variable ξ, applied to xn causes
it to sweep out a one-dimensional manifold M.
Locally, the effect of the transformation can be
approximated by the tangent vector τn.

x1

x2

xn

τn

ξ

M
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will be one-dimensional, and will be parameterized by ξ. Let the vector that results
from acting on xn by this transformation be denoted by s(xn, ξ), which is defined
so that s(x, 0) = x. Then the tangent to the curve M is given by the directional
derivative τ = ∂s/∂ξ, and the tangent vector at the point xn is given by

τn =
∂s(xn, ξ)

∂ξ

∣∣∣∣
ξ=0

. (5.125)

Under a transformation of the input vector, the network output vector will, in general,
change. The derivative of output k with respect to ξ is given by

∂yk

∂ξ

∣∣∣∣
ξ=0

=
D∑

i=1

∂yk

∂xi

∂xi

∂ξ

∣∣∣∣∣
ξ=0

=
D∑

i=1

Jkiτi (5.126)

where Jki is the (k, i) element of the Jacobian matrix J, as discussed in Section 5.3.4.
The result (5.126) can be used to modify the standard error function, so as to encour-
age local invariance in the neighbourhood of the data points, by the addition to the
original error function E of a regularization function Ω to give a total error function
of the form

Ẽ = E + λΩ (5.127)

where λ is a regularization coefficient and

Ω =
1
2

∑
n

∑
k

(
∂ynk

∂ξ

∣∣∣∣
ξ=0

)2

=
1
2

∑
n

∑
k

(
D∑

i=1

Jnkiτni

)2

. (5.128)

The regularization function will be zero when the network mapping function is in-
variant under the transformation in the neighbourhood of each pattern vector, and
the value of the parameter λ determines the balance between fitting the training data
and learning the invariance property.

In a practical implementation, the tangent vector τn can be approximated us-
ing finite differences, by subtracting the original vector xn from the corresponding
vector after transformation using a small value of ξ, and then dividing by ξ. This is
illustrated in Figure 5.16.

The regularization function depends on the network weights through the Jaco-
bian J. A backpropagation formalism for computing the derivatives of the regu-
larizer with respect to the network weights is easily obtained by extension of theExercise 5.26
techniques introduced in Section 5.3.

If the transformation is governed by L parameters (e.g., L = 3 for the case of
translations combined with in-plane rotations in a two-dimensional image), then the
manifold M will have dimensionality L, and the corresponding regularizer is given
by the sum of terms of the form (5.128), one for each transformation. If several
transformations are considered at the same time, and the network mapping is made
invariant to each separately, then it will be (locally) invariant to combinations of the
transformations (Simard et al., 1992).
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Figure 5.16 Illustration showing
(a) the original image x of a hand-
written digit, (b) the tangent vector
τ corresponding to an infinitesimal
clockwise rotation, (c) the result of
adding a small contribution from the
tangent vector to the original image
giving x + ετ with ε = 15 degrees,
and (d) the true image rotated for
comparison.

(a) (b)

(c) (d)

A related technique, called tangent distance, can be used to build invariance
properties into distance-based methods such as nearest-neighbour classifiers (Simard
et al., 1993).

5.5.5 Training with transformed data
We have seen that one way to encourage invariance of a model to a set of trans-

formations is to expand the training set using transformed versions of the original
input patterns. Here we show that this approach is closely related to the technique of
tangent propagation (Bishop, 1995b; Leen, 1995).

As in Section 5.5.4, we shall consider a transformation governed by a single
parameter ξ and described by the function s(x, ξ), with s(x, 0) = x. We shall
also consider a sum-of-squares error function. The error function for untransformed
inputs can be written (in the infinite data set limit) in the form

E =
1
2

∫∫
{y(x) − t}2p(t|x)p(x) dxdt (5.129)

as discussed in Section 1.5.5. Here we have considered a network having a single
output, in order to keep the notation uncluttered. If we now consider an infinite
number of copies of each data point, each of which is perturbed by the transformation
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in which the parameter ξ is drawn from a distribution p(ξ), then the error function
defined over this expanded data set can be written as

Ẽ =
1
2

∫∫∫
{y(s(x, ξ)) − t}2p(t|x)p(x)p(ξ) dxdtdξ. (5.130)

We now assume that the distribution p(ξ) has zero mean with small variance, so that
we are only considering small transformations of the original input vectors. We can
then expand the transformation function as a Taylor series in powers of ξ to give

s(x, ξ) = s(x, 0) + ξ
∂

∂ξ
s(x, ξ)

∣∣∣∣
ξ=0

+
ξ2

2
∂2

∂ξ2
s(x, ξ)

∣∣∣∣
ξ=0

+ O(ξ3)

= x + ξτ +
1
2
ξ2τ ′ + O(ξ3)

where τ ′ denotes the second derivative of s(x, ξ) with respect to ξ evaluated at ξ = 0.
This allows us to expand the model function to give

y(s(x, ξ)) = y(x) + ξτT∇y(x) +
ξ2

2

[
(τ ′)T ∇y(x) + τT∇∇y(x)τ

]
+ O(ξ3).

Substituting into the mean error function (5.130) and expanding, we then have

Ẽ =
1
2

∫∫
{y(x) − t}2p(t|x)p(x) dxdt

+ E[ξ]
∫∫

{y(x) − t}τT∇y(x)p(t|x)p(x) dxdt

+ E[ξ2]
∫∫ [

{y(x) − t}1
2

{
(τ ′)T ∇y(x) + τT∇∇y(x)τ

}
+
(
τT∇y(x)

)2
]
p(t|x)p(x) dxdt + O(ξ3).

Because the distribution of transformations has zero mean we have E[ξ] = 0. Also,
we shall denote E[ξ2] by λ. Omitting terms of O(ξ3), the average error function then
becomes

Ẽ = E + λΩ (5.131)

where E is the original sum-of-squares error, and the regularization term Ω takes the
form

Ω =
∫ [

{y(x) − E[t|x]}1
2

{
(τ ′)T ∇y(x) + τT∇∇y(x)τ

}
+
(
τT∇y(x)

)2
]

p(x) dx (5.132)

in which we have performed the integration over t.
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We can further simplify this regularization term as follows. In Section 1.5.5 we
saw that the function that minimizes the sum-of-squares error is given by the condi-
tional average E[t|x] of the target values t. From (5.131) we see that the regularized
error will equal the unregularized sum-of-squares plus terms which are O(ξ), and so
the network function that minimizes the total error will have the form

y(x) = E[t|x] + O(ξ). (5.133)

Thus, to leading order in ξ, the first term in the regularizer vanishes and we are left
with

Ω =
1
2

∫ (
τT∇y(x)

)2
p(x) dx (5.134)

which is equivalent to the tangent propagation regularizer (5.128).
If we consider the special case in which the transformation of the inputs simply

consists of the addition of random noise, so that x → x + ξ, then the regularizer
takes the formExercise 5.27

Ω =
1
2

∫
‖∇y(x)‖2

p(x) dx (5.135)

which is known as Tikhonov regularization (Tikhonov and Arsenin, 1977; Bishop,
1995b). Derivatives of this regularizer with respect to the network weights can be
found using an extended backpropagation algorithm (Bishop, 1993). We see that, for
small noise amplitudes, Tikhonov regularization is related to the addition of random
noise to the inputs, which has been shown to improve generalization in appropriate
circumstances (Sietsma and Dow, 1991).

5.5.6 Convolutional networks
Another approach to creating models that are invariant to certain transformation

of the inputs is to build the invariance properties into the structure of a neural net-
work. This is the basis for the convolutional neural network (Le Cun et al., 1989;
LeCun et al., 1998), which has been widely applied to image data.

Consider the specific task of recognizing handwritten digits. Each input image
comprises a set of pixel intensity values, and the desired output is a posterior proba-
bility distribution over the ten digit classes. We know that the identity of the digit is
invariant under translations and scaling as well as (small) rotations. Furthermore, the
network must also exhibit invariance to more subtle transformations such as elastic
deformations of the kind illustrated in Figure 5.14. One simple approach would be to
treat the image as the input to a fully connected network, such as the kind shown in
Figure 5.1. Given a sufficiently large training set, such a network could in principle
yield a good solution to this problem and would learn the appropriate invariances by
example.

However, this approach ignores a key property of images, which is that nearby
pixels are more strongly correlated than more distant pixels. Many of the modern
approaches to computer vision exploit this property by extracting local features that
depend only on small subregions of the image. Information from such features can
then be merged in later stages of processing in order to detect higher-order features
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Input image Convolutional layer
Sub-sampling
layer

Figure 5.17 Diagram illustrating part of a convolutional neural network, showing a layer of convolu-
tional units followed by a layer of subsampling units. Several successive pairs of such
layers may be used.

and ultimately to yield information about the image as whole. Also, local features
that are useful in one region of the image are likely to be useful in other regions of
the image, for instance if the object of interest is translated.

These notions are incorporated into convolutional neural networks through three
mechanisms: (i) local receptive fields, (ii) weight sharing, and (iii) subsampling. The
structure of a convolutional network is illustrated in Figure 5.17. In the convolutional
layer the units are organized into planes, each of which is called a feature map. Units
in a feature map each take inputs only from a small subregion of the image, and all
of the units in a feature map are constrained to share the same weight values. For
instance, a feature map might consist of 100 units arranged in a 10 × 10 grid, with
each unit taking inputs from a 5×5 pixel patch of the image. The whole feature map
therefore has 25 adjustable weight parameters plus one adjustable bias parameter.
Input values from a patch are linearly combined using the weights and the bias, and
the result transformed by a sigmoidal nonlinearity using (5.1). If we think of the units
as feature detectors, then all of the units in a feature map detect the same pattern but
at different locations in the input image. Due to the weight sharing, the evaluation
of the activations of these units is equivalent to a convolution of the image pixel
intensities with a ‘kernel’ comprising the weight parameters. If the input image is
shifted, the activations of the feature map will be shifted by the same amount but will
otherwise be unchanged. This provides the basis for the (approximate) invariance of
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the network outputs to translations and distortions of the input image. Because we
will typically need to detect multiple features in order to build an effective model,
there will generally be multiple feature maps in the convolutional layer, each having
its own set of weight and bias parameters.

The outputs of the convolutional units form the inputs to the subsampling layer
of the network. For each feature map in the convolutional layer, there is a plane of
units in the subsampling layer and each unit takes inputs from a small receptive field
in the corresponding feature map of the convolutional layer. These units perform
subsampling. For instance, each subsampling unit might take inputs from a 2 × 2
unit region in the corresponding feature map and would compute the average of
those inputs, multiplied by an adaptive weight with the addition of an adaptive bias
parameter, and then transformed using a sigmoidal nonlinear activation function.
The receptive fields are chosen to be contiguous and nonoverlapping so that there
are half the number of rows and columns in the subsampling layer compared with
the convolutional layer. In this way, the response of a unit in the subsampling layer
will be relatively insensitive to small shifts of the image in the corresponding regions
of the input space.

In a practical architecture, there may be several pairs of convolutional and sub-
sampling layers. At each stage there is a larger degree of invariance to input trans-
formations compared to the previous layer. There may be several feature maps in a
given convolutional layer for each plane of units in the previous subsampling layer,
so that the gradual reduction in spatial resolution is then compensated by an increas-
ing number of features. The final layer of the network would typically be a fully
connected, fully adaptive layer, with a softmax output nonlinearity in the case of
multiclass classification.

The whole network can be trained by error minimization using backpropagation
to evaluate the gradient of the error function. This involves a slight modification
of the usual backpropagation algorithm to ensure that the shared-weight constraints
are satisfied. Due to the use of local receptive fields, the number of weights inExercise 5.28
the network is smaller than if the network were fully connected. Furthermore, the
number of independent parameters to be learned from the data is much smaller still,
due to the substantial numbers of constraints on the weights.

5.5.7 Soft weight sharing
One way to reduce the effective complexity of a network with a large number

of weights is to constrain weights within certain groups to be equal. This is the
technique of weight sharing that was discussed in Section 5.5.6 as a way of building
translation invariance into networks used for image interpretation. It is only appli-
cable, however, to particular problems in which the form of the constraints can be
specified in advance. Here we consider a form of soft weight sharing (Nowlan and
Hinton, 1992) in which the hard constraint of equal weights is replaced by a form
of regularization in which groups of weights are encouraged to have similar values.
Furthermore, the division of weights into groups, the mean weight value for each
group, and the spread of values within the groups are all determined as part of the
learning process.
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Recall that the simple weight decay regularizer, given in (5.112), can be viewed
as the negative log of a Gaussian prior distribution over the weights. We can encour-
age the weight values to form several groups, rather than just one group, by consid-
ering instead a probability distribution that is a mixture of Gaussians. The centresSection 2.3.9
and variances of the Gaussian components, as well as the mixing coefficients, will be
considered as adjustable parameters to be determined as part of the learning process.
Thus, we have a probability density of the form

p(w) =
∏

i

p(wi) (5.136)

where

p(wi) =
M∑

j=1

πjN (wi|µj , σ
2
j ) (5.137)

and πj are the mixing coefficients. Taking the negative logarithm then leads to a
regularization function of the form

Ω(w) = −
∑

i

ln

(
M∑

j=1

πjN (wi|µj , σ
2
j )

)
. (5.138)

The total error function is then given by

Ẽ(w) = E(w) + λΩ(w) (5.139)

where λ is the regularization coefficient. This error is minimized both with respect
to the weights wi and with respect to the parameters {πj , µj , σj} of the mixture
model. If the weights were constant, then the parameters of the mixture model could
be determined by using the EM algorithm discussed in Chapter 9. However, the dis-
tribution of weights is itself evolving during the learning process, and so to avoid nu-
merical instability, a joint optimization is performed simultaneously over the weights
and the mixture-model parameters. This can be done using a standard optimization
algorithm such as conjugate gradients or quasi-Newton methods.

In order to minimize the total error function, it is necessary to be able to evaluate
its derivatives with respect to the various adjustable parameters. To do this it is con-
venient to regard the {πj} as prior probabilities and to introduce the corresponding
posterior probabilities which, following (2.192), are given by Bayes’ theorem in the
form

γj(w) =
πjN (w|µj , σ

2
j )∑

k πkN (w|µk, σ2
k)

. (5.140)

The derivatives of the total error function with respect to the weights are then given
byExercise 5.29

∂Ẽ

∂wi
=

∂E

∂wi
+ λ

∑
j

γj(wi)
(wi − µj)

σ2
j

. (5.141)
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The effect of the regularization term is therefore to pull each weight towards the
centre of the jth Gaussian, with a force proportional to the posterior probability of
that Gaussian for the given weight. This is precisely the kind of effect that we are
seeking.

Derivatives of the error with respect to the centres of the Gaussians are also
easily computed to giveExercise 5.30

∂Ẽ

∂µj
= λ

∑
i

γj(wi)
(µi − wj)

σ2
j

(5.142)

which has a simple intuitive interpretation, because it pushes µj towards an aver-
age of the weight values, weighted by the posterior probabilities that the respective
weight parameters were generated by component j. Similarly, the derivatives with
respect to the variances are given byExercise 5.31

∂Ẽ

∂σj
= λ

∑
i

γj(wi)
(

1
σj

− (wi − µj)2

σ3
j

)
(5.143)

which drives σj towards the weighted average of the squared deviations of the weights
around the corresponding centre µj , where the weighting coefficients are again given
by the posterior probability that each weight is generated by component j. Note that
in a practical implementation, new variables ηj defined by

σ2
j = exp(ηj) (5.144)

are introduced, and the minimization is performed with respect to the ηj . This en-
sures that the parameters σj remain positive. It also has the effect of discouraging
pathological solutions in which one or more of the σj goes to zero, corresponding
to a Gaussian component collapsing onto one of the weight parameter values. Such
solutions are discussed in more detail in the context of Gaussian mixture models in
Section 9.2.1.

For the derivatives with respect to the mixing coefficients πj , we need to take
account of the constraints ∑

j

πj = 1, 0 � πi � 1 (5.145)

which follow from the interpretation of the πj as prior probabilities. This can be
done by expressing the mixing coefficients in terms of a set of auxiliary variables
{ηj} using the softmax function given by

πj =
exp(ηj)∑M

k=1 exp(ηk)
. (5.146)

The derivatives of the regularized error function with respect to the {ηj} then take
the formExercise 5.32
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Figure 5.18 The left figure shows a two-link robot arm,
in which the Cartesian coordinates (x1, x2) of the end ef-
fector are determined uniquely by the two joint angles θ1

and θ2 and the (fixed) lengths L1 and L2 of the arms. This
is know as the forward kinematics of the arm. In prac-
tice, we have to find the joint angles that will give rise to a
desired end effector position and, as shown in the right fig-
ure, this inverse kinematics has two solutions correspond-
ing to ‘elbow up’ and ‘elbow down’.

L1

L2

θ1

θ2

(x1, x2) (x1, x2)

elbow
down

elbow
up

∂Ẽ

∂ηj
=
∑

i

{πj − γj(wi)} . (5.147)

We see that πj is therefore driven towards the average posterior probability for com-
ponent j.

5.6. Mixture Density Networks

The goal of supervised learning is to model a conditional distribution p(t|x), which
for many simple regression problems is chosen to be Gaussian. However, practical
machine learning problems can often have significantly non-Gaussian distributions.
These can arise, for example, with inverse problems in which the distribution can be
multimodal, in which case the Gaussian assumption can lead to very poor predic-
tions.

As a simple example of an inverse problem, consider the kinematics of a robot
arm, as illustrated in Figure 5.18. The forward problem involves finding the end ef-Exercise 5.33
fector position given the joint angles and has a unique solution. However, in practice
we wish to move the end effector of the robot to a specific position, and to do this we
must set appropriate joint angles. We therefore need to solve the inverse problem,
which has two solutions as seen in Figure 5.18.

Forward problems often corresponds to causality in a physical system and gen-
erally have a unique solution. For instance, a specific pattern of symptoms in the
human body may be caused by the presence of a particular disease. In pattern recog-
nition, however, we typically have to solve an inverse problem, such as trying to
predict the presence of a disease given a set of symptoms. If the forward problem
involves a many-to-one mapping, then the inverse problem will have multiple solu-
tions. For instance, several different diseases may result in the same symptoms.

In the robotics example, the kinematics is defined by geometrical equations, and
the multimodality is readily apparent. However, in many machine learning problems
the presence of multimodality, particularly in problems involving spaces of high di-
mensionality, can be less obvious. For tutorial purposes, however, we shall consider
a simple toy problem for which we can easily visualize the multimodality. Data for
this problem is generated by sampling a variable x uniformly over the interval (0, 1),
to give a set of values {xn}, and the corresponding target values tn are obtained
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Figure 5.19 On the left is the data
set for a simple ‘forward problem’ in
which the red curve shows the result
of fitting a two-layer neural network
by minimizing the sum-of-squares
error function. The corresponding
inverse problem, shown on the right,
is obtained by exchanging the roles
of x and t. Here the same net-
work trained again by minimizing the
sum-of-squares error function gives
a very poor fit to the data due to the
multimodality of the data set.
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1

0 1

0
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by computing the function xn + 0.3 sin(2πxn) and then adding uniform noise over
the interval (−0.1, 0.1). The inverse problem is then obtained by keeping the same
data points but exchanging the roles of x and t. Figure 5.19 shows the data sets for
the forward and inverse problems, along with the results of fitting two-layer neural
networks having 6 hidden units and a single linear output unit by minimizing a sum-
of-squares error function. Least squares corresponds to maximum likelihood under
a Gaussian assumption. We see that this leads to a very poor model for the highly
non-Gaussian inverse problem.

We therefore seek a general framework for modelling conditional probability
distributions. This can be achieved by using a mixture model for p(t|x) in which
both the mixing coefficients as well as the component densities are flexible functions
of the input vector x, giving rise to the mixture density network. For any given value
of x, the mixture model provides a general formalism for modelling an arbitrary
conditional density function p(t|x). Provided we consider a sufficiently flexible
network, we then have a framework for approximating arbitrary conditional distri-
butions.

Here we shall develop the model explicitly for Gaussian components, so that

p(t|x) =
K∑

k=1

πk(x)N (
t|µk(x), σ2

k(x)
)
. (5.148)

This is an example of a heteroscedastic model since the noise variance on the data
is a function of the input vector x. Instead of Gaussians, we can use other distribu-
tions for the components, such as Bernoulli distributions if the target variables are
binary rather than continuous. We have also specialized to the case of isotropic co-
variances for the components, although the mixture density network can readily be
extended to allow for general covariance matrices by representing the covariances
using a Cholesky factorization (Williams, 1996). Even with isotropic components,
the conditional distribution p(t|x) does not assume factorization with respect to the
components of t (in contrast to the standard sum-of-squares regression model) as a
consequence of the mixture distribution.

We now take the various parameters of the mixture model, namely the mixing
coefficients πk(x), the means µk(x), and the variances σ2

k(x), to be governed by
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x1

xD

θ1

θM

θ

t
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Figure 5.20 The mixture density network can represent general conditional probability densities p(t|x)
by considering a parametric mixture model for the distribution of t whose parameters are
determined by the outputs of a neural network that takes x as its input vector.

the outputs of a conventional neural network that takes x as its input. The structure
of this mixture density network is illustrated in Figure 5.20. The mixture density
network is closely related to the mixture of experts discussed in Section 14.5.3. The
principle difference is that in the mixture density network the same function is used
to predict the parameters of all of the component densities as well as the mixing co-
efficients, and so the nonlinear hidden units are shared amongst the input-dependent
functions.

The neural network in Figure 5.20 can, for example, be a two-layer network
having sigmoidal (‘tanh’) hidden units. If there are L components in the mixture
model (5.148), and if t has K components, then the network will have L output unit
activations denoted by aπ

k that determine the mixing coefficients πk(x), K outputs
denoted by aσ

k that determine the kernel widths σk(x), and L × K outputs denoted
by aµ

kj that determine the components µkj(x) of the kernel centres µk(x). The total
number of network outputs is given by (K + 2)L, as compared with the usual K
outputs for a network, which simply predicts the conditional means of the target
variables.

The mixing coefficients must satisfy the constraints

K∑
k=1

πk(x) = 1, 0 � πk(x) � 1 (5.149)

which can be achieved using a set of softmax outputs

πk(x) =
exp(aπ

k)∑K
l=1 exp(aπ

l )
. (5.150)

Similarly, the variances must satisfy σ2
k(x) � 0 and so can be represented in terms

of the exponentials of the corresponding network activations using

σk(x) = exp(aσ
k). (5.151)

Finally, because the means µk(x) have real components, they can be represented
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directly by the network output activations

µkj(x) = aµ
kj . (5.152)

The adaptive parameters of the mixture density network comprise the vector w
of weights and biases in the neural network, that can be set by maximum likelihood,
or equivalently by minimizing an error function defined to be the negative logarithm
of the likelihood. For independent data, this error function takes the form

E(w) = −
N∑

n=1

ln

{
k∑

k=1

πk(xn,w)N (
tn|µk(xn,w), σ2

k(xn,w)
)}

(5.153)

where we have made the dependencies on w explicit.
In order to minimize the error function, we need to calculate the derivatives of

the error E(w) with respect to the components of w. These can be evaluated by
using the standard backpropagation procedure, provided we obtain suitable expres-
sions for the derivatives of the error with respect to the output-unit activations. These
represent error signals δ for each pattern and for each output unit, and can be back-
propagated to the hidden units and the error function derivatives evaluated in the
usual way. Because the error function (5.153) is composed of a sum of terms, one
for each training data point, we can consider the derivatives for a particular pattern
n and then find the derivatives of E by summing over all patterns.

Because we are dealing with mixture distributions, it is convenient to view the
mixing coefficients πk(x) as x-dependent prior probabilities and to introduce the
corresponding posterior probabilities given by

γk(t|x) =
πkNnk∑K
l=1 πlNnl

(5.154)

where Nnk denotes N (tn|µk(xn), σ2
k(xn)).

The derivatives with respect to the network output activations governing the mix-
ing coefficients are given byExercise 5.34

∂En

∂aπ
k

= πk − γk. (5.155)

Similarly, the derivatives with respect to the output activations controlling the com-
ponent means are given byExercise 5.35

∂En

∂aµ
kl

= γk

{
µkl − tl

σ2
k

}
. (5.156)

Finally, the derivatives with respect to the output activations controlling the compo-
nent variances are given byExercise 5.36

∂En

∂aσ
k

= −γk

{‖t − µk‖2

σ3
k

− 1
σk

}
. (5.157)
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Figure 5.21 (a) Plot of the mixing
coefficients πk(x) as a function of
x for the three kernel functions in a
mixture density network trained on
the data shown in Figure 5.19. The
model has three Gaussian compo-
nents, and uses a two-layer multi-
layer perceptron with five ‘tanh’ sig-
moidal units in the hidden layer, and
nine outputs (corresponding to the 3
means and 3 variances of the Gaus-
sian components and the 3 mixing
coefficients). At both small and large
values of x, where the conditional
probability density of the target data
is unimodal, only one of the ker-
nels has a high value for its prior
probability, while at intermediate val-
ues of x, where the conditional den-
sity is trimodal, the three mixing co-
efficients have comparable values.
(b) Plots of the means µk(x) using
the same colour coding as for the
mixing coefficients. (c) Plot of the
contours of the corresponding con-
ditional probability density of the tar-
get data for the same mixture den-
sity network. (d) Plot of the ap-
proximate conditional mode, shown
by the red points, of the conditional
density.
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We illustrate the use of a mixture density network by returning to the toy ex-
ample of an inverse problem shown in Figure 5.19. Plots of the mixing coeffi-
cients πk(x), the means µk(x), and the conditional density contours corresponding
to p(t|x), are shown in Figure 5.21. The outputs of the neural network, and hence the
parameters in the mixture model, are necessarily continuous single-valued functions
of the input variables. However, we see from Figure 5.21(c) that the model is able to
produce a conditional density that is unimodal for some values of x and trimodal for
other values by modulating the amplitudes of the mixing components πk(x).

Once a mixture density network has been trained, it can predict the conditional
density function of the target data for any given value of the input vector. This
conditional density represents a complete description of the generator of the data, so
far as the problem of predicting the value of the output vector is concerned. From
this density function we can calculate more specific quantities that may be of interest
in different applications. One of the simplest of these is the mean, corresponding to
the conditional average of the target data, and is given by

E [t|x] =
∫

tp(t|x) dt =
K∑

k=1

πk(x)µk(x) (5.158)
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where we have used (5.148). Because a standard network trained by least squares
is approximating the conditional mean, we see that a mixture density network can
reproduce the conventional least-squares result as a special case. Of course, as we
have already noted, for a multimodal distribution the conditional mean is of limited
value.

We can similarly evaluate the variance of the density function about the condi-
tional average, to giveExercise 5.37

s2(x) = E
[‖t − E[t|x]‖2 |x] (5.159)

=
K∑

k=1

πk(x)

⎧⎨⎩σ2
k(x) +

∥∥∥∥∥µk(x) −
K∑

l=1

πl(x)µl(x)

∥∥∥∥∥
2
⎫⎬⎭ (5.160)

where we have used (5.148) and (5.158). This is more general than the corresponding
least-squares result because the variance is a function of x.

We have seen that for multimodal distributions, the conditional mean can give
a poor representation of the data. For instance, in controlling the simple robot arm
shown in Figure 5.18, we need to pick one of the two possible joint angle settings
in order to achieve the desired end-effector location, whereas the average of the two
solutions is not itself a solution. In such cases, the conditional mode may be of
more value. Because the conditional mode for the mixture density network does not
have a simple analytical solution, this would require numerical iteration. A simple
alternative is to take the mean of the most probable component (i.e., the one with the
largest mixing coefficient) at each value of x. This is shown for the toy data set in
Figure 5.21(d).

5.7. Bayesian Neural Networks

So far, our discussion of neural networks has focussed on the use of maximum like-
lihood to determine the network parameters (weights and biases). Regularized max-
imum likelihood can be interpreted as a MAP (maximum posterior) approach in
which the regularizer can be viewed as the logarithm of a prior parameter distribu-
tion. However, in a Bayesian treatment we need to marginalize over the distribution
of parameters in order to make predictions.

In Section 3.3, we developed a Bayesian solution for a simple linear regression
model under the assumption of Gaussian noise. We saw that the posterior distribu-
tion, which is Gaussian, could be evaluated exactly and that the predictive distribu-
tion could also be found in closed form. In the case of a multilayered network, the
highly nonlinear dependence of the network function on the parameter values means
that an exact Bayesian treatment can no longer be found. In fact, the log of the pos-
terior distribution will be nonconvex, corresponding to the multiple local minima in
the error function.

The technique of variational inference, to be discussed in Chapter 10, has been
applied to Bayesian neural networks using a factorized Gaussian approximation



278 5. NEURAL NETWORKS

to the posterior distribution (Hinton and van Camp, 1993) and also using a full-
covariance Gaussian (Barber and Bishop, 1998a; Barber and Bishop, 1998b). The
most complete treatment, however, has been based on the Laplace approximation
(MacKay, 1992c; MacKay, 1992b) and forms the basis for the discussion given here.
We will approximate the posterior distribution by a Gaussian, centred at a mode of
the true posterior. Furthermore, we shall assume that the covariance of this Gaus-
sian is small so that the network function is approximately linear with respect to the
parameters over the region of parameter space for which the posterior probability is
significantly nonzero. With these two approximations, we will obtain models that
are analogous to the linear regression and classification models discussed in earlier
chapters and so we can exploit the results obtained there. We can then make use of
the evidence framework to provide point estimates for the hyperparameters and to
compare alternative models (for example, networks having different numbers of hid-
den units). To start with, we shall discuss the regression case and then later consider
the modifications needed for solving classification tasks.

5.7.1 Posterior parameter distribution
Consider the problem of predicting a single continuous target variable t from

a vector x of inputs (the extension to multiple targets is straightforward). We shall
suppose that the conditional distribution p(t|x) is Gaussian, with an x-dependent
mean given by the output of a neural network model y(x,w), and with precision
(inverse variance) β

p(t|x,w, β) = N (t|y(x,w), β−1). (5.161)

Similarly, we shall choose a prior distribution over the weights w that is Gaussian of
the form

p(w|α) = N (w|0, α−1I). (5.162)

For an i.i.d. data set of N observations x1, . . . ,xN , with a corresponding set of target
values D = {t1, . . . , tN}, the likelihood function is given by

p(D|w, β) =
N∏

n=1

N (tn|y(xn,w), β−1) (5.163)

and so the resulting posterior distribution is then

p(w|D, α, β) ∝ p(w|α)p(D|w, β). (5.164)

which, as a consequence of the nonlinear dependence of y(x,w) on w, will be non-
Gaussian.

We can find a Gaussian approximation to the posterior distribution by using the
Laplace approximation. To do this, we must first find a (local) maximum of the
posterior, and this must be done using iterative numerical optimization. As usual, it
is convenient to maximize the logarithm of the posterior, which can be written in the
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form

ln p(w|D) = −α

2
wTw − β

2

N∑
n=1

{y(xn,w) − tn}2 + const (5.165)

which corresponds to a regularized sum-of-squares error function. Assuming for
the moment that α and β are fixed, we can find a maximum of the posterior, which
we denote wMAP, by standard nonlinear optimization algorithms such as conjugate
gradients, using error backpropagation to evaluate the required derivatives.

Having found a mode wMAP, we can then build a local Gaussian approximation
by evaluating the matrix of second derivatives of the negative log posterior distribu-
tion. From (5.165), this is given by

A = −∇∇ ln p(w|D, α, β) = αI + βH (5.166)

where H is the Hessian matrix comprising the second derivatives of the sum-of-
squares error function with respect to the components of w. Algorithms for comput-
ing and approximating the Hessian were discussed in Section 5.4. The corresponding
Gaussian approximation to the posterior is then given from (4.134) by

q(w|D) = N (w|wMAP,A−1). (5.167)

Similarly, the predictive distribution is obtained by marginalizing with respect
to this posterior distribution

p(t|x,D) =
∫

p(t|x,w)q(w|D) dw. (5.168)

However, even with the Gaussian approximation to the posterior, this integration is
still analytically intractable due to the nonlinearity of the network function y(x,w)
as a function of w. To make progress, we now assume that the posterior distribution
has small variance compared with the characteristic scales of w over which y(x,w)
is varying. This allows us to make a Taylor series expansion of the network function
around wMAP and retain only the linear terms

y(x,w) � y(x,wMAP) + gT(w − wMAP) (5.169)

where we have defined
g = ∇wy(x,w)|w=wMAP

. (5.170)

With this approximation, we now have a linear-Gaussian model with a Gaussian
distribution for p(w) and a Gaussian for p(t|w) whose mean is a linear function of
w of the form

p(t|x,w, β) � N (
t|y(x,wMAP) + gT(w − wMAP), β−1

)
. (5.171)

We can therefore make use of the general result (2.115) for the marginal p(t) to giveExercise 5.38

p(t|x,D, α, β) = N (
t|y(x,wMAP), σ2(x)

)
(5.172)
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where the input-dependent variance is given by

σ2(x) = β−1 + gTA−1g. (5.173)

We see that the predictive distribution p(t|x,D) is a Gaussian whose mean is given
by the network function y(x,wMAP) with the parameter set to their MAP value. The
variance has two terms, the first of which arises from the intrinsic noise on the target
variable, whereas the second is an x-dependent term that expresses the uncertainty
in the interpolant due to the uncertainty in the model parameters w. This should
be compared with the corresponding predictive distribution for the linear regression
model, given by (3.58) and (3.59).

5.7.2 Hyperparameter optimization
So far, we have assumed that the hyperparameters α and β are fixed and known.

We can make use of the evidence framework, discussed in Section 3.5, together with
the Gaussian approximation to the posterior obtained using the Laplace approxima-
tion, to obtain a practical procedure for choosing the values of such hyperparameters.

The marginal likelihood, or evidence, for the hyperparameters is obtained by
integrating over the network weights

p(D|α, β) =
∫

p(D|w, β)p(w|α) dw. (5.174)

This is easily evaluated by making use of the Laplace approximation result (4.135).Exercise 5.39
Taking logarithms then gives

ln p(D|α, β) � −E(wMAP) − 1
2

ln |A| + W

2
lnα +

N

2
lnβ − N

2
ln(2π) (5.175)

where W is the total number of parameters in w, and the regularized error function
is defined by

E(wMAP) =
β

2

N∑
n=1

{y(xn,wMAP) − tn}2 +
α

2
wT

MAPwMAP. (5.176)

We see that this takes the same form as the corresponding result (3.86) for the linear
regression model.

In the evidence framework, we make point estimates for α and β by maximizing
ln p(D|α, β). Consider first the maximization with respect to α, which can be done
by analogy with the linear regression case discussed in Section 3.5.2. We first define
the eigenvalue equation

βHui = λiui (5.177)

where H is the Hessian matrix comprising the second derivatives of the sum-of-
squares error function, evaluated at w = wMAP. By analogy with (3.92), we obtain

α =
γ

wT
MAPwMAP

(5.178)
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where γ represents the effective number of parameters and is defined bySection 3.5.3

γ =
W∑
i=1

λi

α + λi
. (5.179)

Note that this result was exact for the linear regression case. For the nonlinear neural
network, however, it ignores the fact that changes in α will cause changes in the
Hessian H, which in turn will change the eigenvalues. We have therefore implicitly
ignored terms involving the derivatives of λi with respect to α.

Similarly, from (3.95) we see that maximizing the evidence with respect to β
gives the re-estimation formula

1
β

=
1

N − γ

N∑
n=1

{y(xn,wMAP) − tn}2. (5.180)

As with the linear model, we need to alternate between re-estimation of the hyper-
parameters α and β and updating of the posterior distribution. The situation with
a neural network model is more complex, however, due to the multimodality of the
posterior distribution. As a consequence, the solution for wMAP found by maximiz-
ing the log posterior will depend on the initialization of w. Solutions that differ only
as a consequence of the interchange and sign reversal symmetries in the hidden unitsSection 5.1.1
are identical so far as predictions are concerned, and it is irrelevant which of the
equivalent solutions is found. However, there may be inequivalent solutions as well,
and these will generally yield different values for the optimized hyperparameters.

In order to compare different models, for example neural networks having differ-
ent numbers of hidden units, we need to evaluate the model evidence p(D). This can
be approximated by taking (5.175) and substituting the values of α and β obtained
from the iterative optimization of these hyperparameters. A more careful evaluation
is obtained by marginalizing over α and β, again by making a Gaussian approxima-
tion (MacKay, 1992c; Bishop, 1995a). In either case, it is necessary to evaluate the
determinant |A| of the Hessian matrix. This can be problematic in practice because
the determinant, unlike the trace, is sensitive to the small eigenvalues that are often
difficult to determine accurately.

The Laplace approximation is based on a local quadratic expansion around a
mode of the posterior distribution over weights. We have seen in Section 5.1.1 that
any given mode in a two-layer network is a member of a set of M !2M equivalent
modes that differ by interchange and sign-change symmetries, where M is the num-
ber of hidden units. When comparing networks having different numbers of hid-
den units, this can be taken into account by multiplying the evidence by a factor of
M !2M .

5.7.3 Bayesian neural networks for classification
So far, we have used the Laplace approximation to develop a Bayesian treat-

ment of neural network regression models. We now discuss the modifications to
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this framework that arise when it is applied to classification. Here we shall con-
sider a network having a single logistic sigmoid output corresponding to a two-class
classification problem. The extension to networks with multiclass softmax outputs
is straightforward. We shall build extensively on the analogous results for linearExercise 5.40
classification models discussed in Section 4.5, and so we encourage the reader to
familiarize themselves with that material before studying this section.

The log likelihood function for this model is given by

ln p(D|w) =
∑

n

= 1N {tn ln yn + (1 − tn) ln(1 − yn)} (5.181)

where tn ∈ {0, 1} are the target values, and yn ≡ y(xn,w). Note that there is no
hyperparameter β, because the data points are assumed to be correctly labelled. As
before, the prior is taken to be an isotropic Gaussian of the form (5.162).

The first stage in applying the Laplace framework to this model is to initialize
the hyperparameter α, and then to determine the parameter vector w by maximizing
the log posterior distribution. This is equivalent to minimizing the regularized error
function

E(w) = − ln p(D|w) +
α

2
wTw (5.182)

and can be achieved using error backpropagation combined with standard optimiza-
tion algorithms, as discussed in Section 5.3.

Having found a solution wMAP for the weight vector, the next step is to eval-
uate the Hessian matrix H comprising the second derivatives of the negative log
likelihood function. This can be done, for instance, using the exact method of Sec-
tion 5.4.5, or using the outer product approximation given by (5.85). The second
derivatives of the negative log posterior can again be written in the form (5.166), and
the Gaussian approximation to the posterior is then given by (5.167).

To optimize the hyperparameter α, we again maximize the marginal likelihood,
which is easily shown to take the formExercise 5.41

ln p(D|α) � −E(wMAP) − 1
2

ln |A| + W

2
lnα + const (5.183)

where the regularized error function is defined by

E(wMAP) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} +
α

2
wT

MAPwMAP (5.184)

in which yn ≡ y(xn,wMAP). Maximizing this evidence function with respect to α
again leads to the re-estimation equation given by (5.178).

The use of the evidence procedure to determine α is illustrated in Figure 5.22
for the synthetic two-dimensional data discussed in Appendix A.

Finally, we need the predictive distribution, which is defined by (5.168). Again,
this integration is intractable due to the nonlinearity of the network function. The
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Figure 5.22 Illustration of the evidence framework
applied to a synthetic two-class data set.
The green curve shows the optimal de-
cision boundary, the black curve shows
the result of fitting a two-layer network
with 8 hidden units by maximum likeli-
hood, and the red curve shows the re-
sult of including a regularizer in which
α is optimized using the evidence pro-
cedure, starting from the initial value
α = 0. Note that the evidence proce-
dure greatly reduces the over-fitting of
the network.
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simplest approximation is to assume that the posterior distribution is very narrow
and hence make the approximation

p(t|x,D) � p(t|x,wMAP). (5.185)

We can improve on this, however, by taking account of the variance of the posterior
distribution. In this case, a linear approximation for the network outputs, as was used
in the case of regression, would be inappropriate due to the logistic sigmoid output-
unit activation function that constrains the output to lie in the range (0, 1). Instead,
we make a linear approximation for the output unit activation in the form

a(x,w) � aMAP(x) + bT(w − wMAP) (5.186)

where aMAP(x) = a(x,wMAP), and the vector b ≡ ∇a(x,wMAP) can be found by
backpropagation.

Because we now have a Gaussian approximation for the posterior distribution
over w, and a model for a that is a linear function of w, we can now appeal to the
results of Section 4.5.2. The distribution of output unit activation values, induced by
the distribution over network weights, is given by

p(a|x,D) =
∫

δ
(
a − aMAP(x) − bT(x)(w − wMAP)

)
q(w|D) dw (5.187)

where q(w|D) is the Gaussian approximation to the posterior distribution given by
(5.167). From Section 4.5.2, we see that this distribution is Gaussian with mean
aMAP ≡ a(x,wMAP), and variance

σ2
a(x) = bT(x)A−1b(x). (5.188)

Finally, to obtain the predictive distribution, we must marginalize over a using

p(t = 1|x,D) =
∫

σ(a)p(a|x,D) da. (5.189)
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Figure 5.23 An illustration of the Laplace approximation for a Bayesian neural network having 8 hidden units
with ‘tanh’ activation functions and a single logistic-sigmoid output unit. The weight parameters were found using
scaled conjugate gradients, and the hyperparameter α was optimized using the evidence framework. On the left
is the result of using the simple approximation (5.185) based on a point estimate wMAP of the parameters,
in which the green curve shows the y = 0.5 decision boundary, and the other contours correspond to output
probabilities of y = 0.1, 0.3, 0.7, and 0.9. On the right is the corresponding result obtained using (5.190). Note
that the effect of marginalization is to spread out the contours and to make the predictions less confident, so
that at each input point x, the posterior probabilities are shifted towards 0.5, while the y = 0.5 contour itself is
unaffected.

The convolution of a Gaussian with a logistic sigmoid is intractable. We therefore
apply the approximation (4.153) to (5.189) giving

p(t = 1|x,D) = σ
(
κ(σ2

a)bTwMAP

)
(5.190)

where κ(·) is defined by (4.154). Recall that both σ2
a and b are functions of x.

Figure 5.23 shows an example of this framework applied to the synthetic classi-
fication data set described in Appendix A.

Exercises
5.1 (� �) Consider a two-layer network function of the form (5.7) in which the hidden-

unit nonlinear activation functions g(·) are given by logistic sigmoid functions of the
form

σ(a) = {1 + exp(−a)}−1
. (5.191)

Show that there exists an equivalent network, which computes exactly the same func-
tion, but with hidden unit activation functions given by tanh(a) where the tanh func-
tion is defined by (5.59). Hint: first find the relation between σ(a) and tanh(a), and
then show that the parameters of the two networks differ by linear transformations.

5.2 (�) www Show that maximizing the likelihood function under the conditional
distribution (5.16) for a multioutput neural network is equivalent to minimizing the
sum-of-squares error function (5.11).
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5.3 (� �) Consider a regression problem involving multiple target variables in which it
is assumed that the distribution of the targets, conditioned on the input vector x, is a
Gaussian of the form

p(t|x,w) = N (t|y(x,w),Σ) (5.192)

where y(x,w) is the output of a neural network with input vector x and weight
vector w, and Σ is the covariance of the assumed Gaussian noise on the targets.
Given a set of independent observations of x and t, write down the error function
that must be minimized in order to find the maximum likelihood solution for w, if
we assume that Σ is fixed and known. Now assume that Σ is also to be determined
from the data, and write down an expression for the maximum likelihood solution
for Σ. Note that the optimizations of w and Σ are now coupled, in contrast to the
case of independent target variables discussed in Section 5.2.

5.4 (� �) Consider a binary classification problem in which the target values are t ∈
{0, 1}, with a network output y(x,w) that represents p(t = 1|x), and suppose that
there is a probability ε that the class label on a training data point has been incorrectly
set. Assuming independent and identically distributed data, write down the error
function corresponding to the negative log likelihood. Verify that the error function
(5.21) is obtained when ε = 0. Note that this error function makes the model robust
to incorrectly labelled data, in contrast to the usual error function.

5.5 (�) www Show that maximizing likelihood for a multiclass neural network model
in which the network outputs have the interpretation yk(x,w) = p(tk = 1|x) is
equivalent to the minimization of the cross-entropy error function (5.24).

5.6 (�) www Show the derivative of the error function (5.21) with respect to the
activation ak for an output unit having a logistic sigmoid activation function satisfies
(5.18).

5.7 (�) Show the derivative of the error function (5.24) with respect to the activation ak

for output units having a softmax activation function satisfies (5.18).

5.8 (�) We saw in (4.88) that the derivative of the logistic sigmoid activation function
can be expressed in terms of the function value itself. Derive the corresponding result
for the ‘tanh’ activation function defined by (5.59).

5.9 (�) www The error function (5.21) for binary classification problems was de-
rived for a network having a logistic-sigmoid output activation function, so that
0 � y(x,w) � 1, and data having target values t ∈ {0, 1}. Derive the correspond-
ing error function if we consider a network having an output −1 � y(x,w) � 1
and target values t = 1 for class C1 and t = −1 for class C2. What would be the
appropriate choice of output unit activation function?

5.10 (�) www Consider a Hessian matrix H with eigenvector equation (5.33). By
setting the vector v in (5.39) equal to each of the eigenvectors ui in turn, show that
H is positive definite if, and only if, all of its eigenvalues are positive.
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5.11 (� �) www Consider a quadratic error function defined by (5.32), in which the
Hessian matrix H has an eigenvalue equation given by (5.33). Show that the con-
tours of constant error are ellipses whose axes are aligned with the eigenvectors ui,
with lengths that are inversely proportional to the square root of the corresponding
eigenvalues λi.

5.12 (� �) www By considering the local Taylor expansion (5.32) of an error function
about a stationary point w�, show that the necessary and sufficient condition for the
stationary point to be a local minimum of the error function is that the Hessian matrix
H, defined by (5.30) with ŵ = w�, be positive definite.

5.13 (�) Show that as a consequence of the symmetry of the Hessian matrix H, the
number of independent elements in the quadratic error function (5.28) is given by
W (W + 3)/2.

5.14 (�) By making a Taylor expansion, verify that the terms that are O(ε) cancel on the
right-hand side of (5.69).

5.15 (� �) In Section 5.3.4, we derived a procedure for evaluating the Jacobian matrix of a
neural network using a backpropagation procedure. Derive an alternative formalism
for finding the Jacobian based on forward propagation equations.

5.16 (�) The outer product approximation to the Hessian matrix for a neural network
using a sum-of-squares error function is given by (5.84). Extend this result to the
case of multiple outputs.

5.17 (�) Consider a squared loss function of the form

E =
1
2

∫∫
{y(x,w) − t}2

p(x, t) dxdt (5.193)

where y(x,w) is a parametric function such as a neural network. The result (1.89)
shows that the function y(x,w) that minimizes this error is given by the conditional
expectation of t given x. Use this result to show that the second derivative of E with
respect to two elements wr and ws of the vector w, is given by

∂2E

∂wr∂ws
=
∫

∂y

∂wr

∂y

∂ws
p(x) dx. (5.194)

Note that, for a finite sample from p(x), we obtain (5.84).

5.18 (�) Consider a two-layer network of the form shown in Figure 5.1 with the addition
of extra parameters corresponding to skip-layer connections that go directly from
the inputs to the outputs. By extending the discussion of Section 5.3.2, write down
the equations for the derivatives of the error function with respect to these additional
parameters.

5.19 (�) www Derive the expression (5.85) for the outer product approximation to
the Hessian matrix for a network having a single output with a logistic sigmoid
output-unit activation function and a cross-entropy error function, corresponding to
the result (5.84) for the sum-of-squares error function.
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5.20 (�) Derive an expression for the outer product approximation to the Hessian matrix
for a network having K outputs with a softmax output-unit activation function and
a cross-entropy error function, corresponding to the result (5.84) for the sum-of-
squares error function.

5.21 (� � �) Extend the expression (5.86) for the outer product approximation of the Hes-
sian matrix to the case of K > 1 output units. Hence, derive a recursive expression
analogous to (5.87) for incrementing the number N of patterns and a similar expres-
sion for incrementing the number K of outputs. Use these results, together with the
identity (5.88), to find sequential update expressions analogous to (5.89) for finding
the inverse of the Hessian by incrementally including both extra patterns and extra
outputs.

5.22 (� �) Derive the results (5.93), (5.94), and (5.95) for the elements of the Hessian
matrix of a two-layer feed-forward network by application of the chain rule of cal-
culus.

5.23 (� �) Extend the results of Section 5.4.5 for the exact Hessian of a two-layer network
to include skip-layer connections that go directly from inputs to outputs.

5.24 (�) Verify that the network function defined by (5.113) and (5.114) is invariant un-
der the transformation (5.115) applied to the inputs, provided the weights and biases
are simultaneously transformed using (5.116) and (5.117). Similarly, show that the
network outputs can be transformed according (5.118) by applying the transforma-
tion (5.119) and (5.120) to the second-layer weights and biases.

5.25 (� � �) www Consider a quadratic error function of the form

E = E0 +
1
2
(w − w�)TH(w − w�) (5.195)

where w� represents the minimum, and the Hessian matrix H is positive definite and
constant. Suppose the initial weight vector w(0) is chosen to be at the origin and is
updated using simple gradient descent

w(τ) = w(τ−1) − ρ∇E (5.196)

where τ denotes the step number, and ρ is the learning rate (which is assumed to be
small). Show that, after τ steps, the components of the weight vector parallel to the
eigenvectors of H can be written

w
(τ)
j = {1 − (1 − ρηj)τ}w�

j (5.197)

where wj = wTuj , and uj and ηj are the eigenvectors and eigenvalues, respectively,
of H so that

Huj = ηjuj . (5.198)

Show that as τ → ∞, this gives w(τ) → w� as expected, provided |1 − ρηj | < 1.
Now suppose that training is halted after a finite number τ of steps. Show that the
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components of the weight vector parallel to the eigenvectors of the Hessian satisfy

w
(τ)
j � w�

j when ηj � (ρτ)−1 (5.199)

|w(τ)
j |  |w�

j | when ηj  (ρτ)−1. (5.200)

Compare this result with the discussion in Section 3.5.3 of regularization with simple
weight decay, and hence show that (ρτ)−1 is analogous to the regularization param-
eter λ. The above results also show that the effective number of parameters in the
network, as defined by (3.91), grows as the training progresses.

5.26 (� �) Consider a multilayer perceptron with arbitrary feed-forward topology, which
is to be trained by minimizing the tangent propagation error function (5.127) in
which the regularizing function is given by (5.128). Show that the regularization
term Ω can be written as a sum over patterns of terms of the form

Ωn =
1
2

∑
k

(Gyk)2 (5.201)

where G is a differential operator defined by

G ≡
∑

i

τi
∂

∂xi
. (5.202)

By acting on the forward propagation equations

zj = h(aj), aj =
∑

i

wjizi (5.203)

with the operator G, show that Ωn can be evaluated by forward propagation using
the following equations:

αj = h′(aj)βj , βj =
∑

i

wjiαi. (5.204)

where we have defined the new variables

αj ≡ Gzj , βj ≡ Gaj . (5.205)

Now show that the derivatives of Ωn with respect to a weight wrs in the network can
be written in the form

∂Ωn

∂wrs
=
∑

k

αk {φkrzs + δkrαs} (5.206)

where we have defined

δkr ≡ ∂yk

∂ar
, φkr ≡ Gδkr. (5.207)

Write down the backpropagation equations for δkr, and hence derive a set of back-
propagation equations for the evaluation of the φkr.
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5.27 (� �) www Consider the framework for training with transformed data in the
special case in which the transformation consists simply of the addition of random
noise x → x + ξ where ξ has a Gaussian distribution with zero mean and unit
covariance. By following an argument analogous to that of Section 5.5.5, show that
the resulting regularizer reduces to the Tikhonov form (5.135).

5.28 (�) www Consider a neural network, such as the convolutional network discussed
in Section 5.5.6, in which multiple weights are constrained to have the same value.
Discuss how the standard backpropagation algorithm must be modified in order to
ensure that such constraints are satisfied when evaluating the derivatives of an error
function with respect to the adjustable parameters in the network.

5.29 (�) www Verify the result (5.141).

5.30 (�) Verify the result (5.142).

5.31 (�) Verify the result (5.143).

5.32 (� �) Show that the derivatives of the mixing coefficients {πk}, defined by (5.146),
with respect to the auxiliary parameters {ηj} are given by

∂πk

∂ηj
= δjkπj − πjπk. (5.208)

Hence, by making use of the constraint
∑

k πk = 1, derive the result (5.147).

5.33 (�) Write down a pair of equations that express the Cartesian coordinates (x1, x2)
for the robot arm shown in Figure 5.18 in terms of the joint angles θ1 and θ2 and
the lengths L1 and L2 of the links. Assume the origin of the coordinate system is
given by the attachment point of the lower arm. These equations define the ‘forward
kinematics’ of the robot arm.

5.34 (�) www Derive the result (5.155) for the derivative of the error function with
respect to the network output activations controlling the mixing coefficients in the
mixture density network.

5.35 (�) Derive the result (5.156) for the derivative of the error function with respect
to the network output activations controlling the component means in the mixture
density network.

5.36 (�) Derive the result (5.157) for the derivative of the error function with respect to
the network output activations controlling the component variances in the mixture
density network.

5.37 (�) Verify the results (5.158) and (5.160) for the conditional mean and variance of
the mixture density network model.

5.38 (�) Using the general result (2.115), derive the predictive distribution (5.172) for
the Laplace approximation to the Bayesian neural network model.
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5.39 (�) www Make use of the Laplace approximation result (4.135) to show that the
evidence function for the hyperparameters α and β in the Bayesian neural network
model can be approximated by (5.175).

5.40 (�) www Outline the modifications needed to the framework for Bayesian neural
networks, discussed in Section 5.7.3, to handle multiclass problems using networks
having softmax output-unit activation functions.

5.41 (� �) By following analogous steps to those given in Section 5.7.1 for regression
networks, derive the result (5.183) for the marginal likelihood in the case of a net-
work having a cross-entropy error function and logistic-sigmoid output-unit activa-
tion function.



6
Kernel

Methods

In Chapters 3 and 4, we considered linear parametric models for regression and
classification in which the form of the mapping y(x,w) from input x to output y
is governed by a vector w of adaptive parameters. During the learning phase, a
set of training data is used either to obtain a point estimate of the parameter vector
or to determine a posterior distribution over this vector. The training data is then
discarded, and predictions for new inputs are based purely on the learned parameter
vector w. This approach is also used in nonlinear parametric models such as neural
networks.Chapter 5

However, there is a class of pattern recognition techniques, in which the training
data points, or a subset of them, are kept and used also during the prediction phase.
For instance, the Parzen probability density model comprised a linear combinationSection 2.5.1
of ‘kernel’ functions each one centred on one of the training data points. Similarly,
in Section 2.5.2 we introduced a simple technique for classification called nearest
neighbours, which involved assigning to each new test vector the same label as the
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closest example from the training set. These are examples of memory-based methods
that involve storing the entire training set in order to make predictions for future data
points. They typically require a metric to be defined that measures the similarity of
any two vectors in input space, and are generally fast to ‘train’ but slow at making
predictions for test data points.

Many linear parametric models can be re-cast into an equivalent ‘dual represen-
tation’ in which the predictions are also based on linear combinations of a kernel
function evaluated at the training data points. As we shall see, for models which are
based on a fixed nonlinear feature space mapping φ(x), the kernel function is given
by the relation

k(x,x′) = φ(x)Tφ(x′). (6.1)

From this definition, we see that the kernel is a symmetric function of its arguments
so that k(x,x′) = k(x′,x). The kernel concept was introduced into the field of pat-
tern recognition by Aizerman et al. (1964) in the context of the method of potential
functions, so-called because of an analogy with electrostatics. Although neglected
for many years, it was re-introduced into machine learning in the context of large-
margin classifiers by Boser et al. (1992) giving rise to the technique of support
vector machines. Since then, there has been considerable interest in this topic, bothChapter 7
in terms of theory and applications. One of the most significant developments has
been the extension of kernels to handle symbolic objects, thereby greatly expanding
the range of problems that can be addressed.

The simplest example of a kernel function is obtained by considering the identity
mapping for the feature space in (6.1) so that φ(x) = x, in which case k(x,x′) =
xTx′. We shall refer to this as the linear kernel.

The concept of a kernel formulated as an inner product in a feature space allows
us to build interesting extensions of many well-known algorithms by making use of
the kernel trick, also known as kernel substitution. The general idea is that, if we have
an algorithm formulated in such a way that the input vector x enters only in the form
of scalar products, then we can replace that scalar product with some other choice of
kernel. For instance, the technique of kernel substitution can be applied to principal
component analysis in order to develop a nonlinear variant of PCA (Schölkopf et al.,Section 12.3
1998). Other examples of kernel substitution include nearest-neighbour classifiers
and the kernel Fisher discriminant (Mika et al., 1999; Roth and Steinhage, 2000;
Baudat and Anouar, 2000).

There are numerous forms of kernel functions in common use, and we shall en-
counter several examples in this chapter. Many have the property of being a function
only of the difference between the arguments, so that k(x,x′) = k(x − x′), which
are known as stationary kernels because they are invariant to translations in input
space. A further specialization involves homogeneous kernels, also known as ra-
dial basis functions, which depend only on the magnitude of the distance (typicallySection 6.3
Euclidean) between the arguments so that k(x,x′) = k(‖x − x′‖).

For recent textbooks on kernel methods, see Schölkopf and Smola (2002), Her-
brich (2002), and Shawe-Taylor and Cristianini (2004).
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6.1. Dual Representations

Many linear models for regression and classification can be reformulated in terms of
a dual representation in which the kernel function arises naturally. This concept will
play an important role when we consider support vector machines in the next chapter.
Here we consider a linear regression model whose parameters are determined by
minimizing a regularized sum-of-squares error function given by

J(w) =
1
2

N∑
n=1

{
wTφ(xn) − tn

}2
+

λ

2
wTw (6.2)

where λ � 0. If we set the gradient of J(w) with respect to w equal to zero, we see
that the solution for w takes the form of a linear combination of the vectors φ(xn),
with coefficients that are functions of w, of the form

w = − 1
λ

N∑
n=1

{
wTφ(xn) − tn

}
φ(xn) =

N∑
n=1

anφ(xn) = ΦTa (6.3)

where Φ is the design matrix, whose nth row is given by φ(xn)T. Here the vector
a = (a1, . . . , aN )T, and we have defined

an = − 1
λ

{
wTφ(xn) − tn

}
. (6.4)

Instead of working with the parameter vector w, we can now reformulate the least-
squares algorithm in terms of the parameter vector a, giving rise to a dual represen-
tation. If we substitute w = ΦTa into J(w), we obtain

J(a) =
1
2
aTΦΦTΦΦTa − aTΦΦTt +

1
2

tTt +
λ

2
aTΦΦTa (6.5)

where t = (t1, . . . , tN )T. We now define the Gram matrix K = ΦΦT, which is an
N × N symmetric matrix with elements

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)

where we have introduced the kernel function k(x,x′) defined by (6.1). In terms of
the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
aTKKa − aTKt +

1
2

tTt +
λ

2
aTKa. (6.7)

Setting the gradient of J(a) with respect to a to zero, we obtain the following solu-
tion

a = (K + λIN )−1 t. (6.8)
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If we substitute this back into the linear regression model, we obtain the following
prediction for a new input x

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN )−1 t (6.9)

where we have defined the vector k(x) with elements kn(x) = k(xn,x). Thus we
see that the dual formulation allows the solution to the least-squares problem to be
expressed entirely in terms of the kernel function k(x,x′). This is known as a dual
formulation because, by noting that the solution for a can be expressed as a linear
combination of the elements of φ(x), we recover the original formulation in terms of
the parameter vector w. Note that the prediction at x is given by a linear combinationExercise 6.1
of the target values from the training set. In fact, we have already obtained this result,
using a slightly different notation, in Section 3.3.3.

In the dual formulation, we determine the parameter vector a by inverting an
N ×N matrix, whereas in the original parameter space formulation we had to invert
an M × M matrix in order to determine w. Because N is typically much larger
than M , the dual formulation does not seem to be particularly useful. However, the
advantage of the dual formulation, as we shall see, is that it is expressed entirely in
terms of the kernel function k(x,x′). We can therefore work directly in terms of
kernels and avoid the explicit introduction of the feature vector φ(x), which allows
us implicitly to use feature spaces of high, even infinite, dimensionality.

The existence of a dual representation based on the Gram matrix is a property of
many linear models, including the perceptron. In Section 6.4, we will develop a dual-Exercise 6.2
ity between probabilistic linear models for regression and the technique of Gaussian
processes. Duality will also play an important role when we discuss support vector
machines in Chapter 7.

6.2. Constructing Kernels

In order to exploit kernel substitution, we need to be able to construct valid kernel
functions. One approach is to choose a feature space mapping φ(x) and then use
this to find the corresponding kernel, as is illustrated in Figure 6.1. Here the kernel
function is defined for a one-dimensional input space by

k(x, x′) = φ(x)Tφ(x′) =
M∑
i=1

φi(x)φi(x′) (6.10)

where φi(x) are the basis functions.
An alternative approach is to construct kernel functions directly. In this case,

we must ensure that the function we choose is a valid kernel, in other words that it
corresponds to a scalar product in some (perhaps infinite dimensional) feature space.
As a simple example, consider a kernel function given by

k(x, z) =
(
xTz

)2
. (6.11)



6.2. Constructing Kernels 295

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1

0

0.02

0.04

−1 0 1

0

0.02

0.04

−1 0 1

0

0.02

0.04

Figure 6.1 Illustration of the construction of kernel functions starting from a corresponding set of basis func-
tions. In each column the lower plot shows the kernel function k(x, x′) defined by (6.10) plotted as a function of
x for x′ = 0, while the upper plot shows the corresponding basis functions given by polynomials (left column),
‘Gaussians’ (centre column), and logistic sigmoids (right column).

If we take the particular case of a two-dimensional input space x = (x1, x2) we
can expand out the terms and thereby identify the corresponding nonlinear feature
mapping

k(x, z) =
(
xTz

)2
= (x1z1 + x2z2)2

= x2
1z

2
1 + 2x1z1x2z2 + x2

2z
2
2

= (x2
1,
√

2x1x2, x
2
2)(z

2
1 ,
√

2z1z2, z
2
2)

T

= φ(x)Tφ(z). (6.12)

We see that the feature mapping takes the form φ(x) = (x2
1,
√

2x1x2, x
2
2)

T and
therefore comprises all possible second order terms, with a specific weighting be-
tween them.

More generally, however, we need a simple way to test whether a function con-
stitutes a valid kernel without having to construct the function φ(x) explicitly. A
necessary and sufficient condition for a function k(x,x′) to be a valid kernel (Shawe-
Taylor and Cristianini, 2004) is that the Gram matrix K, whose elements are given by
k(xn,xm), should be positive semidefinite for all possible choices of the set {xn}.
Note that a positive semidefinite matrix is not the same thing as a matrix whose
elements are nonnegative.Appendix C

One powerful technique for constructing new kernels is to build them out of
simpler kernels as building blocks. This can be done using the following properties:
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Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)

k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)

k(x,x′) = q (k1(x,x′)) (6.15)

k(x,x′) = exp (k1(x,x′)) (6.16)

k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)

k(x,x′) = k1(x,x′)k2(x,x′) (6.18)

k(x,x′) = k3 (φ(x),φ(x′)) (6.19)

k(x,x′) = xTAx′ (6.20)

k(x,x′) = ka(xa,x′
a) + kb(xb,x′

b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x′

b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to R

M , k3(·, ·) is a valid kernel in
R

M , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-

alized to include all terms up to degree M by considering k(x,x′) =
(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(−‖x − x′‖2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is
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omitted. We can see that this is a valid kernel by expanding the square

‖x − x′‖2 = xTx + (x′)Tx′ − 2xTx′ (6.24)

to give

k(x,x′) = exp
(−xTx/2σ2

)
exp

(
xTx′/σ2

)
exp

(−(x′)Tx′/2σ2
)

(6.25)

and then making use of (6.14) and (6.16), together with the validity of the linear
kernel k(x,x′) = xTx′. Note that the feature vector that corresponds to the Gaussian
kernel has infinite dimensionality.Exercise 6.11

The Gaussian kernel is not restricted to the use of Euclidean distance. If we use
kernel substitution in (6.24) to replace xTx′ with a nonlinear kernel κ(x,x′), we
obtain

k(x,x′) = exp
{
− 1

2σ2
(κ(x,x) + κ(x′,x′) − 2κ(x,x′))

}
. (6.26)

An important contribution to arise from the kernel viewpoint has been the exten-
sion to inputs that are symbolic, rather than simply vectors of real numbers. Kernel
functions can be defined over objects as diverse as graphs, sets, strings, and text doc-
uments. Consider, for instance, a fixed set and define a nonvectorial space consisting
of all possible subsets of this set. If A1 and A2 are two such subsets then one simple
choice of kernel would be

k(A1, A2) = 2|A1∩A2| (6.27)

where A1 ∩ A2 denotes the intersection of sets A1 and A2, and |A| denotes the
number of subsets in A. This is a valid kernel function because it can be shown to
correspond to an inner product in a feature space.Exercise 6.12

One powerful approach to the construction of kernels starts from a probabilistic
generative model (Haussler, 1999), which allows us to apply generative models in a
discriminative setting. Generative models can deal naturally with missing data and
in the case of hidden Markov models can handle sequences of varying length. By
contrast, discriminative models generally give better performance on discriminative
tasks than generative models. It is therefore of some interest to combine these two
approaches (Lasserre et al., 2006). One way to combine them is to use a generative
model to define a kernel, and then use this kernel in a discriminative approach.

Given a generative model p(x) we can define a kernel by

k(x,x′) = p(x)p(x′). (6.28)

This is clearly a valid kernel function because we can interpret it as an inner product
in the one-dimensional feature space defined by the mapping p(x). It says that two
inputs x and x′ are similar if they both have high probabilities. We can use (6.13) and
(6.17) to extend this class of kernels by considering sums over products of different
probability distributions, with positive weighting coefficients p(i), of the form

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i). (6.29)
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This is equivalent, up to an overall multiplicative constant, to a mixture distribution
in which the components factorize, with the index i playing the role of a ‘latent’
variable. Two inputs x and x′ will give a large value for the kernel function, andSection 9.2
hence appear similar, if they have significant probability under a range of different
components. Taking the limit of an infinite sum, we can also consider kernels of the
form

k(x,x′) =
∫

p(x|z)p(x′|z)p(z) dz (6.30)

where z is a continuous latent variable.
Now suppose that our data consists of ordered sequences of length L so that

an observation is given by X = {x1, . . . ,xL}. A popular generative model for
sequences is the hidden Markov model, which expresses the distribution p(X) as aSection 13.2
marginalization over a corresponding sequence of hidden states Z = {z1, . . . , zL}.
We can use this approach to define a kernel function measuring the similarity of two
sequences X and X′ by extending the mixture representation (6.29) to give

k(X,X′) =
∑
Z

p(X|Z)p(X′|Z)p(Z) (6.31)

so that both observed sequences are generated by the same hidden sequence Z. This
model can easily be extended to allow sequences of differing length to be compared.

An alternative technique for using generative models to define kernel functions
is known as the Fisher kernel (Jaakkola and Haussler, 1999). Consider a parametric
generative model p(x|θ) where θ denotes the vector of parameters. The goal is to
find a kernel that measures the similarity of two input vectors x and x′ induced by the
generative model. Jaakkola and Haussler (1999) consider the gradient with respect
to θ, which defines a vector in a ‘feature’ space having the same dimensionality as
θ. In particular, they consider the Fisher score

g(θ,x) = ∇θ ln p(x|θ) (6.32)

from which the Fisher kernel is defined by

k(x,x′) = g(θ,x)TF−1g(θ,x′). (6.33)

Here F is the Fisher information matrix, given by

F = Ex

[
g(θ,x)g(θ,x)T

]
(6.34)

where the expectation is with respect to x under the distribution p(x|θ). This can
be motivated from the perspective of information geometry (Amari, 1998), which
considers the differential geometry of the space of model parameters. Here we sim-
ply note that the presence of the Fisher information matrix causes this kernel to be
invariant under a nonlinear re-parameterization of the density model θ → ψ(θ).Exercise 6.13

In practice, it is often infeasible to evaluate the Fisher information matrix. One
approach is simply to replace the expectation in the definition of the Fisher informa-
tion with the sample average, giving

F � 1
N

N∑
n=1

g(θ,xn)g(θ,xn)T. (6.35)
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This is the covariance matrix of the Fisher scores, and so the Fisher kernel corre-
sponds to a whitening of these scores. More simply, we can just omit the FisherSection 12.1.3
information matrix altogether and use the noninvariant kernel

k(x,x′) = g(θ,x)Tg(θ,x′). (6.36)

An application of Fisher kernels to document retrieval is given by Hofmann (2000).
A final example of a kernel function is the sigmoidal kernel given by

k(x,x′) = tanh
(
axTx′ + b

)
(6.37)

whose Gram matrix in general is not positive semidefinite. This form of kernel
has, however, been used in practice (Vapnik, 1995), possibly because it gives kernel
expansions such as the support vector machine a superficial resemblance to neural
network models. As we shall see, in the limit of an infinite number of basis functions,
a Bayesian neural network with an appropriate prior reduces to a Gaussian process,
thereby providing a deeper link between neural networks and kernel methods.Section 6.4.7

6.3. Radial Basis Function Networks

In Chapter 3, we discussed regression models based on linear combinations of fixed
basis functions, although we did not discuss in detail what form those basis functions
might take. One choice that has been widely used is that of radial basis functions,
which have the property that each basis function depends only on the radial distance
(typically Euclidean) from a centre µj , so that φj(x) = h(‖x − µj‖).

Historically, radial basis functions were introduced for the purpose of exact func-
tion interpolation (Powell, 1987). Given a set of input vectors {x1, . . . ,xN} along
with corresponding target values {t1, . . . , tN}, the goal is to find a smooth function
f(x) that fits every target value exactly, so that f(xn) = tn for n = 1, . . . , N . This
is achieved by expressing f(x) as a linear combination of radial basis functions, one
centred on every data point

f(x) =
N∑

n=1

wnh(‖x − xn‖). (6.38)

The values of the coefficients {wn} are found by least squares, and because there
are the same number of coefficients as there are constraints, the result is a function
that fits every target value exactly. In pattern recognition applications, however, the
target values are generally noisy, and exact interpolation is undesirable because this
corresponds to an over-fitted solution.

Expansions in radial basis functions also arise from regularization theory (Pog-
gio and Girosi, 1990; Bishop, 1995a). For a sum-of-squares error function with a
regularizer defined in terms of a differential operator, the optimal solution is given
by an expansion in the Green’s functions of the operator (which are analogous to the
eigenvectors of a discrete matrix), again with one basis function centred on each data



300 6. KERNEL METHODS

point. If the differential operator is isotropic then the Green’s functions depend only
on the radial distance from the corresponding data point. Due to the presence of the
regularizer, the solution no longer interpolates the training data exactly.

Another motivation for radial basis functions comes from a consideration of
the interpolation problem when the input (rather than the target) variables are noisy
(Webb, 1994; Bishop, 1995a). If the noise on the input variable x is described
by a variable ξ having a distribution ν(ξ), then the sum-of-squares error function
becomes

E =
1
2

N∑
n=1

∫
{y(xn + ξ) − tn}2

ν(ξ) dξ. (6.39)

Using the calculus of variations, we can optimize with respect to the function f(x)Appendix D
to giveExercise 6.17

y(xn) =
N∑

n=1

tnh(x − xn) (6.40)

where the basis functions are given by

h(x − xn) =
ν(x − xn)

N∑
n=1

ν(x − xn)

. (6.41)

We see that there is one basis function centred on every data point. This is known as
the Nadaraya-Watson model and will be derived again from a different perspective
in Section 6.3.1. If the noise distribution ν(ξ) is isotropic, so that it is a function
only of ‖ξ‖, then the basis functions will be radial.

Note that the basis functions (6.41) are normalized, so that
∑

n h(x − xn) = 1
for any value of x. The effect of such normalization is shown in Figure 6.2. Normal-
ization is sometimes used in practice as it avoids having regions of input space where
all of the basis functions take small values, which would necessarily lead to predic-
tions in such regions that are either small or controlled purely by the bias parameter.

Another situation in which expansions in normalized radial basis functions arise
is in the application of kernel density estimation to the problem of regression, as we
shall discuss in Section 6.3.1.

Because there is one basis function associated with every data point, the corre-
sponding model can be computationally costly to evaluate when making predictions
for new data points. Models have therefore been proposed (Broomhead and Lowe,
1988; Moody and Darken, 1989; Poggio and Girosi, 1990), which retain the expan-
sion in radial basis functions but where the number M of basis functions is smaller
than the number N of data points. Typically, the number of basis functions, and the
locations µi of their centres, are determined based on the input data {xn} alone. The
basis functions are then kept fixed and the coefficients {wi} are determined by least
squares by solving the usual set of linear equations, as discussed in Section 3.1.1.
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Figure 6.2 Plot of a set of Gaussian basis functions on the left, together with the corresponding normalized
basis functions on the right.

One of the simplest ways of choosing basis function centres is to use a randomly
chosen subset of the data points. A more systematic approach is called orthogonal
least squares (Chen et al., 1991). This is a sequential selection process in which at
each step the next data point to be chosen as a basis function centre corresponds to
the one that gives the greatest reduction in the sum-of-squares error. Values for the
expansion coefficients are determined as part of the algorithm. Clustering algorithms
such as K-means have also been used, which give a set of basis function centres thatSection 9.1
no longer coincide with training data points.

6.3.1 Nadaraya-Watson model
In Section 3.3.3, we saw that the prediction of a linear regression model for a

new input x takes the form of a linear combination of the training set target values
with coefficients given by the ‘equivalent kernel’ (3.62) where the equivalent kernel
satisfies the summation constraint (3.64).

We can motivate the kernel regression model (3.61) from a different perspective,
starting with kernel density estimation. Suppose we have a training set {xn, tn} and
we use a Parzen density estimator to model the joint distribution p(x, t), so thatSection 2.5.1

p(x, t) =
1
N

N∑
n=1

f(x − xn, t − tn) (6.42)

where f(x, t) is the component density function, and there is one such component
centred on each data point. We now find an expression for the regression function
y(x), corresponding to the conditional average of the target variable conditioned on
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the input variable, which is given by

y(x) = E[t|x] =
∫ ∞

−∞
tp(t|x) dt

=

∫
tp(x, t) dt∫
p(x, t) dt

=

∑
n

∫
tf(x − xn, t − tn) dt

∑
m

∫
f(x − xm, t − tm) dt

. (6.43)

We now assume for simplicity that the component density functions have zero mean
so that ∫ ∞

−∞
f(x, t)t dt = 0 (6.44)

for all values of x. Using a simple change of variable, we then obtain

y(x) =

∑
n

g(x − xn)tn∑
m

g(x − xm)

=
∑

n

k(x,xn)tn (6.45)

where n, m = 1, . . . , N and the kernel function k(x,xn) is given by

k(x,xn) =
g(x − xn)∑

m

g(x − xm)
(6.46)

and we have defined

g(x) =
∫ ∞

−∞
f(x, t) dt. (6.47)

The result (6.45) is known as the Nadaraya-Watson model, or kernel regression
(Nadaraya, 1964; Watson, 1964). For a localized kernel function, it has the prop-
erty of giving more weight to the data points xn that are close to x. Note that the
kernel (6.46) satisfies the summation constraint

N∑
n=1

k(x,xn) = 1.
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Figure 6.3 Illustration of the Nadaraya-Watson kernel
regression model using isotropic Gaussian kernels, for the
sinusoidal data set. The original sine function is shown
by the green curve, the data points are shown in blue,
and each is the centre of an isotropic Gaussian kernel.
The resulting regression function, given by the condi-
tional mean, is shown by the red line, along with the two-
standard-deviation region for the conditional distribution
p(t|x) shown by the red shading. The blue ellipse around
each data point shows one standard deviation contour for
the corresponding kernel. These appear noncircular due
to the different scales on the horizontal and vertical axes.
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In fact, this model defines not only a conditional expectation but also a full
conditional distribution given by

p(t|x) =
p(t,x)∫
p(t,x) dt

=

∑
n

f(x − xn, t − tn)

∑
m

∫
f(x − xm, t − tm) dt

(6.48)

from which other expectations can be evaluated.
As an illustration we consider the case of a single input variable x in which

f(x, t) is given by a zero-mean isotropic Gaussian over the variable z = (x, t) with
variance σ2. The corresponding conditional distribution (6.48) is given by a Gaus-
sian mixture, and is shown, together with the conditional mean, for the sinusoidalExercise 6.18
synthetic data set in Figure 6.3.

An obvious extension of this model is to allow for more flexible forms of Gaus-
sian components, for instance having different variance parameters for the input and
target variables. More generally, we could model the joint distribution p(t,x) using
a Gaussian mixture model, trained using techniques discussed in Chapter 9 (Ghahra-
mani and Jordan, 1994), and then find the corresponding conditional distribution
p(t|x). In this latter case we no longer have a representation in terms of kernel func-
tions evaluated at the training set data points. However, the number of components
in the mixture model can be smaller than the number of training set points, resulting
in a model that is faster to evaluate for test data points. We have thereby accepted an
increased computational cost during the training phase in order to have a model that
is faster at making predictions.

6.4. Gaussian Processes

In Section 6.1, we introduced kernels by applying the concept of duality to a non-
probabilistic model for regression. Here we extend the role of kernels to probabilis-
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tic discriminative models, leading to the framework of Gaussian processes. We shall
thereby see how kernels arise naturally in a Bayesian setting.

In Chapter 3, we considered linear regression models of the form y(x,w) =
wTφ(x) in which w is a vector of parameters and φ(x) is a vector of fixed nonlinear
basis functions that depend on the input vector x. We showed that a prior distribution
over w induced a corresponding prior distribution over functions y(x,w). Given a
training data set, we then evaluated the posterior distribution over w and thereby
obtained the corresponding posterior distribution over regression functions, which
in turn (with the addition of noise) implies a predictive distribution p(t|x) for new
input vectors x.

In the Gaussian process viewpoint, we dispense with the parametric model and
instead define a prior probability distribution over functions directly. At first sight, it
might seem difficult to work with a distribution over the uncountably infinite space of
functions. However, as we shall see, for a finite training set we only need to consider
the values of the function at the discrete set of input values xn corresponding to the
training set and test set data points, and so in practice we can work in a finite space.

Models equivalent to Gaussian processes have been widely studied in many dif-
ferent fields. For instance, in the geostatistics literature Gaussian process regression
is known as kriging (Cressie, 1993). Similarly, ARMA (autoregressive moving aver-
age) models, Kalman filters, and radial basis function networks can all be viewed as
forms of Gaussian process models. Reviews of Gaussian processes from a machine
learning perspective can be found in MacKay (1998), Williams (1999), and MacKay
(2003), and a comparison of Gaussian process models with alternative approaches is
given in Rasmussen (1996). See also Rasmussen and Williams (2006) for a recent
textbook on Gaussian processes.

6.4.1 Linear regression revisited
In order to motivate the Gaussian process viewpoint, let us return to the linear

regression example and re-derive the predictive distribution by working in terms
of distributions over functions y(x,w). This will provide a specific example of a
Gaussian process.

Consider a model defined in terms of a linear combination of M fixed basis
functions given by the elements of the vector φ(x) so that

y(x) = wTφ(x) (6.49)

where x is the input vector and w is the M -dimensional weight vector. Now consider
a prior distribution over w given by an isotropic Gaussian of the form

p(w) = N (w|0, α−1I) (6.50)

governed by the hyperparameter α, which represents the precision (inverse variance)
of the distribution. For any given value of w, the definition (6.49) defines a partic-
ular function of x. The probability distribution over w defined by (6.50) therefore
induces a probability distribution over functions y(x). In practice, we wish to eval-
uate this function at specific values of x, for example at the training data points
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x1, . . . ,xN . We are therefore interested in the joint distribution of the function val-
ues y(x1), . . . , y(xN ), which we denote by the vector y with elements yn = y(xn)
for n = 1, . . . , N . From (6.49), this vector is given by

y = Φw (6.51)

where Φ is the design matrix with elements Φnk = φk(xn). We can find the proba-
bility distribution of y as follows. First of all we note that y is a linear combination of
Gaussian distributed variables given by the elements of w and hence is itself Gaus-
sian. We therefore need only to find its mean and covariance, which are given fromExercise 2.31
(6.50) by

E[y] = ΦE[w] = 0 (6.52)

cov[y] = E
[
yyT

]
= ΦE

[
wwT

]
ΦT =

1
α
ΦΦT = K (6.53)

where K is the Gram matrix with elements

Knm = k(xn,xm) =
1
α

φ(xn)Tφ(xm) (6.54)

and k(x,x′) is the kernel function.
This model provides us with a particular example of a Gaussian process. In gen-

eral, a Gaussian process is defined as a probability distribution over functions y(x)
such that the set of values of y(x) evaluated at an arbitrary set of points x1, . . . ,xN

jointly have a Gaussian distribution. In cases where the input vector x is two di-
mensional, this may also be known as a Gaussian random field. More generally, a
stochastic process y(x) is specified by giving the joint probability distribution for
any finite set of values y(x1), . . . , y(xN ) in a consistent manner.

A key point about Gaussian stochastic processes is that the joint distribution
over N variables y1, . . . , yN is specified completely by the second-order statistics,
namely the mean and the covariance. In most applications, we will not have any
prior knowledge about the mean of y(x) and so by symmetry we take it to be zero.
This is equivalent to choosing the mean of the prior over weight values p(w|α) to
be zero in the basis function viewpoint. The specification of the Gaussian process is
then completed by giving the covariance of y(x) evaluated at any two values of x,
which is given by the kernel function

E [y(xn)y(xm)] = k(xn,xm). (6.55)

For the specific case of a Gaussian process defined by the linear regression model
(6.49) with a weight prior (6.50), the kernel function is given by (6.54).

We can also define the kernel function directly, rather than indirectly through a
choice of basis function. Figure 6.4 shows samples of functions drawn from Gaus-
sian processes for two different choices of kernel function. The first of these is a
‘Gaussian’ kernel of the form (6.23), and the second is the exponential kernel given
by

k(x, x′) = exp (−θ |x − x′|) (6.56)

which corresponds to the Ornstein-Uhlenbeck process originally introduced by Uh-
lenbeck and Ornstein (1930) to describe Brownian motion.
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Figure 6.4 Samples from Gaus-
sian processes for a ‘Gaussian’ ker-
nel (left) and an exponential kernel
(right).
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6.4.2 Gaussian processes for regression
In order to apply Gaussian process models to the problem of regression, we need

to take account of the noise on the observed target values, which are given by

tn = yn + εn (6.57)

where yn = y(xn), and εn is a random noise variable whose value is chosen inde-
pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β−1) (6.58)

where β is a hyperparameter representing the precision of the noise. Because the
noise is independent for each data point, the joint distribution of the target values
t = (t1, . . . , tN )T conditioned on the values of y = (y1, . . . , yN )T is given by an
isotropic Gaussian of the form

p(t|y) = N (t|y, β−1IN ) (6.59)

where IN denotes the N ×N unit matrix. From the definition of a Gaussian process,
the marginal distribution p(y) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrix K so that

p(y) = N (y|0,K). (6.60)

The kernel function that determines K is typically chosen to express the property
that, for points xn and xm that are similar, the corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.

In order to find the marginal distribution p(t), conditioned on the input values
x1, . . . ,xN , we need to integrate over y. This can be done by making use of the
results from Section 2.3.3 for the linear-Gaussian model. Using (2.115), we see that
the marginal distribution of t is given by

p(t) =
∫

p(t|y)p(y) dy = N (t|0,C) (6.61)
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where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + β−1δnm. (6.62)

This result reflects the fact that the two Gaussian sources of randomness, namely
that associated with y(x) and that associated with ε, are independent and so their
covariances simply add.

One widely used kernel function for Gaussian process regression is given by the
exponential of a quadratic form, with the addition of constant and linear terms to
give

k(xn,xm) = θ0 exp
{
−θ1

2
‖xn − xm‖2

}
+ θ2 + θ3xT

nxm. (6.63)

Note that the term involving θ3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values
of the parameters θ0, . . . , θ3 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined
by (6.61).

So far, we have used the Gaussian process viewpoint to build a model of the
joint distribution over sets of data points. Our goal in regression, however, is to
make predictions of the target variables for new inputs, given a set of training data.
Let us suppose that tN = (t1, . . . , tN )T, corresponding to input values x1, . . . ,xN ,
comprise the observed training set, and our goal is to predict the target variable tN+1

for a new input vector xN+1. This requires that we evaluate the predictive distri-
bution p(tN+1|tN ). Note that this distribution is conditioned also on the variables
x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these
conditioning variables explicitly.

To find the conditional distribution p(tN+1|t), we begin by writing down the
joint distribution p(tN+1), where tN+1 denotes the vector (t1, . . . , tN , tN+1)T. We
then apply the results from Section 2.3.1 to obtain the required conditional distribu-
tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,CN+1) (6.64)

where CN+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
the covariance matrix as follows

CN+1 =
(

CN k
kT c

)
(6.65)

where CN is the N ×N covariance matrix with elements given by (6.62) for n, m =
1, . . . , N , the vector k has elements k(xn,xN+1) for n = 1, . . . , N , and the scalar
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Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above
each plot denotes (θ0, θ1, θ2, θ3).

c = k(xN+1,xN+1)+β−1. Using the results (2.81) and (2.82), we see that the con-
ditional distribution p(tN+1|t) is a Gaussian distribution with mean and covariance
given by

m(xN+1) = kTC−1
N t (6.66)

σ2(xN+1) = c − kTC−1
N k. (6.67)

These are the key results that define Gaussian process regression. Because the vector
k is a function of the test point input value xN+1, we see that the predictive distribu-
tion is a Gaussian whose mean and variance both depend on xN+1. An example of
Gaussian process regression is shown in Figure 6.8.

The only restriction on the kernel function is that the covariance matrix given by
(6.62) must be positive definite. If λi is an eigenvalue of K, then the corresponding
eigenvalue of C will be λi + β−1. It is therefore sufficient that the kernel matrix
k(xn,xm) be positive semidefinite for any pair of points xn and xm, so that λi � 0,
because any eigenvalue λi that is zero will still give rise to a positive eigenvalue
for C because β > 0. This is the same restriction on the kernel function discussed
earlier, and so we can again exploit all of the techniques in Section 6.2 to construct
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Figure 6.6 Illustration of the sampling of data
points {tn} from a Gaussian process.
The blue curve shows a sample func-
tion from the Gaussian process prior
over functions, and the red points
show the values of yn obtained by
evaluating the function at a set of in-
put values {xn}. The correspond-
ing values of {tn}, shown in green,
are obtained by adding independent
Gaussian noise to each of the {yn}.
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suitable kernels.
Note that the mean (6.66) of the predictive distribution can be written, as a func-

tion of xN+1, in the form

m(xN+1) =
N∑

n=1

ank(xn,xN+1) (6.68)

where an is the nth component of C−1
N t. Thus, if the kernel function k(xn,xm)

depends only on the distance ‖xn − xm‖, then we obtain an expansion in radial
basis functions.

The results (6.66) and (6.67) define the predictive distribution for Gaussian pro-
cess regression with an arbitrary kernel function k(xn,xm). In the particular case in
which the kernel function k(x,x′) is defined in terms of a finite set of basis functions,
we can derive the results obtained previously in Section 3.3.2 for linear regression
starting from the Gaussian process viewpoint.Exercise 6.21

For such models, we can therefore obtain the predictive distribution either by
taking a parameter space viewpoint and using the linear regression result or by taking
a function space viewpoint and using the Gaussian process result.

The central computational operation in using Gaussian processes will involve
the inversion of a matrix of size N ×N , for which standard methods require O(N3)
computations. By contrast, in the basis function model we have to invert a matrix
SN of size M × M , which has O(M3) computational complexity. Note that for
both viewpoints, the matrix inversion must be performed once for the given training
set. For each new test point, both methods require a vector-matrix multiply, which
has cost O(N2) in the Gaussian process case and O(M2) for the linear basis func-
tion model. If the number M of basis functions is smaller than the number N of
data points, it will be computationally more efficient to work in the basis function
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Figure 6.7 Illustration of the mechanism of
Gaussian process regression for
the case of one training point and
one test point, in which the red el-
lipses show contours of the joint dis-
tribution p(t1, t2). Here t1 is the
training data point, and condition-
ing on the value of t1, correspond-
ing to the vertical blue line, we ob-
tain p(t2|t1) shown as a function of
t2 by the green curve. t1

t2

m(x2)
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framework. However, an advantage of a Gaussian processes viewpoint is that we
can consider covariance functions that can only be expressed in terms of an infinite
number of basis functions.

For large training data sets, however, the direct application of Gaussian process
methods can become infeasible, and so a range of approximation schemes have been
developed that have better scaling with training set size than the exact approach
(Gibbs, 1997; Tresp, 2001; Smola and Bartlett, 2001; Williams and Seeger, 2001;
Csató and Opper, 2002; Seeger et al., 2003). Practical issues in the application of
Gaussian processes are discussed in Bishop and Nabney (2008).

We have introduced Gaussian process regression for the case of a single tar-
get variable. The extension of this formalism to multiple target variables, known
as co-kriging (Cressie, 1993), is straightforward. Various other extensions of Gaus-Exercise 6.23

Figure 6.8 Illustration of Gaussian process re-
gression applied to the sinusoidal
data set in Figure A.6 in which the
three right-most data points have
been omitted. The green curve
shows the sinusoidal function from
which the data points, shown in
blue, are obtained by sampling and
addition of Gaussian noise. The
red line shows the mean of the
Gaussian process predictive distri-
bution, and the shaded region cor-
responds to plus and minus two
standard deviations. Notice how
the uncertainty increases in the re-
gion to the right of the data points.
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sian process regression have also been considered, for purposes such as modelling
the distribution over low-dimensional manifolds for unsupervised learning (Bishop
et al., 1998a) and the solution of stochastic differential equations (Graepel, 2003).

6.4.3 Learning the hyperparameters
The predictions of a Gaussian process model will depend, in part, on the choice

of covariance function. In practice, rather than fixing the covariance function, we
may prefer to use a parametric family of functions and then infer the parameter
values from the data. These parameters govern such things as the length scale of the
correlations and the precision of the noise and correspond to the hyperparameters in
a standard parametric model.

Techniques for learning the hyperparameters are based on the evaluation of the
likelihood function p(t|θ) where θ denotes the hyperparameters of the Gaussian pro-
cess model. The simplest approach is to make a point estimate of θ by maximizing
the log likelihood function. Because θ represents a set of hyperparameters for the
regression problem, this can be viewed as analogous to the type 2 maximum like-
lihood procedure for linear regression models. Maximization of the log likelihoodSection 3.5
can be done using efficient gradient-based optimization algorithms such as conjugate
gradients (Fletcher, 1987; Nocedal and Wright, 1999; Bishop and Nabney, 2008).

The log likelihood function for a Gaussian process regression model is easily
evaluated using the standard form for a multivariate Gaussian distribution, giving

ln p(t|θ) = −1
2

ln |CN | − 1
2

tTC−1
N t − N

2
ln(2π). (6.69)

For nonlinear optimization, we also need the gradient of the log likelihood func-
tion with respect to the parameter vector θ. We shall assume that evaluation of the
derivatives of CN is straightforward, as would be the case for the covariance func-
tions considered in this chapter. Making use of the result (C.21) for the derivative of
C−1

N , together with the result (C.22) for the derivative of ln |CN |, we obtain

∂

∂θi
ln p(t|θ) = −1

2
Tr

(
C−1

N

∂CN

∂θi

)
+

1
2

tTC−1
N

∂CN

∂θi
C−1

N t. (6.70)

Because ln p(t|θ) will in general be a nonconvex function, it can have multiple max-
ima.

It is straightforward to introduce a prior over θ and to maximize the log poste-
rior using gradient-based methods. In a fully Bayesian treatment, we need to evaluate
marginals over θ weighted by the product of the prior p(θ) and the likelihood func-
tion p(t|θ). In general, however, exact marginalization will be intractable, and we
must resort to approximations.

The Gaussian process regression model gives a predictive distribution whose
mean and variance are functions of the input vector x. However, we have assumed
that the contribution to the predictive variance arising from the additive noise, gov-
erned by the parameter β, is a constant. For some problems, known as heteroscedas-
tic, the noise variance itself will also depend on x. To model this, we can extend the
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Figure 6.9 Samples from the ARD
prior for Gaussian processes, in
which the kernel function is given by
(6.71). The left plot corresponds to
η1 = η2 = 1, and the right plot cor-
responds to η1 = 1, η2 = 0.01.

Gaussian process framework by introducing a second Gaussian process to represent
the dependence of β on the input x (Goldberg et al., 1998). Because β is a variance,
and hence nonnegative, we use the Gaussian process to model ln β(x).

6.4.4 Automatic relevance determination
In the previous section, we saw how maximum likelihood could be used to de-

termine a value for the correlation length-scale parameter in a Gaussian process.
This technique can usefully be extended by incorporating a separate parameter for
each input variable (Rasmussen and Williams, 2006). The result, as we shall see, is
that the optimization of these parameters by maximum likelihood allows the relative
importance of different inputs to be inferred from the data. This represents an exam-
ple in the Gaussian process context of automatic relevance determination, or ARD,
which was originally formulated in the framework of neural networks (MacKay,
1994; Neal, 1996). The mechanism by which appropriate inputs are preferred is
discussed in Section 7.2.2.

Consider a Gaussian process with a two-dimensional input space x = (x1, x2),
having a kernel function of the form

k(x,x′) = θ0 exp

{
−1

2

2∑
i=1

ηi(xi − x′
i)

2

}
. (6.71)

Samples from the resulting prior over functions y(x) are shown for two different
settings of the precision parameters ηi in Figure 6.9. We see that, as a particu-
lar parameter ηi becomes small, the function becomes relatively insensitive to the
corresponding input variable xi. By adapting these parameters to a data set using
maximum likelihood, it becomes possible to detect input variables that have little
effect on the predictive distribution, because the corresponding values of ηi will be
small. This can be useful in practice because it allows such inputs to be discarded.
ARD is illustrated using a simple synthetic data set having three inputs x1, x2 and x3

(Nabney, 2002) in Figure 6.10. The target variable t, is generated by sampling 100
values of x1 from a Gaussian, evaluating the function sin(2πx1), and then adding
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Figure 6.10 Illustration of automatic rele-
vance determination in a Gaus-
sian process for a synthetic prob-
lem having three inputs x1, x2,
and x3, for which the curves
show the corresponding values of
the hyperparameters η1 (red), η2

(green), and η3 (blue) as a func-
tion of the number of iterations
when optimizing the marginal
likelihood. Details are given in
the text. Note the logarithmic
scale on the vertical axis.
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Gaussian noise. Values of x2 are given by copying the corresponding values of x1

and adding noise, and values of x3 are sampled from an independent Gaussian dis-
tribution. Thus x1 is a good predictor of t, x2 is a more noisy predictor of t, and x3

has only chance correlations with t. The marginal likelihood for a Gaussian process
with ARD parameters η1, η2, η3 is optimized using the scaled conjugate gradients
algorithm. We see from Figure 6.10 that η1 converges to a relatively large value, η2

converges to a much smaller value, and η3 becomes very small indicating that x3 is
irrelevant for predicting t.

The ARD framework is easily incorporated into the exponential-quadratic kernel
(6.63) to give the following form of kernel function, which has been found useful for
applications of Gaussian processes to a range of regression problems

k(xn,xm) = θ0 exp

{
−1

2

D∑
i=1

ηi(xni − xmi)2
}

+ θ2 + θ3

D∑
i=1

xnixmi (6.72)

where D is the dimensionality of the input space.

6.4.5 Gaussian processes for classification
In a probabilistic approach to classification, our goal is to model the posterior

probabilities of the target variable for a new input vector, given a set of training
data. These probabilities must lie in the interval (0, 1), whereas a Gaussian process
model makes predictions that lie on the entire real axis. However, we can easily
adapt Gaussian processes to classification problems by transforming the output of
the Gaussian process using an appropriate nonlinear activation function.

Consider first the two-class problem with a target variable t ∈ {0, 1}. If we de-
fine a Gaussian process over a function a(x) and then transform the function using
a logistic sigmoid y = σ(a), given by (4.59), then we will obtain a non-Gaussian
stochastic process over functions y(x) where y ∈ (0, 1). This is illustrated for the
case of a one-dimensional input space in Figure 6.11 in which the probability distri-
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Figure 6.11 The left plot shows a sample from a Gaussian process prior over functions a(x), and the right plot
shows the result of transforming this sample using a logistic sigmoid function.

bution over the target variable t is then given by the Bernoulli distribution

p(t|a) = σ(a)t(1 − σ(a))1−t. (6.73)

As usual, we denote the training set inputs by x1, . . . ,xN with corresponding
observed target variables t = (t1, . . . , tN )T. We also consider a single test point
xN+1 with target value tN+1. Our goal is to determine the predictive distribution
p(tN+1|t), where we have left the conditioning on the input variables implicit. To do
this we introduce a Gaussian process prior over the vector aN+1, which has compo-
nents a(x1), . . . , a(xN+1). This in turn defines a non-Gaussian process over tN+1,
and by conditioning on the training data tN we obtain the required predictive distri-
bution. The Gaussian process prior for aN+1 takes the form

p(aN+1) = N (aN+1|0,CN+1). (6.74)

Unlike the regression case, the covariance matrix no longer includes a noise term
because we assume that all of the training data points are correctly labelled. How-
ever, for numerical reasons it is convenient to introduce a noise-like term governed
by a parameter ν that ensures that the covariance matrix is positive definite. Thus
the covariance matrix CN+1 has elements given by

C(xn,xm) = k(xn,xm) + νδnm (6.75)

where k(xn,xm) is any positive semidefinite kernel function of the kind considered
in Section 6.2, and the value of ν is typically fixed in advance. We shall assume that
the kernel function k(x,x′) is governed by a vector θ of parameters, and we shall
later discuss how θ may be learned from the training data.

For two-class problems, it is sufficient to predict p(tN+1 = 1|tN ) because the
value of p(tN+1 = 0|tN ) is then given by 1 − p(tN+1 = 1|tN ). The required
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predictive distribution is given by

p(tN+1 = 1|tN ) =
∫

p(tN+1 = 1|aN+1)p(aN+1|tN ) daN+1 (6.76)

where p(tN+1 = 1|aN+1) = σ(aN+1).
This integral is analytically intractable, and so may be approximated using sam-

pling methods (Neal, 1997). Alternatively, we can consider techniques based on
an analytical approximation. In Section 4.5.2, we derived the approximate formula
(4.153) for the convolution of a logistic sigmoid with a Gaussian distribution. We
can use this result to evaluate the integral in (6.76) provided we have a Gaussian
approximation to the posterior distribution p(aN+1|tN ). The usual justification for a
Gaussian approximation to a posterior distribution is that the true posterior will tend
to a Gaussian as the number of data points increases as a consequence of the central
limit theorem. In the case of Gaussian processes, the number of variables grows withSection 2.3
the number of data points, and so this argument does not apply directly. However, if
we consider increasing the number of data points falling in a fixed region of x space,
then the corresponding uncertainty in the function a(x) will decrease, again leading
asymptotically to a Gaussian (Williams and Barber, 1998).

Three different approaches to obtaining a Gaussian approximation have been
considered. One technique is based on variational inference (Gibbs and MacKay,Section 10.1
2000) and makes use of the local variational bound (10.144) on the logistic sigmoid.
This allows the product of sigmoid functions to be approximated by a product of
Gaussians thereby allowing the marginalization over aN to be performed analyti-
cally. The approach also yields a lower bound on the likelihood function p(tN |θ).
The variational framework for Gaussian process classification can also be extended
to multiclass (K > 2) problems by using a Gaussian approximation to the softmax
function (Gibbs, 1997).

A second approach uses expectation propagation (Opper and Winther, 2000b;Section 10.7
Minka, 2001b; Seeger, 2003). Because the true posterior distribution is unimodal, as
we shall see shortly, the expectation propagation approach can give good results.

6.4.6 Laplace approximation
The third approach to Gaussian process classification is based on the Laplace

approximation, which we now consider in detail. In order to evaluate the predictiveSection 4.4
distribution (6.76), we seek a Gaussian approximation to the posterior distribution
over aN+1, which, using Bayes’ theorem, is given by

p(aN+1|tN ) =
∫

p(aN+1,aN |tN ) daN

=
1

p(tN )

∫
p(aN+1,aN )p(tN |aN+1,aN ) daN

=
1

p(tN )

∫
p(aN+1|aN )p(aN )p(tN |aN ) daN

=
∫

p(aN+1|aN )p(aN |tN ) daN (6.77)
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where we have used p(tN |aN+1,aN ) = p(tN |aN ). The conditional distribution
p(aN+1|aN ) is obtained by invoking the results (6.66) and (6.67) for Gaussian pro-
cess regression, to give

p(aN+1|aN ) = N (aN+1|kTC−1
N aN , c − kTC−1

N k). (6.78)

We can therefore evaluate the integral in (6.77) by finding a Laplace approximation
for the posterior distribution p(aN |tN ), and then using the standard result for the
convolution of two Gaussian distributions.

The prior p(aN ) is given by a zero-mean Gaussian process with covariance ma-
trix CN , and the data term (assuming independence of the data points) is given by

p(tN |aN ) =
N∏

n=1

σ(an)tn(1 − σ(an))1−tn =
N∏

n=1

eantnσ(−an). (6.79)

We then obtain the Laplace approximation by Taylor expanding the logarithm of
p(aN |tN ), which up to an additive normalization constant is given by the quantity

Ψ(aN ) = ln p(aN ) + ln p(tN |aN )

= −1
2
aT

NC−1
N aN − N

2
ln(2π) − 1

2
ln |CN | + tTNaN

−
N∑

n=1

ln(1 + ean) + const. (6.80)

First we need to find the mode of the posterior distribution, and this requires that we
evaluate the gradient of Ψ(aN ), which is given by

∇Ψ(aN ) = tN − σN − C−1
N aN (6.81)

where σN is a vector with elements σ(an). We cannot simply find the mode by
setting this gradient to zero, because σN depends nonlinearly on aN , and so we
resort to an iterative scheme based on the Newton-Raphson method, which gives rise
to an iterative reweighted least squares (IRLS) algorithm. This requires the secondSection 4.3.3
derivatives of Ψ(aN ), which we also require for the Laplace approximation anyway,
and which are given by

∇∇Ψ(aN ) = −WN − C−1
N (6.82)

where WN is a diagonal matrix with elements σ(an)(1−σ(an)), and we have used
the result (4.88) for the derivative of the logistic sigmoid function. Note that these
diagonal elements lie in the range (0, 1/4), and hence WN is a positive definite
matrix. Because CN (and hence its inverse) is positive definite by construction, and
because the sum of two positive definite matrices is also positive definite, we seeExercise 6.24
that the Hessian matrix A = −∇∇Ψ(aN ) is positive definite and so the posterior
distribution p(aN |tN ) is log convex and therefore has a single mode that is the global
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maximum. The posterior distribution is not Gaussian, however, because the Hessian
is a function of aN .

Using the Newton-Raphson formula (4.92), the iterative update equation for aN

is given byExercise 6.25

anew
N = CN (I + WNCN )−1 {tN − σN + WNaN} . (6.83)

These equations are iterated until they converge to the mode which we denote by
a�

N . At the mode, the gradient ∇Ψ(aN ) will vanish, and hence a�
N will satisfy

a�
N = CN (tN − σN ). (6.84)

Once we have found the mode a�
N of the posterior, we can evaluate the Hessian

matrix given by
H = −∇∇Ψ(aN ) = WN + C−1

N (6.85)

where the elements of WN are evaluated using a�
N . This defines our Gaussian ap-

proximation to the posterior distribution p(aN |tN ) given by

q(aN ) = N (aN |a�
N ,H−1). (6.86)

We can now combine this with (6.78) and hence evaluate the integral (6.77). Because
this corresponds to a linear-Gaussian model, we can use the general result (2.115) to
giveExercise 6.26

E[aN+1|tN ] = kT(tN − σN ) (6.87)

var[aN+1|tN ] = c − kT(W−1
N + CN )−1k. (6.88)

Now that we have a Gaussian distribution for p(aN+1|tN ), we can approximate
the integral (6.76) using the result (4.153). As with the Bayesian logistic regression
model of Section 4.5, if we are only interested in the decision boundary correspond-
ing to p(tN+1|tN ) = 0.5, then we need only consider the mean and we can ignore
the effect of the variance.

We also need to determine the parameters θ of the covariance function. One
approach is to maximize the likelihood function given by p(tN |θ) for which we need
expressions for the log likelihood and its gradient. If desired, suitable regularization
terms can also be added, leading to a penalized maximum likelihood solution. The
likelihood function is defined by

p(tN |θ) =
∫

p(tN |aN )p(aN |θ) daN . (6.89)

This integral is analytically intractable, so again we make use of the Laplace approx-
imation. Using the result (4.135), we obtain the following approximation for the log
of the likelihood function

ln p(tN |θ) = Ψ(a�
N ) − 1

2
ln |WN + C−1

N | + N

2
ln(2π) (6.90)
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where Ψ(a�
N ) = ln p(a�

N |θ) + ln p(tN |a�
N ). We also need to evaluate the gradient

of ln p(tN |θ) with respect to the parameter vector θ. Note that changes in θ will
cause changes in a�

N , leading to additional terms in the gradient. Thus, when we
differentiate (6.90) with respect to θ, we obtain two sets of terms, the first arising
from the dependence of the covariance matrix CN on θ, and the rest arising from
dependence of a�

N on θ.
The terms arising from the explicit dependence on θ can be found by using

(6.80) together with the results (C.21) and (C.22), and are given by

∂ ln p(tN |θ)
∂θj

=
1
2
a�T

N C−1
N

∂CN

∂θj
C−1

N a�
N

−1
2

Tr

[
(I + CNWN )−1WN

∂CN

∂θj

]
. (6.91)

To compute the terms arising from the dependence of a�
N on θ, we note that

the Laplace approximation has been constructed such that Ψ(aN ) has zero gradient
at aN = a�

N , and so Ψ(a�
N ) gives no contribution to the gradient as a result of its

dependence on a�
N . This leaves the following contribution to the derivative with

respect to a component θj of θ

−1
2

N∑
n=1

∂ ln |WN + C−1
N |

∂a�
n

∂a�
n

∂θj

= −1
2

N∑
n=1

[
(I + CNWN )−1CN

]
nn

σ�
n(1 − σ�

n)(1 − 2σ�
n)

∂a�
n

∂θj
(6.92)

where σ�
n = σ(a�

n), and again we have used the result (C.22) together with the
definition of WN . We can evaluate the derivative of a�

N with respect to θj by differ-
entiating the relation (6.84) with respect to θj to give

∂a�
n

∂θj
=

∂CN

∂θj
(tN − σN ) − CNWN

∂a�
n

∂θj
. (6.93)

Rearranging then gives

∂a�
n

∂θj
= (I + WNCN )−1 ∂CN

∂θj
(tN − σN ). (6.94)

Combining (6.91), (6.92), and (6.94), we can evaluate the gradient of the log
likelihood function, which can be used with standard nonlinear optimization algo-
rithms in order to determine a value for θ.

We can illustrate the application of the Laplace approximation for Gaussian pro-
cesses using the synthetic two-class data set shown in Figure 6.12. Extension of theAppendix A
Laplace approximation to Gaussian processes involving K > 2 classes, using the
softmax activation function, is straightforward (Williams and Barber, 1998).
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Figure 6.12 Illustration of the use of a Gaussian process for classification, showing the data on the left together
with the optimal decision boundary from the true distribution in green, and the decision boundary from the
Gaussian process classifier in black. On the right is the predicted posterior probability for the blue and red
classes together with the Gaussian process decision boundary.

6.4.7 Connection to neural networks
We have seen that the range of functions which can be represented by a neural

network is governed by the number M of hidden units, and that, for sufficiently
large M , a two-layer network can approximate any given function with arbitrary
accuracy. In the framework of maximum likelihood, the number of hidden units
needs to be limited (to a level dependent on the size of the training set) in order
to avoid over-fitting. However, from a Bayesian perspective it makes little sense to
limit the number of parameters in the network according to the size of the training
set.

In a Bayesian neural network, the prior distribution over the parameter vector
w, in conjunction with the network function f(x,w), produces a prior distribution
over functions from y(x) where y is the vector of network outputs. Neal (1996)
has shown that, for a broad class of prior distributions over w, the distribution of
functions generated by a neural network will tend to a Gaussian process in the limit
M → ∞. It should be noted, however, that in this limit the output variables of the
neural network become independent. One of the great merits of neural networks is
that the outputs share the hidden units and so they can ‘borrow statistical strength’
from each other, that is, the weights associated with each hidden unit are influenced
by all of the output variables not just by one of them. This property is therefore lost
in the Gaussian process limit.

We have seen that a Gaussian process is determined by its covariance (kernel)
function. Williams (1998) has given explicit forms for the covariance in the case of
two specific choices for the hidden unit activation function (probit and Gaussian).
These kernel functions k(x,x′) are nonstationary, i.e. they cannot be expressed as
a function of the difference x − x′, as a consequence of the Gaussian weight prior
being centred on zero which breaks translation invariance in weight space.
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By working directly with the covariance function we have implicitly marginal-
ized over the distribution of weights. If the weight prior is governed by hyperpa-
rameters, then their values will determine the length scales of the distribution over
functions, as can be understood by studying the examples in Figure 5.11 for the case
of a finite number of hidden units. Note that we cannot marginalize out the hyperpa-
rameters analytically, and must instead resort to techniques of the kind discussed in
Section 6.4.

Exercises
6.1 (� �) www Consider the dual formulation of the least squares linear regression

problem given in Section 6.1. Show that the solution for the components an of
the vector a can be expressed as a linear combination of the elements of the vector
φ(xn). Denoting these coefficients by the vector w, show that the dual of the dual
formulation is given by the original representation in terms of the parameter vector
w.

6.2 (� �) In this exercise, we develop a dual formulation of the perceptron learning
algorithm. Using the perceptron learning rule (4.55), show that the learned weight
vector w can be written as a linear combination of the vectors tnφ(xn) where tn ∈
{−1, +1}. Denote the coefficients of this linear combination by αn and derive a
formulation of the perceptron learning algorithm, and the predictive function for the
perceptron, in terms of the αn. Show that the feature vector φ(x) enters only in the
form of the kernel function k(x,x′) = φ(x)Tφ(x′).

6.3 (�) The nearest-neighbour classifier (Section 2.5.2) assigns a new input vector x
to the same class as that of the nearest input vector xn from the training set, where
in the simplest case, the distance is defined by the Euclidean metric ‖x − xn‖2. By
expressing this rule in terms of scalar products and then making use of kernel sub-
stitution, formulate the nearest-neighbour classifier for a general nonlinear kernel.

6.4 (�) In Appendix C, we give an example of a matrix that has positive elements but
that has a negative eigenvalue and hence that is not positive definite. Find an example
of the converse property, namely a 2 × 2 matrix with positive eigenvalues yet that
has at least one negative element.

6.5 (�) www Verify the results (6.13) and (6.14) for constructing valid kernels.

6.6 (�) Verify the results (6.15) and (6.16) for constructing valid kernels.

6.7 (�) www Verify the results (6.17) and (6.18) for constructing valid kernels.

6.8 (�) Verify the results (6.19) and (6.20) for constructing valid kernels.

6.9 (�) Verify the results (6.21) and (6.22) for constructing valid kernels.

6.10 (�) Show that an excellent choice of kernel for learning a function f(x) is given
by k(x,x′) = f(x)f(x′) by showing that a linear learning machine based on this
kernel will always find a solution proportional to f(x).
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6.11 (�) By making use of the expansion (6.25), and then expanding the middle factor
as a power series, show that the Gaussian kernel (6.23) can be expressed as the inner
product of an infinite-dimensional feature vector.

6.12 (� �) www Consider the space of all possible subsets A of a given fixed set D.
Show that the kernel function (6.27) corresponds to an inner product in a feature
space of dimensionality 2|D| defined by the mapping φ(A) where A is a subset of D
and the element φU (A), indexed by the subset U , is given by

φU (A) =
{

1, if U ⊆ A;
0, otherwise. (6.95)

Here U ⊆ A denotes that U is either a subset of A or is equal to A.

6.13 (�) Show that the Fisher kernel, defined by (6.33), remains invariant if we make
a nonlinear transformation of the parameter vector θ → ψ(θ), where the function
ψ(·) is invertible and differentiable.

6.14 (�) www Write down the form of the Fisher kernel, defined by (6.33), for the
case of a distribution p(x|µ) = N (x|µ,S) that is Gaussian with mean µ and fixed
covariance S.

6.15 (�) By considering the determinant of a 2 × 2 Gram matrix, show that a positive-
definite kernel function k(x, x′) satisfies the Cauchy-Schwartz inequality

k(x1, x2)2 � k(x1, x1)k(x2, x2). (6.96)

6.16 (� �) Consider a parametric model governed by the parameter vector w together
with a data set of input values x1, . . . ,xN and a nonlinear feature mapping φ(x).
Suppose that the dependence of the error function on w takes the form

J(w) = f(wTφ(x1), . . . ,wTφ(xN )) + g(wTw) (6.97)

where g(·) is a monotonically increasing function. By writing w in the form

w =
N∑

n=1

αnφ(xn) + w⊥ (6.98)

show that the value of w that minimizes J(w) takes the form of a linear combination
of the basis functions φ(xn) for n = 1, . . . , N .

6.17 (� �) www Consider the sum-of-squares error function (6.39) for data having
noisy inputs, where ν(ξ) is the distribution of the noise. Use the calculus of vari-
ations to minimize this error function with respect to the function y(x), and hence
show that the optimal solution is given by an expansion of the form (6.40) in which
the basis functions are given by (6.41).
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6.18 (�) Consider a Nadaraya-Watson model with one input variable x and one target
variable t having Gaussian components with isotropic covariances, so that the co-
variance matrix is given by σ2I where I is the unit matrix. Write down expressions
for the conditional density p(t|x) and for the conditional mean E[t|x] and variance
var[t|x], in terms of the kernel function k(x, xn).

6.19 (� �) Another viewpoint on kernel regression comes from a consideration of re-
gression problems in which the input variables as well as the target variables are
corrupted with additive noise. Suppose each target value tn is generated as usual
by taking a function y(zn) evaluated at a point zn, and adding Gaussian noise. The
value of zn is not directly observed, however, but only a noise corrupted version
xn = zn + ξn where the random variable ξ is governed by some distribution g(ξ).
Consider a set of observations {xn, tn}, where n = 1, . . . , N , together with a cor-
responding sum-of-squares error function defined by averaging over the distribution
of input noise to give

E =
1
2

N∑
n=1

∫
{y(xn − ξn) − tn}2

g(ξn) dξn. (6.99)

By minimizing E with respect to the function y(z) using the calculus of variations
(Appendix D), show that optimal solution for y(x) is given by a Nadaraya-Watson
kernel regression solution of the form (6.45) with a kernel of the form (6.46).

6.20 (� �) www Verify the results (6.66) and (6.67).

6.21 (� �) www Consider a Gaussian process regression model in which the kernel
function is defined in terms of a fixed set of nonlinear basis functions. Show that the
predictive distribution is identical to the result (3.58) obtained in Section 3.3.2 for the
Bayesian linear regression model. To do this, note that both models have Gaussian
predictive distributions, and so it is only necessary to show that the conditional mean
and variance are the same. For the mean, make use of the matrix identity (C.6), and
for the variance, make use of the matrix identity (C.7).

6.22 (� �) Consider a regression problem with N training set input vectors x1, . . . ,xN

and L test set input vectors xN+1, . . . ,xN+L, and suppose we define a Gaussian
process prior over functions t(x). Derive an expression for the joint predictive dis-
tribution for t(xN+1), . . . , t(xN+L), given the values of t(x1), . . . , t(xN ). Show the
marginal of this distribution for one of the test observations tj where N + 1 � j �
N + L is given by the usual Gaussian process regression result (6.66) and (6.67).

6.23 (� �) www Consider a Gaussian process regression model in which the target
variable t has dimensionality D. Write down the conditional distribution of tN+1

for a test input vector xN+1, given a training set of input vectors x1, . . . ,xN+1 and
corresponding target observations t1, . . . , tN .

6.24 (�) Show that a diagonal matrix W whose elements satisfy 0 < Wii < 1 is positive
definite. Show that the sum of two positive definite matrices is itself positive definite.
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6.25 (�) www Using the Newton-Raphson formula (4.92), derive the iterative update
formula (6.83) for finding the mode a�

N of the posterior distribution in the Gaussian
process classification model.

6.26 (�) Using the result (2.115), derive the expressions (6.87) and (6.88) for the mean
and variance of the posterior distribution p(aN+1|tN ) in the Gaussian process clas-
sification model.

6.27 (� � �) Derive the result (6.90) for the log likelihood function in the Laplace approx-
imation framework for Gaussian process classification. Similarly, derive the results
(6.91), (6.92), and (6.94) for the terms in the gradient of the log likelihood.



7
Sparse Kernel

Machines

In the previous chapter, we explored a variety of learning algorithms based on non-
linear kernels. One of the significant limitations of many such algorithms is that
the kernel function k(xn,xm) must be evaluated for all possible pairs xn and xm

of training points, which can be computationally infeasible during training and can
lead to excessive computation times when making predictions for new data points.
In this chapter we shall look at kernel-based algorithms that have sparse solutions,
so that predictions for new inputs depend only on the kernel function evaluated at a
subset of the training data points.

We begin by looking in some detail at the support vector machine (SVM), which
became popular in some years ago for solving problems in classification, regression,
and novelty detection. An important property of support vector machines is that the
determination of the model parameters corresponds to a convex optimization prob-
lem, and so any local solution is also a global optimum. Because the discussion of
support vector machines makes extensive use of Lagrange multipliers, the reader is

325
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encouraged to review the key concepts covered in Appendix E. Additional infor-
mation on support vector machines can be found in Vapnik (1995), Burges (1998),
Cristianini and Shawe-Taylor (2000), Müller et al. (2001), Schölkopf and Smola
(2002), and Herbrich (2002).

The SVM is a decision machine and so does not provide posterior probabilities.
We have already discussed some of the benefits of determining probabilities in Sec-
tion 1.5.4. An alternative sparse kernel technique, known as the relevance vector
machine (RVM), is based on a Bayesian formulation and provides posterior proba-Section 7.2
bilistic outputs, as well as having typically much sparser solutions than the SVM.

7.1. Maximum Margin Classifiers

We begin our discussion of support vector machines by returning to the two-class
classification problem using linear models of the form

y(x) = wTφ(x) + b (7.1)

where φ(x) denotes a fixed feature-space transformation, and we have made the
bias parameter b explicit. Note that we shall shortly introduce a dual representation
expressed in terms of kernel functions, which avoids having to work explicitly in
feature space. The training data set comprises N input vectors x1, . . . ,xN , with
corresponding target values t1, . . . , tN where tn ∈ {−1, 1}, and new data points x
are classified according to the sign of y(x).

We shall assume for the moment that the training data set is linearly separable in
feature space, so that by definition there exists at least one choice of the parameters
w and b such that a function of the form (7.1) satisfies y(xn) > 0 for points having
tn = +1 and y(xn) < 0 for points having tn = −1, so that tny(xn) > 0 for all
training data points.

There may of course exist many such solutions that separate the classes exactly.
In Section 4.1.7, we described the perceptron algorithm that is guaranteed to find
a solution in a finite number of steps. The solution that it finds, however, will be
dependent on the (arbitrary) initial values chosen for w and b as well as on the
order in which the data points are presented. If there are multiple solutions all of
which classify the training data set exactly, then we should try to find the one that
will give the smallest generalization error. The support vector machine approaches
this problem through the concept of the margin, which is defined to be the smallest
distance between the decision boundary and any of the samples, as illustrated in
Figure 7.1.

In support vector machines the decision boundary is chosen to be the one for
which the margin is maximized. The maximum margin solution can be motivated us-
ing computational learning theory, also known as statistical learning theory. How-Section 7.1.5
ever, a simple insight into the origins of maximum margin has been given by Tong
and Koller (2000) who consider a framework for classification based on a hybrid of
generative and discriminative approaches. They first model the distribution over in-
put vectors x for each class using a Parzen density estimator with Gaussian kernels
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y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter σ2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit σ2 → 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as σ2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/‖w‖.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)
‖w‖ =

tn(wTφ(xn) + b)
‖w‖ . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

{
1

‖w‖ min
n

[
tn
(
wTφ(xn) + b

)]}
(7.3)

where we have taken the factor 1/‖w‖ outside the optimization over n because w
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does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/‖w‖,
is unchanged. We can use this freedom to set

tn
(
wTφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
wTφ(xn) + b

)
� 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ‖w‖−1, which is
equivalent to minimizing ‖w‖2, and so we have to solve the optimization problem

arg min
w,b

1
2
‖w‖2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2 in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ‖w‖ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an � 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w, b,a) =
1
2
‖w‖2 −

N∑
n=1

an

{
tn(wTφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w, b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)
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Eliminating w and b from L(w, b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an � 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.
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In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an � 0 (7.14)

tny(xn) − 1 � 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for
which an = 0 will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(∑
m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑
n=1

E∞(y(xn)tn − 1) + λ‖w‖2 (7.19)

where E∞(z) is a function that is zero if z � 0 and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the
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Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

form (6.23). Although the data set is not linearly separable in the two-dimensional
data space x, it is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function. Thus the training data points are perfectly separated
in the original data space.

This example also provides a geometrical insight into the origin of sparsity in
the SVM. The maximum margin hyperplane is defined by the location of the support
vectors. Other data points can be moved around freely (so long as they remain out-
side the margin region) without changing the decision boundary, and so the solution
will be independent of such data points.

7.1.1 Overlapping class distributions
So far, we have assumed that the training data points are linearly separable in the

feature space φ(x). The resulting support vector machine will give exact separation
of the training data in the original input space x, although the corresponding decision
boundary will be nonlinear. In practice, however, the class-conditional distributions
may overlap, in which case exact separation of the training data can lead to poor
generalization.

We therefore need a way to modify the support vector machine so as to allow
some of the training points to be misclassified. From (7.19) we see that in the case
of separable classes, we implicitly used an error function that gave infinite error
if a data point was misclassified and zero error if it was classified correctly, and
then optimized the model parameters to maximize the margin. We now modify this
approach so that data points are allowed to be on the ‘wrong side’ of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance. To do this, we introduce slack variables, ξn � 0 where
n = 1, . . . , N , with one slack variable for each training data point (Bennett, 1992;
Cortes and Vapnik, 1995). These are defined by ξn = 0 for data points that are on or
inside the correct margin boundary and ξn = |tn − y(xn)| for other points. Thus a
data point that is on the decision boundary y(xn) = 0 will have ξn = 1, and points
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Figure 7.3 Illustration of the slack variables ξn � 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) � 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn � 0. Data points for which
ξn = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < ξn � 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C

N∑
n=1

ξn +
1
2
‖w‖2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn � 0. The corresponding Lagrangian is given by

L(w, b,a) =
1
2
‖w‖2 +C

N∑
n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)
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where {an � 0} and {µn � 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an � 0 (7.23)

tny(xn) − 1 + ξn � 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)

µn � 0 (7.26)

ξn � 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w, b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑
n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑
n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w, b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an � 0 is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn � 0 implies
an � C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0 � an � C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive
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model (7.13). The remaining data points constitute the support vectors. These have
an > 0 and hence from (7.25) must satisfy

tny(xn) = 1 − ξn. (7.35)

If an < C, then (7.31) implies that µn > 0, which from (7.28) requires ξn = 0 and
hence such points lie on the margin. Points with an = C can lie inside the margin
and can either be correctly classified if ξn � 1 or misclassified if ξn > 1.

To determine the parameter b in (7.1), we note that those support vectors for
which 0 < an < C have ξn = 0 so that tny(xn) = 1 and hence will satisfy

tn

(∑
m∈S

amtmk(xn,xm) + b

)
= 1. (7.36)

Again, a numerically stable solution is obtained by averaging to give

b =
1

NM

∑
n∈M

(
tn −

∑
m∈S

amtmk(xn,xm)

)
(7.37)

where M denotes the set of indices of data points having 0 < an < C.
An alternative, equivalent formulation of the support vector machine, known as

the ν-SVM, has been proposed by Schölkopf et al. (2000). This involves maximizing

L̃(a) = −1
2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (7.38)

subject to the constraints

0 � an � 1/N (7.39)
N∑

n=1

antn = 0 (7.40)

N∑
n=1

an � ν. (7.41)

This approach has the advantage that the parameter ν, which replaces C, can be
interpreted as both an upper bound on the fraction of margin errors (points for which
ξn > 0 and hence which lie on the wrong side of the margin boundary and which may
or may not be misclassified) and a lower bound on the fraction of support vectors. An
example of the ν-SVM applied to a synthetic data set is shown in Figure 7.4. Here
Gaussian kernels of the form exp (−γ‖x − x′‖2) have been used, with γ = 0.45.

Although predictions for new inputs are made using only the support vectors,
the training phase (i.e., the determination of the parameters a and b) makes use of
the whole data set, and so it is important to have efficient algorithms for solving
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Figure 7.4 Illustration of the ν-SVM applied
to a nonseparable data set in two
dimensions. The support vectors
are indicated by circles.
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the quadratic programming problem. We first note that the objective function L̃(a)
given by (7.10) or (7.32) is quadratic and so any local optimum will also be a global
optimum provided the constraints define a convex region (which they do as a conse-
quence of being linear). Direct solution of the quadratic programming problem us-
ing traditional techniques is often infeasible due to the demanding computation and
memory requirements, and so more practical approaches need to be found. The tech-
nique of chunking (Vapnik, 1982) exploits the fact that the value of the Lagrangian
is unchanged if we remove the rows and columns of the kernel matrix corresponding
to Lagrange multipliers that have value zero. This allows the full quadratic pro-
gramming problem to be broken down into a series of smaller ones, whose goal is
eventually to identify all of the nonzero Lagrange multipliers and discard the others.
Chunking can be implemented using protected conjugate gradients (Burges, 1998).
Although chunking reduces the size of the matrix in the quadratic function from the
number of data points squared to approximately the number of nonzero Lagrange
multipliers squared, even this may be too big to fit in memory for large-scale appli-
cations. Decomposition methods (Osuna et al., 1996) also solve a series of smaller
quadratic programming problems but are designed so that each of these is of a fixed
size, and so the technique can be applied to arbitrarily large data sets. However, it
still involves numerical solution of quadratic programming subproblems and these
can be problematic and expensive. One of the most popular approaches to training
support vector machines is called sequential minimal optimization, or SMO (Platt,
1999). It takes the concept of chunking to the extreme limit and considers just two
Lagrange multipliers at a time. In this case, the subproblem can be solved analyti-
cally, thereby avoiding numerical quadratic programming altogether. Heuristics are
given for choosing the pair of Lagrange multipliers to be considered at each step.
In practice, SMO is found to have a scaling with the number of data points that is
somewhere between linear and quadratic depending on the particular application.

We have seen that kernel functions correspond to inner products in feature spaces
that can have high, or even infinite, dimensionality. By working directly in terms of
the kernel function, without introducing the feature space explicitly, it might there-
fore seem that support vector machines somehow manage to avoid the curse of di-
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mensionality. This is not the case, however, because there are constraints amongstSection 1.4
the feature values that restrict the effective dimensionality of feature space. To see
this consider a simple second-order polynomial kernel that we can expand in terms
of its components

k(x, z) =
(
1 + xTz

)2
= (1 + x1z1 + x2z2)2

= 1 + 2x1z1 + 2x2z2 + x2
1z

2
1 + 2x1z1x2z2 + x2

2z
2
2

= (1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2)(1,

√
2z1,

√
2z2, z

2
1 ,
√

2z1z2, z
2
2)

T

= φ(x)Tφ(z). (7.42)

This kernel function therefore represents an inner product in a feature space having
six dimensions, in which the mapping from input space to feature space is described
by the vector function φ(x). However, the coefficients weighting these different
features are constrained to have specific forms. Thus any set of points in the original
two-dimensional space x would be constrained to lie exactly on a two-dimensional
nonlinear manifold embedded in the six-dimensional feature space.

We have already highlighted the fact that the support vector machine does not
provide probabilistic outputs but instead makes classification decisions for new in-
put vectors. Veropoulos et al. (1999) discuss modifications to the SVM to allow
the trade-off between false positive and false negative errors to be controlled. How-
ever, if we wish to use the SVM as a module in a larger probabilistic system, then
probabilistic predictions of the class label t for new inputs x are required.

To address this issue, Platt (2000) has proposed fitting a logistic sigmoid to the
outputs of a previously trained support vector machine. Specifically, the required
conditional probability is assumed to be of the form

p(t = 1|x) = σ (Ay(x) + B) (7.43)

where y(x) is defined by (7.1). Values for the parameters A and B are found by
minimizing the cross-entropy error function defined by a training set consisting of
pairs of values y(xn) and tn. The data used to fit the sigmoid needs to be independent
of that used to train the original SVM in order to avoid severe over-fitting. This two-
stage approach is equivalent to assuming that the output y(x) of the support vector
machine represents the log-odds of x belonging to class t = 1. Because the SVM
training procedure is not specifically intended to encourage this, the SVM can give
a poor approximation to the posterior probabilities (Tipping, 2001).

7.1.2 Relation to logistic regression
As with the separable case, we can re-cast the SVM for nonseparable distri-

butions in terms of the minimization of a regularized error function. This will also
allow us to highlight similarities, and differences, compared to the logistic regression
model.Section 4.3.2

We have seen that for data points that are on the correct side of the margin
boundary, and which therefore satisfy yntn � 1, we have ξn = 0, and for the
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Figure 7.5 Plot of the ‘hinge’ error function used
in support vector machines, shown
in blue, along with the error function
for logistic regression, rescaled by a
factor of 1/ ln(2) so that it passes
through the point (0, 1), shown in red.
Also shown are the misclassification
error in black and the squared error
in green.
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remaining points we have ξn = 1 − yntn. Thus the objective function (7.21) can be
written (up to an overall multiplicative constant) in the form

N∑
n=1

ESV(yntn) + λ‖w‖2 (7.44)

where λ = (2C)−1, and ESV(·) is the hinge error function defined by

ESV(yntn) = [1 − yntn]+ (7.45)

where [ · ]+ denotes the positive part. The hinge error function, so-called because
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the
misclassification error, i.e., the error function that ideally we would like to minimize,
which is also shown in Figure 7.5.

When we considered the logistic regression model in Section 4.3.2, we found it
convenient to work with target variable t ∈ {0, 1}. For comparison with the support
vector machine, we first reformulate maximum likelihood logistic regression using
the target variable t ∈ {−1, 1}. To do this, we note that p(t = 1|y) = σ(y) where
y(x) is given by (7.1), and σ(y) is the logistic sigmoid function defined by (4.59). It
follows that p(t = −1|y) = 1 − σ(y) = σ(−y), where we have used the properties
of the logistic sigmoid function, and so we can write

p(t|y) = σ(yt). (7.46)

From this we can construct an error function by taking the negative logarithm of the
likelihood function that, with a quadratic regularizer, takes the formExercise 7.6

N∑
n=1

ELR(yntn) + λ‖w‖2. (7.47)

where
ELR(yt) = ln (1 + exp(−yt)) . (7.48)
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For comparison with other error functions, we can divide by ln(2) so that the error
function passes through the point (0, 1). This rescaled error function is also plotted
in Figure 7.5 and we see that it has a similar form to the support vector error function.
The key difference is that the flat region in ESV(yt) leads to sparse solutions.

Both the logistic error and the hinge loss can be viewed as continuous approx-
imations to the misclassification error. Another continuous error function that has
sometimes been used to solve classification problems is the squared error, which
is again plotted in Figure 7.5. It has the property, however, of placing increasing
emphasis on data points that are correctly classified but that are a long way from
the decision boundary on the correct side. Such points will be strongly weighted at
the expense of misclassified points, and so if the objective is to minimize the mis-
classification rate, then a monotonically decreasing error function would be a better
choice.

7.1.3 Multiclass SVMs
The support vector machine is fundamentally a two-class classifier. In practice,

however, we often have to tackle problems involving K > 2 classes. Various meth-
ods have therefore been proposed for combining multiple two-class SVMs in order
to build a multiclass classifier.

One commonly used approach (Vapnik, 1998) is to construct K separate SVMs,
in which the kth model yk(x) is trained using the data from class Ck as the positive
examples and the data from the remaining K − 1 classes as the negative examples.
This is known as the one-versus-the-rest approach. However, in Figure 4.2 we saw
that using the decisions of the individual classifiers can lead to inconsistent results
in which an input is assigned to multiple classes simultaneously. This problem is
sometimes addressed by making predictions for new inputs x using

y(x) = max
k

yk(x). (7.49)

Unfortunately, this heuristic approach suffers from the problem that the different
classifiers were trained on different tasks, and there is no guarantee that the real-
valued quantities yk(x) for different classifiers will have appropriate scales.

Another problem with the one-versus-the-rest approach is that the training sets
are imbalanced. For instance, if we have ten classes each with equal numbers of
training data points, then the individual classifiers are trained on data sets comprising
90% negative examples and only 10% positive examples, and the symmetry of the
original problem is lost. A variant of the one-versus-the-rest scheme was proposed
by Lee et al. (2001) who modify the target values so that the positive class has target
+1 and the negative class has target −1/(K − 1).

Weston and Watkins (1999) define a single objective function for training all
K SVMs simultaneously, based on maximizing the margin from each to remaining
classes. However, this can result in much slower training because, instead of solving
K separate optimization problems each over N data points with an overall cost of
O(KN2), a single optimization problem of size (K −1)N must be solved giving an
overall cost of O(K2N2).
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Another approach is to train K(K−1)/2 different 2-class SVMs on all possible
pairs of classes, and then to classify test points according to which class has the high-
est number of ‘votes’, an approach that is sometimes called one-versus-one. Again,
we saw in Figure 4.2 that this can lead to ambiguities in the resulting classification.
Also, for large K this approach requires significantly more training time than the
one-versus-the-rest approach. Similarly, to evaluate test points, significantly more
computation is required.

The latter problem can be alleviated by organizing the pairwise classifiers into
a directed acyclic graph (not to be confused with a probabilistic graphical model)
leading to the DAGSVM (Platt et al., 2000). For K classes, the DAGSVM has a total
of K(K − 1)/2 classifiers, and to classify a new test point only K − 1 pairwise
classifiers need to be evaluated, with the particular classifiers used depending on
which path through the graph is traversed.

A different approach to multiclass classification, based on error-correcting out-
put codes, was developed by Dietterich and Bakiri (1995) and applied to support
vector machines by Allwein et al. (2000). This can be viewed as a generalization of
the voting scheme of the one-versus-one approach in which more general partitions
of the classes are used to train the individual classifiers. The K classes themselves
are represented as particular sets of responses from the two-class classifiers chosen,
and together with a suitable decoding scheme, this gives robustness to errors and to
ambiguity in the outputs of the individual classifiers. Although the application of
SVMs to multiclass classification problems remains an open issue, in practice the
one-versus-the-rest approach is the most widely used in spite of its ad-hoc formula-
tion and its practical limitations.

There are also single-class support vector machines, which solve an unsuper-
vised learning problem related to probability density estimation. Instead of mod-
elling the density of data, however, these methods aim to find a smooth boundary
enclosing a region of high density. The boundary is chosen to represent a quantile of
the density, that is, the probability that a data point drawn from the distribution will
land inside that region is given by a fixed number between 0 and 1 that is specified in
advance. This is a more restricted problem than estimating the full density but may
be sufficient in specific applications. Two approaches to this problem using support
vector machines have been proposed. The algorithm of Schölkopf et al. (2001) tries
to find a hyperplane that separates all but a fixed fraction ν of the training data from
the origin while at the same time maximizing the distance (margin) of the hyperplane
from the origin, while Tax and Duin (1999) look for the smallest sphere in feature
space that contains all but a fraction ν of the data points. For kernels k(x,x′) that
are functions only of x − x′, the two algorithms are equivalent.

7.1.4 SVMs for regression
We now extend support vector machines to regression problems while at the

same time preserving the property of sparseness. In simple linear regression, weSection 3.1.4
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Figure 7.6 Plot of an ε-insensitive error function (in
red) in which the error increases lin-
early with distance beyond the insen-
sitive region. Also shown for compar-
ison is the quadratic error function (in
green).
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minimize a regularized error function given by

1
2

N∑
n=1

{yn − tn}2 +
λ

2
‖w‖2. (7.50)

To obtain sparse solutions, the quadratic error function is replaced by an ε-insensitive
error function (Vapnik, 1995), which gives zero error if the absolute difference be-
tween the prediction y(x) and the target t is less than ε where ε > 0. A simple
example of an ε-insensitive error function, having a linear cost associated with errors
outside the insensitive region, is given by

Eε(y(x) − t) =
{

0, if |y(x) − t| < ε;
|y(x) − t| − ε, otherwise (7.51)

and is illustrated in Figure 7.6.
We therefore minimize a regularized error function given by

C

N∑
n=1

Eε(y(xn) − tn) +
1
2
‖w‖2 (7.52)

where y(x) is given by (7.1). By convention the (inverse) regularization parameter,
denoted C, appears in front of the error term.

As before, we can re-express the optimization problem by introducing slack
variables. For each data point xn, we now need two slack variables ξn � 0 and
ξ̂n � 0, where ξn > 0 corresponds to a point for which tn > y(xn) + ε, and ξ̂n > 0
corresponds to a point for which tn < y(xn) − ε, as illustrated in Figure 7.7.

The condition for a target point to lie inside the ε-tube is that yn − ε � tn �
yn+ε, where yn = y(xn). Introducing the slack variables allows points to lie outside
the tube provided the slack variables are nonzero, and the corresponding conditions
are

tn � y(xn) + ε + ξn (7.53)

tn � y(xn) − ε − ξ̂n. (7.54)
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Figure 7.7 Illustration of SVM regression, showing
the regression curve together with the ε-
insensitive ‘tube’. Also shown are exam-
ples of the slack variables ξ and bξ. Points
above the ε-tube have ξ > 0 and bξ = 0,
points below the ε-tube have ξ = 0 and
bξ > 0, and points inside the ε-tube have
ξ = bξ = 0.
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The error function for support vector regression can then be written as

C

N∑
n=1

(ξn + ξ̂n) +
1
2
‖w‖2 (7.55)

which must be minimized subject to the constraints ξn � 0 and ξ̂n � 0 as well as
(7.53) and (7.54). This can be achieved by introducing Lagrange multipliers an � 0,
ân � 0, µn � 0, and µ̂n � 0 and optimizing the Lagrangian

L = C

N∑
n=1

(ξn + ξ̂n) +
1
2
‖w‖2 −

N∑
n=1

(µnξn + µ̂nξ̂n)

−
N∑

n=1

an(ε + ξn + yn − tn) −
N∑

n=1

ân(ε + ξ̂n − yn + tn). (7.56)

We now substitute for y(x) using (7.1) and then set the derivatives of the La-
grangian with respect to w, b, ξn, and ξ̂n to zero, giving

∂L

∂w
= 0 ⇒ w =

N∑
n=1

(an − ân)φ(xn) (7.57)

∂L

∂b
= 0 ⇒

N∑
n=1

(an − ân) = 0 (7.58)

∂L

∂ξn
= 0 ⇒ an + µn = C (7.59)

∂L

∂ξ̂n

= 0 ⇒ ân + µ̂n = C. (7.60)

Using these results to eliminate the corresponding variables from the Lagrangian, we
see that the dual problem involves maximizingExercise 7.7
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L̃(a, â) = −1
2

N∑
n=1

N∑
m=1

(an − ân)(am − âm)k(xn,xm)

−ε

N∑
n=1

(an + ân) +
N∑

n=1

(an − ân)tn (7.61)

with respect to {an} and {ân}, where we have introduced the kernel k(x,x′) =
φ(x)Tφ(x′). Again, this is a constrained maximization, and to find the constraints
we note that an � 0 and ân � 0 are both required because these are Lagrange
multipliers. Also µn � 0 and µ̂n � 0 together with (7.59) and (7.60), require
an � C and ân � C, and so again we have the box constraints

0 � an � C (7.62)

0 � ân � C (7.63)

together with the condition (7.58).
Substituting (7.57) into (7.1), we see that predictions for new inputs can be made

using

y(x) =
N∑

n=1

(an − ân)k(x,xn) + b (7.64)

which is again expressed in terms of the kernel function.
The corresponding Karush-Kuhn-Tucker (KKT) conditions, which state that at

the solution the product of the dual variables and the constraints must vanish, are
given by

an(ε + ξn + yn − tn) = 0 (7.65)

ân(ε + ξ̂n − yn + tn) = 0 (7.66)

(C − an)ξn = 0 (7.67)

(C − ân)ξ̂n = 0. (7.68)

From these we can obtain several useful results. First of all, we note that a coefficient
an can only be nonzero if ε + ξn + yn − tn = 0, which implies that the data point
either lies on the upper boundary of the ε-tube (ξn = 0) or lies above the upper
boundary (ξn > 0). Similarly, a nonzero value for ân implies ε + ξ̂n − yn + tn = 0,
and such points must lie either on or below the lower boundary of the ε-tube.

Furthermore, the two constraints ε+ ξn +yn − tn = 0 and ε+ ξ̂n −yn + tn = 0
are incompatible, as is easily seen by adding them together and noting that ξn and
ξ̂n are nonnegative while ε is strictly positive, and so for every data point xn, either
an or ân (or both) must be zero.

The support vectors are those data points that contribute to predictions given by
(7.64), in other words those for which either an 	= 0 or ân 	= 0. These are points that
lie on the boundary of the ε-tube or outside the tube. All points within the tube have
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an = ân = 0. We again have a sparse solution, and the only terms that have to be
evaluated in the predictive model (7.64) are those that involve the support vectors.

The parameter b can be found by considering a data point for which 0 < an <
C, which from (7.67) must have ξn = 0, and from (7.65) must therefore satisfy
ε + yn − tn = 0. Using (7.1) and solving for b, we obtain

b = tn − ε − wTφ(xn)

= tn − ε −
N∑

m=1

(am − âm)k(xn,xm) (7.69)

where we have used (7.57). We can obtain an analogous result by considering a point
for which 0 < ân < C. In practice, it is better to average over all such estimates of
b.

As with the classification case, there is an alternative formulation of the SVM
for regression in which the parameter governing complexity has a more intuitive
interpretation (Schölkopf et al., 2000). In particular, instead of fixing the width ε of
the insensitive region, we fix instead a parameter ν that bounds the fraction of points
lying outside the tube. This involves maximizing

L̃(a, â) = −1
2

N∑
n=1

N∑
m=1

(an − ân)(am − âm)k(xn,xm)

+
N∑

n=1

(an − ân)tn (7.70)

subject to the constraints

0 � an � C/N (7.71)

0 � ân � C/N (7.72)
N∑

n=1

(an − ân) = 0 (7.73)

N∑
n=1

(an + ân) � νC. (7.74)

It can be shown that there are at most νN data points falling outside the insensitive
tube, while at least νN data points are support vectors and so lie either on the tube
or outside it.

The use of a support vector machine to solve a regression problem is illustrated
using the sinusoidal data set in Figure 7.8. Here the parameters ν and C have beenAppendix A
chosen by hand. In practice, their values would typically be determined by cross-
validation.
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Figure 7.8 Illustration of the ν-SVM for re-
gression applied to the sinusoidal
synthetic data set using Gaussian
kernels. The predicted regression
curve is shown by the red line, and
the ε-insensitive tube corresponds
to the shaded region. Also, the
data points are shown in green,
and those with support vectors
are indicated by blue circles.
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7.1.5 Computational learning theory
Historically, support vector machines have largely been motivated and analysed

using a theoretical framework known as computational learning theory, also some-
times called statistical learning theory (Anthony and Biggs, 1992; Kearns and Vazi-
rani, 1994; Vapnik, 1995; Vapnik, 1998). This has its origins with Valiant (1984)
who formulated the probably approximately correct, or PAC, learning framework.
The goal of the PAC framework is to understand how large a data set needs to be in
order to give good generalization. It also gives bounds for the computational cost of
learning, although we do not consider these here.

Suppose that a data set D of size N is drawn from some joint distribution p(x, t)
where x is the input variable and t represents the class label, and that we restrict
attention to ‘noise free’ situations in which the class labels are determined by some
(unknown) deterministic function t = g(x). In PAC learning we say that a function
f(x;D), drawn from a space F of such functions on the basis of the training set
D, has good generalization if its expected error rate is below some pre-specified
threshold ε, so that

Ex,t [I (f(x;D) 	= t)] < ε (7.75)

where I(·) is the indicator function, and the expectation is with respect to the dis-
tribution p(x, t). The quantity on the left-hand side is a random variable, because
it depends on the training set D, and the PAC framework requires that (7.75) holds,
with probability greater than 1 − δ, for a data set D drawn randomly from p(x, t).
Here δ is another pre-specified parameter, and the terminology ‘probably approxi-
mately correct’ comes from the requirement that with high probability (greater than
1− δ), the error rate be small (less than ε). For a given choice of model space F , and
for given parameters ε and δ, PAC learning aims to provide bounds on the minimum
size N of data set needed to meet this criterion. A key quantity in PAC learning is
the Vapnik-Chervonenkis dimension, or VC dimension, which provides a measure of
the complexity of a space of functions, and which allows the PAC framework to be
extended to spaces containing an infinite number of functions.

The bounds derived within the PAC framework are often described as worst-
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case, because they apply to any choice for the distribution p(x, t), so long as both
the training and the test examples are drawn (independently) from the same distribu-
tion, and for any choice for the function f(x) so long as it belongs to F . In real-world
applications of machine learning, we deal with distributions that have significant reg-
ularity, for example in which large regions of input space carry the same class label.
As a consequence of the lack of any assumptions about the form of the distribution,
the PAC bounds are very conservative, in other words they strongly over-estimate
the size of data sets required to achieve a given generalization performance. For this
reason, PAC bounds have found few, if any, practical applications.

One attempt to improve the tightness of the PAC bounds is the PAC-Bayesian
framework (McAllester, 2003), which considers a distribution over the space F of
functions, somewhat analogous to the prior in a Bayesian treatment. This still con-
siders any possible choice for p(x, t), and so although the bounds are tighter, they
are still very conservative.

7.2. Relevance Vector Machines

Support vector machines have been used in a variety of classification and regres-
sion applications. Nevertheless, they suffer from a number of limitations, several
of which have been highlighted already in this chapter. In particular, the outputs of
an SVM represent decisions rather than posterior probabilities. Also, the SVM was
originally formulated for two classes, and the extension to K > 2 classes is prob-
lematic. There is a complexity parameter C, or ν (as well as a parameter ε in the case
of regression), that must be found using a hold-out method such as cross-validation.
Finally, predictions are expressed as linear combinations of kernel functions that are
centred on training data points and that are required to be positive definite.

The relevance vector machine or RVM (Tipping, 2001) is a Bayesian sparse ker-
nel technique for regression and classification that shares many of the characteristics
of the SVM whilst avoiding its principal limitations. Additionally, it typically leads
to much sparser models resulting in correspondingly faster performance on test data
whilst maintaining comparable generalization error.

In contrast to the SVM we shall find it more convenient to introduce the regres-
sion form of the RVM first and then consider the extension to classification tasks.

7.2.1 RVM for regression
The relevance vector machine for regression is a linear model of the form studied

in Chapter 3 but with a modified prior that results in sparse solutions. The model
defines a conditional distribution for a real-valued target variable t, given an input
vector x, which takes the form

p(t|x,w, β) = N (t|y(x), β−1) (7.76)
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where β = σ−2 is the noise precision (inverse noise variance), and the mean is given
by a linear model of the form

y(x) =
M∑
i=1

wiφi(x) = wTφ(x) (7.77)

with fixed nonlinear basis functions φi(x), which will typically include a constant
term so that the corresponding weight parameter represents a ‘bias’.

The relevance vector machine is a specific instance of this model, which is in-
tended to mirror the structure of the support vector machine. In particular, the basis
functions are given by kernels, with one kernel associated with each of the data
points from the training set. The general expression (7.77) then takes the SVM-like
form

y(x) =
N∑

n=1

wnk(x,xn) + b (7.78)

where b is a bias parameter. The number of parameters in this case is M = N + 1,
and y(x) has the same form as the predictive model (7.64) for the SVM, except that
the coefficients an are here denoted wn. It should be emphasized that the subsequent
analysis is valid for arbitrary choices of basis function, and for generality we shall
work with the form (7.77). In contrast to the SVM, there is no restriction to positive-
definite kernels, nor are the basis functions tied in either number or location to the
training data points.

Suppose we are given a set of N observations of the input vector x, which we
denote collectively by a data matrix X whose nth row is xT

n with n = 1, . . . , N . The
corresponding target values are given by t = (t1, . . . , tN )T. Thus, the likelihood
function is given by

p(t|X,w, β) =
N∏

n=1

p(tn|xn,w, β−1). (7.79)

Next we introduce a prior distribution over the parameter vector w and as in
Chapter 3, we shall consider a zero-mean Gaussian prior. However, the key differ-
ence in the RVM is that we introduce a separate hyperparameter αi for each of the
weight parameters wi instead of a single shared hyperparameter. Thus the weight
prior takes the form

p(w|α) =
M∏
i=1

N (wi|0, α−1
i ) (7.80)

where αi represents the precision of the corresponding parameter wi, and α denotes
(α1, . . . , αM )T. We shall see that, when we maximize the evidence with respect
to these hyperparameters, a significant proportion of them go to infinity, and the
corresponding weight parameters have posterior distributions that are concentrated
at zero. The basis functions associated with these parameters therefore play no role
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in the predictions made by the model and so are effectively pruned out, resulting in
a sparse model.

Using the result (3.49) for linear regression models, we see that the posterior
distribution for the weights is again Gaussian and takes the form

p(w|t,X, α, β) = N (w|m,Σ) (7.81)

where the mean and covariance are given by

m = βΣΦTt (7.82)

Σ =
(
A + βΦTΦ

)−1
(7.83)

where Φ is the N × M design matrix with elements Φni = φi(xn), and A =
diag(αi). Note that in the specific case of the model (7.78), we have Φ = K, where
K is the symmetric (N + 1) × (N + 1) kernel matrix with elements k(xn,xm).

The values of α and β are determined using type-2 maximum likelihood, also
known as the evidence approximation, in which we maximize the marginal likeli-Section 3.5
hood function obtained by integrating out the weight parameters

p(t|X, α, β) =
∫

p(t|X,w, β)p(w|α) dw. (7.84)

Because this represents the convolution of two Gaussians, it is readily evaluated toExercise 7.10
give the log marginal likelihood in the form

ln p(t|X, α, β) = lnN (t|0,C)

= −1
2
{
N ln(2π) + ln |C| + tTC−1t

}
(7.85)

where t = (t1, . . . , tN )T, and we have defined the N × N matrix C given by

C = β−1I + ΦA−1ΦT. (7.86)

Our goal is now to maximize (7.85) with respect to the hyperparameters α and
β. This requires only a small modification to the results obtained in Section 3.5 for
the evidence approximation in the linear regression model. Again, we can identify
two approaches. In the first, we simply set the required derivatives of the marginal
likelihood to zero and obtain the following re-estimation equationsExercise 7.12

αnew
i =

γi

m2
i

(7.87)

(βnew)−1 =
‖t − Φm‖2

N −∑
i γi

(7.88)

where mi is the ith component of the posterior mean m defined by (7.82). The
quantity γi measures how well the corresponding parameter wi is determined by the
data and is defined bySection 3.5.3
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γi = 1 − αiΣii (7.89)

in which Σii is the ith diagonal component of the posterior covariance Σ given by
(7.83). Learning therefore proceeds by choosing initial values for α and β, evalu-
ating the mean and covariance of the posterior using (7.82) and (7.83), respectively,
and then alternately re-estimating the hyperparameters, using (7.87) and (7.88), and
re-estimating the posterior mean and covariance, using (7.82) and (7.83), until a suit-
able convergence criterion is satisfied.

The second approach is to use the EM algorithm, and is discussed in Sec-
tion 9.3.4. These two approaches to finding the values of the hyperparameters that
maximize the evidence are formally equivalent. Numerically, however, it is foundExercise 9.23
that the direct optimization approach corresponding to (7.87) and (7.88) gives some-
what faster convergence (Tipping, 2001).

As a result of the optimization, we find that a proportion of the hyperparameters
{αi} are driven to large (in principle infinite) values, and so the weight parametersSection 7.2.2
wi corresponding to these hyperparameters have posterior distributions with mean
and variance both zero. Thus those parameters, and the corresponding basis func-
tions φi(x), are removed from the model and play no role in making predictions for
new inputs. In the case of models of the form (7.78), the inputs xn corresponding to
the remaining nonzero weights are called relevance vectors, because they are iden-
tified through the mechanism of automatic relevance determination, and are analo-
gous to the support vectors of an SVM. It is worth emphasizing, however, that this
mechanism for achieving sparsity in probabilistic models through automatic rele-
vance determination is quite general and can be applied to any model expressed as
an adaptive linear combination of basis functions.

Having found values α� and β� for the hyperparameters that maximize the
marginal likelihood, we can evaluate the predictive distribution over t for a new
input x. Using (7.76) and (7.81), this is given byExercise 7.14

p(t|x,X, t, α�, β�) =
∫

p(t|x,w, β�)p(w|X, t, α�, β�) dw

= N (
t|mTφ(x), σ2(x)

)
. (7.90)

Thus the predictive mean is given by (7.76) with w set equal to the posterior mean
m, and the variance of the predictive distribution is given by

σ2(x) = (β�)−1 + φ(x)TΣφ(x) (7.91)

where Σ is given by (7.83) in which α and β are set to their optimized values α� and
β�. This is just the familiar result (3.59) obtained in the context of linear regression.
Recall that for localized basis functions, the predictive variance for linear regression
models becomes small in regions of input space where there are no basis functions.
In the case of an RVM with the basis functions centred on data points, the model will
therefore become increasingly certain of its predictions when extrapolating outside
the domain of the data (Rasmussen and Quiñonero-Candela, 2005), which of course
is undesirable. The predictive distribution in Gaussian process regression does notSection 6.4.2



7.2. Relevance Vector Machines 349

Figure 7.9 Illustration of RVM regression us-
ing the same data set, and the
same Gaussian kernel functions,
as used in Figure 7.8 for the
ν-SVM regression model. The
mean of the predictive distribu-
tion for the RVM is shown by the
red line, and the one standard-
deviation predictive distribution is
shown by the shaded region.
Also, the data points are shown
in green, and the relevance vec-
tors are indicated by blue circles.
Note that there are only 3 rele-
vance vectors compared to 7 sup-
port vectors for the ν-SVM in Fig-
ure 7.8.
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suffer from this problem. However, the computational cost of making predictions
with a Gaussian processes is typically much higher than with an RVM.

Figure 7.9 shows an example of the RVM applied to the sinusoidal regression
data set. Here the noise precision parameter β is also determined through evidence
maximization. We see that the number of relevance vectors in the RVM is signif-
icantly smaller than the number of support vectors used by the SVM. For a wide
range of regression and classification tasks, the RVM is found to give models that
are typically an order of magnitude more compact than the corresponding support
vector machine, resulting in a significant improvement in the speed of processing on
test data. Remarkably, this greater sparsity is achieved with little or no reduction in
generalization error compared with the corresponding SVM.

The principal disadvantage of the RVM compared to the SVM is that training
involves optimizing a nonconvex function, and training times can be longer than for a
comparable SVM. For a model with M basis functions, the RVM requires inversion
of a matrix of size M × M , which in general requires O(M3) computation. In the
specific case of the SVM-like model (7.78), we have M = N +1. As we have noted,
there are techniques for training SVMs whose cost is roughly quadratic in N . Of
course, in the case of the RVM we always have the option of starting with a smaller
number of basis functions than N + 1. More significantly, in the relevance vector
machine the parameters governing complexity and noise variance are determined
automatically from a single training run, whereas in the support vector machine the
parameters C and ε (or ν) are generally found using cross-validation, which involves
multiple training runs. Furthermore, in the next section we shall derive an alternative
procedure for training the relevance vector machine that improves training speed
significantly.

7.2.2 Analysis of sparsity
We have noted earlier that the mechanism of automatic relevance determination

causes a subset of parameters to be driven to zero. We now examine in more detail
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Figure 7.10 Illustration of the mechanism for sparsity in a Bayesian linear regression model, showing a training
set vector of target values given by t = (t1, t2)

T, indicated by the cross, for a model with one basis vector
ϕ = (φ(x1), φ(x2))

T, which is poorly aligned with the target data vector t. On the left we see a model having
only isotropic noise, so that C = β−1I, corresponding to α = ∞, with β set to its most probable value. On
the right we see the same model but with a finite value of α. In each case the red ellipse corresponds to unit
Mahalanobis distance, with |C| taking the same value for both plots, while the dashed green circle shows the
contrition arising from the noise term β−1. We see that any finite value of α reduces the probability of the
observed data, and so for the most probable solution the basis vector is removed.

the mechanism of sparsity in the context of the relevance vector machine. In the
process, we will arrive at a significantly faster procedure for optimizing the hyper-
parameters compared to the direct techniques given above.

Before proceeding with a mathematical analysis, we first give some informal
insight into the origin of sparsity in Bayesian linear models. Consider a data set
comprising N = 2 observations t1 and t2, together with a model having a single
basis function φ(x), with hyperparameter α, along with isotropic noise having pre-
cision β. From (7.85), the marginal likelihood is given by p(t|α, β) = N (t|0,C) in
which the covariance matrix takes the form

C =
1
β
I +

1
α

ϕϕT (7.92)

where ϕ denotes the N -dimensional vector (φ(x1), φ(x2))T, and similarly t =
(t1, t2)T. Notice that this is just a zero-mean Gaussian process model over t with
covariance C. Given a particular observation for t, our goal is to find α� and β� by
maximizing the marginal likelihood. We see from Figure 7.10 that, if there is a poor
alignment between the direction of ϕ and that of the training data vector t, then the
corresponding hyperparameter α will be driven to ∞, and the basis vector will be
pruned from the model. This arises because any finite value for α will always assign
a lower probability to the data, thereby decreasing the value of the density at t, pro-
vided that β is set to its optimal value. We see that any finite value for α would cause
the distribution to be elongated in a direction away from the data, thereby increasing
the probability mass in regions away from the observed data and hence reducing the
value of the density at the target data vector itself. For the more general case of M
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basis vectors ϕ1, . . . ,ϕM a similar intuition holds, namely that if a particular basis
vector is poorly aligned with the data vector t, then it is likely to be pruned from the
model.

We now investigate the mechanism for sparsity from a more mathematical per-
spective, for a general case involving M basis functions. To motivate this analysis
we first note that, in the result (7.87) for re-estimating the parameter αi, the terms on
the right-hand side are themselves also functions of αi. These results therefore rep-
resent implicit solutions, and iteration would be required even to determine a single
αi with all other αj for j 	= i fixed.

This suggests a different approach to solving the optimization problem for the
RVM, in which we make explicit all of the dependence of the marginal likelihood
(7.85) on a particular αi and then determine its stationary points explicitly (Faul and
Tipping, 2002; Tipping and Faul, 2003). To do this, we first pull out the contribution
from αi in the matrix C defined by (7.86) to give

C = β−1I +
∑
j 	=i

α−1
j ϕjϕ

T
j + α−1

i ϕiϕ
T
i

= C−i + α−1
i ϕiϕ

T
i (7.93)

where ϕi denotes the ith column of Φ, in other words the N -dimensional vector with
elements (φi(x1), . . . , φi(xN )), in contrast to φn, which denotes the nth row of Φ.
The matrix C−i represents the matrix C with the contribution from basis function i
removed. Using the matrix identities (C.7) and (C.15), the determinant and inverse
of C can then be written

|C| = |C−i||1 + α−1
i ϕT

i C−1
−i ϕi| (7.94)

C−1 = C−1
−i −

C−1
−i ϕiϕ

T
i C−1

−i

αi + ϕT
i C−1

−i ϕi

. (7.95)

Using these results, we can then write the log marginal likelihood function (7.85) in
the formExercise 7.15

L(α) = L(α−i) + λ(αi) (7.96)

where L(α−i) is simply the log marginal likelihood with basis function ϕi omitted,
and the quantity λ(αi) is defined by

λ(αi) =
1
2

[
lnαi − ln (αi + si) +

q2
i

αi + si

]
(7.97)

and contains all of the dependence on αi. Here we have introduced the two quantities

si = ϕT
i C−1

−i ϕi (7.98)

qi = ϕT
i C−1

−i t. (7.99)

Here si is called the sparsity and qi is known as the quality of ϕi, and as we shall
see, a large value of si relative to the value of qi means that the basis function ϕi



352 7. SPARSE KERNEL MACHINES

Figure 7.11 Plots of the log
marginal likelihood λ(αi) versus
ln αi showing on the left, the single
maximum at a finite αi for q2

i = 4
and si = 1 (so that q2

i > si) and on
the right, the maximum at αi = ∞
for q2

i = 1 and si = 2 (so that
q2

i < si).
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is more likely to be pruned from the model. The ‘sparsity’ measures the extent to
which basis function ϕi overlaps with the other basis vectors in the model, and the
‘quality’ represents a measure of the alignment of the basis vector ϕn with the error
between the training set values t = (t1, . . . , tN )T and the vector y−i of predictions
that would result from the model with the vector ϕi excluded (Tipping and Faul,
2003).

The stationary points of the marginal likelihood with respect to αi occur when
the derivative

dλ(αi)
dαi

=
α−1

i s2
i − (q2

i − si)
2(αi + si)2

(7.100)

is equal to zero. There are two possible forms for the solution. Recalling that αi � 0,
we see that if q2

i < si, then αi → ∞ provides a solution. Conversely, if q2
i > si, we

can solve for αi to obtain

αi =
s2

i

q2
i − si

. (7.101)

These two solutions are illustrated in Figure 7.11. We see that the relative size of
the quality and sparsity terms determines whether a particular basis vector will be
pruned from the model or not. A more complete analysis (Faul and Tipping, 2002),
based on the second derivatives of the marginal likelihood, confirms these solutions
are indeed the unique maxima of λ(αi).Exercise 7.16

Note that this approach has yielded a closed-form solution for αi, for given
values of the other hyperparameters. As well as providing insight into the origin of
sparsity in the RVM, this analysis also leads to a practical algorithm for optimizing
the hyperparameters that has significant speed advantages. This uses a fixed set
of candidate basis vectors, and then cycles through them in turn to decide whether
each vector should be included in the model or not. The resulting sequential sparse
Bayesian learning algorithm is described below.

Sequential Sparse Bayesian Learning Algorithm

1. If solving a regression problem, initialize β.

2. Initialize using one basis function ϕ1, with hyperparameter α1 set using
(7.101), with the remaining hyperparameters αj for j 	= i initialized to
infinity, so that only ϕ1 is included in the model.
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3. Evaluate Σ and m, along with qi and si for all basis functions.

4. Select a candidate basis function ϕi.

5. If q2
i > si, and αi < ∞, so that the basis vector ϕi is already included in

the model, then update αi using (7.101).

6. If q2
i > si, and αi = ∞, then add ϕi to the model, and evaluate hyperpa-

rameter αi using (7.101).

7. If q2
i � si, and αi < ∞ then remove basis function ϕi from the model,

and set αi = ∞.

8. If solving a regression problem, update β.

9. If converged terminate, otherwise go to 3.

Note that if q2
i � si and αi = ∞, then the basis function ϕi is already excluded

from the model and no action is required.
In practice, it is convenient to evaluate the quantities

Qi = ϕT
i C−1t (7.102)

Si = ϕT
i C−1ϕi. (7.103)

The quality and sparseness variables can then be expressed in the form

qi =
αiQi

αi − Si
(7.104)

si =
αiSi

αi − Si
. (7.105)

Note that when αi = ∞, we have qi = Qi and si = Si. Using (C.7), we can writeExercise 7.17

Qi = βϕT
i t − β2ϕT

i ΦΣΦTt (7.106)

Si = βϕT
i ϕi − β2ϕT

i ΦΣΦTϕi (7.107)

where Φ and Σ involve only those basis vectors that correspond to finite hyperpa-
rameters αi. At each stage the required computations therefore scale like O(M3),
where M is the number of active basis vectors in the model and is typically much
smaller than the number N of training patterns.

7.2.3 RVM for classification
We can extend the relevance vector machine framework to classification prob-

lems by applying the ARD prior over weights to a probabilistic linear classification
model of the kind studied in Chapter 4. To start with, we consider two-class prob-
lems with a binary target variable t ∈ {0, 1}. The model now takes the form of a
linear combination of basis functions transformed by a logistic sigmoid function

y(x,w) = σ
(
wTφ(x)

)
(7.108)
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where σ(·) is the logistic sigmoid function defined by (4.59). If we introduce a
Gaussian prior over the weight vector w, then we obtain the model that has been
considered already in Chapter 4. The difference here is that in the RVM, this model
uses the ARD prior (7.80) in which there is a separate precision hyperparameter
associated with each weight parameter.

In contrast to the regression model, we can no longer integrate analytically over
the parameter vector w. Here we follow Tipping (2001) and use the Laplace ap-
proximation, which was applied to the closely related problem of Bayesian logisticSection 4.4
regression in Section 4.5.1.

We begin by initializing the hyperparameter vector α. For this given value of
α, we then build a Gaussian approximation to the posterior distribution and thereby
obtain an approximation to the marginal likelihood. Maximization of this approxi-
mate marginal likelihood then leads to a re-estimated value for α, and the process is
repeated until convergence.

Let us consider the Laplace approximation for this model in more detail. For
a fixed value of α, the mode of the posterior distribution over w is obtained by
maximizing

ln p(w|t, α) = ln {p(t|w)p(w|α)} − ln p(t|α)

=
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} − 1
2
wTAw + const (7.109)

where A = diag(αi). This can be done using iterative reweighted least squares
(IRLS) as discussed in Section 4.3.3. For this, we need the gradient vector and
Hessian matrix of the log posterior distribution, which from (7.109) are given byExercise 7.18

∇ ln p(w|t, α) = ΦT(t − y) − Aw (7.110)

∇∇ ln p(w|t, α) = − (
ΦTBΦ + A

)
(7.111)

where B is an N × N diagonal matrix with elements bn = yn(1 − yn), the vector
y = (y1, . . . , yN )T, and Φ is the design matrix with elements Φni = φi(xn). Here
we have used the property (4.88) for the derivative of the logistic sigmoid function.
At convergence of the IRLS algorithm, the negative Hessian represents the inverse
covariance matrix for the Gaussian approximation to the posterior distribution.

The mode of the resulting approximation to the posterior distribution, corre-
sponding to the mean of the Gaussian approximation, is obtained setting (7.110) to
zero, giving the mean and covariance of the Laplace approximation in the form

w� = A−1ΦT(t − y) (7.112)

Σ =
(
ΦTBΦ + A

)−1
. (7.113)

We can now use this Laplace approximation to evaluate the marginal likelihood.
Using the general result (4.135) for an integral evaluated using the Laplace approxi-
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mation, we have

p(t|α) =
∫

p(t|w)p(w|α) dw

� p(t|w�)p(w�|α)(2π)M/2|Σ|1/2. (7.114)

If we substitute for p(t|w�) and p(w�|α) and then set the derivative of the marginal
likelihood with respect to αi equal to zero, we obtainExercise 7.19

−1
2
(w�

i )2 +
1

2αi
− 1

2
Σii = 0. (7.115)

Defining γi = 1 − αiΣii and rearranging then gives

αnew
i =

γi

(w�
i )2

(7.116)

which is identical to the re-estimation formula (7.87) obtained for the regression
RVM.

If we define
t̂ = Φw� + B−1(t − y) (7.117)

we can write the approximate log marginal likelihood in the form

ln p(t|α, β) = −1
2

{
N ln(2π) + ln |C| + (̂t)TC−1̂t

}
(7.118)

where
C = B + ΦAΦT. (7.119)

This takes the same form as (7.85) in the regression case, and so we can apply the
same analysis of sparsity and obtain the same fast learning algorithm in which we
fully optimize a single hyperparameter αi at each step.

Figure 7.12 shows the relevance vector machine applied to a synthetic classifi-
cation data set. We see that the relevance vectors tend not to lie in the region of theAppendix A
decision boundary, in contrast to the support vector machine. This is consistent with
our earlier discussion of sparsity in the RVM, because a basis function φi(x) centred
on a data point near the boundary will have a vector ϕi that is poorly aligned with
the training data vector t.

One of the potential advantages of the relevance vector machine compared with
the SVM is that it makes probabilistic predictions. For example, this allows the RVM
to be used to help construct an emission density in a nonlinear extension of the linear
dynamical system for tracking faces in video sequences (Williams et al., 2005).Section 13.3

So far, we have considered the RVM for binary classification problems. For
K > 2 classes, we again make use of the probabilistic approach in Section 4.3.4 in
which there are K linear models of the form

ak = wT
k x (7.120)
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Figure 7.12 Example of the relevance vector machine applied to a synthetic data set, in which the left-hand plot
shows the decision boundary and the data points, with the relevance vectors indicated by circles. Comparison
with the results shown in Figure 7.4 for the corresponding support vector machine shows that the RVM gives a
much sparser model. The right-hand plot shows the posterior probability given by the RVM output in which the
proportion of red (blue) ink indicates the probability of that point belonging to the red (blue) class.

which are combined using a softmax function to give outputs

yk(x) =
exp(ak)∑

j

exp(aj)
. (7.121)

The log likelihood function is then given by

ln p(T|w1, . . . ,wK) =
N∏

n=1

K∏
k=1

ytnk

nk (7.122)

where the target values tnk have a 1-of-K coding for each data point n, and T is a
matrix with elements tnk. Again, the Laplace approximation can be used to optimize
the hyperparameters (Tipping, 2001), in which the model and its Hessian are found
using IRLS. This gives a more principled approach to multiclass classification than
the pairwise method used in the support vector machine and also provides probabilis-
tic predictions for new data points. The principal disadvantage is that the Hessian
matrix has size MK×MK, where M is the number of active basis functions, which
gives an additional factor of K3 in the computational cost of training compared with
the two-class RVM.

The principal disadvantage of the relevance vector machine is the relatively long
training times compared with the SVM. This is offset, however, by the avoidance of
cross-validation runs to set the model complexity parameters. Furthermore, because
it yields sparser models, the computation time on test points, which is usually the
more important consideration in practice, is typically much less.
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Exercises
7.1 (� �) www Suppose we have a data set of input vectors {xn} with corresponding

target values tn ∈ {−1, 1}, and suppose that we model the density of input vec-
tors within each class separately using a Parzen kernel density estimator (see Sec-
tion 2.5.1) with a kernel k(x,x′). Write down the minimum misclassification-rate
decision rule assuming the two classes have equal prior probability. Show also that,
if the kernel is chosen to be k(x,x′) = xTx′, then the classification rule reduces to
simply assigning a new input vector to the class having the closest mean. Finally,
show that, if the kernel takes the form k(x,x′) = φ(x)Tφ(x′), that the classification
is based on the closest mean in the feature space φ(x).

7.2 (�) Show that, if the 1 on the right-hand side of the constraint (7.5) is replaced by
some arbitrary constant γ > 0, the solution for the maximum margin hyperplane is
unchanged.

7.3 (� �) Show that, irrespective of the dimensionality of the data space, a data set
consisting of just two data points, one from each class, is sufficient to determine the
location of the maximum-margin hyperplane.

7.4 (� �) www Show that the value ρ of the margin for the maximum-margin hyper-
plane is given by

1
ρ2

=
N∑

n=1

an (7.123)

where {an} are given by maximizing (7.10) subject to the constraints (7.11) and
(7.12).

7.5 (� �) Show that the values of ρ and {an} in the previous exercise also satisfy

1
ρ2

= 2L̃(a) (7.124)

where L̃(a) is defined by (7.10). Similarly, show that

1
ρ2

= ‖w‖2. (7.125)

7.6 (�) Consider the logistic regression model with a target variable t ∈ {−1, 1}. If
we define p(t = 1|y) = σ(y) where y(x) is given by (7.1), show that the negative
log likelihood, with the addition of a quadratic regularization term, takes the form
(7.47).

7.7 (�) Consider the Lagrangian (7.56) for the regression support vector machine. By
setting the derivatives of the Lagrangian with respect to w, b, ξn, and ξ̂n to zero and
then back substituting to eliminate the corresponding variables, show that the dual
Lagrangian is given by (7.61).
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7.8 (�) www For the regression support vector machine considered in Section 7.1.4,
show that all training data points for which ξn > 0 will have an = C, and similarly
all points for which ξ̂n > 0 will have ân = C.

7.9 (�) Verify the results (7.82) and (7.83) for the mean and covariance of the posterior
distribution over weights in the regression RVM.

7.10 (� �) www Derive the result (7.85) for the marginal likelihood function in the
regression RVM, by performing the Gaussian integral over w in (7.84) using the
technique of completing the square in the exponential.

7.11 (� �) Repeat the above exercise, but this time make use of the general result (2.115).

7.12 (� �) www Show that direct maximization of the log marginal likelihood (7.85) for
the regression relevance vector machine leads to the re-estimation equations (7.87)
and (7.88) where γi is defined by (7.89).

7.13 (� �) In the evidence framework for RVM regression, we obtained the re-estimation
formulae (7.87) and (7.88) by maximizing the marginal likelihood given by (7.85).
Extend this approach by inclusion of hyperpriors given by gamma distributions of
the form (B.26) and obtain the corresponding re-estimation formulae for α and β by
maximizing the corresponding posterior probability p(t, α, β|X) with respect to α
and β.

7.14 (� �) Derive the result (7.90) for the predictive distribution in the relevance vector
machine for regression. Show that the predictive variance is given by (7.91).

7.15 (� �) www Using the results (7.94) and (7.95), show that the marginal likelihood
(7.85) can be written in the form (7.96), where λ(αn) is defined by (7.97) and the
sparsity and quality factors are defined by (7.98) and (7.99), respectively.

7.16 (�) By taking the second derivative of the log marginal likelihood (7.97) for the
regression RVM with respect to the hyperparameter αi, show that the stationary
point given by (7.101) is a maximum of the marginal likelihood.

7.17 (� �) Using (7.83) and (7.86), together with the matrix identity (C.7), show that
the quantities Sn and Qn defined by (7.102) and (7.103) can be written in the form
(7.106) and (7.107).

7.18 (�) www Show that the gradient vector and Hessian matrix of the log poste-
rior distribution (7.109) for the classification relevance vector machine are given by
(7.110) and (7.111).

7.19 (� �) Verify that maximization of the approximate log marginal likelihood function
(7.114) for the classification relevance vector machine leads to the result (7.116) for
re-estimation of the hyperparameters.



8
Graphical

Models

Probabilities play a central role in modern pattern recognition. We have seen in
Chapter 1 that probability theory can be expressed in terms of two simple equations
corresponding to the sum rule and the product rule. All of the probabilistic infer-
ence and learning manipulations discussed in this book, no matter how complex,
amount to repeated application of these two equations. We could therefore proceed
to formulate and solve complicated probabilistic models purely by algebraic ma-
nipulation. However, we shall find it highly advantageous to augment the analysis
using diagrammatic representations of probability distributions, called probabilistic
graphical models. These offer several useful properties:

1. They provide a simple way to visualize the structure of a probabilistic model
and can be used to design and motivate new models.

2. Insights into the properties of the model, including conditional independence
properties, can be obtained by inspection of the graph.

359
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3. Complex computations, required to perform inference and learning in sophis-
ticated models, can be expressed in terms of graphical manipulations, in which
underlying mathematical expressions are carried along implicitly.

A graph comprises nodes (also called vertices) connected by links (also known
as edges or arcs). In a probabilistic graphical model, each node represents a random
variable (or group of random variables), and the links express probabilistic relation-
ships between these variables. The graph then captures the way in which the joint
distribution over all of the random variables can be decomposed into a product of
factors each depending only on a subset of the variables. We shall begin by dis-
cussing Bayesian networks, also known as directed graphical models, in which the
links of the graphs have a particular directionality indicated by arrows. The other
major class of graphical models are Markov random fields, also known as undirected
graphical models, in which the links do not carry arrows and have no directional
significance. Directed graphs are useful for expressing causal relationships between
random variables, whereas undirected graphs are better suited to expressing soft con-
straints between random variables. For the purposes of solving inference problems,
it is often convenient to convert both directed and undirected graphs into a different
representation called a factor graph.

In this chapter, we shall focus on the key aspects of graphical models as needed
for applications in pattern recognition and machine learning. More general treat-
ments of graphical models can be found in the books by Whittaker (1990), Lauritzen
(1996), Jensen (1996), Castillo et al. (1997), Jordan (1999), Cowell et al. (1999),
and Jordan (2007).

8.1. Bayesian Networks

In order to motivate the use of directed graphs to describe probability distributions,
consider first an arbitrary joint distribution p(a, b, c) over three variables a, b, and c.
Note that at this stage, we do not need to specify anything further about these vari-
ables, such as whether they are discrete or continuous. Indeed, one of the powerful
aspects of graphical models is that a specific graph can make probabilistic statements
for a broad class of distributions. By application of the product rule of probability
(1.11), we can write the joint distribution in the form

p(a, b, c) = p(c|a, b)p(a, b). (8.1)

A second application of the product rule, this time to the second term on the right-
hand side of (8.1), gives

p(a, b, c) = p(c|a, b)p(b|a)p(a). (8.2)

Note that this decomposition holds for any choice of the joint distribution. We now
represent the right-hand side of (8.2) in terms of a simple graphical model as follows.
First we introduce a node for each of the random variables a, b, and c and associate
each node with the corresponding conditional distribution on the right-hand side of
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Figure 8.1 A directed graphical model representing the joint probabil-
ity distribution over three variables a, b, and c, correspond-
ing to the decomposition on the right-hand side of (8.2).

a

b

c

(8.2). Then, for each conditional distribution we add directed links (arrows) to the
graph from the nodes corresponding to the variables on which the distribution is
conditioned. Thus for the factor p(c|a, b), there will be links from nodes a and b to
node c, whereas for the factor p(a) there will be no incoming links. The result is the
graph shown in Figure 8.1. If there is a link going from a node a to a node b, then we
say that node a is the parent of node b, and we say that node b is the child of node a.
Note that we shall not make any formal distinction between a node and the variable
to which it corresponds but will simply use the same symbol to refer to both.

An interesting point to note about (8.2) is that the left-hand side is symmetrical
with respect to the three variables a, b, and c, whereas the right-hand side is not.
Indeed, in making the decomposition in (8.2), we have implicitly chosen a particular
ordering, namely a, b, c, and had we chosen a different ordering we would have
obtained a different decomposition and hence a different graphical representation.
We shall return to this point later.

For the moment let us extend the example of Figure 8.1 by considering the joint
distribution over K variables given by p(x1, . . . , xK). By repeated application of
the product rule of probability, this joint distribution can be written as a product of
conditional distributions, one for each of the variables

p(x1, . . . , xK) = p(xK |x1, . . . , xK−1) . . . p(x2|x1)p(x1). (8.3)

For a given choice of K, we can again represent this as a directed graph having K
nodes, one for each conditional distribution on the right-hand side of (8.3), with each
node having incoming links from all lower numbered nodes. We say that this graph
is fully connected because there is a link between every pair of nodes.

So far, we have worked with completely general joint distributions, so that the
decompositions, and their representations as fully connected graphs, will be applica-
ble to any choice of distribution. As we shall see shortly, it is the absence of links
in the graph that conveys interesting information about the properties of the class of
distributions that the graph represents. Consider the graph shown in Figure 8.2. This
is not a fully connected graph because, for instance, there is no link from x1 to x2 or
from x3 to x7.

We shall now go from this graph to the corresponding representation of the joint
probability distribution written in terms of the product of a set of conditional dis-
tributions, one for each node in the graph. Each such conditional distribution will
be conditioned only on the parents of the corresponding node in the graph. For in-
stance, x5 will be conditioned on x1 and x3. The joint distribution of all 7 variables
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Figure 8.2 Example of a directed acyclic graph describing the joint
distribution over variables x1, . . . , x7. The corresponding
decomposition of the joint distribution is given by (8.4).

x1

x2 x3

x4 x5

x6 x7

is therefore given by

p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5). (8.4)

The reader should take a moment to study carefully the correspondence between
(8.4) and Figure 8.2.

We can now state in general terms the relationship between a given directed
graph and the corresponding distribution over the variables. The joint distribution
defined by a graph is given by the product, over all of the nodes of the graph, of
a conditional distribution for each node conditioned on the variables corresponding
to the parents of that node in the graph. Thus, for a graph with K nodes, the joint
distribution is given by

p(x) =
K∏

k=1

p(xk|pak) (8.5)

where pak denotes the set of parents of xk, and x = {x1, . . . , xK}. This key
equation expresses the factorization properties of the joint distribution for a directed
graphical model. Although we have considered each node to correspond to a single
variable, we can equally well associate sets of variables and vector-valued variables
with the nodes of a graph. It is easy to show that the representation on the right-
hand side of (8.5) is always correctly normalized provided the individual conditional
distributions are normalized.Exercise 8.1

The directed graphs that we are considering are subject to an important restric-
tion namely that there must be no directed cycles, in other words there are no closed
paths within the graph such that we can move from node to node along links follow-
ing the direction of the arrows and end up back at the starting node. Such graphs are
also called directed acyclic graphs, or DAGs. This is equivalent to the statement thatExercise 8.2
there exists an ordering of the nodes such that there are no links that go from any
node to any lower numbered node.

8.1.1 Example: Polynomial regression
As an illustration of the use of directed graphs to describe probability distri-

butions, we consider the Bayesian polynomial regression model introduced in Sec-
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Figure 8.3 Directed graphical model representing the joint
distribution (8.6) corresponding to the Bayesian
polynomial regression model introduced in Sec-
tion 1.2.6.

w

t1 tN

tion 1.2.6. The random variables in this model are the vector of polynomial coeffi-
cients w and the observed data t = (t1, . . . , tN )T. In addition, this model contains
the input data x = (x1, . . . , xN )T, the noise variance σ2, and the hyperparameter α
representing the precision of the Gaussian prior over w, all of which are parameters
of the model rather than random variables. Focussing just on the random variables
for the moment, we see that the joint distribution is given by the product of the prior
p(w) and N conditional distributions p(tn|w) for n = 1, . . . , N so that

p(t,w) = p(w)
N∏

n=1

p(tn|w). (8.6)

This joint distribution can be represented by a graphical model shown in Figure 8.3.

When we start to deal with more complex models later in the book, we shall find
it inconvenient to have to write out multiple nodes of the form t1, . . . , tN explicitly as
in Figure 8.3. We therefore introduce a graphical notation that allows such multiple
nodes to be expressed more compactly, in which we draw a single representative
node tn and then surround this with a box, called a plate, labelled with N indicating
that there are N nodes of this kind. Re-writing the graph of Figure 8.3 in this way,
we obtain the graph shown in Figure 8.4.

We shall sometimes find it helpful to make the parameters of a model, as well as
its stochastic variables, explicit. In this case, (8.6) becomes

p(t,w|x, α, σ2) = p(w|α)
N∏

n=1

p(tn|w, xn, σ2).

Correspondingly, we can make x and α explicit in the graphical representation. To
do this, we shall adopt the convention that random variables will be denoted by open
circles, and deterministic parameters will be denoted by smaller solid circles. If we
take the graph of Figure 8.4 and include the deterministic parameters, we obtain the
graph shown in Figure 8.5.

When we apply a graphical model to a problem in machine learning or pattern
recognition, we will typically set some of the random variables to specific observed

Figure 8.4 An alternative, more compact, representation of the graph
shown in Figure 8.3 in which we have introduced a plate
(the box labelled N ) that represents N nodes of which only
a single example tn is shown explicitly.

tn
N

w
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Figure 8.5 This shows the same model as in Figure 8.4 but
with the deterministic parameters shown explicitly
by the smaller solid nodes.

tn

xn

N

w

α

σ2

values, for example the variables {tn} from the training set in the case of polynomial
curve fitting. In a graphical model, we will denote such observed variables by shad-
ing the corresponding nodes. Thus the graph corresponding to Figure 8.5 in which
the variables {tn} are observed is shown in Figure 8.6. Note that the value of w is
not observed, and so w is an example of a latent variable, also known as a hidden
variable. Such variables play a crucial role in many probabilistic models and will
form the focus of Chapters 9 and 12.

Having observed the values {tn} we can, if desired, evaluate the posterior dis-
tribution of the polynomial coefficients w as discussed in Section 1.2.5. For the
moment, we note that this involves a straightforward application of Bayes’ theorem

p(w|T) ∝ p(w)
N∏

n=1

p(tn|w) (8.7)

where again we have omitted the deterministic parameters in order to keep the nota-
tion uncluttered.

In general, model parameters such as w are of little direct interest in themselves,
because our ultimate goal is to make predictions for new input values. Suppose we
are given a new input value x̂ and we wish to find the corresponding probability dis-
tribution for t̂ conditioned on the observed data. The graphical model that describes
this problem is shown in Figure 8.7, and the corresponding joint distribution of all
of the random variables in this model, conditioned on the deterministic parameters,
is then given by

p(̂t, t,w|x̂, x, α, σ2) =

[
N∏

n=1

p(tn|xn,w, σ2)

]
p(w|α)p(̂t|x̂,w, σ2). (8.8)

Figure 8.6 As in Figure 8.5 but with the nodes {tn} shaded
to indicate that the corresponding random vari-
ables have been set to their observed (training set)
values.
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w

α

σ2
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Figure 8.7 The polynomial regression model, corresponding
to Figure 8.6, showing also a new input value bx
together with the corresponding model prediction
bt.

tn

xn

N

w

α

t̂
σ2

x̂

The required predictive distribution for t̂ is then obtained, from the sum rule of
probability, by integrating out the model parameters w so that

p(̂t|x̂, x, t, α, σ2) ∝
∫

p(̂t, t,w|x̂, x, α, σ2) dw

where we are implicitly setting the random variables in t to the specific values ob-
served in the data set. The details of this calculation were discussed in Chapter 3.

8.1.2 Generative models
There are many situations in which we wish to draw samples from a given prob-

ability distribution. Although we shall devote the whole of Chapter 11 to a detailed
discussion of sampling methods, it is instructive to outline here one technique, called
ancestral sampling, which is particularly relevant to graphical models. Consider a
joint distribution p(x1, . . . , xK) over K variables that factorizes according to (8.5)
corresponding to a directed acyclic graph. We shall suppose that the variables have
been ordered such that there are no links from any node to any lower numbered node,
in other words each node has a higher number than any of its parents. Our goal is to
draw a sample x̂1, . . . , x̂K from the joint distribution.

To do this, we start with the lowest-numbered node and draw a sample from the
distribution p(x1), which we call x̂1. We then work through each of the nodes in or-
der, so that for node n we draw a sample from the conditional distribution p(xn|pan)
in which the parent variables have been set to their sampled values. Note that at each
stage, these parent values will always be available because they correspond to lower-
numbered nodes that have already been sampled. Techniques for sampling from
specific distributions will be discussed in detail in Chapter 11. Once we have sam-
pled from the final variable xK , we will have achieved our objective of obtaining a
sample from the joint distribution. To obtain a sample from some marginal distribu-
tion corresponding to a subset of the variables, we simply take the sampled values
for the required nodes and ignore the sampled values for the remaining nodes. For
example, to draw a sample from the distribution p(x2, x4), we simply sample from
the full joint distribution and then retain the values x̂2, x̂4 and discard the remaining
values {x̂j 	=2,4}.
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Figure 8.8 A graphical model representing the process by which
images of objects are created, in which the identity
of an object (a discrete variable) and the position and
orientation of that object (continuous variables) have
independent prior probabilities. The image (a vector
of pixel intensities) has a probability distribution that
is dependent on the identity of the object as well as
on its position and orientation.

Image

Object OrientationPosition

For practical applications of probabilistic models, it will typically be the higher-
numbered variables corresponding to terminal nodes of the graph that represent the
observations, with lower-numbered nodes corresponding to latent variables. The
primary role of the latent variables is to allow a complicated distribution over the
observed variables to be represented in terms of a model constructed from simpler
(typically exponential family) conditional distributions.

We can interpret such models as expressing the processes by which the observed
data arose. For instance, consider an object recognition task in which each observed
data point corresponds to an image (comprising a vector of pixel intensities) of one
of the objects. In this case, the latent variables might have an interpretation as the
position and orientation of the object. Given a particular observed image, our goal is
to find the posterior distribution over objects, in which we integrate over all possible
positions and orientations. We can represent this problem using a graphical model
of the form show in Figure 8.8.

The graphical model captures the causal process (Pearl, 1988) by which the ob-
served data was generated. For this reason, such models are often called generative
models. By contrast, the polynomial regression model described by Figure 8.5 is
not generative because there is no probability distribution associated with the input
variable x, and so it is not possible to generate synthetic data points from this model.
We could make it generative by introducing a suitable prior distribution p(x), at the
expense of a more complex model.

The hidden variables in a probabilistic model need not, however, have any ex-
plicit physical interpretation but may be introduced simply to allow a more complex
joint distribution to be constructed from simpler components. In either case, the
technique of ancestral sampling applied to a generative model mimics the creation
of the observed data and would therefore give rise to ‘fantasy’ data whose probability
distribution (if the model were a perfect representation of reality) would be the same
as that of the observed data. In practice, producing synthetic observations from a
generative model can prove informative in understanding the form of the probability
distribution represented by that model.

8.1.3 Discrete variables
We have discussed the importance of probability distributions that are members

of the exponential family, and we have seen that this family includes many well-Section 2.4
known distributions as particular cases. Although such distributions are relatively
simple, they form useful building blocks for constructing more complex probability
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Figure 8.9 (a) This fully-connected graph describes a general distribu-
tion over two K-state discrete variables having a total of
K2 − 1 parameters. (b) By dropping the link between the
nodes, the number of parameters is reduced to 2(K − 1).

(a)
x1 x2

(b)
x1 x2

distributions, and the framework of graphical models is very useful in expressing the
way in which these building blocks are linked together.

Such models have particularly nice properties if we choose the relationship be-
tween each parent-child pair in a directed graph to be conjugate, and we shall ex-
plore several examples of this shortly. Two cases are particularly worthy of note,
namely when the parent and child node each correspond to discrete variables and
when they each correspond to Gaussian variables, because in these two cases the
relationship can be extended hierarchically to construct arbitrarily complex directed
acyclic graphs. We begin by examining the discrete case.

The probability distribution p(x|µ) for a single discrete variable x having K
possible states (using the 1-of-K representation) is given by

p(x|µ) =
K∏

k=1

µxk

k (8.9)

and is governed by the parameters µ = (µ1, . . . , µK)T. Due to the constraint∑
k µk = 1, only K − 1 values for µk need to be specified in order to define the

distribution.
Now suppose that we have two discrete variables, x1 and x2, each of which has

K states, and we wish to model their joint distribution. We denote the probability of
observing both x1k = 1 and x2l = 1 by the parameter µkl, where x1k denotes the
kth component of x1, and similarly for x2l. The joint distribution can be written

p(x1,x2|µ) =
K∏

k=1

K∏
l=1

µx1kx2l

kl .

Because the parameters µkl are subject to the constraint
∑

k

∑
l µkl = 1, this distri-

bution is governed by K2 − 1 parameters. It is easily seen that the total number of
parameters that must be specified for an arbitrary joint distribution over M variables
is KM − 1 and therefore grows exponentially with the number M of variables.

Using the product rule, we can factor the joint distribution p(x1,x2) in the form
p(x2|x1)p(x1), which corresponds to a two-node graph with a link going from the
x1 node to the x2 node as shown in Figure 8.9(a). The marginal distribution p(x1)
is governed by K − 1 parameters, as before, Similarly, the conditional distribution
p(x2|x1) requires the specification of K − 1 parameters for each of the K possible
values of x1. The total number of parameters that must be specified in the joint
distribution is therefore (K − 1) + K(K − 1) = K2 − 1 as before.

Now suppose that the variables x1 and x2 were independent, corresponding to
the graphical model shown in Figure 8.9(b). Each variable is then described by
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Figure 8.10 This chain of M discrete nodes, each
having K states, requires the specification of K − 1 +
(M − 1)K(K − 1) parameters, which grows linearly
with the length M of the chain. In contrast, a fully con-
nected graph of M nodes would have KM − 1 param-
eters, which grows exponentially with M .

x1 x2 xM

a separate multinomial distribution, and the total number of parameters would be
2(K − 1). For a distribution over M independent discrete variables, each having K
states, the total number of parameters would be M(K − 1), which therefore grows
linearly with the number of variables. From a graphical perspective, we have reduced
the number of parameters by dropping links in the graph, at the expense of having a
restricted class of distributions.

More generally, if we have M discrete variables x1, . . . ,xM , we can model
the joint distribution using a directed graph with one variable corresponding to each
node. The conditional distribution at each node is given by a set of nonnegative pa-
rameters subject to the usual normalization constraint. If the graph is fully connected
then we have a completely general distribution having KM − 1 parameters, whereas
if there are no links in the graph the joint distribution factorizes into the product of
the marginals, and the total number of parameters is M(K − 1). Graphs having in-
termediate levels of connectivity allow for more general distributions than the fully
factorized one while requiring fewer parameters than the general joint distribution.
As an illustration, consider the chain of nodes shown in Figure 8.10. The marginal
distribution p(x1) requires K − 1 parameters, whereas each of the M − 1 condi-
tional distributions p(xi|xi−1), for i = 2, . . . , M , requires K(K − 1) parameters.
This gives a total parameter count of K−1+(M −1)K(K−1), which is quadratic
in K and which grows linearly (rather than exponentially) with the length M of the
chain.

An alternative way to reduce the number of independent parameters in a model
is by sharing parameters (also known as tying of parameters). For instance, in the
chain example of Figure 8.10, we can arrange that all of the conditional distributions
p(xi|xi−1), for i = 2, . . . , M , are governed by the same set of K(K−1) parameters.
Together with the K−1 parameters governing the distribution of x1, this gives a total
of K2 − 1 parameters that must be specified in order to define the joint distribution.

We can turn a graph over discrete variables into a Bayesian model by introduc-
ing Dirichlet priors for the parameters. From a graphical point of view, each node
then acquires an additional parent representing the Dirichlet distribution over the pa-
rameters associated with the corresponding discrete node. This is illustrated for the
chain model in Figure 8.11. The corresponding model in which we tie the parame-
ters governing the conditional distributions p(xi|xi−1), for i = 2, . . . , M , is shown
in Figure 8.12.

Another way of controlling the exponential growth in the number of parameters
in models of discrete variables is to use parameterized models for the conditional
distributions instead of complete tables of conditional probability values. To illus-
trate this idea, consider the graph in Figure 8.13 in which all of the nodes represent
binary variables. Each of the parent variables xi is governed by a single parame-
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Figure 8.11 An extension of the model of
Figure 8.10 to include Dirich-
let priors over the param-
eters governing the discrete
distributions.

x1 x2 xM

µ1 µ2 µM

Figure 8.12 As in Figure 8.11 but with a sin-
gle set of parameters µ shared
amongst all of the conditional
distributions p(xi|xi−1).

x1 x2 xM

µ1 µ

ter µi representing the probability p(xi = 1), giving M parameters in total for the
parent nodes. The conditional distribution p(y|x1, . . . , xM ), however, would require
2M parameters representing the probability p(y = 1) for each of the 2M possible
settings of the parent variables. Thus in general the number of parameters required
to specify this conditional distribution will grow exponentially with M . We can ob-
tain a more parsimonious form for the conditional distribution by using a logistic
sigmoid function acting on a linear combination of the parent variables, givingSection 2.4

p(y = 1|x1, . . . , xM ) = σ

(
w0 +

M∑
i=1

wixi

)
= σ(wTx) (8.10)

where σ(a) = (1+exp(−a))−1 is the logistic sigmoid, x = (x0, x1, . . . , xM )T is an
(M + 1)-dimensional vector of parent states augmented with an additional variable
x0 whose value is clamped to 1, and w = (w0, w1, . . . , wM )T is a vector of M + 1
parameters. This is a more restricted form of conditional distribution than the general
case but is now governed by a number of parameters that grows linearly with M . In
this sense, it is analogous to the choice of a restrictive form of covariance matrix (for
example, a diagonal matrix) in a multivariate Gaussian distribution. The motivation
for the logistic sigmoid representation was discussed in Section 4.2.

Figure 8.13 A graph comprising M parents x1, . . . , xM and a sin-
gle child y, used to illustrate the idea of parameterized
conditional distributions for discrete variables.

y

x1 xM
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8.1.4 Linear-Gaussian models
In the previous section, we saw how to construct joint probability distributions

over a set of discrete variables by expressing the variables as nodes in a directed
acyclic graph. Here we show how a multivariate Gaussian can be expressed as a
directed graph corresponding to a linear-Gaussian model over the component vari-
ables. This allows us to impose interesting structure on the distribution, with the
general Gaussian and the diagonal covariance Gaussian representing opposite ex-
tremes. Several widely used techniques are examples of linear-Gaussian models,
such as probabilistic principal component analysis, factor analysis, and linear dy-
namical systems (Roweis and Ghahramani, 1999). We shall make extensive use of
the results of this section in later chapters when we consider some of these techniques
in detail.

Consider an arbitrary directed acyclic graph over D variables in which node i
represents a single continuous random variable xi having a Gaussian distribution.
The mean of this distribution is taken to be a linear combination of the states of its
parent nodes pai of node i

p(xi|pai) = N
⎛⎝xi

∣∣∣∣∣∣
∑

j∈pai

wijxj + bi, vi

⎞⎠ (8.11)

where wij and bi are parameters governing the mean, and vi is the variance of the
conditional distribution for xi. The log of the joint distribution is then the log of the
product of these conditionals over all nodes in the graph and hence takes the form

ln p(x) =
D∑

i=1

ln p(xi|pai) (8.12)

= −
D∑

i=1

1
2vi

⎛⎝xi −
∑

j∈pai

wijxj − bi

⎞⎠2

+ const (8.13)

where x = (x1, . . . , xD)T and ‘const’ denotes terms independent of x. We see that
this is a quadratic function of the components of x, and hence the joint distribution
p(x) is a multivariate Gaussian.

We can determine the mean and covariance of the joint distribution recursively
as follows. Each variable xi has (conditional on the states of its parents) a Gaussian
distribution of the form (8.11) and so

xi =
∑

j∈pai

wijxj + bi +
√

viεi (8.14)

where εi is a zero mean, unit variance Gaussian random variable satisfying E[εi] = 0
and E[εiεj ] = Iij , where Iij is the i, j element of the identity matrix. Taking the
expectation of (8.14), we have

E[xi] =
∑

j∈pai

wijE[xj ] + bi. (8.15)
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Figure 8.14 A directed graph over three Gaussian variables,
with one missing link.

x1 x2 x3

Thus we can find the components of E[x] = (E[x1], . . . , E[xD])T by starting at the
lowest numbered node and working recursively through the graph (here we again
assume that the nodes are numbered such that each node has a higher number than
its parents). Similarly, we can use (8.14) and (8.15) to obtain the i, j element of the
covariance matrix for p(x) in the form of a recursion relation

cov[xi, xj ] = E [(xi − E[xi])(xj − E[xj ])]

= E

⎡⎣(xi − E[xi])

⎧⎨⎩ ∑
k∈paj

wjk(xk − E[xk]) +
√

vjεj

⎫⎬⎭
⎤⎦

=
∑

k∈paj

wjkcov[xi, xk] + Iijvj (8.16)

and so the covariance can similarly be evaluated recursively starting from the lowest
numbered node.

Let us consider two extreme cases. First of all, suppose that there are no links
in the graph, which therefore comprises D isolated nodes. In this case, there are no
parameters wij and so there are just D parameters bi and D parameters vi. From
the recursion relations (8.15) and (8.16), we see that the mean of p(x) is given by
(b1, . . . , bD)T and the covariance matrix is diagonal of the form diag(v1, . . . , vD).
The joint distribution has a total of 2D parameters and represents a set of D inde-
pendent univariate Gaussian distributions.

Now consider a fully connected graph in which each node has all lower num-
bered nodes as parents. The matrix wij then has i − 1 entries on the ith row and
hence is a lower triangular matrix (with no entries on the leading diagonal). Then
the total number of parameters wij is obtained by taking the number D2 of elements
in a D×D matrix, subtracting D to account for the absence of elements on the lead-
ing diagonal, and then dividing by 2 because the matrix has elements only below the
diagonal, giving a total of D(D−1)/2. The total number of independent parameters
{wij} and {vi} in the covariance matrix is therefore D(D + 1)/2 corresponding to
a general symmetric covariance matrix.Section 2.3

Graphs having some intermediate level of complexity correspond to joint Gaus-
sian distributions with partially constrained covariance matrices. Consider for ex-
ample the graph shown in Figure 8.14, which has a link missing between variables
x1 and x3. Using the recursion relations (8.15) and (8.16), we see that the mean and
covariance of the joint distribution are given byExercise 8.7

µ = (b1, b2 + w21b1, b3 + w32b2 + w32w21b1)
T (8.17)

Σ =

(
v1 w21v1 w32w21v1

w21v1 v2 + w2
21v1 w32(v2 + w2

21v1)
w32w21v1 w32(v2 + w2

21v1) v3 + w2
32(v2 + w2

21v1)

)
. (8.18)
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We can readily extend the linear-Gaussian graphical model to the case in which
the nodes of the graph represent multivariate Gaussian variables. In this case, we can
write the conditional distribution for node i in the form

p(xi|pai) = N
⎛⎝xi

∣∣∣∣∣∣
∑

j∈pai

Wijxj + bi,Σi

⎞⎠ (8.19)

where now Wij is a matrix (which is nonsquare if xi and xj have different dimen-
sionalities). Again it is easy to verify that the joint distribution over all variables is
Gaussian.

Note that we have already encountered a specific example of the linear-Gaussian
relationship when we saw that the conjugate prior for the mean µ of a GaussianSection 2.3.6
variable x is itself a Gaussian distribution over µ. The joint distribution over x and
µ is therefore Gaussian. This corresponds to a simple two-node graph in which
the node representing µ is the parent of the node representing x. The mean of the
distribution over µ is a parameter controlling a prior, and so it can be viewed as a
hyperparameter. Because the value of this hyperparameter may itself be unknown,
we can again treat it from a Bayesian perspective by introducing a prior over the
hyperparameter, sometimes called a hyperprior, which is again given by a Gaussian
distribution. This type of construction can be extended in principle to any level and is
an illustration of a hierarchical Bayesian model, of which we shall encounter further
examples in later chapters.

8.2. Conditional Independence

An important concept for probability distributions over multiple variables is that of
conditional independence (Dawid, 1980). Consider three variables a, b, and c, and
suppose that the conditional distribution of a, given b and c, is such that it does not
depend on the value of b, so that

p(a|b, c) = p(a|c). (8.20)

We say that a is conditionally independent of b given c. This can be expressed in a
slightly different way if we consider the joint distribution of a and b conditioned on
c, which we can write in the form

p(a, b|c) = p(a|b, c)p(b|c)
= p(a|c)p(b|c). (8.21)

where we have used the product rule of probability together with (8.20). Thus we
see that, conditioned on c, the joint distribution of a and b factorizes into the prod-
uct of the marginal distribution of a and the marginal distribution of b (again both
conditioned on c). This says that the variables a and b are statistically independent,
given c. Note that our definition of conditional independence will require that (8.20),
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Figure 8.15 The first of three examples of graphs over three variables
a, b, and c used to discuss conditional independence
properties of directed graphical models.

c

a b

or equivalently (8.21), must hold for every possible value of c, and not just for some
values. We shall sometimes use a shorthand notation for conditional independence
(Dawid, 1979) in which

a ⊥⊥ b | c (8.22)

denotes that a is conditionally independent of b given c and is equivalent to (8.20).
Conditional independence properties play an important role in using probabilis-

tic models for pattern recognition by simplifying both the structure of a model and
the computations needed to perform inference and learning under that model. We
shall see examples of this shortly.

If we are given an expression for the joint distribution over a set of variables in
terms of a product of conditional distributions (i.e., the mathematical representation
underlying a directed graph), then we could in principle test whether any poten-
tial conditional independence property holds by repeated application of the sum and
product rules of probability. In practice, such an approach would be very time con-
suming. An important and elegant feature of graphical models is that conditional
independence properties of the joint distribution can be read directly from the graph
without having to perform any analytical manipulations. The general framework
for achieving this is called d-separation, where the ‘d’ stands for ‘directed’ (Pearl,
1988). Here we shall motivate the concept of d-separation and give a general state-
ment of the d-separation criterion. A formal proof can be found in Lauritzen (1996).

8.2.1 Three example graphs
We begin our discussion of the conditional independence properties of directed

graphs by considering three simple examples each involving graphs having just three
nodes. Together, these will motivate and illustrate the key concepts of d-separation.
The first of the three examples is shown in Figure 8.15, and the joint distribution
corresponding to this graph is easily written down using the general result (8.5) to
give

p(a, b, c) = p(a|c)p(b|c)p(c). (8.23)

If none of the variables are observed, then we can investigate whether a and b are
independent by marginalizing both sides of (8.23) with respect to c to give

p(a, b) =
∑

c

p(a|c)p(b|c)p(c). (8.24)

In general, this does not factorize into the product p(a)p(b), and so

a 	⊥⊥ b | ∅ (8.25)
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Figure 8.16 As in Figure 8.15 but where we have conditioned on the
value of variable c.

c

a b

where ∅ denotes the empty set, and the symbol 	⊥⊥ means that the conditional inde-
pendence property does not hold in general. Of course, it may hold for a particular
distribution by virtue of the specific numerical values associated with the various
conditional probabilities, but it does not follow in general from the structure of the
graph.

Now suppose we condition on the variable c, as represented by the graph of
Figure 8.16. From (8.23), we can easily write down the conditional distribution of a
and b, given c, in the form

p(a, b|c) =
p(a, b, c)

p(c)
= p(a|c)p(b|c)

and so we obtain the conditional independence property

a ⊥⊥ b | c.
We can provide a simple graphical interpretation of this result by considering

the path from node a to node b via c. The node c is said to be tail-to-tail with re-
spect to this path because the node is connected to the tails of the two arrows, and
the presence of such a path connecting nodes a and b causes these nodes to be de-
pendent. However, when we condition on node c, as in Figure 8.16, the conditioned
node ‘blocks’ the path from a to b and causes a and b to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. The joint distribution
corresponding to this graph is again obtained from our general formula (8.5) to give

p(a, b, c) = p(a)p(c|a)p(b|c). (8.26)

First of all, suppose that none of the variables are observed. Again, we can test to
see if a and b are independent by marginalizing over c to give

p(a, b) = p(a)
∑

c

p(c|a)p(b|c) = p(a)p(b|a).

Figure 8.17 The second of our three examples of 3-node
graphs used to motivate the conditional indepen-
dence framework for directed graphical models.

a c b
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Figure 8.18 As in Figure 8.17 but now conditioning on node c. a c b

which in general does not factorize into p(a)p(b), and so

a 	⊥⊥ b | ∅ (8.27)

as before.
Now suppose we condition on node c, as shown in Figure 8.18. Using Bayes’

theorem, together with (8.26), we obtain

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(c|a)p(b|c)

p(c)
= p(a|c)p(b|c)

and so again we obtain the conditional independence property

a ⊥⊥ b | c.
As before, we can interpret these results graphically. The node c is said to be

head-to-tail with respect to the path from node a to node b. Such a path connects
nodes a and b and renders them dependent. If we now observe c, as in Figure 8.18,
then this observation ‘blocks’ the path from a to b and so we obtain the conditional
independence property a ⊥⊥ b | c.

Finally, we consider the third of our 3-node examples, shown by the graph in
Figure 8.19. As we shall see, this has a more subtle behaviour than the two previous
graphs.

The joint distribution can again be written down using our general result (8.5) to
give

p(a, b, c) = p(a)p(b)p(c|a, b). (8.28)

Consider first the case where none of the variables are observed. Marginalizing both
sides of (8.28) over c we obtain

p(a, b) = p(a)p(b)

Figure 8.19 The last of our three examples of 3-node graphs used to
explore conditional independence properties in graphi-
cal models. This graph has rather different properties
from the two previous examples.

c

a b
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Figure 8.20 As in Figure 8.19 but conditioning on the value of node
c. In this graph, the act of conditioning induces a depen-
dence between a and b.

c

a b

and so a and b are independent with no variables observed, in contrast to the two
previous examples. We can write this result as

a ⊥⊥ b | ∅. (8.29)

Now suppose we condition on c, as indicated in Figure 8.20. The conditional distri-
bution of a and b is then given by

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

which in general does not factorize into the product p(a)p(b), and so

a 	⊥⊥ b | c.
Thus our third example has the opposite behaviour from the first two. Graphically,
we say that node c is head-to-head with respect to the path from a to b because it
connects to the heads of the two arrows. When node c is unobserved, it ‘blocks’
the path, and the variables a and b are independent. However, conditioning on c
‘unblocks’ the path and renders a and b dependent.

There is one more subtlety associated with this third example that we need to
consider. First we introduce some more terminology. We say that node y is a de-
scendant of node x if there is a path from x to y in which each step of the path
follows the directions of the arrows. Then it can be shown that a head-to-head path
will become unblocked if either the node, or any of its descendants, is observed.Exercise 8.10

In summary, a tail-to-tail node or a head-to-tail node leaves a path unblocked
unless it is observed in which case it blocks the path. By contrast, a head-to-head
node blocks a path if it is unobserved, but once the node, and/or at least one of its
descendants, is observed the path becomes unblocked.

It is worth spending a moment to understand further the unusual behaviour of the
graph of Figure 8.20. Consider a particular instance of such a graph corresponding
to a problem with three binary random variables relating to the fuel system on a car,
as shown in Figure 8.21. The variables are called B, representing the state of a
battery that is either charged (B = 1) or flat (B = 0), F representing the state of
the fuel tank that is either full of fuel (F = 1) or empty (F = 0), and G, which is
the state of an electric fuel gauge and which indicates either full (G = 1) or empty
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G

B F

G

B F

G

B F

Figure 8.21 An example of a 3-node graph used to illustrate the phenomenon of ‘explaining away’. The three
nodes represent the state of the battery (B), the state of the fuel tank (F ) and the reading on the electric fuel
gauge (G). See the text for details.

(G = 0). The battery is either charged or flat, and independently the fuel tank is
either full or empty, with prior probabilities

p(B = 1) = 0.9
p(F = 1) = 0.9.

Given the state of the fuel tank and the battery, the fuel gauge reads full with proba-
bilities given by

p(G = 1|B = 1, F = 1) = 0.8
p(G = 1|B = 1, F = 0) = 0.2
p(G = 1|B = 0, F = 1) = 0.2
p(G = 1|B = 0, F = 0) = 0.1

so this is a rather unreliable fuel gauge! All remaining probabilities are determined
by the requirement that probabilities sum to one, and so we have a complete specifi-
cation of the probabilistic model.

Before we observe any data, the prior probability of the fuel tank being empty
is p(F = 0) = 0.1. Now suppose that we observe the fuel gauge and discover that
it reads empty, i.e., G = 0, corresponding to the middle graph in Figure 8.21. We
can use Bayes’ theorem to evaluate the posterior probability of the fuel tank being
empty. First we evaluate the denominator for Bayes’ theorem given by

p(G = 0) =
∑

B∈{0,1}

∑
F∈{0,1}

p(G = 0|B, F )p(B)p(F ) = 0.315 (8.30)

and similarly we evaluate

p(G = 0|F = 0) =
∑

B∈{0,1}
p(G = 0|B, F = 0)p(B) = 0.81 (8.31)

and using these results we have

p(F = 0|G = 0) =
p(G = 0|F = 0)p(F = 0)

p(G = 0)
� 0.257 (8.32)
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and so p(F = 0|G = 0) > p(F = 0). Thus observing that the gauge reads empty
makes it more likely that the tank is indeed empty, as we would intuitively expect.
Next suppose that we also check the state of the battery and find that it is flat, i.e.,
B = 0. We have now observed the states of both the fuel gauge and the battery, as
shown by the right-hand graph in Figure 8.21. The posterior probability that the fuel
tank is empty given the observations of both the fuel gauge and the battery state is
then given by

p(F = 0|G = 0, B = 0) =
p(G = 0|B = 0, F = 0)p(F = 0)∑

F∈{0,1} p(G = 0|B = 0, F )p(F )
� 0.111 (8.33)

where the prior probability p(B = 0) has cancelled between numerator and denom-
inator. Thus the probability that the tank is empty has decreased (from 0.257 to
0.111) as a result of the observation of the state of the battery. This accords with our
intuition that finding out that the battery is flat explains away the observation that the
fuel gauge reads empty. We see that the state of the fuel tank and that of the battery
have indeed become dependent on each other as a result of observing the reading
on the fuel gauge. In fact, this would also be the case if, instead of observing the
fuel gauge directly, we observed the state of some descendant of G. Note that the
probability p(F = 0|G = 0, B = 0) � 0.111 is greater than the prior probability
p(F = 0) = 0.1 because the observation that the fuel gauge reads zero still provides
some evidence in favour of an empty fuel tank.

8.2.2 D-separation
We now give a general statement of the d-separation property (Pearl, 1988) for

directed graphs. Consider a general directed graph in which A, B, and C are arbi-
trary nonintersecting sets of nodes (whose union may be smaller than the complete
set of nodes in the graph). We wish to ascertain whether a particular conditional
independence statement A ⊥⊥ B | C is implied by a given directed acyclic graph. To
do so, we consider all possible paths from any node in A to any node in B. Any such
path is said to be blocked if it includes a node such that either

(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the
node is in the set C, or

(b) the arrows meet head-to-head at the node, and neither the node, nor any of its
descendants, is in the set C.

If all paths are blocked, then A is said to be d-separated from B by C, and the joint
distribution over all of the variables in the graph will satisfy A ⊥⊥ B | C.

The concept of d-separation is illustrated in Figure 8.22. In graph (a), the path
from a to b is not blocked by node f because it is a tail-to-tail node for this path
and is not observed, nor is it blocked by node e because, although the latter is a
head-to-head node, it has a descendant c because is in the conditioning set. Thus
the conditional independence statement a ⊥⊥ b | c does not follow from this graph.
In graph (b), the path from a to b is blocked by node f because this is a tail-to-tail
node that is observed, and so the conditional independence property a ⊥⊥ b | f will
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Figure 8.22 Illustration of the con-
cept of d-separation. See the text for
details.
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be satisfied by any distribution that factorizes according to this graph. Note that this
path is also blocked by node e because e is a head-to-head node and neither it nor its
descendant are in the conditioning set.

For the purposes of d-separation, parameters such as α and σ2 in Figure 8.5,
indicated by small filled circles, behave in the same was as observed nodes. How-
ever, there are no marginal distributions associated with such nodes. Consequently
parameter nodes never themselves have parents and so all paths through these nodes
will always be tail-to-tail and hence blocked. Consequently they play no role in
d-separation.

Another example of conditional independence and d-separation is provided by
the concept of i.i.d. (independent identically distributed) data introduced in Sec-
tion 1.2.4. Consider the problem of finding the posterior distribution for the mean
of a univariate Gaussian distribution. This can be represented by the directed graphSection 2.3
shown in Figure 8.23 in which the joint distribution is defined by a prior p(µ) to-
gether with a set of conditional distributions p(xn|µ) for n = 1, . . . , N . In practice,
we observe D = {x1, . . . , xN} and our goal is to infer µ. Suppose, for a moment,
that we condition on µ and consider the joint distribution of the observations. Using
d-separation, we note that there is a unique path from any xi to any other xj 	=i and
that this path is tail-to-tail with respect to the observed node µ. Every such path is
blocked and so the observations D = {x1, . . . , xN} are independent given µ, so that

p(D|µ) =
N∏

n=1

p(xn|µ). (8.34)

Figure 8.23 (a) Directed graph corre-
sponding to the problem
of inferring the mean µ of
a univariate Gaussian dis-
tribution from observations
x1, . . . , xN . (b) The same
graph drawn using the plate
notation.
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Figure 8.24 A graphical representation of the ‘naive Bayes’
model for classification. Conditioned on the
class label z, the components of the observed
vector x = (x1, . . . , xD)T are assumed to be
independent.

z

x1 xD

However, if we integrate over µ, the observations are in general no longer indepen-
dent

p(D) =
∫ ∞

0

p(D|µ)p(µ) dµ 	=
N∏

n=1

p(xn). (8.35)

Here µ is a latent variable, because its value is not observed.
Another example of a model representing i.i.d. data is the graph in Figure 8.7

corresponding to Bayesian polynomial regression. Here the stochastic nodes corre-
spond to {tn}, w and t̂. We see that the node for w is tail-to-tail with respect to
the path from t̂ to any one of the nodes tn and so we have the following conditional
independence property

t̂ ⊥⊥ tn | w. (8.36)

Thus, conditioned on the polynomial coefficients w, the predictive distribution for
t̂ is independent of the training data {t1, . . . , tN}. We can therefore first use the
training data to determine the posterior distribution over the coefficients w and then
we can discard the training data and use the posterior distribution for w to make
predictions of t̂ for new input observations x̂.Section 3.3

A related graphical structure arises in an approach to classification called the
naive Bayes model, in which we use conditional independence assumptions to sim-
plify the model structure. Suppose our observed variable consists of a D-dimensional
vector x = (x1, . . . , xD)T, and we wish to assign observed values of x to one of K
classes. Using the 1-of-K encoding scheme, we can represent these classes by a K-
dimensional binary vector z. We can then define a generative model by introducing
a multinomial prior p(z|µ) over the class labels, where the kth component µk of µ
is the prior probability of class Ck, together with a conditional distribution p(x|z)
for the observed vector x. The key assumption of the naive Bayes model is that,
conditioned on the class z, the distributions of the input variables x1, . . . , xD are in-
dependent. The graphical representation of this model is shown in Figure 8.24. We
see that observation of z blocks the path between xi and xj for j 	= i (because such
paths are tail-to-tail at the node z) and so xi and xj are conditionally independent
given z. If, however, we marginalize out z (so that z is unobserved) the tail-to-tail
path from xi to xj is no longer blocked. This tells us that in general the marginal
density p(x) will not factorize with respect to the components of x. We encountered
a simple application of the naive Bayes model in the context of fusing data from
different sources for medical diagnosis in Section 1.5.

If we are given a labelled training set, comprising inputs {x1, . . . ,xN} together
with their class labels, then we can fit the naive Bayes model to the training data
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using maximum likelihood assuming that the data are drawn independently from
the model. The solution is obtained by fitting the model for each class separately
using the correspondingly labelled data. As an example, suppose that the probability
density within each class is chosen to be Gaussian. In this case, the naive Bayes
assumption then implies that the covariance matrix for each Gaussian is diagonal,
and the contours of constant density within each class will be axis-aligned ellipsoids.
The marginal density, however, is given by a superposition of diagonal Gaussians
(with weighting coefficients given by the class priors) and so will no longer factorize
with respect to its components.

The naive Bayes assumption is helpful when the dimensionality D of the input
space is high, making density estimation in the full D-dimensional space more chal-
lenging. It is also useful if the input vector contains both discrete and continuous
variables, since each can be represented separately using appropriate models (e.g.,
Bernoulli distributions for binary observations or Gaussians for real-valued vari-
ables). The conditional independence assumption of this model is clearly a strong
one that may lead to rather poor representations of the class-conditional densities.
Nevertheless, even if this assumption is not precisely satisfied, the model may still
give good classification performance in practice because the decision boundaries can
be insensitive to some of the details in the class-conditional densities, as illustrated
in Figure 1.27.

We have seen that a particular directed graph represents a specific decomposition
of a joint probability distribution into a product of conditional probabilities. The
graph also expresses a set of conditional independence statements obtained through
the d-separation criterion, and the d-separation theorem is really an expression of the
equivalence of these two properties. In order to make this clear, it is helpful to think
of a directed graph as a filter. Suppose we consider a particular joint probability
distribution p(x) over the variables x corresponding to the (nonobserved) nodes of
the graph. The filter will allow this distribution to pass through if, and only if, it can
be expressed in terms of the factorization (8.5) implied by the graph. If we present to
the filter the set of all possible distributions p(x) over the set of variables x, then the
subset of distributions that are passed by the filter will be denoted DF , for directed
factorization. This is illustrated in Figure 8.25. Alternatively, we can use the graph as
a different kind of filter by first listing all of the conditional independence properties
obtained by applying the d-separation criterion to the graph, and then allowing a
distribution to pass only if it satisfies all of these properties. If we present all possible
distributions p(x) to this second kind of filter, then the d-separation theorem tells us
that the set of distributions that will be allowed through is precisely the set DF .

It should be emphasized that the conditional independence properties obtained
from d-separation apply to any probabilistic model described by that particular di-
rected graph. This will be true, for instance, whether the variables are discrete or
continuous or a combination of these. Again, we see that a particular graph is de-
scribing a whole family of probability distributions.

At one extreme we have a fully connected graph that exhibits no conditional in-
dependence properties at all, and which can represent any possible joint probability
distribution over the given variables. The set DF will contain all possible distribu-
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p(x) DF

Figure 8.25 We can view a graphical model (in this case a directed graph) as a filter in which a prob-
ability distribution p(x) is allowed through the filter if, and only if, it satisfies the directed
factorization property (8.5). The set of all possible probability distributions p(x) that pass
through the filter is denoted DF . We can alternatively use the graph to filter distributions
according to whether they respect all of the conditional independencies implied by the
d-separation properties of the graph. The d-separation theorem says that it is the same
set of distributions DF that will be allowed through this second kind of filter.

tions p(x). At the other extreme, we have the fully disconnected graph, i.e., one
having no links at all. This corresponds to joint distributions which factorize into the
product of the marginal distributions over the variables comprising the nodes of the
graph.

Note that for any given graph, the set of distributions DF will include any dis-
tributions that have additional independence properties beyond those described by
the graph. For instance, a fully factorized distribution will always be passed through
the filter implied by any graph over the corresponding set of variables.

We end our discussion of conditional independence properties by exploring the
concept of a Markov blanket or Markov boundary. Consider a joint distribution
p(x1, . . . ,xD) represented by a directed graph having D nodes, and consider the
conditional distribution of a particular node with variables xi conditioned on all of
the remaining variables xj 	=i. Using the factorization property (8.5), we can express
this conditional distribution in the form

p(xi|x{j 	=i}) =
p(x1, . . . ,xD)∫
p(x1, . . . ,xD) dxi

=

∏
k

p(xk|pak)∫ ∏
k

p(xk|pak) dxi

in which the integral is replaced by a summation in the case of discrete variables. We
now observe that any factor p(xk|pak) that does not have any functional dependence
on xi can be taken outside the integral over xi, and will therefore cancel between
numerator and denominator. The only factors that remain will be the conditional
distribution p(xi|pai) for node xi itself, together with the conditional distributions
for any nodes xk such that node xi is in the conditioning set of p(xk|pak), in other
words for which xi is a parent of xk. The conditional p(xi|pai) will depend on the
parents of node xi, whereas the conditionals p(xk|pak) will depend on the children
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Figure 8.26 The Markov blanket of a node xi comprises the set
of parents, children and co-parents of the node. It
has the property that the conditional distribution of
xi, conditioned on all the remaining variables in the
graph, is dependent only on the variables in the
Markov blanket. xi

of xi as well as on the co-parents, in other words variables corresponding to parents
of node xk other than node xi. The set of nodes comprising the parents, the children
and the co-parents is called the Markov blanket and is illustrated in Figure 8.26. We
can think of the Markov blanket of a node xi as being the minimal set of nodes that
isolates xi from the rest of the graph. Note that it is not sufficient to include only the
parents and children of node xi because the phenomenon of explaining away means
that observations of the child nodes will not block paths to the co-parents. We must
therefore observe the co-parent nodes also.

8.3. Markov Random Fields

We have seen that directed graphical models specify a factorization of the joint dis-
tribution over a set of variables into a product of local conditional distributions. They
also define a set of conditional independence properties that must be satisfied by any
distribution that factorizes according to the graph. We turn now to the second ma-
jor class of graphical models that are described by undirected graphs and that again
specify both a factorization and a set of conditional independence relations.

A Markov random field, also known as a Markov network or an undirected
graphical model (Kindermann and Snell, 1980), has a set of nodes each of which
corresponds to a variable or group of variables, as well as a set of links each of
which connects a pair of nodes. The links are undirected, that is they do not carry
arrows. In the case of undirected graphs, it is convenient to begin with a discussion
of conditional independence properties.

8.3.1 Conditional independence properties
In the case of directed graphs, we saw that it was possible to test whether a par-Section 8.2

ticular conditional independence property holds by applying a graphical test called
d-separation. This involved testing whether or not the paths connecting two sets of
nodes were ‘blocked’. The definition of blocked, however, was somewhat subtle
due to the presence of paths having head-to-head nodes. We might ask whether it
is possible to define an alternative graphical semantics for probability distributions
such that conditional independence is determined by simple graph separation. This
is indeed the case and corresponds to undirected graphical models. By removing the
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Figure 8.27 An example of an undirected graph in
which every path from any node in set
A to any node in set B passes through
at least one node in set C. Conse-
quently the conditional independence
property A ⊥⊥ B | C holds for any
probability distribution described by this
graph.

A

C
B

directionality from the links of the graph, the asymmetry between parent and child
nodes is removed, and so the subtleties associated with head-to-head nodes no longer
arise.

Suppose that in an undirected graph we identify three sets of nodes, denoted A,
B, and C, and that we consider the conditional independence property

A ⊥⊥ B | C. (8.37)

To test whether this property is satisfied by a probability distribution defined by a
graph we consider all possible paths that connect nodes in set A to nodes in set
B. If all such paths pass through one or more nodes in set C, then all such paths are
‘blocked’ and so the conditional independence property holds. However, if there is at
least one such path that is not blocked, then the property does not necessarily hold, or
more precisely there will exist at least some distributions corresponding to the graph
that do not satisfy this conditional independence relation. This is illustrated with an
example in Figure 8.27. Note that this is exactly the same as the d-separation crite-
rion except that there is no ‘explaining away’ phenomenon. Testing for conditional
independence in undirected graphs is therefore simpler than in directed graphs.

An alternative way to view the conditional independence test is to imagine re-
moving all nodes in set C from the graph together with any links that connect to
those nodes. We then ask if there exists a path that connects any node in A to any
node in B. If there are no such paths, then the conditional independence property
must hold.

The Markov blanket for an undirected graph takes a particularly simple form,
because a node will be conditionally independent of all other nodes conditioned only
on the neighbouring nodes, as illustrated in Figure 8.28.

8.3.2 Factorization properties
We now seek a factorization rule for undirected graphs that will correspond to

the above conditional independence test. Again, this will involve expressing the joint
distribution p(x) as a product of functions defined over sets of variables that are local
to the graph. We therefore need to decide what is the appropriate notion of locality
in this case.
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Figure 8.28 For an undirected graph, the Markov blanket of a node
xi consists of the set of neighbouring nodes. It has the
property that the conditional distribution of xi, conditioned
on all the remaining variables in the graph, is dependent
only on the variables in the Markov blanket.

If we consider two nodes xi and xj that are not connected by a link, then these
variables must be conditionally independent given all other nodes in the graph. This
follows from the fact that there is no direct path between the two nodes, and all other
paths pass through nodes that are observed, and hence those paths are blocked. This
conditional independence property can be expressed as

p(xi, xj |x\{i,j}) = p(xi|x\{i,j})p(xj |x\{i,j}) (8.38)

where x\{i,j} denotes the set x of all variables with xi and xj removed. The factor-
ization of the joint distribution must therefore be such that xi and xj do not appear
in the same factor in order for the conditional independence property to hold for all
possible distributions belonging to the graph.

This leads us to consider a graphical concept called a clique, which is defined
as a subset of the nodes in a graph such that there exists a link between all pairs of
nodes in the subset. In other words, the set of nodes in a clique is fully connected.
Furthermore, a maximal clique is a clique such that it is not possible to include any
other nodes from the graph in the set without it ceasing to be a clique. These concepts
are illustrated by the undirected graph over four variables shown in Figure 8.29. This
graph has five cliques of two nodes given by {x1, x2}, {x2, x3}, {x3, x4}, {x4, x2},
and {x1, x3}, as well as two maximal cliques given by {x1, x2, x3} and {x2, x3, x4}.
The set {x1, x2, x3, x4} is not a clique because of the missing link from x1 to x4.

We can therefore define the factors in the decomposition of the joint distribution
to be functions of the variables in the cliques. In fact, we can consider functions
of the maximal cliques, without loss of generality, because other cliques must be
subsets of maximal cliques. Thus, if {x1, x2, x3} is a maximal clique and we define
an arbitrary function over this clique, then including another factor defined over a
subset of these variables would be redundant.

Let us denote a clique by C and the set of variables in that clique by xC . Then

Figure 8.29 A four-node undirected graph showing a clique (outlined in
green) and a maximal clique (outlined in blue). x1

x2

x3

x4
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the joint distribution is written as a product of potential functions ψC(xC) over the
maximal cliques of the graph

p(x) =
1
Z

∏
C

ψC(xC). (8.39)

Here the quantity Z, sometimes called the partition function, is a normalization con-
stant and is given by

Z =
∑
x

∏
C

ψC(xC) (8.40)

which ensures that the distribution p(x) given by (8.39) is correctly normalized.
By considering only potential functions which satisfy ψC(xC) � 0 we ensure that
p(x) � 0. In (8.40) we have assumed that x comprises discrete variables, but the
framework is equally applicable to continuous variables, or a combination of the two,
in which the summation is replaced by the appropriate combination of summation
and integration.

Note that we do not restrict the choice of potential functions to those that have a
specific probabilistic interpretation as marginal or conditional distributions. This is
in contrast to directed graphs in which each factor represents the conditional distribu-
tion of the corresponding variable, conditioned on the state of its parents. However,
in special cases, for instance where the undirected graph is constructed by starting
with a directed graph, the potential functions may indeed have such an interpretation,
as we shall see shortly.

One consequence of the generality of the potential functions ψC(xC) is that
their product will in general not be correctly normalized. We therefore have to in-
troduce an explicit normalization factor given by (8.40). Recall that for directed
graphs, the joint distribution was automatically normalized as a consequence of the
normalization of each of the conditional distributions in the factorization.

The presence of this normalization constant is one of the major limitations of
undirected graphs. If we have a model with M discrete nodes each having K states,
then the evaluation of the normalization term involves summing over KM states and
so (in the worst case) is exponential in the size of the model. The partition function
is needed for parameter learning because it will be a function of any parameters that
govern the potential functions ψC(xC). However, for evaluation of local conditional
distributions, the partition function is not needed because a conditional is the ratio
of two marginals, and the partition function cancels between numerator and denom-
inator when evaluating this ratio. Similarly, for evaluating local marginal probabil-
ities we can work with the unnormalized joint distribution and then normalize the
marginals explicitly at the end. Provided the marginals only involves a small number
of variables, the evaluation of their normalization coefficient will be feasible.

So far, we have discussed the notion of conditional independence based on sim-
ple graph separation and we have proposed a factorization of the joint distribution
that is intended to correspond to this conditional independence structure. However,
we have not made any formal connection between conditional independence and
factorization for undirected graphs. To do so we need to restrict attention to poten-
tial functions ψC(xC) that are strictly positive (i.e., never zero or negative for any
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choice of xC). Given this restriction, we can make a precise relationship between
factorization and conditional independence.

To do this we again return to the concept of a graphical model as a filter, corre-
sponding to Figure 8.25. Consider the set of all possible distributions defined over
a fixed set of variables corresponding to the nodes of a particular undirected graph.
We can define UI to be the set of such distributions that are consistent with the set
of conditional independence statements that can be read from the graph using graph
separation. Similarly, we can define UF to be the set of such distributions that can
be expressed as a factorization of the form (8.39) with respect to the maximal cliques
of the graph. The Hammersley-Clifford theorem (Clifford, 1990) states that the sets
UI and UF are identical.

Because we are restricted to potential functions which are strictly positive it is
convenient to express them as exponentials, so that

ψC(xC) = exp {−E(xC)} (8.41)

where E(xC) is called an energy function, and the exponential representation is
called the Boltzmann distribution. The joint distribution is defined as the product of
potentials, and so the total energy is obtained by adding the energies of each of the
maximal cliques.

In contrast to the factors in the joint distribution for a directed graph, the po-
tentials in an undirected graph do not have a specific probabilistic interpretation.
Although this gives greater flexibility in choosing the potential functions, because
there is no normalization constraint, it does raise the question of how to motivate a
choice of potential function for a particular application. This can be done by view-
ing the potential function as expressing which configurations of the local variables
are preferred to others. Global configurations that have a relatively high probability
are those that find a good balance in satisfying the (possibly conflicting) influences
of the clique potentials. We turn now to a specific example to illustrate the use of
undirected graphs.

8.3.3 Illustration: Image de-noising
We can illustrate the application of undirected graphs using an example of noise

removal from a binary image (Besag, 1974; Geman and Geman, 1984; Besag, 1986).
Although a very simple example, this is typical of more sophisticated applications.
Let the observed noisy image be described by an array of binary pixel values yi ∈
{−1, +1}, where the index i = 1, . . . , D runs over all pixels. We shall suppose
that the image is obtained by taking an unknown noise-free image, described by
binary pixel values xi ∈ {−1, +1} and randomly flipping the sign of pixels with
some small probability. An example binary image, together with a noise corrupted
image obtained by flipping the sign of the pixels with probability 10%, is shown in
Figure 8.30. Given the noisy image, our goal is to recover the original noise-free
image.

Because the noise level is small, we know that there will be a strong correlation
between xi and yi. We also know that neighbouring pixels xi and xj in an image
are strongly correlated. This prior knowledge can be captured using the Markov
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Figure 8.30 Illustration of image de-noising using a Markov random field. The top row shows the original
binary image on the left and the corrupted image after randomly changing 10% of the pixels on the right. The
bottom row shows the restored images obtained using iterated conditional models (ICM) on the left and using
the graph-cut algorithm on the right. ICM produces an image where 96% of the pixels agree with the original
image, whereas the corresponding number for graph-cut is 99%.

random field model whose undirected graph is shown in Figure 8.31. This graph has
two types of cliques, each of which contains two variables. The cliques of the form
{xi, yi} have an associated energy function that expresses the correlation between
these variables. We choose a very simple energy function for these cliques of the
form −ηxiyi where η is a positive constant. This has the desired effect of giving a
lower energy (thus encouraging a higher probability) when xi and yi have the same
sign and a higher energy when they have the opposite sign.

The remaining cliques comprise pairs of variables {xi, xj} where i and j are
indices of neighbouring pixels. Again, we want the energy to be lower when the
pixels have the same sign than when they have the opposite sign, and so we choose
an energy given by −βxixj where β is a positive constant.

Because a potential function is an arbitrary, nonnegative function over a maximal
clique, we can multiply it by any nonnegative functions of subsets of the clique, or
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Figure 8.31 An undirected graphical model representing a
Markov random field for image de-noising, in
which xi is a binary variable denoting the state
of pixel i in the unknown noise-free image, and yi

denotes the corresponding value of pixel i in the
observed noisy image.

xi

yi

equivalently we can add the corresponding energies. In this example, this allows us
to add an extra term hxi for each pixel i in the noise-free image. Such a term has
the effect of biasing the model towards pixel values that have one particular sign in
preference to the other.

The complete energy function for the model then takes the form

E(x,y) = h
∑

i

xi − β
∑
{i,j}

xixj − η
∑

i

xiyi (8.42)

which defines a joint distribution over x and y given by

p(x,y) =
1
Z

exp{−E(x,y)}. (8.43)

We now fix the elements of y to the observed values given by the pixels of the
noisy image, which implicitly defines a conditional distribution p(x|y) over noise-
free images. This is an example of the Ising model, which has been widely studied in
statistical physics. For the purposes of image restoration, we wish to find an image x
having a high probability (ideally the maximum probability). To do this we shall use
a simple iterative technique called iterated conditional modes, or ICM (Kittler and
Föglein, 1984), which is simply an application of coordinate-wise gradient ascent.
The idea is first to initialize the variables {xi}, which we do by simply setting xi =
yi for all i. Then we take one node xj at a time and we evaluate the total energy
for the two possible states xj = +1 and xj = −1, keeping all other node variables
fixed, and set xj to whichever state has the lower energy. This will either leave
the probability unchanged, if xj is unchanged, or will increase it. Because only
one variable is changed, this is a simple local computation that can be performedExercise 8.13
efficiently. We then repeat the update for another site, and so on, until some suitable
stopping criterion is satisfied. The nodes may be updated in a systematic way, for
instance by repeatedly raster scanning through the image, or by choosing nodes at
random.

If we have a sequence of updates in which every site is visited at least once,
and in which no changes to the variables are made, then by definition the algorithm
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Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.45)
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Figure 8.33 Example of a simple
directed graph (a) and the corre-
sponding moral graph (b).

x1 x3

x4

x2

(a)

x1 x3

x4

x2

(b)

This is easily done by identifying

ψ1,2(x1, x2) = p(x1)p(x2|x1)
ψ2,3(x2, x3) = p(x3|x2)

...

ψN−1,N (xN−1, xN ) = p(xN |xN−1)

where we have absorbed the marginal p(x1) for the first node into the first potential
function. Note that in this case, the partition function Z = 1.

Let us consider how to generalize this construction, so that we can convert any
distribution specified by a factorization over a directed graph into one specified by a
factorization over an undirected graph. This can be achieved if the clique potentials
of the undirected graph are given by the conditional distributions of the directed
graph. In order for this to be valid, we must ensure that the set of variables that
appears in each of the conditional distributions is a member of at least one clique of
the undirected graph. For nodes on the directed graph having just one parent, this is
achieved simply by replacing the directed link with an undirected link. However, for
nodes in the directed graph having more than one parent, this is not sufficient. These
are nodes that have ‘head-to-head’ paths encountered in our discussion of conditional
independence. Consider a simple directed graph over 4 nodes shown in Figure 8.33.
The joint distribution for the directed graph takes the form

p(x) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3). (8.46)

We see that the factor p(x4|x1, x2, x3) involves the four variables x1, x2, x3, and
x4, and so these must all belong to a single clique if this conditional distribution is
to be absorbed into a clique potential. To ensure this, we add extra links between
all pairs of parents of the node x4. Anachronistically, this process of ‘marrying
the parents’ has become known as moralization, and the resulting undirected graph,
after dropping the arrows, is called the moral graph. It is important to observe that
the moral graph in this example is fully connected and so exhibits no conditional
independence properties, in contrast to the original directed graph.

Thus in general to convert a directed graph into an undirected graph, we first add
additional undirected links between all pairs of parents for each node in the graph and
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then drop the arrows on the original links to give the moral graph. Then we initialize
all of the clique potentials of the moral graph to 1. We then take each conditional
distribution factor in the original directed graph and multiply it into one of the clique
potentials. There will always exist at least one maximal clique that contains all of
the variables in the factor as a result of the moralization step. Note that in all cases
the partition function is given by Z = 1.

The process of converting a directed graph into an undirected graph plays an
important role in exact inference techniques such as the junction tree algorithm.Section 8.4
Converting from an undirected to a directed representation is much less common
and in general presents problems due to the normalization constraints.

We saw that in going from a directed to an undirected representation we had to
discard some conditional independence properties from the graph. Of course, we
could always trivially convert any distribution over a directed graph into one over an
undirected graph by simply using a fully connected undirected graph. This would,
however, discard all conditional independence properties and so would be vacuous.
The process of moralization adds the fewest extra links and so retains the maximum
number of independence properties.

We have seen that the procedure for determining the conditional independence
properties is different between directed and undirected graphs. It turns out that the
two types of graph can express different conditional independence properties, and
it is worth exploring this issue in more detail. To do so, we return to the view of
a specific (directed or undirected) graph as a filter, so that the set of all possibleSection 8.2
distributions over the given variables could be reduced to a subset that respects the
conditional independencies implied by the graph. A graph is said to be a D map
(for ‘dependency map’) of a distribution if every conditional independence statement
satisfied by the distribution is reflected in the graph. Thus a completely disconnected
graph (no links) will be a trivial D map for any distribution.

Alternatively, we can consider a specific distribution and ask which graphs have
the appropriate conditional independence properties. If every conditional indepen-
dence statement implied by a graph is satisfied by a specific distribution, then the
graph is said to be an I map (for ‘independence map’) of that distribution. Clearly a
fully connected graph will be a trivial I map for any distribution.

If it is the case that every conditional independence property of the distribution
is reflected in the graph, and vice versa, then the graph is said to be a perfect map for

Figure 8.34 Venn diagram illustrating the set of all distributions
P over a given set of variables, together with the
set of distributions D that can be represented as a
perfect map using a directed graph, and the set U
that can be represented as a perfect map using an
undirected graph.

P
UD
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Figure 8.35 A directed graph whose conditional independence
properties cannot be expressed using an undirected
graph over the same three variables.

C

A B

that distribution. A perfect map is therefore both an I map and a D map.
Consider the set of distributions such that for each distribution there exists a

directed graph that is a perfect map. This set is distinct from the set of distributions
such that for each distribution there exists an undirected graph that is a perfect map.
In addition there are distributions for which neither directed nor undirected graphs
offer a perfect map. This is illustrated as a Venn diagram in Figure 8.34.

Figure 8.35 shows an example of a directed graph that is a perfect map for
a distribution satisfying the conditional independence properties A ⊥⊥ B | ∅ and
A 	⊥⊥ B | C. There is no corresponding undirected graph over the same three vari-
ables that is a perfect map.

Conversely, consider the undirected graph over four variables shown in Fig-
ure 8.36. This graph exhibits the properties A 	⊥⊥ B | ∅, C ⊥⊥ D | A ∪ B and
A ⊥⊥ B | C∪D. There is no directed graph over four variables that implies the same
set of conditional independence properties.

The graphical framework can be extended in a consistent way to graphs that
include both directed and undirected links. These are called chain graphs (Lauritzen
and Wermuth, 1989; Frydenberg, 1990), and contain the directed and undirected
graphs considered so far as special cases. Although such graphs can represent a
broader class of distributions than either directed or undirected alone, there remain
distributions for which even a chain graph cannot provide a perfect map. Chain
graphs are not discussed further in this book.

Figure 8.36 An undirected graph whose conditional independence
properties cannot be expressed in terms of a directed
graph over the same variables.

A

C

B

D

8.4. Inference in Graphical Models

We turn now to the problem of inference in graphical models, in which some of
the nodes in a graph are clamped to observed values, and we wish to compute the
posterior distributions of one or more subsets of other nodes. As we shall see, we
can exploit the graphical structure both to find efficient algorithms for inference, and
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Figure 8.37 A graphical representation of Bayes’ theorem.
See the text for details.

x

y

x

y

x

y

(a) (b) (c)

to make the structure of those algorithms transparent. Specifically, we shall see that
many algorithms can be expressed in terms of the propagation of local messages
around the graph. In this section, we shall focus primarily on techniques for exact
inference, and in Chapter 10 we shall consider a number of approximate inference
algorithms.

To start with, let us consider the graphical interpretation of Bayes’ theorem.
Suppose we decompose the joint distribution p(x, y) over two variables x and y into
a product of factors in the form p(x, y) = p(x)p(y|x). This can be represented by
the directed graph shown in Figure 8.37(a). Now suppose we observe the value of
y, as indicated by the shaded node in Figure 8.37(b). We can view the marginal
distribution p(x) as a prior over the latent variable x, and our goal is to infer the
corresponding posterior distribution over x. Using the sum and product rules of
probability we can evaluate

p(y) =
∑
x′

p(y|x′)p(x′) (8.47)

which can then be used in Bayes’ theorem to calculate

p(x|y) =
p(y|x)p(x)

p(y)
. (8.48)

Thus the joint distribution is now expressed in terms of p(y) and p(x|y). From a
graphical perspective, the joint distribution p(x, y) is now represented by the graph
shown in Figure 8.37(c), in which the direction of the arrow is reversed. This is the
simplest example of an inference problem for a graphical model.

8.4.1 Inference on a chain
Now consider a more complex problem involving the chain of nodes of the form

shown in Figure 8.32. This example will lay the foundation for a discussion of exact
inference in more general graphs later in this section.

Specifically, we shall consider the undirected graph in Figure 8.32(b). We have
already seen that the directed chain can be transformed into an equivalent undirected
chain. Because the directed graph does not have any nodes with more than one
parent, this does not require the addition of any extra links, and the directed and
undirected versions of this graph express exactly the same set of conditional inde-
pendence statements.



8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN ) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN ) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express
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the desired marginal in the form

p(xn) =
1
Z⎡⎣∑

xn−1

ψn−1,n(xn−1, xn) · · ·
[∑

x2

ψ2,3(x2, x3)

[∑
x1

ψ1,2(x1, x2)

]]
· · ·

⎤⎦
︸ ︷︷ ︸

µα(xn)⎡⎣∑
xn+1

ψn,n+1(xn, xn+1) · · ·
[∑

xN

ψN−1,N (xN−1, xN )

]
· · ·

⎤⎦
︸ ︷︷ ︸

µβ(xn)

. (8.52)

The reader is encouraged to study this re-ordering carefully as the underlying idea
forms the basis for the later discussion of the general sum-product algorithm. Here
the key concept that we are exploiting is that multiplication is distributive over addi-
tion, so that

ab + ac = a(b + c) (8.53)

in which the left-hand side involves three arithmetic operations whereas the right-
hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal using
this re-ordered expression. We have to perform N − 1 summations each of which is
over K states and each of which involves a function of two variables. For instance,
the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
K × K numbers. We have to sum this table over x1 for each value of x2 and so this
has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwards
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Figure 8.38 The marginal distribution
p(xn) for a node xn along the chain is ob-
tained by multiplying the two messages
µα(xn) and µβ(xn), and then normaliz-
ing. These messages can themselves
be evaluated recursively by passing mes-
sages from both ends of the chain to-
wards node xn.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

along the chain to node xn from node xn+1. Note that each of the messages com-
prises a set of K values, one for each choice of xn, and so the product of two mes-
sages should be interpreted as the point-wise multiplication of the elements of the
two messages to give another set of K values.

The message µα(xn) can be evaluated recursively because

µα(xn) =
∑
xn−1

ψn−1,n(xn−1, xn)

⎡⎣∑
xn−2

· · ·
⎤⎦

=
∑
xn−1

ψn−1,n(xn−1, xn)µα(xn−1). (8.55)

We therefore first evaluate

µα(x2) =
∑
x1

ψ1,2(x1, x2) (8.56)

and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using

µβ(xn) =
∑
xn+1

ψn+1,n(xn+1, xn)

⎡⎣∑
xn+2

· · ·
⎤⎦

=
∑
xn+1

ψn+1,n(xn+1, xn)µβ(xn+1). (8.57)

This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).
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Now suppose we wish to evaluate the marginals p(xn) for every node n ∈
{1, . . . , N} in the chain. Simply applying the above procedure separately for each
node will have computational cost that is O(N2M2). However, such an approach
would be very wasteful of computation. For instance, to find p(x1) we need to prop-
agate a message µβ(·) from node xN back to node x2. Similarly, to evaluate p(x2)
we need to propagate a messages µβ(·) from node xN back to node x3. This will
involve much duplicated computation because most of the messages will be identical
in the two cases.

Suppose instead we first launch a message µβ(xN−1) starting from node xN

and propagate corresponding messages all the way back to node x1, and suppose we
similarly launch a message µα(x2) starting from node x1 and propagate the corre-
sponding messages all the way forward to node xN . Provided we store all of the
intermediate messages along the way, then any node can evaluate its marginal sim-
ply by applying (8.54). The computational cost is only twice that for finding the
marginal of a single node, rather than N times as much. Observe that a message
has passed once in each direction across each link in the graph. Note also that the
normalization constant Z need be evaluated only once, using any convenient node.

If some of the nodes in the graph are observed, then the corresponding variables
are simply clamped to their observed values and there is no summation. To see
this, note that the effect of clamping a variable xn to an observed value x̂n can
be expressed by multiplying the joint distribution by (one or more copies of) an
additional function I(xn, x̂n), which takes the value 1 when xn = x̂n and the value
0 otherwise. One such function can then be absorbed into each of the potentials that
contain xn. Summations over xn then contain only one term in which xn = x̂n.

Now suppose we wish to calculate the joint distribution p(xn−1, xn) for two
neighbouring nodes on the chain. This is similar to the evaluation of the marginal
for a single node, except that there are now two variables that are not summed out.
A few moments thought will show that the required joint distribution can be writtenExercise 8.15
in the form

p(xn−1, xn) =
1
Z

µα(xn−1)ψn−1,n(xn−1, xn)µβ(xn). (8.58)

Thus we can obtain the joint distributions over all of the sets of variables in each
of the potentials directly once we have completed the message passing required to
obtain the marginals.

This is a useful result because in practice we may wish to use parametric forms
for the clique potentials, or equivalently for the conditional distributions if we started
from a directed graph. In order to learn the parameters of these potentials in situa-
tions where not all of the variables are observed, we can employ the EM algorithm,Chapter 9
and it turns out that the local joint distributions of the cliques, conditioned on any
observed data, is precisely what is needed in the E step. We shall consider some
examples of this in detail in Chapter 13.

8.4.2 Trees
We have seen that exact inference on a graph comprising a chain of nodes can be

performed efficiently in time that is linear in the number of nodes, using an algorithm
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Figure 8.39 Examples of tree-
structured graphs, showing (a) an
undirected tree, (b) a directed tree,
and (c) a directed polytree.

(a) (b) (c)

that can be interpreted in terms of messages passed along the chain. More generally,
inference can be performed efficiently using local message passing on a broader
class of graphs called trees. In particular, we shall shortly generalize the message
passing formalism derived above for chains to give the sum-product algorithm, which
provides an efficient framework for exact inference in tree-structured graphs.

In the case of an undirected graph, a tree is defined as a graph in which there
is one, and only one, path between any pair of nodes. Such graphs therefore do not
have loops. In the case of directed graphs, a tree is defined such that there is a single
node, called the root, which has no parents, and all other nodes have one parent. If
we convert a directed tree into an undirected graph, we see that the moralization step
will not add any links as all nodes have at most one parent, and as a consequence the
corresponding moralized graph will be an undirected tree. Examples of undirected
and directed trees are shown in Figure 8.39(a) and 8.39(b). Note that a distribution
represented as a directed tree can easily be converted into one represented by an
undirected tree, and vice versa.Exercise 8.18

If there are nodes in a directed graph that have more than one parent, but there is
still only one path (ignoring the direction of the arrows) between any two nodes, then
the graph is a called a polytree, as illustrated in Figure 8.39(c). Such a graph will
have more than one node with the property of having no parents, and furthermore,
the corresponding moralized undirected graph will have loops.

8.4.3 Factor graphs
The sum-product algorithm that we derive in the next section is applicable to

undirected and directed trees and to polytrees. It can be cast in a particularly simple
and general form if we first introduce a new graphical construction called a factor
graph (Frey, 1998; Kschischnang et al., 2001).

Both directed and undirected graphs allow a global function of several vari-
ables to be expressed as a product of factors over subsets of those variables. Factor
graphs make this decomposition explicit by introducing additional nodes for the fac-
tors themselves in addition to the nodes representing the variables. They also allow
us to be more explicit about the details of the factorization, as we shall see.

Let us write the joint distribution over a set of variables in the form of a product
of factors

p(x) =
∏

s

fs(xs) (8.59)

where xs denotes a subset of the variables. For convenience, we shall denote the



400 8. GRAPHICAL MODELS

Figure 8.40 Example of a factor graph, which corresponds
to the factorization (8.60).

x1 x2 x3

fa fb fc fd

individual variables by xi, however, as in earlier discussions, these can comprise
groups of variables (such as vectors or matrices). Each factor fs is a function of a
corresponding set of variables xs.

Directed graphs, whose factorization is defined by (8.5), represent special cases
of (8.59) in which the factors fs(xs) are local conditional distributions. Similarly,
undirected graphs, given by (8.39), are a special case in which the factors are po-
tential functions over the maximal cliques (the normalizing coefficient 1/Z can be
viewed as a factor defined over the empty set of variables).

In a factor graph, there is a node (depicted as usual by a circle) for every variable
in the distribution, as was the case for directed and undirected graphs. There are also
additional nodes (depicted by small squares) for each factor fs(xs) in the joint dis-
tribution. Finally, there are undirected links connecting each factor node to all of the
variables nodes on which that factor depends. Consider, for example, a distribution
that is expressed in terms of the factorization

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). (8.60)

This can be expressed by the factor graph shown in Figure 8.40. Note that there are
two factors fa(x1, x2) and fb(x1, x2) that are defined over the same set of variables.
In an undirected graph, the product of two such factors would simply be lumped
together into the same clique potential. Similarly, fc(x2, x3) and fd(x3) could be
combined into a single potential over x2 and x3. The factor graph, however, keeps
such factors explicit and so is able to convey more detailed information about the
underlying factorization.

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fa

fb

(c)

Figure 8.41 (a) An undirected graph with a single clique potential ψ(x1, x2, x3). (b) A factor graph with factor
f(x1, x2, x3) = ψ(x1, x2, x3) representing the same distribution as the undirected graph. (c) A different factor
graph representing the same distribution, whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ψ(x1, x2, x3).
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Figure 8.42 (a) A directed graph with the factorization p(x1)p(x2)p(x3|x1, x2). (b) A factor graph representing
the same distribution as the directed graph, whose factor satisfies f(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2). (c)
A different factor graph representing the same distribution with factors fa(x1) = p(x1), fb(x2) = p(x2) and
fc(x1, x2, x3) = p(x3|x1, x2).

Factor graphs are said to be bipartite because they consist of two distinct kinds
of nodes, and all links go between nodes of opposite type. In general, factor graphs
can therefore always be drawn as two rows of nodes (variable nodes at the top and
factor nodes at the bottom) with links between the rows, as shown in the example in
Figure 8.40. In some situations, however, other ways of laying out the graph may
be more intuitive, for example when the factor graph is derived from a directed or
undirected graph, as we shall see.

If we are given a distribution that is expressed in terms of an undirected graph,
then we can readily convert it to a factor graph. To do this, we create variable nodes
corresponding to the nodes in the original undirected graph, and then create addi-
tional factor nodes corresponding to the maximal cliques xs. The factors fs(xs) are
then set equal to the clique potentials. Note that there may be several different factor
graphs that correspond to the same undirected graph. These concepts are illustrated
in Figure 8.41.

Similarly, to convert a directed graph to a factor graph, we simply create variable
nodes in the factor graph corresponding to the nodes of the directed graph, and then
create factor nodes corresponding to the conditional distributions, and then finally
add the appropriate links. Again, there can be multiple factor graphs all of which
correspond to the same directed graph. The conversion of a directed graph to a
factor graph is illustrated in Figure 8.42.

We have already noted the importance of tree-structured graphs for performing
efficient inference. If we take a directed or undirected tree and convert it into a factor
graph, then the result will again be a tree (in other words, the factor graph will have
no loops, and there will be one and only one path connecting any two nodes). In
the case of a directed polytree, conversion to an undirected graph results in loops
due to the moralization step, whereas conversion to a factor graph again results in a
tree, as illustrated in Figure 8.43. In fact, local cycles in a directed graph due to
links connecting parents of a node can be removed on conversion to a factor graph
by defining the appropriate factor function, as shown in Figure 8.44.

We have seen that multiple different factor graphs can represent the same di-
rected or undirected graph. This allows factor graphs to be more specific about the



402 8. GRAPHICAL MODELS

(a) (b) (c)

Figure 8.43 (a) A directed polytree. (b) The result of converting the polytree into an undirected graph showing
the creation of loops. (c) The result of converting the polytree into a factor graph, which retains the tree structure.

precise form of the factorization. Figure 8.45 shows an example of a fully connected
undirected graph along with two different factor graphs. In (b), the joint distri-
bution is given by a general form p(x) = f(x1, x2, x3), whereas in (c), it is given
by the more specific factorization p(x) = fa(x1, x2)fb(x1, x3)fc(x2, x3). It should
be emphasized that the factorization in (c) does not correspond to any conditional
independence properties.

8.4.4 The sum-product algorithm
We shall now make use of the factor graph framework to derive a powerful class

of efficient, exact inference algorithms that are applicable to tree-structured graphs.
Here we shall focus on the problem of evaluating local marginals over nodes or
subsets of nodes, which will lead us to the sum-product algorithm. Later we shall
modify the technique to allow the most probable state to be found, giving rise to the
max-sum algorithm.

Also we shall suppose that all of the variables in the model are discrete, and
so marginalization corresponds to performing sums. The framework, however, is
equally applicable to linear-Gaussian models in which case marginalization involves
integration, and we shall consider an example of this in detail when we discuss linear
dynamical systems.Section 13.3

Figure 8.44 (a) A fragment of a di-
rected graph having a lo-
cal cycle. (b) Conversion
to a fragment of a factor
graph having a tree struc-
ture, in which f(x1, x2, x3) =
p(x1)p(x2|x1)p(x3|x1, x2).

x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)
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x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)

x1 x2

x3

fa

fcfb

(c)

Figure 8.45 (a) A fully connected undirected graph. (b) and (c) Two factor graphs each of which corresponds
to the undirected graph in (a).

There is an algorithm for exact inference on directed graphs without loops known
as belief propagation (Pearl, 1988; Lauritzen and Spiegelhalter, 1988), and is equiv-
alent to a special case of the sum-product algorithm. Here we shall consider only the
sum-product algorithm because it is simpler to derive and to apply, as well as being
more general.

We shall assume that the original graph is an undirected tree or a directed tree or
polytree, so that the corresponding factor graph has a tree structure. We first convert
the original graph into a factor graph so that we can deal with both directed and
undirected models using the same framework. Our goal is to exploit the structure of
the graph to achieve two things: (i) to obtain an efficient, exact inference algorithm
for finding marginals; (ii) in situations where several marginals are required to allow
computations to be shared efficiently.

We begin by considering the problem of finding the marginal p(x) for partic-
ular variable node x. For the moment, we shall suppose that all of the variables
are hidden. Later we shall see how to modify the algorithm to incorporate evidence
corresponding to observed variables. By definition, the marginal is obtained by sum-
ming the joint distribution over all variables except x so that

p(x) =
∑
x\x

p(x) (8.61)

where x \ x denotes the set of variables in x with variable x omitted. The idea is
to substitute for p(x) using the factor graph expression (8.59) and then interchange
summations and products in order to obtain an efficient algorithm. Consider the
fragment of graph shown in Figure 8.46 in which we see that the tree structure of
the graph allows us to partition the factors in the joint distribution into groups, with
one group associated with each of the factor nodes that is a neighbour of the variable
node x. We see that the joint distribution can be written as a product of the form

p(x) =
∏

s∈ne(x)

Fs(x, Xs) (8.62)

ne(x) denotes the set of factor nodes that are neighbours of x, and Xs denotes the
set of all variables in the subtree connected to the variable node x via the factor node
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[∑
Xs

Fs(x, Xs)

]
=

∏
s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑
Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[∑
Xxm

Gm(xm, Xsm)

]
=

∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)
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Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑
Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we
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Figure 8.48 Illustration of the evaluation of the message sent by a
variable node to an adjacent factor node.

xm

fl

fL

fs

Fl(xm, Xml)

then obtain

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[∑
Xml

Fl(xm, Xml)

]
=

∏
l∈ne(xm)\fs

µfl→xm(xm) (8.69)

where we have used the definition (8.64) of the messages passed from factor nodes to
variable nodes. Thus to evaluate the message sent by a variable node to an adjacent
factor node along the connecting link, we simply take the product of the incoming
messages along all of the other links. Note that any variable node that has only
two neighbours performs no computation but simply passes messages through un-
changed. Also, we note that a variable node can send a message to a factor node
once it has received incoming messages from all other neighbouring factor nodes.

Recall that our goal is to calculate the marginal for variable node x, and that this
marginal is given by the product of incoming messages along all of the links arriving
at that node. Each of these messages can be computed recursively in terms of other
messages. In order to start this recursion, we can view the node x as the root of the
tree and begin at the leaf nodes. From the definition (8.69), we see that if a leaf node
is a variable node, then the message that it sends along its one and only link is given
by

µx→f (x) = 1 (8.70)

as illustrated in Figure 8.49(a). Similarly, if the leaf node is a factor node, we see
from (8.66) that the message sent should take the form

µf→x(x) = f(x) (8.71)

Figure 8.49 The sum-product algorithm
begins with messages sent
by the leaf nodes, which de-
pend on whether the leaf
node is (a) a variable node,
or (b) a factor node.

x f

µx→f (x) = 1

(a)

xf

µf→x(x) = f(x)

(b)
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as illustrated in Figure 8.49(b).
At this point, it is worth pausing to summarize the particular version of the sum-

product algorithm obtained so far for evaluating the marginal p(x). We start by
viewing the variable node x as the root of the factor graph and initiating messages
at the leaves of the graph using (8.70) and (8.71). The message passing steps (8.66)
and (8.69) are then applied recursively until messages have been propagated along
every link, and the root node has received messages from all of its neighbours. Each
node can send a message towards the root once it has received messages from all
of its other neighbours. Once the root node has received messages from all of its
neighbours, the required marginal can be evaluated using (8.63). We shall illustrate
this process shortly.

To see that each node will always receive enough messages to be able to send out
a message, we can use a simple inductive argument as follows. Clearly, for a graph
comprising a variable root node connected directly to several factor leaf nodes, the
algorithm trivially involves sending messages of the form (8.71) directly from the
leaves to the root. Now imagine building up a general graph by adding nodes one at
a time, and suppose that for some particular graph we have a valid algorithm. When
one more (variable or factor) node is added, it can be connected only by a single
link because the overall graph must remain a tree, and so the new node will be a leaf
node. It therefore sends a message to the node to which it is linked, which in turn
will therefore receive all the messages it requires in order to send its own message
towards the root, and so again we have a valid algorithm, thereby completing the
proof.

Now suppose we wish to find the marginals for every variable node in the graph.
This could be done by simply running the above algorithm afresh for each such node.
However, this would be very wasteful as many of the required computations would
be repeated. We can obtain a much more efficient procedure by ‘overlaying’ these
multiple message passing algorithms to obtain the general sum-product algorithm
as follows. Arbitrarily pick any (variable or factor) node and designate it as the
root. Propagate messages from the leaves to the root as before. At this point, the
root node will have received messages from all of its neighbours. It can therefore
send out messages to all of its neighbours. These in turn will then have received
messages from all of their neighbours and so can send out messages along the links
going away from the root, and so on. In this way, messages are passed outwards
from the root all the way to the leaves. By now, a message will have passed in
both directions across every link in the graph, and every node will have received
a message from all of its neighbours. Again a simple inductive argument can be
used to verify the validity of this message passing protocol. Because every variableExercise 8.20
node will have received messages from all of its neighbours, we can readily calculate
the marginal distribution for every variable in the graph. The number of messages
that have to be computed is given by twice the number of links in the graph and
so involves only twice the computation involved in finding a single marginal. By
comparison, if we had run the sum-product algorithm separately for each node, the
amount of computation would grow quadratically with the size of the graph. Note
that this algorithm is in fact independent of which node was designated as the root,
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Figure 8.50 The sum-product algorithm can be viewed
purely in terms of messages sent out by factor
nodes to other factor nodes. In this example,
the outgoing message shown by the blue arrow
is obtained by taking the product of all the in-
coming messages shown by green arrows, mul-
tiplying by the factor fs, and marginalizing over
the variables x1 and x2. fs

x1

x2

x3

and indeed the notion of one node having a special status was introduced only as a
convenient way to explain the message passing protocol.

Next suppose we wish to find the marginal distributions p(xs) associated with
the sets of variables belonging to each of the factors. By a similar argument to that
used above, it is easy to see that the marginal associated with a factor is given by theExercise 8.21
product of messages arriving at the factor node and the local factor at that node

p(xs) = fs(xs)
∏

i∈ne(fs)

µxi→fs(xi) (8.72)

in complete analogy with the marginals at the variable nodes. If the factors are
parameterized functions and we wish to learn the values of the parameters using
the EM algorithm, then these marginals are precisely the quantities we will need to
calculate in the E step, as we shall see in detail when we discuss the hidden Markov
model in Chapter 13.

The message sent by a variable node to a factor node, as we have seen, is simply
the product of the incoming messages on other links. We can if we wish view the
sum-product algorithm in a slightly different form by eliminating messages from
variable nodes to factor nodes and simply considering messages that are sent out by
factor nodes. This is most easily seen by considering the example in Figure 8.50.

So far, we have rather neglected the issue of normalization. If the factor graph
was derived from a directed graph, then the joint distribution is already correctly nor-
malized, and so the marginals obtained by the sum-product algorithm will similarly
be normalized correctly. However, if we started from an undirected graph, then in
general there will be an unknown normalization coefficient 1/Z. As with the simple
chain example of Figure 8.38, this is easily handled by working with an unnormal-
ized version p̃(x) of the joint distribution, where p(x) = p̃(x)/Z. We first run the
sum-product algorithm to find the corresponding unnormalized marginals p̃(xi). The
coefficient 1/Z is then easily obtained by normalizing any one of these marginals,
and this is computationally efficient because the normalization is done over a single
variable rather than over the entire set of variables as would be required to normalize
p̃(x) directly.

At this point, it may be helpful to consider a simple example to illustrate the
operation of the sum-product algorithm. Figure 8.51 shows a simple 4-node factor
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Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑
x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑
x4

fc(x2, x4) (8.77)

µx2→fb
(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑
x2

fb(x2, x3)µx2→fb
. (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb
(x3) = 1 (8.80)

µfb→x2(x2) =
∑
x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑
x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑
x2

fc(x2, x4)µx2→fc(x2). (8.85)
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x1 x2 x3

x4

(a)

x1 x2 x3

x4

(b)

Figure 8.52 Flow of messages for the sum-product algorithm applied to the example graph in Figure 8.51. (a)
From the leaf nodes x1 and x4 towards the root node x3. (b) From the root node towards the leaf nodes.

One message has now passed in each direction across each link, and we can now
evaluate the marginals. As a simple check, let us verify that the marginal p(x2) is
given by the correct expression. Using (8.63) and substituting for the messages using
the above results, we have

p̃(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=

[∑
x1

fa(x1, x2)

][∑
x3

fb(x2, x3)

][∑
x4

fc(x2, x4)

]
=

∑
x1

∑
x2

∑
x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
∑
x1

∑
x3

∑
x4

p̃(x) (8.86)

as required.
So far, we have assumed that all of the variables in the graph are hidden. In most

practical applications, a subset of the variables will be observed, and we wish to cal-
culate posterior distributions conditioned on these observations. Observed nodes are
easily handled within the sum-product algorithm as follows. Suppose we partition x
into hidden variables h and observed variables v, and that the observed value of v
is denoted v̂. Then we simply multiply the joint distribution p(x) by

∏
i I(vi, v̂i),

where I(v, v̂) = 1 if v = v̂ and I(v, v̂) = 0 otherwise. This product corresponds
to p(h,v = v̂) and hence is an unnormalized version of p(h|v = v̂). By run-
ning the sum-product algorithm, we can efficiently calculate the posterior marginals
p(hi|v = v̂) up to a normalization coefficient whose value can be found efficiently
using a local computation. Any summations over variables in v then collapse into a
single term.

We have assumed throughout this section that we are dealing with discrete vari-
ables. However, there is nothing specific to discrete variables either in the graphical
framework or in the probabilistic construction of the sum-product algorithm. For
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Table 8.1 Example of a joint distribution over two binary variables for
which the maximum of the joint distribution occurs for dif-
ferent variable values compared to the maxima of the two
marginals.

x = 0 x = 1
y = 0 0.3 0.4
y = 1 0.3 0.0

continuous variables the summations are simply replaced by integrations. We shall
give an example of the sum-product algorithm applied to a graph of linear-Gaussian
variables when we consider linear dynamical systems.Section 13.3

8.4.5 The max-sum algorithm
The sum-product algorithm allows us to take a joint distribution p(x) expressed

as a factor graph and efficiently find marginals over the component variables. Two
other common tasks are to find a setting of the variables that has the largest prob-
ability and to find the value of that probability. These can be addressed through a
closely related algorithm called max-sum, which can be viewed as an application of
dynamic programming in the context of graphical models (Cormen et al., 2001).

A simple approach to finding latent variable values having high probability
would be to run the sum-product algorithm to obtain the marginals p(xi) for ev-
ery variable, and then, for each marginal in turn, to find the value x�

i that maximizes
that marginal. However, this would give the set of values that are individually the
most probable. In practice, we typically wish to find the set of values that jointly
have the largest probability, in other words the vector xmax that maximizes the joint
distribution, so that

xmax = arg max
x

p(x) (8.87)

for which the corresponding value of the joint probability will be given by

p(xmax) = max
x

p(x). (8.88)

In general, xmax is not the same as the set of x�
i values, as we can easily show using

a simple example. Consider the joint distribution p(x, y) over two binary variables
x, y ∈ {0, 1} given in Table 8.1. The joint distribution is maximized by setting x =
1 and y = 0, corresponding the value 0.4. However, the marginal for p(x), obtained
by summing over both values of y, is given by p(x = 0) = 0.6 and p(x = 1) = 0.4,
and similarly the marginal for y is given by p(y = 0) = 0.7 and p(y = 1) = 0.3,
and so the marginals are maximized by x = 0 and y = 0, which corresponds to a
value of 0.3 for the joint distribution. In fact, it is not difficult to construct examples
for which the set of individually most probable values has probability zero under the
joint distribution.Exercise 8.27

We therefore seek an efficient algorithm for finding the value of x that maxi-
mizes the joint distribution p(x) and that will allow us to obtain the value of the
joint distribution at its maximum. To address the second of these problems, we shall
simply write out the max operator in terms of its components

max
x

p(x) = max
x1

. . .max
xM

p(x) (8.89)
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where M is the total number of variables, and then substitute for p(x) using its
expansion in terms of a product of factors. In deriving the sum-product algorithm,
we made use of the distributive law (8.53) for multiplication. Here we make use of
the analogous law for the max operator

max(ab, ac) = amax(b, c) (8.90)

which holds if a � 0 (as will always be the case for the factors in a graphical model).
This allows us to exchange products with maximizations.

Consider first the simple example of a chain of nodes described by (8.49). The
evaluation of the probability maximum can be written as

max
x

p(x) =
1
Z

max
x1

· · ·max
xN

[ψ1,2(x1, x2) · · ·ψN−1,N (xN−1, xN )]

=
1
Z

max
x1

[
ψ1,2(x1, x2)

[
· · ·max

xN

ψN−1,N (xN−1, xN )
]]

.

As with the calculation of marginals, we see that exchanging the max and product
operators results in a much more efficient computation, and one that is easily inter-
preted in terms of messages passed from node xN backwards along the chain to node
x1.

We can readily generalize this result to arbitrary tree-structured factor graphs
by substituting the expression (8.59) for the factor graph expansion into (8.89) and
again exchanging maximizations with products. The structure of this calculation is
identical to that of the sum-product algorithm, and so we can simply translate those
results into the present context. In particular, suppose that we designate a particular
variable node as the ‘root’ of the graph. Then we start a set of messages propagating
inwards from the leaves of the tree towards the root, with each node sending its
message towards the root once it has received all incoming messages from its other
neighbours. The final maximization is performed over the product of all messages
arriving at the root node, and gives the maximum value for p(x). This could be called
the max-product algorithm and is identical to the sum-product algorithm except that
summations are replaced by maximizations. Note that at this stage, messages have
been sent from leaves to the root, but not in the other direction.

In practice, products of many small probabilities can lead to numerical under-
flow problems, and so it is convenient to work with the logarithm of the joint distri-
bution. The logarithm is a monotonic function, so that if a > b then ln a > ln b, and
hence the max operator and the logarithm function can be interchanged, so that

ln
(
max

x
p(x)

)
= max

x
ln p(x). (8.91)

The distributive property is preserved because

max(a + b, a + c) = a + max(b, c). (8.92)

Thus taking the logarithm simply has the effect of replacing the products in the
max-product algorithm with sums, and so we obtain the max-sum algorithm. From
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the results (8.66) and (8.69) derived earlier for the sum-product algorithm, we can
readily write down the max-sum algorithm in terms of message passing simply by
replacing ‘sum’ with ‘max’ and replacing products with sums of logarithms to give

µf→x(x) = max
x1,...,xM

⎡⎣ln f(x, x1, . . . , xM ) +
∑

m∈ne(fs)\x

µxm→f (xm)

⎤⎦ (8.93)

µx→f (x) =
∑

l∈ne(x)\f

µfl→x(x). (8.94)

The initial messages sent by the leaf nodes are obtained by analogy with (8.70) and
(8.71) and are given by

µx→f (x) = 0 (8.95)

µf→x(x) = ln f(x) (8.96)

while at the root node the maximum probability can then be computed, by analogy
with (8.63), using

pmax = max
x

⎡⎣ ∑
s∈ne(x)

µfs→x(x)

⎤⎦ . (8.97)

So far, we have seen how to find the maximum of the joint distribution by prop-
agating messages from the leaves to an arbitrarily chosen root node. The result will
be the same irrespective of which node is chosen as the root. Now we turn to the
second problem of finding the configuration of the variables for which the joint dis-
tribution attains this maximum value. So far, we have sent messages from the leaves
to the root. The process of evaluating (8.97) will also give the value xmax for the
most probable value of the root node variable, defined by

xmax = arg max
x

⎡⎣ ∑
s∈ne(x)

µfs→x(x)

⎤⎦ . (8.98)

At this point, we might be tempted simply to continue with the message passing al-
gorithm and send messages from the root back out to the leaves, using (8.93) and
(8.94), then apply (8.98) to all of the remaining variable nodes. However, because
we are now maximizing rather than summing, it is possible that there may be mul-
tiple configurations of x all of which give rise to the maximum value for p(x). In
such cases, this strategy can fail because it is possible for the individual variable
values obtained by maximizing the product of messages at each node to belong to
different maximizing configurations, giving an overall configuration that no longer
corresponds to a maximum.

The problem can be resolved by adopting a rather different kind of message
passing from the root node to the leaves. To see how this works, let us return once
again to the simple chain example of N variables x1, . . . , xN each having K states,
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Figure 8.53 A lattice, or trellis, diagram show-
ing explicitly the K possible states (one per row
of the diagram) for each of the variables xn in the
chain model. In this illustration K = 3. The ar-
row shows the direction of message passing in the
max-product algorithm. For every state k of each
variable xn (corresponding to column n of the dia-
gram) the function φ(xn) defines a unique state at
the previous variable, indicated by the black lines.
The two paths through the lattice correspond to
configurations that give the global maximum of the
joint probability distribution, and either of these
can be found by tracing back along the black lines
in the opposite direction to the arrow.

k = 1

k = 2

k = 3

n − 2 n − 1 n n + 1

corresponding to the graph shown in Figure 8.38. Suppose we take node xN to be
the root node. Then in the first phase, we propagate messages from the leaf node x1

to the root node using

µxn→fn,n+1(xn) = µfn−1,n→xn(xn)

µfn−1,n→xn(xn) = max
xn−1

[
ln fn−1,n(xn−1, xn) + µxn−1→fn−1,n(xn)

]
which follow from applying (8.94) and (8.93) to this particular graph. The initial
message sent from the leaf node is simply

µx1→f1,2(x1) = 0. (8.99)

The most probable value for xN is then given by

xmax
N = arg max

xN

[
µfN−1,N→xN

(xN )
]
. (8.100)

Now we need to determine the states of the previous variables that correspond to the
same maximizing configuration. This can be done by keeping track of which values
of the variables gave rise to the maximum state of each variable, in other words by
storing quantities given by

φ(xn) = arg max
xn−1

[
ln fn−1,n(xn−1, xn) + µxn−1→fn−1,n(xn)

]
. (8.101)

To understand better what is happening, it is helpful to represent the chain of vari-
ables in terms of a lattice or trellis diagram as shown in Figure 8.53. Note that this
is not a probabilistic graphical model because the nodes represent individual states
of variables, while each variable corresponds to a column of such states in the di-
agram. For each state of a given variable, there is a unique state of the previous
variable that maximizes the probability (ties are broken either systematically or at
random), corresponding to the function φ(xn) given by (8.101), and this is indicated
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by the lines connecting the nodes. Once we know the most probable value of the fi-
nal node xN , we can then simply follow the link back to find the most probable state
of node xN−1 and so on back to the initial node x1. This corresponds to propagating
a message back down the chain using

xmax
n−1 = φ(xmax

n ) (8.102)

and is known as back-tracking. Note that there could be several values of xn−1 all
of which give the maximum value in (8.101). Provided we chose one of these values
when we do the back-tracking, we are assured of a globally consistent maximizing
configuration.

In Figure 8.53, we have indicated two paths, each of which we shall suppose
corresponds to a global maximum of the joint probability distribution. If k = 2
and k = 3 each represent possible values of xmax

N , then starting from either state
and tracing back along the black lines, which corresponds to iterating (8.102), we
obtain a valid global maximum configuration. Note that if we had run a forward
pass of max-sum message passing followed by a backward pass and then applied
(8.98) at each node separately, we could end up selecting some states from one path
and some from the other path, giving an overall configuration that is not a global
maximizer. We see that it is necessary instead to keep track of the maximizing states
during the forward pass using the functions φ(xn) and then use back-tracking to find
a consistent solution.

The extension to a general tree-structured factor graph should now be clear. If
a message is sent from a factor node f to a variable node x, a maximization is
performed over all other variable nodes x1, . . . , xM that are neighbours of that fac-
tor node, using (8.93). When we perform this maximization, we keep a record of
which values of the variables x1, . . . , xM gave rise to the maximum. Then in the
back-tracking step, having found xmax, we can then use these stored values to as-
sign consistent maximizing states xmax

1 , . . . , xmax
M . The max-sum algorithm, with

back-tracking, gives an exact maximizing configuration for the variables provided
the factor graph is a tree. An important application of this technique is for finding
the most probable sequence of hidden states in a hidden Markov model, in which
case it is known as the Viterbi algorithm.Section 13.2

As with the sum-product algorithm, the inclusion of evidence in the form of
observed variables is straightforward. The observed variables are clamped to their
observed values, and the maximization is performed over the remaining hidden vari-
ables. This can be shown formally by including identity functions for the observed
variables into the factor functions, as we did for the sum-product algorithm.

It is interesting to compare max-sum with the iterated conditional modes (ICM)
algorithm described on page 389. Each step in ICM is computationally simpler be-
cause the ‘messages’ that are passed from one node to the next comprise a single
value consisting of the new state of the node for which the conditional distribution
is maximized. The max-sum algorithm is more complex because the messages are
functions of node variables x and hence comprise a set of K values for each pos-
sible state of x. Unlike max-sum, however, ICM is not guaranteed to find a global
maximum even for tree-structured graphs.
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8.4.6 Exact inference in general graphs
The sum-product and max-sum algorithms provide efficient and exact solutions

to inference problems in tree-structured graphs. For many practical applications,
however, we have to deal with graphs having loops.

The message passing framework can be generalized to arbitrary graph topolo-
gies, giving an exact inference procedure known as the junction tree algorithm (Lau-
ritzen and Spiegelhalter, 1988; Jordan, 2007). Here we give a brief outline of the
key steps involved. This is not intended to convey a detailed understanding of the
algorithm, but rather to give a flavour of the various stages involved. If the starting
point is a directed graph, it is first converted to an undirected graph by moraliza-
tion, whereas if starting from an undirected graph this step is not required. Next the
graph is triangulated, which involves finding chord-less cycles containing four or
more nodes and adding extra links to eliminate such chord-less cycles. For instance,
in the graph in Figure 8.36, the cycle A–C–B–D–A is chord-less a link could be
added between A and B or alternatively between C and D. Note that the joint dis-
tribution for the resulting triangulated graph is still defined by a product of the same
potential functions, but these are now considered to be functions over expanded sets
of variables. Next the triangulated graph is used to construct a new tree-structured
undirected graph called a join tree, whose nodes correspond to the maximal cliques
of the triangulated graph, and whose links connect pairs of cliques that have vari-
ables in common. The selection of which pairs of cliques to connect in this way is
important and is done so as to give a maximal spanning tree defined as follows. Of
all possible trees that link up the cliques, the one that is chosen is one for which the
weight of the tree is largest, where the weight for a link is the number of nodes shared
by the two cliques it connects, and the weight for the tree is the sum of the weights
for the links. If the tree is condensed, so that any clique that is a subset of another
clique is absorbed into the larger clique, this gives a junction tree. As a consequence
of the triangulation step, the resulting tree satisfies the running intersection property,
which means that if a variable is contained in two cliques, then it must also be con-
tained in every clique on the path that connects them. This ensures that inference
about variables will be consistent across the graph. Finally, a two-stage message
passing algorithm, essentially equivalent to the sum-product algorithm, can now be
applied to this junction tree in order to find marginals and conditionals. Although
the junction tree algorithm sounds complicated, at its heart is the simple idea that
we have used already of exploiting the factorization properties of the distribution to
allow sums and products to be interchanged so that partial summations can be per-
formed, thereby avoiding having to work directly with the joint distribution. The
role of the junction tree is to provide a precise and efficient way to organize these
computations. It is worth emphasizing that this is achieved using purely graphical
operations!

The junction tree is exact for arbitrary graphs and is efficient in the sense that
for a given graph there does not in general exist a computationally cheaper approach.
Unfortunately, the algorithm must work with the joint distributions within each node
(each of which corresponds to a clique of the triangulated graph) and so the compu-
tational cost of the algorithm is determined by the number of variables in the largest
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clique and will grow exponentially with this number in the case of discrete variables.
An important concept is the treewidth of a graph (Bodlaender, 1993), which is de-
fined in terms of the number of variables in the largest clique. In fact, it is defined to
be as one less than the size of the largest clique, to ensure that a tree has a treewidth
of 1. Because there in general there can be multiple different junction trees that can
be constructed from a given starting graph, the treewidth is defined by the junction
tree for which the largest clique has the fewest variables. If the treewidth of the
original graph is high, the junction tree algorithm becomes impractical.

8.4.7 Loopy belief propagation
For many problems of practical interest, it will not be feasible to use exact in-

ference, and so we need to exploit effective approximation methods. An important
class of such approximations, that can broadly be called variational methods, will be
discussed in detail in Chapter 10. Complementing these deterministic approaches is
a wide range of sampling methods, also called Monte Carlo methods, that are based
on stochastic numerical sampling from distributions and that will be discussed at
length in Chapter 11.

Here we consider one simple approach to approximate inference in graphs with
loops, which builds directly on the previous discussion of exact inference in trees.
The idea is simply to apply the sum-product algorithm even though there is no guar-
antee that it will yield good results. This approach is known as loopy belief propa-
gation (Frey and MacKay, 1998) and is possible because the message passing rules
(8.66) and (8.69) for the sum-product algorithm are purely local. However, because
the graph now has cycles, information can flow many times around the graph. For
some models, the algorithm will converge, whereas for others it will not.

In order to apply this approach, we need to define a message passing schedule.
Let us assume that one message is passed at a time on any given link and in any
given direction. Each message sent from a node replaces any previous message sent
in the same direction across the same link and will itself be a function only of the
most recent messages received by that node at previous steps of the algorithm.

We have seen that a message can only be sent across a link from a node when
all other messages have been received by that node across its other links. Because
there are loops in the graph, this raises the problem of how to initiate the message
passing algorithm. To resolve this, we suppose that an initial message given by the
unit function has been passed across every link in each direction. Every node is then
in a position to send a message.

There are now many possible ways to organize the message passing schedule.
For example, the flooding schedule simultaneously passes a message across every
link in both directions at each time step, whereas schedules that pass one message at
a time are called serial schedules.

Following Kschischnang et al. (2001), we will say that a (variable or factor)
node a has a message pending on its link to a node b if node a has received any
message on any of its other links since the last time it send a message to b. Thus,
when a node receives a message on one of its links, this creates pending messages
on all of its other links. Only pending messages need to be transmitted because
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other messages would simply duplicate the previous message on the same link. For
graphs that have a tree structure, any schedule that sends only pending messages
will eventually terminate once a message has passed in each direction across every
link. At this point, there are no pending messages, and the product of the receivedExercise 8.29
messages at every variable give the exact marginal. In graphs having loops, however,
the algorithm may never terminate because there might always be pending messages,
although in practice it is generally found to converge within a reasonable time for
most applications. Once the algorithm has converged, or once it has been stopped
if convergence is not observed, the (approximate) local marginals can be computed
using the product of the most recently received incoming messages to each variable
node or factor node on every link.

In some applications, the loopy belief propagation algorithm can give poor re-
sults, whereas in other applications it has proven to be very effective. In particular,
state-of-the-art algorithms for decoding certain kinds of error-correcting codes are
equivalent to loopy belief propagation (Gallager, 1963; Berrou et al., 1993; McEliece
et al., 1998; MacKay and Neal, 1999; Frey, 1998).

8.4.8 Learning the graph structure
In our discussion of inference in graphical models, we have assumed that the

structure of the graph is known and fixed. However, there is also interest in go-
ing beyond the inference problem and learning the graph structure itself from data
(Friedman and Koller, 2003). This requires that we define a space of possible struc-
tures as well as a measure that can be used to score each structure.

From a Bayesian viewpoint, we would ideally like to compute a posterior dis-
tribution over graph structures and to make predictions by averaging with respect
to this distribution. If we have a prior p(m) over graphs indexed by m, then the
posterior distribution is given by

p(m|D) ∝ p(m)p(D|m) (8.103)

where D is the observed data set. The model evidence p(D|m) then provides the
score for each model. However, evaluation of the evidence involves marginalization
over the latent variables and presents a challenging computational problem for many
models.

Exploring the space of structures can also be problematic. Because the number
of different graph structures grows exponentially with the number of nodes, it is
often necessary to resort to heuristics to find good candidates.

Exercises
8.1 (�) www By marginalizing out the variables in order, show that the representation

(8.5) for the joint distribution of a directed graph is correctly normalized, provided
each of the conditional distributions is normalized.

8.2 (�) www Show that the property of there being no directed cycles in a directed
graph follows from the statement that there exists an ordered numbering of the nodes
such that for each node there are no links going to a lower-numbered node.
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Table 8.2 The joint distribution over three binary variables. a b c p(a, b, c)
0 0 0 0.192
0 0 1 0.144
0 1 0 0.048
0 1 1 0.216
1 0 0 0.192
1 0 1 0.064
1 1 0 0.048
1 1 1 0.096

8.3 (� �) Consider three binary variables a, b, c ∈ {0, 1} having the joint distribution
given in Table 8.2. Show by direct evaluation that this distribution has the property
that a and b are marginally dependent, so that p(a, b) 	= p(a)p(b), but that they
become independent when conditioned on c, so that p(a, b|c) = p(a|c)p(b|c) for
both c = 0 and c = 1.

8.4 (� �) Evaluate the distributions p(a), p(b|c), and p(c|a) corresponding to the joint
distribution given in Table 8.2. Hence show by direct evaluation that p(a, b, c) =
p(a)p(c|a)p(b|c). Draw the corresponding directed graph.

8.5 (�) www Draw a directed probabilistic graphical model corresponding to the
relevance vector machine described by (7.79) and (7.80).

8.6 (�) For the model shown in Figure 8.13, we have seen that the number of parameters
required to specify the conditional distribution p(y|x1, . . . , xM ), where xi ∈ {0, 1},
could be reduced from 2M to M +1 by making use of the logistic sigmoid represen-
tation (8.10). An alternative representation (Pearl, 1988) is given by

p(y = 1|x1, . . . , xM ) = 1 − (1 − µ0)
M∏
i=1

(1 − µi)xi (8.104)

where the parameters µi represent the probabilities p(xi = 1), and µ0 is an additional
parameters satisfying 0 � µ0 � 1. The conditional distribution (8.104) is known as
the noisy-OR. Show that this can be interpreted as a ‘soft’ (probabilistic) form of the
logical OR function (i.e., the function that gives y = 1 whenever at least one of the
xi = 1). Discuss the interpretation of µ0.

8.7 (� �) Using the recursion relations (8.15) and (8.16), show that the mean and covari-
ance of the joint distribution for the graph shown in Figure 8.14 are given by (8.17)
and (8.18), respectively.

8.8 (�) www Show that a ⊥⊥ b, c | d implies a ⊥⊥ b | d.

8.9 (�) www Using the d-separation criterion, show that the conditional distribution
for a node x in a directed graph, conditioned on all of the nodes in the Markov
blanket, is independent of the remaining variables in the graph.
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Figure 8.54 Example of a graphical model used to explore the con-
ditional independence properties of the head-to-head
path a–c–b when a descendant of c, namely the node
d, is observed.

c

a b

d

8.10 (�) Consider the directed graph shown in Figure 8.54 in which none of the variables
is observed. Show that a ⊥⊥ b | ∅. Suppose we now observe the variable d. Show
that in general a 	⊥⊥ b | d.

8.11 (� �) Consider the example of the car fuel system shown in Figure 8.21, and suppose
that instead of observing the state of the fuel gauge G directly, the gauge is seen by
the driver D who reports to us the reading on the gauge. This report is either that the
gauge shows full D = 1 or that it shows empty D = 0. Our driver is a bit unreliable,
as expressed through the following probabilities

p(D = 1|G = 1) = 0.9 (8.105)

p(D = 0|G = 0) = 0.9. (8.106)

Suppose that the driver tells us that the fuel gauge shows empty, in other words
that we observe D = 0. Evaluate the probability that the tank is empty given only
this observation. Similarly, evaluate the corresponding probability given also the
observation that the battery is flat, and note that this second probability is lower.
Discuss the intuition behind this result, and relate the result to Figure 8.54.

8.12 (�) www Show that there are 2M(M−1)/2 distinct undirected graphs over a set of
M distinct random variables. Draw the 8 possibilities for the case of M = 3.

8.13 (�) Consider the use of iterated conditional modes (ICM) to minimize the energy
function given by (8.42). Write down an expression for the difference in the values
of the energy associated with the two states of a particular variable xj , with all other
variables held fixed, and show that it depends only on quantities that are local to xj

in the graph.

8.14 (�) Consider a particular case of the energy function given by (8.42) in which the
coefficients β = h = 0. Show that the most probable configuration of the latent
variables is given by xi = yi for all i.

8.15 (� �) www Show that the joint distribution p(xn−1, xn) for two neighbouring
nodes in the graph shown in Figure 8.38 is given by an expression of the form (8.58).
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8.16 (� �) Consider the inference problem of evaluating p(xn|xN ) for the graph shown
in Figure 8.38, for all nodes n ∈ {1, . . . , N − 1}. Show that the message passing
algorithm discussed in Section 8.4.1 can be used to solve this efficiently, and discuss
which messages are modified and in what way.

8.17 (� �) Consider a graph of the form shown in Figure 8.38 having N = 5 nodes, in
which nodes x3 and x5 are observed. Use d-separation to show that x2 ⊥⊥ x5 | x3.
Show that if the message passing algorithm of Section 8.4.1 is applied to the evalu-
ation of p(x2|x3, x5), the result will be independent of the value of x5.

8.18 (� �) www Show that a distribution represented by a directed tree can trivially
be written as an equivalent distribution over the corresponding undirected tree. Also
show that a distribution expressed as an undirected tree can, by suitable normaliza-
tion of the clique potentials, be written as a directed tree. Calculate the number of
distinct directed trees that can be constructed from a given undirected tree.

8.19 (� �) Apply the sum-product algorithm derived in Section 8.4.4 to the chain-of-
nodes model discussed in Section 8.4.1 and show that the results (8.54), (8.55), and
(8.57) are recovered as a special case.

8.20 (�) www Consider the message passing protocol for the sum-product algorithm on
a tree-structured factor graph in which messages are first propagated from the leaves
to an arbitrarily chosen root node and then from the root node out to the leaves. Use
proof by induction to show that the messages can be passed in such an order that
at every step, each node that must send a message has received all of the incoming
messages necessary to construct its outgoing messages.

8.21 (� �) www Show that the marginal distributions p(xs) over the sets of variables
xs associated with each of the factors fx(xs) in a factor graph can be found by first
running the sum-product message passing algorithm and then evaluating the required
marginals using (8.72).

8.22 (�) Consider a tree-structured factor graph, in which a given subset of the variable
nodes form a connected subgraph (i.e., any variable node of the subset is connected
to at least one of the other variable nodes via a single factor node). Show how the
sum-product algorithm can be used to compute the marginal distribution over that
subset.

8.23 (� �) www In Section 8.4.4, we showed that the marginal distribution p(xi) for a
variable node xi in a factor graph is given by the product of the messages arriving at
this node from neighbouring factor nodes in the form (8.63). Show that the marginal
p(xi) can also be written as the product of the incoming message along any one of
the links with the outgoing message along the same link.

8.24 (� �) Show that the marginal distribution for the variables xs in a factor fs(xs) in
a tree-structured factor graph, after running the sum-product message passing algo-
rithm, can be written as the product of the message arriving at the factor node along
all its links, times the local factor f(xs), in the form (8.72).
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8.25 (� �) In (8.86), we verified that the sum-product algorithm run on the graph in
Figure 8.51 with node x3 designated as the root node gives the correct marginal for
x2. Show that the correct marginals are obtained also for x1 and x3. Similarly, show
that the use of the result (8.72) after running the sum-product algorithm on this graph
gives the correct joint distribution for x1, x2.

8.26 (�) Consider a tree-structured factor graph over discrete variables, and suppose we
wish to evaluate the joint distribution p(xa, xb) associated with two variables xa and
xb that do not belong to a common factor. Define a procedure for using the sum-
product algorithm to evaluate this joint distribution in which one of the variables is
successively clamped to each of its allowed values.

8.27 (� �) Consider two discrete variables x and y each having three possible states, for
example x, y ∈ {0, 1, 2}. Construct a joint distribution p(x, y) over these variables
having the property that the value x̂ that maximizes the marginal p(x), along with
the value ŷ that maximizes the marginal p(y), together have probability zero under
the joint distribution, so that p(x̂, ŷ) = 0.

8.28 (� �) www The concept of a pending message in the sum-product algorithm for
a factor graph was defined in Section 8.4.7. Show that if the graph has one or more
cycles, there will always be at least one pending message irrespective of how long
the algorithm runs.

8.29 (� �) www Show that if the sum-product algorithm is run on a factor graph with a
tree structure (no loops), then after a finite number of messages have been sent, there
will be no pending messages.



9
Mixture Models

and EM

If we define a joint distribution over observed and latent variables, the correspond-
ing distribution of the observed variables alone is obtained by marginalization. This
allows relatively complex marginal distributions over observed variables to be ex-
pressed in terms of more tractable joint distributions over the expanded space of
observed and latent variables. The introduction of latent variables thereby allows
complicated distributions to be formed from simpler components. In this chapter,
we shall see that mixture distributions, such as the Gaussian mixture discussed in
Section 2.3.9, can be interpreted in terms of discrete latent variables. Continuous
latent variables will form the subject of Chapter 12.

As well as providing a framework for building more complex probability dis-
tributions, mixture models can also be used to cluster data. We therefore begin our
discussion of mixture distributions by considering the problem of finding clusters
in a set of data points, which we approach first using a nonprobabilistic technique
called the K-means algorithm (Lloyd, 1982). Then we introduce the latent variableSection 9.1

423
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view of mixture distributions in which the discrete latent variables can be interpreted
as defining assignments of data points to specific components of the mixture. A gen-Section 9.2
eral technique for finding maximum likelihood estimators in latent variable models
is the expectation-maximization (EM) algorithm. We first of all use the Gaussian
mixture distribution to motivate the EM algorithm in a fairly informal way, and then
we give a more careful treatment based on the latent variable viewpoint. We shallSection 9.3
see that the K-means algorithm corresponds to a particular nonprobabilistic limit of
EM applied to mixtures of Gaussians. Finally, we discuss EM in some generality.Section 9.4

Gaussian mixture models are widely used in data mining, pattern recognition,
machine learning, and statistical analysis. In many applications, their parameters are
determined by maximum likelihood, typically using the EM algorithm. However, as
we shall see there are some significant limitations to the maximum likelihood ap-
proach, and in Chapter 10 we shall show that an elegant Bayesian treatment can be
given using the framework of variational inference. This requires little additional
computation compared with EM, and it resolves the principal difficulties of maxi-
mum likelihood while also allowing the number of components in the mixture to be
inferred automatically from the data.

9.1. K-means Clustering

We begin by considering the problem of identifying groups, or clusters, of data points
in a multidimensional space. Suppose we have a data set {x1, . . . ,xN} consisting
of N observations of a random D-dimensional Euclidean variable x. Our goal is to
partition the data set into some number K of clusters, where we shall suppose for
the moment that the value of K is given. Intuitively, we might think of a cluster as
comprising a group of data points whose inter-point distances are small compared
with the distances to points outside of the cluster. We can formalize this notion by
first introducing a set of D-dimensional vectors µk, where k = 1, . . . , K, in which
µk is a prototype associated with the kth cluster. As we shall see shortly, we can
think of the µk as representing the centres of the clusters. Our goal is then to find
an assignment of data points to clusters, as well as a set of vectors {µk}, such that
the sum of the squares of the distances of each data point to its closest vector µk, is
a minimum.

It is convenient at this point to define some notation to describe the assignment
of data points to clusters. For each data point xn, we introduce a corresponding set
of binary indicator variables rnk ∈ {0, 1}, where k = 1, . . . , K describing which of
the K clusters the data point xn is assigned to, so that if data point xn is assigned to
cluster k then rnk = 1, and rnj = 0 for j 	= k. This is known as the 1-of-K coding
scheme. We can then define an objective function, sometimes called a distortion
measure, given by

J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖2 (9.1)

which represents the sum of the squares of the distances of each data point to its
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assigned vector µk. Our goal is to find values for the {rnk} and the {µk} so as to
minimize J . We can do this through an iterative procedure in which each iteration
involves two successive steps corresponding to successive optimizations with respect
to the rnk and the µk. First we choose some initial values for the µk. Then in the first
phase we minimize J with respect to the rnk, keeping the µk fixed. In the second
phase we minimize J with respect to the µk, keeping rnk fixed. This two-stage
optimization is then repeated until convergence. We shall see that these two stages
of updating rnk and updating µk correspond respectively to the E (expectation) and
M (maximization) steps of the EM algorithm, and to emphasize this we shall use theSection 9.4
terms E step and M step in the context of the K-means algorithm.

Consider first the determination of the rnk. Because J in (9.1) is a linear func-
tion of rnk, this optimization can be performed easily to give a closed form solution.
The terms involving different n are independent and so we can optimize for each
n separately by choosing rnk to be 1 for whichever value of k gives the minimum
value of ‖xn − µk‖2. In other words, we simply assign the nth data point to the
closest cluster centre. More formally, this can be expressed as

rnk =
{

1 if k = arg minj ‖xn − µj‖2

0 otherwise.
(9.2)

Now consider the optimization of the µk with the rnk held fixed. The objective
function J is a quadratic function of µk, and it can be minimized by setting its
derivative with respect to µk to zero giving

2
N∑

n=1

rnk(xn − µk) = 0 (9.3)

which we can easily solve for µk to give

µk =
∑

n rnkxn∑
n rnk

. (9.4)

The denominator in this expression is equal to the number of points assigned to
cluster k, and so this result has a simple interpretation, namely set µk equal to the
mean of all of the data points xn assigned to cluster k. For this reason, the procedure
is known as the K-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the clus-
ter means are repeated in turn until there is no further change in the assignments (or
until some maximum number of iterations is exceeded). Because each phase reduces
the value of the objective function J , convergence of the algorithm is assured. How-Exercise 9.1
ever, it may converge to a local rather than global minimum of J . The convergence
properties of the K-means algorithm were studied by MacQueen (1967).

The K-means algorithm is illustrated using the Old Faithful data set in Fig-Appendix A
ure 9.1. For the purposes of this example, we have made a linear re-scaling of the
data, known as standardizing, such that each of the variables has zero mean and
unit standard deviation. For this example, we have chosen K = 2, and so in this
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Figure 9.1 Illustration of the K-means algorithm using the re-scaled Old Faithful data set. (a) Green points
denote the data set in a two-dimensional Euclidean space. The initial choices for centres µ1 and µ2 are shown
by the red and blue crosses, respectively. (b) In the initial E step, each data point is assigned either to the red
cluster or to the blue cluster, according to which cluster centre is nearer. This is equivalent to classifying the
points according to which side of the perpendicular bisector of the two cluster centres, shown by the magenta
line, they lie on. (c) In the subsequent M step, each cluster centre is re-computed to be the mean of the points
assigned to the corresponding cluster. (d)–(i) show successive E and M steps through to final convergence of
the algorithm.
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Figure 9.2 Plot of the cost function J given by
(9.1) after each E step (blue points)
and M step (red points) of the K-
means algorithm for the example
shown in Figure 9.1. The algo-
rithm has converged after the third
M step, and the final EM cycle pro-
duces no changes in either the as-
signments or the prototype vectors.
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case, the assignment of each data point to the nearest cluster centre is equivalent to a
classification of the data points according to which side they lie of the perpendicular
bisector of the two cluster centres. A plot of the cost function J given by (9.1) for
the Old Faithful example is shown in Figure 9.2.

Note that we have deliberately chosen poor initial values for the cluster centres
so that the algorithm takes several steps before convergence. In practice, a better
initialization procedure would be to choose the cluster centres µk to be equal to a
random subset of K data points. It is also worth noting that the K-means algorithm
itself is often used to initialize the parameters in a Gaussian mixture model before
applying the EM algorithm.Section 9.2.2

A direct implementation of the K-means algorithm as discussed here can be
relatively slow, because in each E step it is necessary to compute the Euclidean dis-
tance between every prototype vector and every data point. Various schemes have
been proposed for speeding up the K-means algorithm, some of which are based on
precomputing a data structure such as a tree such that nearby points are in the same
subtree (Ramasubramanian and Paliwal, 1990; Moore, 2000). Other approaches
make use of the triangle inequality for distances, thereby avoiding unnecessary dis-
tance calculations (Hodgson, 1998; Elkan, 2003).

So far, we have considered a batch version of K-means in which the whole data
set is used together to update the prototype vectors. We can also derive an on-line
stochastic algorithm (MacQueen, 1967) by applying the Robbins-Monro procedureSection 2.3.5
to the problem of finding the roots of the regression function given by the derivatives
of J in (9.1) with respect to µk. This leads to a sequential update in which, for eachExercise 9.2
data point xn in turn, we update the nearest prototype µk using

µnew
k = µold

k + ηn(xn − µold
k ) (9.5)

where ηn is the learning rate parameter, which is typically made to decrease mono-
tonically as more data points are considered.

The K-means algorithm is based on the use of squared Euclidean distance as the
measure of dissimilarity between a data point and a prototype vector. Not only does
this limit the type of data variables that can be considered (it would be inappropriate
for cases where some or all of the variables represent categorical labels for instance),
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but it can also make the determination of the cluster means nonrobust to outliers. WeSection 2.3.7
can generalize the K-means algorithm by introducing a more general dissimilarity
measure V(x,x′) between two vectors x and x′ and then minimizing the following
distortion measure

J̃ =
N∑

n=1

K∑
k=1

rnkV(xn, µk) (9.6)

which gives the K-medoids algorithm. The E step again involves, for given cluster
prototypes µk, assigning each data point to the cluster for which the dissimilarity to
the corresponding prototype is smallest. The computational cost of this is O(KN),
as is the case for the standard K-means algorithm. For a general choice of dissimi-
larity measure, the M step is potentially more complex than for K-means, and so it
is common to restrict each cluster prototype to be equal to one of the data vectors as-
signed to that cluster, as this allows the algorithm to be implemented for any choice
of dissimilarity measure V(·, ·) so long as it can be readily evaluated. Thus the M
step involves, for each cluster k, a discrete search over the Nk points assigned to that
cluster, which requires O(N2

k) evaluations of V(·, ·).
One notable feature of the K-means algorithm is that at each iteration, every

data point is assigned uniquely to one, and only one, of the clusters. Whereas some
data points will be much closer to a particular centre µk than to any other centre,
there may be other data points that lie roughly midway between cluster centres. In
the latter case, it is not clear that the hard assignment to the nearest cluster is the
most appropriate. We shall see in the next section that by adopting a probabilistic
approach, we obtain ‘soft’ assignments of data points to clusters in a way that reflects
the level of uncertainty over the most appropriate assignment. This probabilistic
formulation brings with it numerous benefits.

9.1.1 Image segmentation and compression
As an illustration of the application of the K-means algorithm, we consider

the related problems of image segmentation and image compression. The goal of
segmentation is to partition an image into regions each of which has a reasonably
homogeneous visual appearance or which corresponds to objects or parts of objects
(Forsyth and Ponce, 2003). Each pixel in an image is a point in a 3-dimensional space
comprising the intensities of the red, blue, and green channels, and our segmentation
algorithm simply treats each pixel in the image as a separate data point. Note that
strictly this space is not Euclidean because the channel intensities are bounded by
the interval [0, 1]. Nevertheless, we can apply the K-means algorithm without diffi-
culty. We illustrate the result of running K-means to convergence, for any particular
value of K, by re-drawing the image replacing each pixel vector with the {R, G, B}
intensity triplet given by the centre µk to which that pixel has been assigned. Results
for various values of K are shown in Figure 9.3. We see that for a given value of K,
the algorithm is representing the image using a palette of only K colours. It should
be emphasized that this use of K-means is not a particularly sophisticated approach
to image segmentation, not least because it takes no account of the spatial proximity
of different pixels. The image segmentation problem is in general extremely difficult
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K = 2 K = 3 K = 10 Original image

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation show-
ing the initial images together with their K-means segmentations obtained using various values of K. This
also illustrates of the use of vector quantization for data compression, in which smaller values of K give higher
compression at the expense of poorer image quality.

and remains the subject of active research and is introduced here simply to illustrate
the behaviour of the K-means algorithm.

We can also use the result of a clustering algorithm to perform data compres-
sion. It is important to distinguish between lossless data compression, in which
the goal is to be able to reconstruct the original data exactly from the compressed
representation, and lossy data compression, in which we accept some errors in the
reconstruction in return for higher levels of compression than can be achieved in the
lossless case. We can apply the K-means algorithm to the problem of lossy data
compression as follows. For each of the N data points, we store only the identity
k of the cluster to which it is assigned. We also store the values of the K clus-
ter centres µk, which typically requires significantly less data, provided we choose
K  N . Each data point is then approximated by its nearest centre µk. New data
points can similarly be compressed by first finding the nearest µk and then storing
the label k instead of the original data vector. This framework is often called vector
quantization, and the vectors µk are called code-book vectors.
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The image segmentation problem discussed above also provides an illustration
of the use of clustering for data compression. Suppose the original image has N
pixels comprising {R, G, B} values each of which is stored with 8 bits of precision.
Then to transmit the whole image directly would cost 24N bits. Now suppose we
first run K-means on the image data, and then instead of transmitting the original
pixel intensity vectors we transmit the identity of the nearest vector µk. Because
there are K such vectors, this requires log2 K bits per pixel. We must also transmit
the K code book vectors µk, which requires 24K bits, and so the total number of
bits required to transmit the image is 24K + N log2 K (rounding up to the nearest
integer). The original image shown in Figure 9.3 has 240 × 180 = 43, 200 pixels
and so requires 24 × 43, 200 = 1, 036, 800 bits to transmit directly. By comparison,
the compressed images require 43, 248 bits (K = 2), 86, 472 bits (K = 3), and
173, 040 bits (K = 10), respectively, to transmit. These represent compression ratios
compared to the original image of 4.2%, 8.3%, and 16.7%, respectively. We see that
there is a trade-off between degree of compression and image quality. Note that our
aim in this example is to illustrate the K-means algorithm. If we had been aiming to
produce a good image compressor, then it would be more fruitful to consider small
blocks of adjacent pixels, for instance 5×5, and thereby exploit the correlations that
exist in natural images between nearby pixels.

9.2. Mixtures of Gaussians

In Section 2.3.9 we motivated the Gaussian mixture model as a simple linear super-
position of Gaussian components, aimed at providing a richer class of density mod-
els than the single Gaussian. We now turn to a formulation of Gaussian mixtures in
terms of discrete latent variables. This will provide us with a deeper insight into this
important distribution, and will also serve to motivate the expectation-maximization
algorithm.

Recall from (2.188) that the Gaussian mixture distribution can be written as a
linear superposition of Gaussians in the form

p(x) =
K∑

k=1

πkN (x|µk,Σk). (9.7)

Let us introduce a K-dimensional binary random variable z having a 1-of-K repre-
sentation in which a particular element zk is equal to 1 and all other elements are
equal to 0. The values of zk therefore satisfy zk ∈ {0, 1} and

∑
k zk = 1, and we

see that there are K possible states for the vector z according to which element is
nonzero. We shall define the joint distribution p(x, z) in terms of a marginal dis-
tribution p(z) and a conditional distribution p(x|z), corresponding to the graphical
model in Figure 9.4. The marginal distribution over z is specified in terms of the
mixing coefficients πk, such that

p(zk = 1) = πk
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Figure 9.4 Graphical representation of a mixture model, in which
the joint distribution is expressed in the form p(x, z) =
p(z)p(x|z).

x

z

where the parameters {πk} must satisfy

0 � πk � 1 (9.8)

together with
K∑

k=1

πk = 1 (9.9)

in order to be valid probabilities. Because z uses a 1-of-K representation, we can
also write this distribution in the form

p(z) =
K∏

k=1

πzk

k . (9.10)

Similarly, the conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)zk . (9.11)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of z to giveExercise 9.3

p(x) =
∑
z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk,Σk) (9.12)

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x1, . . . ,xN ,
then, because we have represented the marginal distribution in the form p(x) =∑

z p(x, z), it follows that for every observed data point xn there is a corresponding
latent variable zn.

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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instead of the marginal distribution p(x), and this will lead to significant simplifica-
tions, most notably through the introduction of the expectation-maximization (EM)
algorithm.

Another quantity that will play an important role is the conditional probability
of z given x. We shall use γ(zk) to denote p(zk = 1|x), whose value can be found
using Bayes’ theorem

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

K∑
j=1

p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)

K∑
j=1

πjN (x|µj ,Σj)

. (9.13)

We shall view πk as the prior probability of zk = 1, and the quantity γ(zk) as the
corresponding posterior probability once we have observed x. As we shall see later,
γ(zk) can also be viewed as the responsibility that component k takes for ‘explain-
ing’ the observation x.

We can use the technique of ancestral sampling to generate random samplesSection 8.1.2
distributed according to the Gaussian mixture model. To do this, we first generate a
value for z, which we denote ẑ, from the marginal distribution p(z) and then generate
a value for x from the conditional distribution p(x|ẑ). Techniques for sampling from
standard distributions are discussed in Chapter 11. We can depict samples from the
joint distribution p(x, z) by plotting points at the corresponding values of x and
then colouring them according to the value of z, in other words according to which
Gaussian component was responsible for generating them, as shown in Figure 9.5(a).
Similarly samples from the marginal distribution p(x) are obtained by taking the
samples from the joint distribution and ignoring the values of z. These are illustrated
in Figure 9.5(b) by plotting the x values without any coloured labels.

We can also use this synthetic data set to illustrate the ‘responsibilities’ by eval-
uating, for every data point, the posterior probability for each component in the
mixture distribution from which this data set was generated. In particular, we can
represent the value of the responsibilities γ(znk) associated with data point xn by
plotting the corresponding point using proportions of red, blue, and green ink given
by γ(znk) for k = 1, 2, 3, respectively, as shown in Figure 9.5(c). So, for instance,
a data point for which γ(zn1) = 1 will be coloured red, whereas one for which
γ(zn2) = γ(zn3) = 0.5 will be coloured with equal proportions of blue and green
ink and so will appear cyan. This should be compared with Figure 9.5(a) in which
the data points were labelled using the true identity of the component from which
they were generated.

9.2.1 Maximum likelihood
Suppose we have a data set of observations {x1, . . . ,xN}, and we wish to model

this data using a mixture of Gaussians. We can represent this data set as an N × D
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π
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Figure 9.7 Illustration of how singularities in the
likelihood function arise with mixtures
of Gaussians. This should be com-
pared with the case of a single Gaus-
sian shown in Figure 1.14 for which no
singularities arise.

x

p(x)

points so that µj = xn for some value of n. This data point will then contribute a
term in the likelihood function of the form

N (xn|xn, σ2
j I) =

1
(2π)1/2

1
σj

. (9.15)

If we consider the limit σj → 0, then we see that this term goes to infinity and
so the log likelihood function will also go to infinity. Thus the maximization of
the log likelihood function is not a well posed problem because such singularities
will always be present and will occur whenever one of the Gaussian components
‘collapses’ onto a specific data point. Recall that this problem did not arise in the
case of a single Gaussian distribution. To understand the difference, note that if a
single Gaussian collapses onto a data point it will contribute multiplicative factors
to the likelihood function arising from the other data points and these factors will go
to zero exponentially fast, giving an overall likelihood that goes to zero rather than
infinity. However, once we have (at least) two components in the mixture, one of
the components can have a finite variance and therefore assign finite probability to
all of the data points while the other component can shrink onto one specific data
point and thereby contribute an ever increasing additive value to the log likelihood.
This is illustrated in Figure 9.7. These singularities provide another example of the
severe over-fitting that can occur in a maximum likelihood approach. We shall see
that this difficulty does not occur if we adopt a Bayesian approach. For the moment,Section 10.1
however, we simply note that in applying maximum likelihood to Gaussian mixture
models we must take steps to avoid finding such pathological solutions and instead
seek local maxima of the likelihood function that are well behaved. We can hope to
avoid the singularities by using suitable heuristics, for instance by detecting when a
Gaussian component is collapsing and resetting its mean to a randomly chosen value
while also resetting its covariance to some large value, and then continuing with the
optimization.

A further issue in finding maximum likelihood solutions arises from the fact
that for any given maximum likelihood solution, a K-component mixture will have
a total of K! equivalent solutions corresponding to the K! ways of assigning K
sets of parameters to K components. In other words, for any given (nondegenerate)
point in the space of parameter values there will be a further K!−1 additional points
all of which give rise to exactly the same distribution. This problem is known as
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a model. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12. However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other.

Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures
An elegant and powerful method for finding maximum likelihood solutions for

models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). Later we shall
give a general treatment of EM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EMSection 10.1
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function. Setting the derivatives of ln p(X|π, µ,Σ) in (9.14) with
respect to the means µk of the Gaussian components to zero, we obtain

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)︸ ︷︷ ︸

γ(znk)

Σk(xn − µk) (9.16)

where we have made use of the form (2.43) for the Gaussian distribution. Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on
the right-hand side. Multiplying by Σ−1

k (which we assume to be nonsingular) and
rearranging we obtain

µk =
1

Nk

N∑
n=1

γ(znk)xn (9.17)

where we have defined

Nk =
N∑

n=1

γ(znk). (9.18)
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We can interpret Nk as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean µk for the kth Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point xn is given by the posterior probability
γ(znk) that component k was responsible for generating xn.

If we set the derivative of ln p(X|π, µ,Σ) with respect to Σk to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtainSection 2.3.4

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)T (9.19)

which has the same form as the corresponding result for a single Gaussian fitted to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize ln p(X|π, µ,Σ) with respect to the mixing coefficients
πk. Here we must take account of the constraint (9.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier andAppendix E
maximizing the following quantity

ln p(X|π, µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(9.20)

which gives

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

+ λ (9.21)

where again we see the appearance of the responsibilities. If we now multiply both
sides by πk and sum over k making use of the constraint (9.9), we find λ = −N .
Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
(9.22)

so that the mixing coefficient for the kth component is given by the average respon-
sibility which that component takes for explaining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22) do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities γ(znk) depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to
the maximum likelihood problem, which as we shall see turns out to be an instance
of the EM algorithm for the particular case of the Gaussian mixture model. We
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E step
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Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two
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Gaussian components are shown as blue and red circles. Plot (b) shows the result
of the initial E step, in which each data point is depicted using a proportion of blue
ink equal to the posterior probability of having been generated from the blue com-
ponent, and a corresponding proportion of red ink given by the posterior probability
of having been generated by the red component. Thus, points that have a significant
probability for belonging to either cluster appear purple. The situation after the first
M step is shown in plot (c), in which the mean of the blue Gaussian has moved to
the mean of the data set, weighted by the probabilities of each data point belonging
to the blue cluster, in other words it has moved to the centre of mass of the blue ink.
Similarly, the covariance of the blue Gaussian is set equal to the covariance of the
blue ink. Analogous results hold for the red component. Plots (d), (e), and (f) show
the results after 2, 5, and 20 complete cycles of EM, respectively. In plot (f) the
algorithm is close to convergence.

Note that the EM algorithm takes many more iterations to reach (approximate)
convergence compared with the K-means algorithm, and that each cycle requires
significantly more computation. It is therefore common to run the K-means algo-
rithm in order to find a suitable initialization for a Gaussian mixture model that is
subsequently adapted using EM. The covariance matrices can conveniently be ini-
tialized to the sample covariances of the clusters found by the K-means algorithm,
and the mixing coefficients can be set to the fractions of data points assigned to the
respective clusters. As with gradient-based approaches for maximizing the log like-
lihood, techniques must be employed to avoid singularities of the likelihood function
in which a Gaussian component collapses onto a particular data point. It should be
emphasized that there will generally be multiple local maxima of the log likelihood
function, and that EM is not guaranteed to find the largest of these maxima. Because
the EM algorithm for Gaussian mixtures plays such an important role, we summarize
it below.

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function
with respect to the parameters (comprising the means and covariances of the
components and the mixing coefficients).

1. Initialize the means µk, covariances Σk and mixing coefficients πk, and
evaluate the initial value of the log likelihood.

2. E step. Evaluate the responsibilities using the current parameter values

γ(znk) =
πkN (xn|µk,Σk)

K∑
j=1

πjN (xn|µj ,Σj)

. (9.23)
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3. M step. Re-estimate the parameters using the current responsibilities

µnew
k =

1
Nk

N∑
n=1

γ(znk)xn (9.24)

Σnew
k =

1
Nk

N∑
n=1

γ(znk) (xn − µnew
k ) (xn − µnew

k )T (9.25)

πnew
k =

Nk

N
(9.26)

where

Nk =
N∑

n=1

γ(znk). (9.27)

4. Evaluate the log likelihood

ln p(X|µ,Σ, π) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(9.28)

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion is not satisfied return to step 2.

9.3. An Alternative View of EM

In this section, we present a complementary view of the EM algorithm that recog-
nizes the key role played by latent variables. We discuss this approach first of all
in an abstract setting, and then for illustration we consider once again the case of
Gaussian mixtures.

The goal of the EM algorithm is to find maximum likelihood solutions for mod-
els having latent variables. We denote the set of all observed data by X, in which the
nth row represents xT

n , and similarly we denote the set of all latent variables by Z,
with a corresponding row zT

n . The set of all model parameters is denoted by θ, and
so the log likelihood function is given by

ln p(X|θ) = ln

{∑
Z

p(X,Z|θ)

}
. (9.29)

Note that our discussion will apply equally well to continuous latent variables simply
by replacing the sum over Z with an integral.

A key observation is that the summation over the latent variables appears inside
the logarithm. Even if the joint distribution p(X,Z|θ) belongs to the exponential
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family, the marginal distribution p(X|θ) typically does not as a result of this sum-
mation. The presence of the sum prevents the logarithm from acting directly on the
joint distribution, resulting in complicated expressions for the maximum likelihood
solution.

Now suppose that, for each observation in X, we were told the corresponding
value of the latent variable Z. We shall call {X,Z} the complete data set, and we
shall refer to the actual observed data X as incomplete, as illustrated in Figure 9.5.
The likelihood function for the complete data set simply takes the form ln p(X,Z|θ),
and we shall suppose that maximization of this complete-data log likelihood function
is straightforward.

In practice, however, we are not given the complete data set {X,Z}, but only
the incomplete data X. Our state of knowledge of the values of the latent variables
in Z is given only by the posterior distribution p(Z|X, θ). Because we cannot use
the complete-data log likelihood, we consider instead its expected value under the
posterior distribution of the latent variable, which corresponds (as we shall see) to the
E step of the EM algorithm. In the subsequent M step, we maximize this expectation.
If the current estimate for the parameters is denoted θold, then a pair of successive
E and M steps gives rise to a revised estimate θnew. The algorithm is initialized by
choosing some starting value for the parameters θ0. The use of the expectation may
seem somewhat arbitrary. However, we shall see the motivation for this choice when
we give a deeper treatment of EM in Section 9.4.

In the E step, we use the current parameter values θold to find the posterior
distribution of the latent variables given by p(Z|X, θold). We then use this posterior
distribution to find the expectation of the complete-data log likelihood evaluated for
some general parameter value θ. This expectation, denoted Q(θ, θold), is given by

Q(θ, θold) =
∑
Z

p(Z|X, θold) ln p(X,Z|θ). (9.30)

In the M step, we determine the revised parameter estimate θnew by maximizing this
function

θnew = arg max
θ

Q(θ, θold). (9.31)

Note that in the definition of Q(θ, θold), the logarithm acts directly on the joint
distribution p(X,Z|θ), and so the corresponding M-step maximization will, by sup-
position, be tractable.

The general EM algorithm is summarized below. It has the property, as we shall
show later, that each cycle of EM will increase the incomplete-data log likelihood
(unless it is already at a local maximum).Section 9.4

The General EM Algorithm

Given a joint distribution p(X,Z|θ) over observed variables X and latent vari-
ables Z, governed by parameters θ, the goal is to maximize the likelihood func-
tion p(X|θ) with respect to θ.

1. Choose an initial setting for the parameters θold.
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2. E step Evaluate p(Z|X, θold).

3. M step Evaluate θnew given by

θnew = arg max
θ

Q(θ, θold) (9.32)

where
Q(θ, θold) =

∑
Z

p(Z|X, θold) ln p(X,Z|θ). (9.33)

4. Check for convergence of either the log likelihood or the parameter values.
If the convergence criterion is not satisfied, then let

θold ← θnew (9.34)

and return to step 2.

The EM algorithm can also be used to find MAP (maximum posterior) solutions
for models in which a prior p(θ) is defined over the parameters. In this case the EExercise 9.4
step remains the same as in the maximum likelihood case, whereas in the M step the
quantity to be maximized is given by Q(θ, θold) + ln p(θ). Suitable choices for the
prior will remove the singularities of the kind illustrated in Figure 9.7.

Here we have considered the use of the EM algorithm to maximize a likelihood
function when there are discrete latent variables. However, it can also be applied
when the unobserved variables correspond to missing values in the data set. The
distribution of the observed values is obtained by taking the joint distribution of all
the variables and then marginalizing over the missing ones. EM can then be used
to maximize the corresponding likelihood function. We shall show an example of
the application of this technique in the context of principal component analysis in
Figure 12.11. This will be a valid procedure if the data values are missing at random,
meaning that the mechanism causing values to be missing does not depend on the
unobserved values. In many situations this will not be the case, for instance if a
sensor fails to return a value whenever the quantity it is measuring exceeds some
threshold.

9.3.1 Gaussian mixtures revisited
We now consider the application of this latent variable view of EM to the spe-

cific case of a Gaussian mixture model. Recall that our goal is to maximize the log
likelihood function (9.14), which is computed using the observed data set X, and we
saw that this was more difficult than for the case of a single Gaussian distribution
due to the presence of the summation over k that occurs inside the logarithm. Sup-
pose then that in addition to the observed data set X, we were also given the values
of the corresponding discrete variables Z. Recall that Figure 9.5(a) shows a ‘com-
plete’ data set (i.e., one that includes labels showing which component generated
each data point) while Figure 9.5(b) shows the corresponding ‘incomplete’ data set.
The graphical model for the complete data is shown in Figure 9.9.
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Figure 9.9 This shows the same graph as in Figure 9.6 except that
we now suppose that the discrete variables zn are ob-
served, as well as the data variables xn.

xn

zn

N

µ Σ

π

Now consider the problem of maximizing the likelihood for the complete data
set {X,Z}. From (9.10) and (9.11), this likelihood function takes the form

p(X,Z|µ,Σ, π) =
N∏

n=1

K∏
k=1

πznk

k N (xn|µk,Σk)znk (9.35)

where znk denotes the kth component of zn. Taking the logarithm, we obtain

ln p(X,Z|µ,Σ, π) =
N∑

n=1

K∑
k=1

znk {lnπk + lnN (xn|µk,Σk)} . (9.36)

Comparison with the log likelihood function (9.14) for the incomplete data shows
that the summation over k and the logarithm have been interchanged. The loga-
rithm now acts directly on the Gaussian distribution, which itself is a member of
the exponential family. Not surprisingly, this leads to a much simpler solution to
the maximum likelihood problem, as we now show. Consider first the maximization
with respect to the means and covariances. Because zn is a K-dimensional vec-
tor with all elements equal to 0 except for a single element having the value 1, the
complete-data log likelihood function is simply a sum of K independent contribu-
tions, one for each mixture component. Thus the maximization with respect to a
mean or a covariance is exactly as for a single Gaussian, except that it involves only
the subset of data points that are ‘assigned’ to that component. For the maximization
with respect to the mixing coefficients, we note that these are coupled for different
values of k by virtue of the summation constraint (9.9). Again, this can be enforced
using a Lagrange multiplier as before, and leads to the result

πk =
1
N

N∑
n=1

znk (9.37)

so that the mixing coefficients are equal to the fractions of data points assigned to
the corresponding components.

Thus we see that the complete-data log likelihood function can be maximized
trivially in closed form. In practice, however, we do not have values for the latent
variables so, as discussed earlier, we consider the expectation, with respect to the
posterior distribution of the latent variables, of the complete-data log likelihood.
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Using (9.10) and (9.11) together with Bayes’ theorem, we see that this posterior
distribution takes the form

p(Z|X, µ,Σ, π) ∝
N∏

n=1

K∏
k=1

[πkN (xn|µk,Σk)]znk . (9.38)

and hence factorizes over n so that under the posterior distribution the {zn} are
independent. This is easily verified by inspection of the directed graph in Figure 9.6Exercise 9.5
and making use of the d-separation criterion. The expected value of the indicatorSection 8.2
variable znk under this posterior distribution is then given by

E[znk] =

∑
znk

znk [πkN (xn|µk,Σk)]znk

∑
znj

[
πjN (xn|µj ,Σj)

]znj

=
πkN (xn|µk,Σk)

K∑
j=1

πjN (xn|µj ,Σj)

= γ(znk) (9.39)

which is just the responsibility of component k for data point xn. The expected value
of the complete-data log likelihood function is therefore given by

EZ[ln p(X,Z|µ,Σ, π)] =
N∑

n=1

K∑
k=1

γ(znk) {lnπk + lnN (xn|µk,Σk)} . (9.40)

We can now proceed as follows. First we choose some initial values for the param-
eters µold, Σold and πold, and use these to evaluate the responsibilities (the E step).
We then keep the responsibilities fixed and maximize (9.40) with respect to µk, Σk

and πk (the M step). This leads to closed form solutions for µnew, Σnew and πnew

given by (9.17), (9.19), and (9.22) as before. This is precisely the EM algorithm forExercise 9.8
Gaussian mixtures as derived earlier. We shall gain more insight into the role of the
expected complete-data log likelihood function when we give a proof of convergence
of the EM algorithm in Section 9.4.

9.3.2 Relation to K-means
Comparison of the K-means algorithm with the EM algorithm for Gaussian

mixtures shows that there is a close similarity. Whereas the K-means algorithm
performs a hard assignment of data points to clusters, in which each data point is
associated uniquely with one cluster, the EM algorithm makes a soft assignment
based on the posterior probabilities. In fact, we can derive the K-means algorithm
as a particular limit of EM for Gaussian mixtures as follows.

Consider a Gaussian mixture model in which the covariance matrices of the
mixture components are given by εI, where ε is a variance parameter that is shared
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by all of the components, and I is the identity matrix, so that

p(x|µk,Σk) =
1

(2πε)1/2
exp

{
− 1

2ε
‖x − µk‖2

}
. (9.41)

We now consider the EM algorithm for a mixture of K Gaussians of this form in
which we treat ε as a fixed constant, instead of a parameter to be re-estimated. From
(9.13) the posterior probabilities, or responsibilities, for a particular data point xn,
are given by

γ(znk) =
πk exp {−‖xn − µk‖2/2ε}∑
j πj exp

{−‖xn − µj‖2/2ε
} . (9.42)

If we consider the limit ε → 0, we see that in the denominator the term for which
‖xn − µj‖2 is smallest will go to zero most slowly, and hence the responsibilities
γ(znk) for the data point xn all go to zero except for term j, for which the responsi-
bility γ(znj) will go to unity. Note that this holds independently of the values of the
πk so long as none of the πk is zero. Thus, in this limit, we obtain a hard assignment
of data points to clusters, just as in the K-means algorithm, so that γ(znk) → rnk

where rnk is defined by (9.2). Each data point is thereby assigned to the cluster
having the closest mean.

The EM re-estimation equation for the µk, given by (9.17), then reduces to the
K-means result (9.4). Note that the re-estimation formula for the mixing coefficients
(9.22) simply re-sets the value of πk to be equal to the fraction of data points assigned
to cluster k, although these parameters no longer play an active role in the algorithm.

Finally, in the limit ε → 0 the expected complete-data log likelihood, given by
(9.40), becomesExercise 9.11

EZ[ln p(X,Z|µ,Σ, π)] → −1
2

N∑
n=1

K∑
k=1

rnk‖xn − µk‖2 + const. (9.43)

Thus we see that in this limit, maximizing the expected complete-data log likelihood
is equivalent to minimizing the distortion measure J for the K-means algorithm
given by (9.1).

Note that the K-means algorithm does not estimate the covariances of the clus-
ters but only the cluster means. A hard-assignment version of the Gaussian mixture
model with general covariance matrices, known as the elliptical K-means algorithm,
has been considered by Sung and Poggio (1994).

9.3.3 Mixtures of Bernoulli distributions
So far in this chapter, we have focussed on distributions over continuous vari-

ables described by mixtures of Gaussians. As a further example of mixture mod-
elling, and to illustrate the EM algorithm in a different context, we now discuss mix-
tures of discrete binary variables described by Bernoulli distributions. This model
is also known as latent class analysis (Lazarsfeld and Henry, 1968; McLachlan and
Peel, 2000). As well as being of practical importance in its own right, our discus-
sion of Bernoulli mixtures will also lay the foundation for a consideration of hidden
Markov models over discrete variables.Section 13.2
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Consider a set of D binary variables xi, where i = 1, . . . , D, each of which is
governed by a Bernoulli distribution with parameter µi, so that

p(x|µ) =
D∏

i=1

µxi

i (1 − µi)(1−xi) (9.44)

where x = (x1, . . . , xD)T and µ = (µ1, . . . , µD)T. We see that the individual
variables xi are independent, given µ. The mean and covariance of this distribution
are easily seen to be

E[x] = µ (9.45)

cov[x] = diag{µi(1 − µi)}. (9.46)

Now let us consider a finite mixture of these distributions given by

p(x|µ, π) =
K∑

k=1

πkp(x|µk) (9.47)

where µ = {µ1, . . . ,µK}, π = {π1, . . . , πK}, and

p(x|µk) =
D∏

i=1

µxi

ki(1 − µki)(1−xi). (9.48)

The mean and covariance of this mixture distribution are given byExercise 9.12

E[x] =
K∑

k=1

πkµk (9.49)

cov[x] =
K∑

k=1

πk

{
Σk + µkµT

k

}− E[x]E[x]T (9.50)

where Σk = diag {µki(1 − µki)}. Because the covariance matrix cov[x] is no
longer diagonal, the mixture distribution can capture correlations between the vari-
ables, unlike a single Bernoulli distribution.

If we are given a data set X = {x1, . . . ,xN} then the log likelihood function
for this model is given by

ln p(X|µ, π) =
N∑

n=1

ln

{
K∑

k=1

πkp(xn|µk)

}
. (9.51)

Again we see the appearance of the summation inside the logarithm, so that the
maximum likelihood solution no longer has closed form.

We now derive the EM algorithm for maximizing the likelihood function for
the mixture of Bernoulli distributions. To do this, we first introduce an explicit latent
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variable z associated with each instance of x. As in the case of the Gaussian mixture,
z = (z1, . . . , zK)T is a binary K-dimensional variable having a single component
equal to 1, with all other components equal to 0. We can then write the conditional
distribution of x, given the latent variable, as

p(x|z, µ) =
K∏

k=1

p(x|µk)zk (9.52)

while the prior distribution for the latent variables is the same as for the mixture of
Gaussians model, so that

p(z|π) =
K∏

k=1

πzk

k . (9.53)

If we form the product of p(x|z, µ) and p(z|π) and then marginalize over z, then we
recover (9.47).Exercise 9.14

In order to derive the EM algorithm, we first write down the complete-data log
likelihood function, which is given by

ln p(X,Z|µ, π) =
N∑

n=1

K∑
k=1

znk

{
ln πk

+
D∑

i=1

[xni ln µki + (1 − xni) ln(1 − µki)]

}
(9.54)

where X = {xn} and Z = {zn}. Next we take the expectation of the complete-data
log likelihood with respect to the posterior distribution of the latent variables to give

EZ[ln p(X,Z|µ, π)] =
N∑

n=1

K∑
k=1

γ(znk)

{
ln πk

+
D∑

i=1

[xni ln µki + (1 − xni) ln(1 − µki)]

}
(9.55)

where γ(znk) = E[znk] is the posterior probability, or responsibility, of component
k given data point xn. In the E step, these responsibilities are evaluated using Bayes’
theorem, which takes the form

γ(znk) = E[znk] =

∑
znk

znk [πkp(xn|µk)]znk

∑
znj

[
πjp(xn|µj)

]znj

=
πkp(xn|µk)

K∑
j=1

πjp(xn|µj)

. (9.56)
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If we consider the sum over n in (9.55), we see that the responsibilities enter
only through two terms, which can be written as

Nk =
N∑

n=1

γ(znk) (9.57)

xk =
1

Nk

N∑
n=1

γ(znk)xn (9.58)

where Nk is the effective number of data points associated with component k. In the
M step, we maximize the expected complete-data log likelihood with respect to the
parameters µk and π. If we set the derivative of (9.55) with respect to µk equal to
zero and rearrange the terms, we obtainExercise 9.15

µk = xk. (9.59)

We see that this sets the mean of component k equal to a weighted mean of the
data, with weighting coefficients given by the responsibilities that component k takes
for data points. For the maximization with respect to πk, we need to introduce a
Lagrange multiplier to enforce the constraint

∑
k πk = 1. Following analogous

steps to those used for the mixture of Gaussians, we then obtainExercise 9.16

πk =
Nk

N
(9.60)

which represents the intuitively reasonable result that the mixing coefficient for com-
ponent k is given by the effective fraction of points in the data set explained by that
component.

Note that in contrast to the mixture of Gaussians, there are no singularities in
which the likelihood function goes to infinity. This can be seen by noting that the
likelihood function is bounded above because 0 � p(xn|µk) � 1. There existExercise 9.17
singularities at which the likelihood function goes to zero, but these will not be
found by EM provided it is not initialized to a pathological starting point, because
the EM algorithm always increases the value of the likelihood function, until a local
maximum is found. We illustrate the Bernoulli mixture model in Figure 9.10 bySection 9.4
using it to model handwritten digits. Here the digit images have been turned into
binary vectors by setting all elements whose values exceed 0.5 to 1 and setting the
remaining elements to 0. We now fit a data set of N = 600 such digits, comprising
the digits ‘2’, ‘3’, and ‘4’, with a mixture of K = 3 Bernoulli distributions by
running 10 iterations of the EM algorithm. The mixing coefficients were initialized
to πk = 1/K, and the parameters µkj were set to random values chosen uniformly in
the range (0.25, 0.75) and then normalized to satisfy the constraint that

∑
j µkj = 1.

We see that a mixture of 3 Bernoulli distributions is able to find the three clusters in
the data set corresponding to the different digits.

The conjugate prior for the parameters of a Bernoulli distribution is given by
the beta distribution, and we have seen that a beta prior is equivalent to introducing
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Figure 9.10 Illustration of the Bernoulli mixture model in which the top row shows examples from the digits data
set after converting the pixel values from grey scale to binary using a threshold of 0.5. On the bottom row the first
three images show the parameters µki for each of the three components in the mixture model. As a comparison,
we also fit the same data set using a single multivariate Bernoulli distribution, again using maximum likelihood.
This amounts to simply averaging the counts in each pixel and is shown by the right-most image on the bottom
row.

additional effective observations of x. We can similarly introduce priors into theSection 2.1.1
Bernoulli mixture model, and use EM to maximize the posterior probability distri-
butions.Exercise 9.18

It is straightforward to extend the analysis of Bernoulli mixtures to the case of
multinomial binary variables having M > 2 states by making use of the discrete dis-Exercise 9.19
tribution (2.26). Again, we can introduce Dirichlet priors over the model parameters
if desired.

9.3.4 EM for Bayesian linear regression
As a third example of the application of EM, we return to the evidence ap-

proximation for Bayesian linear regression. In Section 3.5.2, we obtained the re-
estimation equations for the hyperparameters α and β by evaluation of the evidence
and then setting the derivatives of the resulting expression to zero. We now turn to
an alternative approach for finding α and β based on the EM algorithm. Recall that
our goal is to maximize the evidence function p(t|α, β) given by (3.77) with respect
to α and β. Because the parameter vector w is marginalized out, we can regard it as
a latent variable, and hence we can optimize this marginal likelihood function using
EM. In the E step, we compute the posterior distribution of w given the current set-
ting of the parameters α and β and then use this to find the expected complete-data
log likelihood. In the M step, we maximize this quantity with respect to α and β. We
have already derived the posterior distribution of w because this is given by (3.49).
The complete-data log likelihood function is then given by

ln p(t,w|α, β) = ln p(t|w, β) + ln p(w|α) (9.61)
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where the likelihood p(t|w, β) and the prior p(w|α) are given by (3.10) and (3.52),
respectively, and y(x,w) is given by (3.3). Taking the expectation with respect to
the posterior distribution of w then gives

E [ln p(t,w|α, β)] =
M

2
ln
( α

2π

)
− α

2
E
[
wTw

]
+

N

2
ln
(

β

2π

)
−β

2

N∑
n=1

E
[
(tn − wTφn)2

]
. (9.62)

Setting the derivatives with respect to α to zero, we obtain the M step re-estimation
equationExercise 9.20

α =
M

E [wTw]
=

M

mT
NmN + Tr(SN )

. (9.63)

An analogous result holds for β.Exercise 9.21
Note that this re-estimation equation takes a slightly different form from the

corresponding result (3.92) derived by direct evaluation of the evidence function.
However, they each involve computation and inversion (or eigen decomposition) of
an M ×M matrix and hence will have comparable computational cost per iteration.

These two approaches to determining α should of course converge to the same
result (assuming they find the same local maximum of the evidence function). This
can be verified by first noting that the quantity γ is defined by

γ = M − α

M∑
i=1

1
λi + α

= M − αTr(SN ). (9.64)

At a stationary point of the evidence function, the re-estimation equation (3.92) will
be self-consistently satisfied, and hence we can substitute for γ to give

αmT
NmN = γ = M − αTr(SN ) (9.65)

and solving for α we obtain (9.63), which is precisely the EM re-estimation equation.
As a final example, we consider a closely related model, namely the relevance

vector machine for regression discussed in Section 7.2.1. There we used direct max-
imization of the marginal likelihood to derive re-estimation equations for the hyper-
parameters α and β. Here we consider an alternative approach in which we view the
weight vector w as a latent variable and apply the EM algorithm. The E step involves
finding the posterior distribution over the weights, and this is given by (7.81). In the
M step we maximize the expected complete-data log likelihood, which is defined by

Ew [ln p(t|X,w, β)p(w|α)] (9.66)

where the expectation is taken with respect to the posterior distribution computed
using the ‘old’ parameter values. To compute the new parameter values we maximize
with respect to α and β to giveExercise 9.22
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αnew
i =

1
m2

i + Σii
(9.67)

(βnew)−1 =
‖t − ΦmN‖2 + β−1

∑
i γi

N
(9.68)

These re-estimation equations are formally equivalent to those obtained by direct
maxmization.Exercise 9.23

9.4. The EM Algorithm in General

The expectation maximization algorithm, or EM algorithm, is a general technique for
finding maximum likelihood solutions for probabilistic models having latent vari-
ables (Dempster et al., 1977; McLachlan and Krishnan, 1997). Here we give a very
general treatment of the EM algorithm and in the process provide a proof that the
EM algorithm derived heuristically in Sections 9.2 and 9.3 for Gaussian mixtures
does indeed maximize the likelihood function (Csiszàr and Tusnàdy, 1984; Hath-
away, 1986; Neal and Hinton, 1999). Our discussion will also form the basis for the
derivation of the variational inference framework.Section 10.1

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|θ) is governed by a set of parameters denoted θ. Our goal is to maximize
the likelihood function that is given by

p(X|θ) =
∑
Z

p(X,Z|θ). (9.69)

Here we are assuming Z is discrete, although the discussion is identical if Z com-
prises continuous variables or a combination of discrete and continuous variables,
with summation replaced by integration as appropriate.

We shall suppose that direct optimization of p(X|θ) is difficult, but that opti-
mization of the complete-data likelihood function p(X,Z|θ) is significantly easier.
Next we introduce a distribution q(Z) defined over the latent variables, and we ob-
serve that, for any choice of q(Z), the following decomposition holds

ln p(X|θ) = L(q, θ) + KL(q‖p) (9.70)

where we have defined

L(q, θ) =
∑
Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
(9.71)

KL(q‖p) = −
∑
Z

q(Z) ln
{

p(Z|X, θ)
q(Z)

}
. (9.72)

Note that L(q, θ) is a functional (see Appendix D for a discussion of functionals)
of the distribution q(Z), and a function of the parameters θ. It is worth studying
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Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q‖p) � 0, we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q‖p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q‖p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1.

From (9.72), we see that KL(q‖p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q‖p) � 0, with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) � ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as
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Figure 9.12 Illustration of the E step of
the EM algorithm. The q
distribution is set equal to
the posterior distribution for
the current parameter val-
ues θold, causing the lower
bound to move up to the
same value as the log like-
lihood function, with the KL
divergence vanishing. ln p(X|θold)L(q, θold)

KL(q||p) = 0

shown in Figure 9.13. If we substitute q(Z) = p(Z|X, θold) into (9.71), we see that,
after the E step, the lower bound takes the form

L(q, θ) =
∑
Z

p(Z|X, θold) ln p(X,Z|θ) −
∑
Z

p(Z|X, θold) ln p(Z|X, θold)

= Q(θ, θold) + const (9.74)

where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
only inside the logarithm. If the joint distribution p(Z,X|θ) comprises a member of
the exponential family, or a product of such members, then we see that the logarithm
will cancel the exponential and lead to an M step that will be typically much simpler
than the maximization of the corresponding incomplete-data log likelihood function
p(X|θ).

The operation of the EM algorithm can also be viewed in the space of parame-
ters, as illustrated schematically in Figure 9.14. Here the red curve depicts the (in-

Figure 9.13 Illustration of the M step of the EM
algorithm. The distribution q(Z)
is held fixed and the lower bound
L(q, θ) is maximized with respect
to the parameter vector θ to give
a revised value θnew. Because the
KL divergence is nonnegative, this
causes the log likelihood ln p(X|θ)
to increase by at least as much as
the lower bound does.

ln p(X|θnew)L(q, θnew)

KL(q||p)
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Figure 9.14 The EM algorithm involves alter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain
the new parameter values. See
the text for a full discussion.

θold θnew

L (q, θ)

ln p(X|θ)

complete data) log likelihood function whose value we wish to maximize. We start
with some initial parameter value θold, and in the first E step we evaluate the poste-
rior distribution over latent variables, which gives rise to a lower bound L(θ, θ(old))
whose value equals the log likelihood at θ(old), as shown by the blue curve. Note that
the bound makes a tangential contact with the log likelihood at θ(old), so that both
curves have the same gradient. This bound is a convex function having a uniqueExercise 9.25
maximum (for mixture components from the exponential family). In the M step, the
bound is maximized giving the value θ(new), which gives a larger value of log likeli-
hood than θ(old). The subsequent E step then constructs a bound that is tangential at
θ(new) as shown by the green curve.

For the particular case of an independent, identically distributed data set, X
will comprise N data points {xn} while Z will comprise N corresponding latent
variables {zn}, where n = 1, . . . , N . From the independence assumption, we have
p(X,Z) =

∏
n p(xn, zn) and, by marginalizing over the {zn} we have p(X) =∏

n p(xn). Using the sum and product rules, we see that the posterior probability
that is evaluated in the E step takes the form

p(Z|X, θ) =
p(X,Z|θ)∑

Z

p(X,Z|θ)
=

N∏
n=1

p(xn, zn|θ)

∑
Z

N∏
n=1

p(xn, zn|θ)

=
N∏

n=1

p(zn|xn, θ) (9.75)

and so the posterior distribution also factorizes with respect to n. In the case of
the Gaussian mixture model this simply says that the responsibility that each of the
mixture components takes for a particular data point xn depends only on the value
of xn and on the parameters θ of the mixture components, not on the values of the
other data points.

We have seen that both the E and the M steps of the EM algorithm are increas-
ing the value of a well-defined bound on the log likelihood function and that the
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complete EM cycle will change the model parameters in such a way as to cause
the log likelihood to increase (unless it is already at a maximum, in which case the
parameters remain unchanged).

We can also use the EM algorithm to maximize the posterior distribution p(θ|X)
for models in which we have introduced a prior p(θ) over the parameters. To see this,
we note that as a function of θ, we have p(θ|X) = p(θ,X)/p(X) and so

ln p(θ|X) = ln p(θ,X) − ln p(X). (9.76)

Making use of the decomposition (9.70), we have

ln p(θ|X) = L(q, θ) + KL(q‖p) + ln p(θ) − ln p(X)
� L(q, θ) + ln p(θ) − ln p(X). (9.77)

where ln p(X) is a constant. We can again optimize the right-hand side alternately
with respect to q and θ. The optimization with respect to q gives rise to the same E-
step equations as for the standard EM algorithm, because q only appears in L(q, θ).
The M-step equations are modified through the introduction of the prior term ln p(θ),
which typically requires only a small modification to the standard maximum likeli-
hood M-step equations.

The EM algorithm breaks down the potentially difficult problem of maximizing
the likelihood function into two stages, the E step and the M step, each of which will
often prove simpler to implement. Nevertheless, for complex models it may be the
case that either the E step or the M step, or indeed both, remain intractable. This
leads to two possible extensions of the EM algorithm, as follows.

The generalized EM, or GEM, algorithm addresses the problem of an intractable
M step. Instead of aiming to maximize L(q, θ) with respect to θ, it seeks instead
to change the parameters in such a way as to increase its value. Again, because
L(q, θ) is a lower bound on the log likelihood function, each complete EM cycle of
the GEM algorithm is guaranteed to increase the value of the log likelihood (unless
the parameters already correspond to a local maximum). One way to exploit the
GEM approach would be to use one of the nonlinear optimization strategies, such
as the conjugate gradients algorithm, during the M step. Another form of GEM
algorithm, known as the expectation conditional maximization, or ECM, algorithm,
involves making several constrained optimizations within each M step (Meng and
Rubin, 1993). For instance, the parameters might be partitioned into groups, and the
M step is broken down into multiple steps each of which involves optimizing one of
the subset with the remainder held fixed.

We can similarly generalize the E step of the EM algorithm by performing a
partial, rather than complete, optimization of L(q, θ) with respect to q(Z) (Neal and
Hinton, 1999). As we have seen, for any given value of θ there is a unique maximum
of L(q, θ) with respect to q(Z) that corresponds to the posterior distribution qθ(Z) =
p(Z|X, θ) and that for this choice of q(Z) the bound L(q, θ) is equal to the log
likelihood function ln p(X|θ). It follows that any algorithm that converges to the
global maximum of L(q, θ) will find a value of θ that is also a global maximum
of the log likelihood ln p(X|θ). Provided p(X,Z|θ) is a continuous function of θ
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then, by continuity, any local maximum of L(q, θ) will also be a local maximum of
ln p(X|θ).

Consider the case of N independent data points x1, . . . ,xN with corresponding
latent variables z1, . . . , zN . The joint distribution p(X,Z|θ) factorizes over the data
points, and this structure can be exploited in an incremental form of EM in which
at each EM cycle only one data point is processed at a time. In the E step, instead
of recomputing the responsibilities for all of the data points, we just re-evaluate the
responsibilities for one data point. It might appear that the subsequent M step would
require computation involving the responsibilities for all of the data points. How-
ever, if the mixture components are members of the exponential family, then the
responsibilities enter only through simple sufficient statistics, and these can be up-
dated efficiently. Consider, for instance, the case of a Gaussian mixture, and suppose
we perform an update for data point m in which the corresponding old and new
values of the responsibilities are denoted γold(zmk) and γnew(zmk). In the M step,
the required sufficient statistics can be updated incrementally. For instance, for the
means the sufficient statistics are defined by (9.17) and (9.18) from which we obtainExercise 9.26

µnew
k = µold

k +
(

γnew(zmk) − γold(zmk)
Nnew

k

)(
xm − µold

k

)
(9.78)

together with
Nnew

k = Nold
k + γnew(zmk) − γold(zmk). (9.79)

The corresponding results for the covariances and the mixing coefficients are analo-
gous.

Thus both the E step and the M step take fixed time that is independent of the
total number of data points. Because the parameters are revised after each data point,
rather than waiting until after the whole data set is processed, this incremental ver-
sion can converge faster than the batch version. Each E or M step in this incremental
algorithm is increasing the value of L(q, θ) and, as we have shown above, if the
algorithm converges to a local (or global) maximum of L(q, θ), this will correspond
to a local (or global) maximum of the log likelihood function ln p(X|θ).

Exercises
9.1 (�) www Consider the K-means algorithm discussed in Section 9.1. Show that as

a consequence of there being a finite number of possible assignments for the set of
discrete indicator variables rnk, and that for each such assignment there is a unique
optimum for the {µk}, the K-means algorithm must converge after a finite number
of iterations.

9.2 (�) Apply the Robbins-Monro sequential estimation procedure described in Sec-
tion 2.3.5 to the problem of finding the roots of the regression function given by
the derivatives of J in (9.1) with respect to µk. Show that this leads to a stochastic
K-means algorithm in which, for each data point xn, the nearest prototype µk is
updated using (9.5).
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9.3 (�) www Consider a Gaussian mixture model in which the marginal distribution
p(z) for the latent variable is given by (9.10), and the conditional distribution p(x|z)
for the observed variable is given by (9.11). Show that the marginal distribution
p(x), obtained by summing p(z)p(x|z) over all possible values of z, is a Gaussian
mixture of the form (9.7).

9.4 (�) Suppose we wish to use the EM algorithm to maximize the posterior distri-
bution over parameters p(θ|X) for a model containing latent variables, where X is
the observed data set. Show that the E step remains the same as in the maximum
likelihood case, whereas in the M step the quantity to be maximized is given by
Q(θ, θold) + ln p(θ) where Q(θ, θold) is defined by (9.30).

9.5 (�) Consider the directed graph for a Gaussian mixture model shown in Figure 9.6.
By making use of the d-separation criterion discussed in Section 8.2, show that the
posterior distribution of the latent variables factorizes with respect to the different
data points so that

p(Z|X, µ,Σ, π) =
N∏

n=1

p(zn|xn, µ,Σ, π). (9.80)

9.6 (� �) Consider a special case of a Gaussian mixture model in which the covari-
ance matrices Σk of the components are all constrained to have a common value
Σ. Derive the EM equations for maximizing the likelihood function under such a
model.

9.7 (�) www Verify that maximization of the complete-data log likelihood (9.36) for
a Gaussian mixture model leads to the result that the means and covariances of each
component are fitted independently to the corresponding group of data points, and
the mixing coefficients are given by the fractions of points in each group.

9.8 (�) www Show that if we maximize (9.40) with respect to µk while keeping the
responsibilities γ(znk) fixed, we obtain the closed form solution given by (9.17).

9.9 (�) Show that if we maximize (9.40) with respect to Σk and πk while keeping the
responsibilities γ(znk) fixed, we obtain the closed form solutions given by (9.19)
and (9.22).

9.10 (� �) Consider a density model given by a mixture distribution

p(x) =
K∑

k=1

πkp(x|k) (9.81)

and suppose that we partition the vector x into two parts so that x = (xa,xb).
Show that the conditional density p(xb|xa) is itself a mixture distribution and find
expressions for the mixing coefficients and for the component densities.



Exercises 457

9.11 (�) In Section 9.3.2, we obtained a relationship between K means and EM for
Gaussian mixtures by considering a mixture model in which all components have
covariance εI. Show that in the limit ε → 0, maximizing the expected complete-
data log likelihood for this model, given by (9.40), is equivalent to minimizing the
distortion measure J for the K-means algorithm given by (9.1).

9.12 (�) www Consider a mixture distribution of the form

p(x) =
K∑

k=1

πkp(x|k) (9.82)

where the elements of x could be discrete or continuous or a combination of these.
Denote the mean and covariance of p(x|k) by µk and Σk, respectively. Show that
the mean and covariance of the mixture distribution are given by (9.49) and (9.50).

9.13 (� �) Using the re-estimation equations for the EM algorithm, show that a mix-
ture of Bernoulli distributions, with its parameters set to values corresponding to a
maximum of the likelihood function, has the property that

E[x] =
1
N

N∑
n=1

xn ≡ x. (9.83)

Hence show that if the parameters of this model are initialized such that all compo-
nents have the same mean µk = µ̂ for k = 1, . . . , K, then the EM algorithm will
converge after one iteration, for any choice of the initial mixing coefficients, and that
this solution has the property µk = x. Note that this represents a degenerate case of
the mixture model in which all of the components are identical, and in practice we
try to avoid such solutions by using an appropriate initialization.

9.14 (�) Consider the joint distribution of latent and observed variables for the Bernoulli
distribution obtained by forming the product of p(x|z, µ) given by (9.52) and p(z|π)
given by (9.53). Show that if we marginalize this joint distribution with respect to z,
then we obtain (9.47).

9.15 (�) www Show that if we maximize the expected complete-data log likelihood
function (9.55) for a mixture of Bernoulli distributions with respect to µk, we obtain
the M step equation (9.59).

9.16 (�) Show that if we maximize the expected complete-data log likelihood function
(9.55) for a mixture of Bernoulli distributions with respect to the mixing coefficients
πk, using a Lagrange multiplier to enforce the summation constraint, we obtain the
M step equation (9.60).

9.17 (�) www Show that as a consequence of the constraint 0 � p(xn|µk) � 1 for
the discrete variable xn, the incomplete-data log likelihood function for a mixture
of Bernoulli distributions is bounded above, and hence that there are no singularities
for which the likelihood goes to infinity.
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9.18 (� �) Consider a Bernoulli mixture model as discussed in Section 9.3.3, together
with a prior distribution p(µk|ak, bk) over each of the parameter vectors µk given
by the beta distribution (2.13), and a Dirichlet prior p(π|α) given by (2.38). Derive
the EM algorithm for maximizing the posterior probability p(µ, π|X).

9.19 (� �) Consider a D-dimensional variable x each of whose components i is itself a
multinomial variable of degree M so that x is a binary vector with components xij

where i = 1, . . . , D and j = 1, . . . , M , subject to the constraint that
∑

j xij = 1 for
all i. Suppose that the distribution of these variables is described by a mixture of the
discrete multinomial distributions considered in Section 2.2 so that

p(x) =
K∑

k=1

πkp(x|µk) (9.84)

where

p(x|µk) =
D∏

i=1

M∏
j=1

µ
xij

kij . (9.85)

The parameters µkij represent the probabilities p(xij = 1|µk) and must satisfy
0 � µkij � 1 together with the constraint

∑
j µkij = 1 for all values of k and i.

Given an observed data set {xn}, where n = 1, . . . , N , derive the E and M step
equations of the EM algorithm for optimizing the mixing coefficients πk and the
component parameters µkij of this distribution by maximum likelihood.

9.20 (�) www Show that maximization of the expected complete-data log likelihood
function (9.62) for the Bayesian linear regression model leads to the M step re-
estimation result (9.63) for α.

9.21 (� �) Using the evidence framework of Section 3.5, derive the M-step re-estimation
equations for the parameter β in the Bayesian linear regression model, analogous to
the result (9.63) for α.

9.22 (� �) By maximization of the expected complete-data log likelihood defined by
(9.66), derive the M step equations (9.67) and (9.68) for re-estimating the hyperpa-
rameters of the relevance vector machine for regression.

9.23 (� �) www In Section 7.2.1 we used direct maximization of the marginal like-
lihood to derive the re-estimation equations (7.87) and (7.88) for finding values of
the hyperparameters α and β for the regression RVM. Similarly, in Section 9.3.4
we used the EM algorithm to maximize the same marginal likelihood, giving the
re-estimation equations (9.67) and (9.68). Show that these two sets of re-estimation
equations are formally equivalent.

9.24 (�) Verify the relation (9.70) in which L(q, θ) and KL(q‖p) are defined by (9.71)
and (9.72), respectively.
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9.25 (�) www Show that the lower bound L(q, θ) given by (9.71), with q(Z) =
p(Z|X, θ(old)), has the same gradient with respect to θ as the log likelihood function
ln p(X|θ) at the point θ = θ(old).

9.26 (�) www Consider the incremental form of the EM algorithm for a mixture of
Gaussians, in which the responsibilities are recomputed only for a specific data point
xm. Starting from the M-step formulae (9.17) and (9.18), derive the results (9.78)
and (9.79) for updating the component means.

9.27 (� �) Derive M-step formulae for updating the covariance matrices and mixing
coefficients in a Gaussian mixture model when the responsibilities are updated in-
crementally, analogous to the result (9.78) for updating the means.



10
Approximate

Inference

A central task in the application of probabilistic models is the evaluation of the pos-
terior distribution p(Z|X) of the latent variables Z given the observed (visible) data
variables X, and the evaluation of expectations computed with respect to this dis-
tribution. The model might also contain some deterministic parameters, which we
will leave implicit for the moment, or it may be a fully Bayesian model in which any
unknown parameters are given prior distributions and are absorbed into the set of
latent variables denoted by the vector Z. For instance, in the EM algorithm we need
to evaluate the expectation of the complete-data log likelihood with respect to the
posterior distribution of the latent variables. For many models of practical interest, it
will be infeasible to evaluate the posterior distribution or indeed to compute expec-
tations with respect to this distribution. This could be because the dimensionality of
the latent space is too high to work with directly or because the posterior distribution
has a highly complex form for which expectations are not analytically tractable. In
the case of continuous variables, the required integrations may not have closed-form

461



462 10. APPROXIMATE INFERENCE

analytical solutions, while the dimensionality of the space and the complexity of the
integrand may prohibit numerical integration. For discrete variables, the marginal-
izations involve summing over all possible configurations of the hidden variables,
and though this is always possible in principle, we often find in practice that there
may be exponentially many hidden states so that exact calculation is prohibitively
expensive.

In such situations, we need to resort to approximation schemes, and these fall
broadly into two classes, according to whether they rely on stochastic or determin-
istic approximations. Stochastic techniques such as Markov chain Monte Carlo, de-
scribed in Chapter 11, have enabled the widespread use of Bayesian methods across
many domains. They generally have the property that given infinite computational
resource, they can generate exact results, and the approximation arises from the use
of a finite amount of processor time. In practice, sampling methods can be compu-
tationally demanding, often limiting their use to small-scale problems. Also, it can
be difficult to know whether a sampling scheme is generating independent samples
from the required distribution.

In this chapter, we introduce a range of deterministic approximation schemes,
some of which scale well to large applications. These are based on analytical ap-
proximations to the posterior distribution, for example by assuming that it factorizes
in a particular way or that it has a specific parametric form such as a Gaussian. As
such, they can never generate exact results, and so their strengths and weaknesses
are complementary to those of sampling methods.

In Section 4.4, we discussed the Laplace approximation, which is based on a
local Gaussian approximation to a mode (i.e., a maximum) of the distribution. Here
we turn to a family of approximation techniques called variational inference or vari-
ational Bayes, which use more global criteria and which have been widely applied.
We conclude with a brief introduction to an alternative variational framework known
as expectation propagation.

10.1. Variational Inference

Variational methods have their origins in the 18th century with the work of Euler,
Lagrange, and others on the calculus of variations. Standard calculus is concerned
with finding derivatives of functions. We can think of a function as a mapping that
takes the value of a variable as the input and returns the value of the function as the
output. The derivative of the function then describes how the output value varies
as we make infinitesimal changes to the input value. Similarly, we can define a
functional as a mapping that takes a function as the input and that returns the value
of the functional as the output. An example would be the entropy H[p], which takes
a probability distribution p(x) as the input and returns the quantity

H[p] =
∫

p(x) ln p(x) dx (10.1)
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as the output. We can the introduce the concept of a functional derivative, which ex-
presses how the value of the functional changes in response to infinitesimal changes
to the input function (Feynman et al., 1964). The rules for the calculus of variations
mirror those of standard calculus and are discussed in Appendix D. Many problems
can be expressed in terms of an optimization problem in which the quantity being
optimized is a functional. The solution is obtained by exploring all possible input
functions to find the one that maximizes, or minimizes, the functional. Variational
methods have broad applicability and include such areas as finite element methods
(Kapur, 1989) and maximum entropy (Schwarz, 1988).

Although there is nothing intrinsically approximate about variational methods,
they do naturally lend themselves to finding approximate solutions. This is done
by restricting the range of functions over which the optimization is performed, for
instance by considering only quadratic functions or by considering functions com-
posed of a linear combination of fixed basis functions in which only the coefficients
of the linear combination can vary. In the case of applications to probabilistic in-
ference, the restriction may for example take the form of factorization assumptions
(Jordan et al., 1999; Jaakkola, 2001).

Now let us consider in more detail how the concept of variational optimization
can be applied to the inference problem. Suppose we have a fully Bayesian model in
which all parameters are given prior distributions. The model may also have latent
variables as well as parameters, and we shall denote the set of all latent variables
and parameters by Z. Similarly, we denote the set of all observed variables by X.
For example, we might have a set of N independent, identically distributed data,
for which X = {x1, . . . ,xN} and Z = {z1, . . . , zN}. Our probabilistic model
specifies the joint distribution p(X,Z), and our goal is to find an approximation for
the posterior distribution p(Z|X) as well as for the model evidence p(X). As in our
discussion of EM, we can decompose the log marginal probability using

ln p(X) = L(q) + KL(q‖p) (10.2)

where we have defined

L(q) =
∫

q(Z) ln
{

p(X,Z)
q(Z)

}
dZ (10.3)

KL(q‖p) = −
∫

q(Z) ln
{

p(Z|X)
q(Z)

}
dZ. (10.4)

This differs from our discussion of EM only in that the parameter vector θ no longer
appears, because the parameters are now stochastic variables and are absorbed into
Z. Since in this chapter we will mainly be interested in continuous variables we have
used integrations rather than summations in formulating this decomposition. How-
ever, the analysis goes through unchanged if some or all of the variables are discrete
simply by replacing the integrations with summations as required. As before, we
can maximize the lower bound L(q) by optimization with respect to the distribution
q(Z), which is equivalent to minimizing the KL divergence. If we allow any possible
choice for q(Z), then the maximum of the lower bound occurs when the KL diver-
gence vanishes, which occurs when q(Z) equals the posterior distribution p(Z|X).
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Figure 10.1 Illustration of the variational approximation for the example considered earlier in Figure 4.14. The
left-hand plot shows the original distribution (yellow) along with the Laplace (red) and variational (green) approx-
imations, and the right-hand plot shows the negative logarithms of the corresponding curves.

However, we shall suppose the model is such that working with the true posterior
distribution is intractable.

We therefore consider instead a restricted family of distributions q(Z) and then
seek the member of this family for which the KL divergence is minimized. Our goal
is to restrict the family sufficiently that they comprise only tractable distributions,
while at the same time allowing the family to be sufficiently rich and flexible that it
can provide a good approximation to the true posterior distribution. It is important to
emphasize that the restriction is imposed purely to achieve tractability, and that sub-
ject to this requirement we should use as rich a family of approximating distributions
as possible. In particular, there is no ‘over-fitting’ associated with highly flexible dis-
tributions. Using more flexible approximations simply allows us to approach the true
posterior distribution more closely.

One way to restrict the family of approximating distributions is to use a paramet-
ric distribution q(Z|ω) governed by a set of parameters ω. The lower bound L(q)
then becomes a function of ω, and we can exploit standard nonlinear optimization
techniques to determine the optimal values for the parameters. An example of this
approach, in which the variational distribution is a Gaussian and we have optimized
with respect to its mean and variance, is shown in Figure 10.1.

10.1.1 Factorized distributions
Here we consider an alternative way in which to restrict the family of distri-

butions q(Z). Suppose we partition the elements of Z into disjoint groups that we
denote by Zi where i = 1, . . . , M . We then assume that the q distribution factorizes
with respect to these groups, so that

q(Z) =
M∏
i=1

qi(Zi). (10.5)
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It should be emphasized that we are making no further assumptions about the distri-
bution. In particular, we place no restriction on the functional forms of the individual
factors qi(Zi). This factorized form of variational inference corresponds to an ap-
proximation framework developed in physics called mean field theory (Parisi, 1988).

Amongst all distributions q(Z) having the form (10.5), we now seek that distri-
bution for which the lower bound L(q) is largest. We therefore wish to make a free
form (variational) optimization of L(q) with respect to all of the distributions qi(Zi),
which we do by optimizing with respect to each of the factors in turn. To achieve
this, we first substitute (10.5) into (10.3) and then dissect out the dependence on one
of the factors qj(Zj). Denoting qj(Zj) by simply qj to keep the notation uncluttered,
we then obtain

L(q) =
∫ ∏

i

qi

{
ln p(X,Z) −

∑
i

ln qi

}
dZ

=
∫

qj

{∫
ln p(X,Z)

∏
i	=j

qi dZi

}
dZj −

∫
qj ln qj dZj + const

=
∫

qj ln p̃(X,Zj) dZj −
∫

qj ln qj dZj + const (10.6)

where we have defined a new distribution p̃(X,Zj) by the relation

ln p̃(X,Zj) = Ei	=j [ln p(X,Z)] + const. (10.7)

Here the notation Ei	=j [· · · ] denotes an expectation with respect to the q distributions
over all variables zi for i 	= j, so that

Ei	=j [ln p(X,Z)] =
∫

ln p(X,Z)
∏
i	=j

qi dZi. (10.8)

Now suppose we keep the {qi	=j} fixed and maximize L(q) in (10.6) with re-
spect to all possible forms for the distribution qj(Zj). This is easily done by rec-
ognizing that (10.6) is a negative Kullback-Leibler divergence between qj(Zj) and
p̃(X,Zj). Thus maximizing (10.6) is equivalent to minimizing the Kullback-Leibler

Leonhard Euler
1707–1783

Euler was a Swiss mathematician
and physicist who worked in St.
Petersburg and Berlin and who is
widely considered to be one of the
greatest mathematicians of all time.
He is certainly the most prolific, and

his collected works fill 75 volumes. Amongst his many

contributions, he formulated the modern theory of the
function, he developed (together with Lagrange) the
calculus of variations, and he discovered the formula
eiπ = −1, which relates four of the most important
numbers in mathematics. During the last 17 years of
his life, he was almost totally blind, and yet he pro-
duced nearly half of his results during this period.
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divergence, and the minimum occurs when qj(Zj) = p̃(X,Zj). Thus we obtain a
general expression for the optimal solution q�

j (Zj) given by

ln q�
j (Zj) = Ei	=j [ln p(X,Z)] + const. (10.9)

It is worth taking a few moments to study the form of this solution as it provides the
basis for applications of variational methods. It says that the log of the optimal so-
lution for factor qj is obtained simply by considering the log of the joint distribution
over all hidden and visible variables and then taking the expectation with respect to
all of the other factors {qi} for i 	= j.

The additive constant in (10.9) is set by normalizing the distribution q�
j (Zj).

Thus if we take the exponential of both sides and normalize, we have

q�
j (Zj) =

exp (Ei	=j [ln p(X,Z)])∫
exp (Ei	=j [ln p(X,Z)]) dZj

.

In practice, we shall find it more convenient to work with the form (10.9) and then re-
instate the normalization constant (where required) by inspection. This will become
clear from subsequent examples.

The set of equations given by (10.9) for j = 1, . . . , M represent a set of con-
sistency conditions for the maximum of the lower bound subject to the factorization
constraint. However, they do not represent an explicit solution because the expres-
sion on the right-hand side of (10.9) for the optimum q�

j (Zj) depends on expectations
computed with respect to the other factors qi(Zi) for i 	= j. We will therefore seek
a consistent solution by first initializing all of the factors qi(Zi) appropriately and
then cycling through the factors and replacing each in turn with a revised estimate
given by the right-hand side of (10.9) evaluated using the current estimates for all of
the other factors. Convergence is guaranteed because bound is convex with respect
to each of the factors qi(Zi) (Boyd and Vandenberghe, 2004).

10.1.2 Properties of factorized approximations
Our approach to variational inference is based on a factorized approximation to

the true posterior distribution. Let us consider for a moment the problem of approx-
imating a general distribution by a factorized distribution. To begin with, we discuss
the problem of approximating a Gaussian distribution using a factorized Gaussian,
which will provide useful insight into the types of inaccuracy introduced in using
factorized approximations. Consider a Gaussian distribution p(z) = N (z|µ,Λ−1)
over two correlated variables z = (z1, z2) in which the mean and precision have
elements

µ =
(

µ1

µ2

)
, Λ =

(
Λ11 Λ12

Λ21 Λ22

)
(10.10)

and Λ21 = Λ12 due to the symmetry of the precision matrix. Now suppose we
wish to approximate this distribution using a factorized Gaussian of the form q(z) =
q1(z1)q2(z2). We first apply the general result (10.9) to find an expression for the
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optimal factor q�
1(z1). In doing so it is useful to note that on the right-hand side we

only need to retain those terms that have some functional dependence on z1 because
all other terms can be absorbed into the normalization constant. Thus we have

ln q�
1(z1) = Ez2 [ln p(z)] + const

= Ez2

[
−1

2
(z1 − µ1)2Λ11 − (z1 − µ1)Λ12(z2 − µ2)

]
+ const

= −1
2
z2
1Λ11 + z1µ1Λ11 − z1Λ12 (E[z2] − µ2) + const. (10.11)

Next we observe that the right-hand side of this expression is a quadratic function of
z1, and so we can identify q�(z1) as a Gaussian distribution. It is worth emphasizing
that we did not assume that q(zi) is Gaussian, but rather we derived this result by
variational optimization of the KL divergence over all possible distributions q(zi).
Note also that we do not need to consider the additive constant in (10.9) explicitly
because it represents the normalization constant that can be found at the end by
inspection if required. Using the technique of completing the square, we can identifySection 2.3.1
the mean and precision of this Gaussian, giving

q�(z1) = N (z1|m1, Λ−1
11 ) (10.12)

where
m1 = µ1 − Λ−1

11 Λ12 (E[z2] − µ2) . (10.13)

By symmetry, q�
2(z2) is also Gaussian and can be written as

q�
2(z2) = N (z2|m2, Λ−1

22 ) (10.14)

in which
m2 = µ2 − Λ−1

22 Λ21 (E[z1] − µ1) . (10.15)

Note that these solutions are coupled, so that q�(z1) depends on expectations com-
puted with respect to q�(z2) and vice versa. In general, we address this by treating
the variational solutions as re-estimation equations and cycling through the variables
in turn updating them until some convergence criterion is satisfied. We shall see
an example of this shortly. Here, however, we note that the problem is sufficiently
simple that a closed form solution can be found. In particular, because E[z1] = m1

and E[z2] = m2, we see that the two equations are satisfied if we take E[z1] = µ1

and E[z2] = µ2, and it is easily shown that this is the only solution provided the dis-
tribution is nonsingular. This result is illustrated in Figure 10.2(a). We see that theExercise 10.2
mean is correctly captured but that the variance of q(z) is controlled by the direction
of smallest variance of p(z), and that the variance along the orthogonal direction is
significantly under-estimated. It is a general result that a factorized variational ap-
proximation tends to give approximations to the posterior distribution that are too
compact.

By way of comparison, suppose instead that we had been minimizing the reverse
Kullback-Leibler divergence KL(p‖q). As we shall see, this form of KL divergence
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Figure 10.2 Comparison of
the two alternative forms for the
Kullback-Leibler divergence. The
green contours corresponding to
1, 2, and 3 standard deviations for
a correlated Gaussian distribution
p(z) over two variables z1 and z2,
and the red contours represent
the corresponding levels for an
approximating distribution q(z)
over the same variables given by
the product of two independent
univariate Gaussian distributions
whose parameters are obtained by
minimization of (a) the Kullback-
Leibler divergence KL(q‖p), and
(b) the reverse Kullback-Leibler
divergence KL(p‖q).
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is used in an alternative approximate inference framework called expectation prop-
agation. We therefore consider the general problem of minimizing KL(p‖q) whenSection 10.7
q(Z) is a factorized approximation of the form (10.5). The KL divergence can then
be written in the form

KL(p‖q) = −
∫

p(Z)

[
M∑
i=1

ln qi(Zi)

]
dZ + const (10.16)

where the constant term is simply the entropy of p(Z) and so does not depend on
q(Z). We can now optimize with respect to each of the factors qj(Zj), which is
easily done using a Lagrange multiplier to giveExercise 10.3

q�
j (Zj) =

∫
p(Z)

∏
i	=j

dZi = p(Zj). (10.17)

In this case, we find that the optimal solution for qj(Zj) is just given by the corre-
sponding marginal distribution of p(Z). Note that this is a closed-form solution and
so does not require iteration.

To apply this result to the illustrative example of a Gaussian distribution p(z)
over a vector z we can use (2.98), which gives the result shown in Figure 10.2(b).
We see that once again the mean of the approximation is correct, but that it places
significant probability mass in regions of variable space that have very low probabil-
ity.

The difference between these two results can be understood by noting that there
is a large positive contribution to the Kullback-Leibler divergence

KL(q‖p) = −
∫

q(Z) ln
{

p(Z)
q(Z)

}
dZ (10.18)
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(a) (b) (c)

Figure 10.3 Another comparison of the two alternative forms for the Kullback-Leibler divergence. (a) The blue
contours show a bimodal distribution p(Z) given by a mixture of two Gaussians, and the red contours correspond
to the single Gaussian distribution q(Z) that best approximates p(Z) in the sense of minimizing the Kullback-
Leibler divergence KL(p‖q). (b) As in (a) but now the red contours correspond to a Gaussian distribution q(Z)
found by numerical minimization of the Kullback-Leibler divergence KL(q‖p). (c) As in (b) but showing a different
local minimum of the Kullback-Leibler divergence.

from regions of Z space in which p(Z) is near zero unless q(Z) is also close to
zero. Thus minimizing this form of KL divergence leads to distributions q(Z) that
avoid regions in which p(Z) is small. Conversely, the Kullback-Leibler divergence
KL(p‖q) is minimized by distributions q(Z) that are nonzero in regions where p(Z)
is nonzero.

We can gain further insight into the different behaviour of the two KL diver-
gences if we consider approximating a multimodal distribution by a unimodal one,
as illustrated in Figure 10.3. In practical applications, the true posterior distri-
bution will often be multimodal, with most of the posterior mass concentrated in
some number of relatively small regions of parameter space. These multiple modes
may arise through nonidentifiability in the latent space or through complex nonlin-
ear dependence on the parameters. Both types of multimodality were encountered in
Chapter 9 in the context of Gaussian mixtures, where they manifested themselves as
multiple maxima in the likelihood function, and a variational treatment based on the
minimization of KL(q‖p) will tend to find one of these modes. By contrast, if we
were to minimize KL(p‖q), the resulting approximations would average across all
of the modes and, in the context of the mixture model, would lead to poor predictive
distributions (because the average of two good parameter values is typically itself
not a good parameter value). It is possible to make use of KL(p‖q) to define a useful
inference procedure, but this requires a rather different approach to the one discussed
here, and will be considered in detail when we discuss expectation propagation.Section 10.7

The two forms of Kullback-Leibler divergence are members of the alpha family
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of divergences (Ali and Silvey, 1966; Amari, 1985; Minka, 2005) defined by

Dα(p‖q) =
4

1 − α2

(
1 −

∫
p(x)(1+α)/2q(x)(1−α)/2 dx

)
(10.19)

where −∞ < α < ∞ is a continuous parameter. The Kullback-Leibler divergence
KL(p‖q) corresponds to the limit α → 1, whereas KL(q‖p) corresponds to the limit
α → −1. For all values of α we have Dα(p‖q) � 0, with equality if, and only if,Exercise 10.6
p(x) = q(x). Suppose p(x) is a fixed distribution, and we minimize Dα(p‖q) with
respect to some set of distributions q(x). Then for α � −1 the divergence is zero
forcing, so that any values of x for which p(x) = 0 will have q(x) = 0, and typically
q(x) will under-estimate the support of p(x) and will tend to seek the mode with the
largest mass. Conversely for α � 1 the divergence is zero-avoiding, so that values
of x for which p(x) > 0 will have q(x) > 0, and typically q(x) will stretch to cover
all of p(x), and will over-estimate the support of p(x). When α = 0 we obtain a
symmetric divergence that is linearly related to the Hellinger distance given by

DH(p‖q) =
∫ (

p(x)1/2 − q(x)1/2
)

dx. (10.20)

The square root of the Hellinger distance is a valid distance metric.

10.1.3 Example: The univariate Gaussian
We now illustrate the factorized variational approximation using a Gaussian dis-

tribution over a single variable x (MacKay, 2003). Our goal is to infer the posterior
distribution for the mean µ and precision τ , given a data set D = {x1, . . . , xN} of
observed values of x which are assumed to be drawn independently from the Gaus-
sian. The likelihood function is given by

p(D|µ, τ) =
( τ

2π

)N/2

exp

{
−τ

2

N∑
n=1

(xn − µ)2
}

. (10.21)

We now introduce conjugate prior distributions for µ and τ given by

p(µ|τ) = N (
µ|µ0, (λ0τ)−1

)
(10.22)

p(τ) = Gam(τ |a0, b0) (10.23)

where Gam(τ |a0, b0) is the gamma distribution defined by (2.146). Together these
distributions constitute a Gaussian-Gamma conjugate prior distribution.Section 2.3.6

For this simple problem the posterior distribution can be found exactly, and again
takes the form of a Gaussian-gamma distribution. However, for tutorial purposesExercise 2.44
we will consider a factorized variational approximation to the posterior distribution
given by

q(µ, τ) = qµ(µ)qτ (τ). (10.24)
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Note that the true posterior distribution does not factorize in this way. The optimum
factors qµ(µ) and qτ (τ) can be obtained from the general result (10.9) as follows.
For qµ(µ) we have

ln q�
µ(µ) = Eτ [ln p(D|µ, τ) + ln p(µ|τ)] + const

= −E[τ ]
2

{
λ0(µ − µ0)2 +

N∑
n=1

(xn − µ)2
}

+ const. (10.25)

Completing the square over µ we see that qµ(µ) is a Gaussian N (
µ|µN , λ−1

N

)
with

mean and precision given byExercise 10.7

µN =
λ0µ0 + Nx

λ0 + N
(10.26)

λN = (λ0 + N)E[τ ]. (10.27)

Note that for N → ∞ this gives the maximum likelihood result in which µN = x
and the precision is infinite.

Similarly, the optimal solution for the factor qτ (τ) is given by

ln q�
τ (τ) = Eµ [ln p(D|µ, τ) + ln p(µ|τ)] + ln p(τ) + const

= (a0 − 1) ln τ − b0τ +
N

2
ln τ

−τ

2
Eµ

[
N∑

n=1

(xn − µ)2 + λ0(µ − µ0)2
]

+ const (10.28)

and hence qτ (τ) is a gamma distribution Gam(τ |aN , bN ) with parameters

aN = a0 +
N

2
(10.29)

bN = b0 +
1
2

Eµ

[
N∑

n=1

(xn − µ)2 + λ0(µ − µ0)2
]

. (10.30)

Again this exhibits the expected behaviour when N → ∞.Exercise 10.8
It should be emphasized that we did not assume these specific functional forms

for the optimal distributions qµ(µ) and qτ (τ). They arose naturally from the structure
of the likelihood function and the corresponding conjugate priors.Section 10.4.1

Thus we have expressions for the optimal distributions qµ(µ) and qτ (τ) each of
which depends on moments evaluated with respect to the other distribution. One ap-
proach to finding a solution is therefore to make an initial guess for, say, the moment
E[τ ] and use this to re-compute the distribution qµ(µ). Given this revised distri-
bution we can then extract the required moments E[µ] and E[µ2], and use these to
recompute the distribution qτ (τ), and so on. Since the space of hidden variables for
this example is only two dimensional, we can illustrate the variational approxima-
tion to the posterior distribution by plotting contours of both the true posterior and
the factorized approximation, as illustrated in Figure 10.4.
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Figure 10.4 Illustration of variational inference for the mean µ and precision τ of a univariate Gaussian distribu-
tion. Contours of the true posterior distribution p(µ, τ |D) are shown in green. (a) Contours of the initial factorized
approximation qµ(µ)qτ (τ) are shown in blue. (b) After re-estimating the factor qµ(µ). (c) After re-estimating the
factor qτ (τ). (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are
shown in red.

In general, we will need to use an iterative approach such as this in order to
solve for the optimal factorized posterior distribution. For the very simple example
we are considering here, however, we can find an explicit solution by solving the
simultaneous equations for the optimal factors qµ(µ) and qτ (τ). Before doing this,
we can simplify these expressions by considering broad, noninformative priors in
which µ0 = a0 = b0 = λ0 = 0. Although these parameter settings correspond to
improper priors, we see that the posterior distribution is still well defined. Using the
standard result E[τ ] = aN/bN for the mean of a gamma distribution, together withAppendix B
(10.29) and (10.30), we have

1
E[τ ]

= E

[
1
N

N∑
n=1

(xn − µ)2
]

= x2 − 2xE[µ] + E[µ2]. (10.31)

Then, using (10.26) and (10.27), we obtain the first and second order moments of
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qµ(µ) in the form

E[µ] = x, E[µ2] = x2 +
1

NE[τ ]
. (10.32)

We can now substitute these moments into (10.31) and then solve for E[τ ] to giveExercise 10.9

1
E[τ ]

=
1

N − 1
(x2 − x2)

=
1

N − 1

N∑
n=1

(xn − x)2. (10.33)

We recognize the right-hand side as the familiar unbiased estimator for the variance
of a univariate Gaussian distribution, and so we see that the use of a Bayesian ap-
proach has avoided the bias of the maximum likelihood solution.Section 1.2.4

10.1.4 Model comparison
As well as performing inference over the hidden variables Z, we may also

wish to compare a set of candidate models, labelled by the index m, and having
prior probabilities p(m). Our goal is then to approximate the posterior probabilities
p(m|X), where X is the observed data. This is a slightly more complex situation
than that considered so far because different models may have different structure
and indeed different dimensionality for the hidden variables Z. We cannot there-
fore simply consider a factorized approximation q(Z)q(m), but must instead recog-
nize that the posterior over Z must be conditioned on m, and so we must consider
q(Z, m) = q(Z|m)q(m). We can readily verify the following decomposition based
on this variational distributionExercise 10.10

ln p(X) = Lm −
∑
m

∑
Z

q(Z|m)q(m) ln
{

p(Z, m|X)
q(Z|m)q(m)

}
(10.34)

where the Lm is a lower bound on ln p(X) and is given by

Lm =
∑
m

∑
Z

q(Z|m)q(m) ln
{

p(Z,X, m)
q(Z|m)q(m)

}
. (10.35)

Here we are assuming discrete Z, but the same analysis applies to continuous latent
variables provided the summations are replaced with integrations. We can maximize
Lm with respect to the distribution q(m) using a Lagrange multiplier, with the resultExercise 10.11

q(m) ∝ p(m) exp{Lm}. (10.36)

However, if we maximize Lm with respect to the q(Z|m), we find that the solutions
for different m are coupled, as we expect because they are conditioned on m. We
proceed instead by first optimizing each of the q(Z|m) individually by optimization
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of (10.35), and then subsequently determining the q(m) using (10.36). After nor-
malization the resulting values for q(m) can be used for model selection or model
averaging in the usual way.

10.2. Illustration: Variational Mixture of Gaussians

We now return to our discussion of the Gaussian mixture model and apply the vari-
ational inference machinery developed in the previous section. This will provide a
good illustration of the application of variational methods and will also demonstrate
how a Bayesian treatment elegantly resolves many of the difficulties associated with
the maximum likelihood approach (Attias, 1999b). The reader is encouraged to work
through this example in detail as it provides many insights into the practical appli-
cation of variational methods. Many Bayesian models, corresponding to much more
sophisticated distributions, can be solved by straightforward extensions and general-
izations of this analysis.

Our starting point is the likelihood function for the Gaussian mixture model, il-
lustrated by the graphical model in Figure 9.6. For each observation xn we have
a corresponding latent variable zn comprising a 1-of-K binary vector with ele-
ments znk for k = 1, . . . , K. As before we denote the observed data set by X =
{x1, . . . ,xN}, and similarly we denote the latent variables by Z = {z1, . . . , zN}.
From (9.10) we can write down the conditional distribution of Z, given the mixing
coefficients π, in the form

p(Z|π) =
N∏

n=1

K∏
k=1

πznk

k . (10.37)

Similarly, from (9.11), we can write down the conditional distribution of the ob-
served data vectors, given the latent variables and the component parameters

p(X|Z, µ,Λ) =
N∏

n=1

K∏
k=1

N (
xn|µk,Λ−1

k

)znk (10.38)

where µ = {µk} and Λ = {Λk}. Note that we are working in terms of precision
matrices rather than covariance matrices as this somewhat simplifies the mathemat-
ics.

Next we introduce priors over the parameters µ, Λ and π. The analysis is con-
siderably simplified if we use conjugate prior distributions. We therefore choose aSection 10.4.1
Dirichlet distribution over the mixing coefficients π

p(π) = Dir(π|α0) = C(α0)
K∏

k=1

πα0−1
k (10.39)

where by symmetry we have chosen the same parameter α0 for each of the compo-
nents, and C(α0) is the normalization constant for the Dirichlet distribution defined
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Figure 10.5 Directed acyclic graph representing the Bayesian mix-
ture of Gaussians model, in which the box (plate) de-
notes a set of N i.i.d. observations. Here µ denotes
{µk} and Λ denotes {Λk}.

xn

zn

N

π

µ

Λ

by (B.23). As we have seen, the parameter α0 can be interpreted as the effectiveSection 2.2.1
prior number of observations associated with each component of the mixture. If the
value of α0 is small, then the posterior distribution will be influenced primarily by
the data rather than by the prior.

Similarly, we introduce an independent Gaussian-Wishart prior governing the
mean and precision of each Gaussian component, given by

p(µ,Λ) = p(µ|Λ)p(Λ)

=
K∏

k=1

N (
µk|m0, (β0Λk)−1

) W(Λk|W0, ν0) (10.40)

because this represents the conjugate prior distribution when both the mean and pre-
cision are unknown. Typically we would choose m0 = 0 by symmetry.Section 2.3.6

The resulting model can be represented as a directed graph as shown in Fig-
ure 10.5. Note that there is a link from Λ to µ since the variance of the distribution
over µ in (10.40) is a function of Λ.

This example provides a nice illustration of the distinction between latent vari-
ables and parameters. Variables such as zn that appear inside the plate are regarded
as latent variables because the number of such variables grows with the size of the
data set. By contrast, variables such as µ that are outside the plate are fixed in
number independently of the size of the data set, and so are regarded as parameters.
From the perspective of graphical models, however, there is really no fundamental
difference between them.

10.2.1 Variational distribution
In order to formulate a variational treatment of this model, we next write down

the joint distribution of all of the random variables, which is given by

p(X,Z, π, µ,Λ) = p(X|Z, µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ) (10.41)

in which the various factors are defined above. The reader should take a moment to
verify that this decomposition does indeed correspond to the probabilistic graphical
model shown in Figure 10.5. Note that only the variables X = {x1, . . . ,xN} are
observed.
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We now consider a variational distribution which factorizes between the latent
variables and the parameters so that

q(Z, π, µ,Λ) = q(Z)q(π, µ,Λ). (10.42)

It is remarkable that this is the only assumption that we need to make in order to
obtain a tractable practical solution to our Bayesian mixture model. In particular, the
functional form of the factors q(Z) and q(π, µ,Λ) will be determined automatically
by optimization of the variational distribution. Note that we are omitting the sub-
scripts on the q distributions, much as we do with the p distributions in (10.41), and
are relying on the arguments to distinguish the different distributions.

The corresponding sequential update equations for these factors can be easily
derived by making use of the general result (10.9). Let us consider the derivation of
the update equation for the factor q(Z). The log of the optimized factor is given by

ln q�(Z) = Eπ,µ,Λ[ln p(X,Z, π, µ,Λ)] + const. (10.43)

We now make use of the decomposition (10.41). Note that we are only interested in
the functional dependence of the right-hand side on the variable Z. Thus any terms
that do not depend on Z can be absorbed into the additive normalization constant,
giving

ln q�(Z) = Eπ[ln p(Z|π)] + Eµ,Λ[ln p(X|Z, µ,Λ)] + const. (10.44)

Substituting for the two conditional distributions on the right-hand side, and again
absorbing any terms that are independent of Z into the additive constant, we have

ln q�(Z) =
N∑

n=1

K∑
k=1

znk ln ρnk + const (10.45)

where we have defined

ln ρnk = E[lnπk] +
1
2

E [ln |Λk| ] − D

2
ln(2π)

−1
2

Eµk,Λk

[
(xn − µk)TΛk(xn − µk)

]
(10.46)

where D is the dimensionality of the data variable x. Taking the exponential of both
sides of (10.45) we obtain

q�(Z) ∝
N∏

n=1

K∏
k=1

ρznk

nk . (10.47)

Requiring that this distribution be normalized, and noting that for each value of n
the quantities znk are binary and sum to 1 over all values of k, we obtainExercise 10.12

q�(Z) =
N∏

n=1

K∏
k=1

rznk

nk (10.48)
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where
rnk =

ρnk

K∑
j=1

ρnj

. (10.49)

We see that the optimal solution for the factor q(Z) takes the same functional form
as the prior p(Z|π). Note that because ρnk is given by the exponential of a real
quantity, the quantities rnk will be nonnegative and will sum to one, as required.

For the discrete distribution q�(Z) we have the standard result

E[znk] = rnk (10.50)

from which we see that the quantities rnk are playing the role of responsibilities.
Note that the optimal solution for q�(Z) depends on moments evaluated with respect
to the distributions of other variables, and so again the variational update equations
are coupled and must be solved iteratively.

At this point, we shall find it convenient to define three statistics of the observed
data set evaluated with respect to the responsibilities, given by

Nk =
N∑

n=1

rnk (10.51)

xk =
1

Nk

N∑
n=1

rnkxn (10.52)

Sk =
1

Nk

N∑
n=1

rnk(xn − xk)(xn − xk)T. (10.53)

Note that these are analogous to quantities evaluated in the maximum likelihood EM
algorithm for the Gaussian mixture model.

Now let us consider the factor q(π, µ,Λ) in the variational posterior distribu-
tion. Again using the general result (10.9) we have

ln q�(π, µ,Λ) = ln p(π) +
K∑

k=1

ln p(µk,Λk) + EZ [ln p(Z|π)]

+
K∑

k=1

N∑
n=1

E[znk] lnN (
xn|µk,Λ−1

k

)
+ const. (10.54)

We observe that the right-hand side of this expression decomposes into a sum of
terms involving only π together with terms only involving µ and Λ, which implies
that the variational posterior q(π, µ,Λ) factorizes to give q(π)q(µ,Λ). Further-
more, the terms involving µ and Λ themselves comprise a sum over k of terms
involving µk and Λk leading to the further factorization

q(π, µ,Λ) = q(π)
K∏

k=1

q(µk,Λk). (10.55)
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Identifying the terms on the right-hand side of (10.54) that depend on π, we have

ln q�(π) = (α0 − 1)
K∑

k=1

lnπk +
K∑

k=1

N∑
n=1

rnk lnπk + const (10.56)

where we have used (10.50). Taking the exponential of both sides, we recognize
q�(π) as a Dirichlet distribution

q�(π) = Dir(π|α) (10.57)

where α has components αk given by

αk = α0 + Nk. (10.58)

Finally, the variational posterior distribution q�(µk,Λk) does not factorize into
the product of the marginals, but we can always use the product rule to write it in the
form q�(µk,Λk) = q�(µk|Λk)q�(Λk). The two factors can be found by inspecting
(10.54) and reading off those terms that involve µk and Λk. The result, as expected,
is a Gaussian-Wishart distribution and is given byExercise 10.13

q�(µk,Λk) = N (
µk|mk, (βkΛk)−1

) W(Λk|Wk, νk) (10.59)

where we have defined

βk = β0 + Nk (10.60)

mk =
1
βk

(β0m0 + Nkxk) (10.61)

W−1
k = W−1

0 + NkSk +
β0Nk

β0 + Nk
(xk − m0)(xk − m0)T (10.62)

νk = ν0 + Nk. (10.63)

These update equations are analogous to the M-step equations of the EM algorithm
for the maximum likelihood solution of the mixture of Gaussians. We see that the
computations that must be performed in order to update the variational posterior
distribution over the model parameters involve evaluation of the same sums over the
data set, as arose in the maximum likelihood treatment.

In order to perform this variational M step, we need the expectations E[znk] =
rnk representing the responsibilities. These are obtained by normalizing the ρnk that
are given by (10.46). We see that this expression involves expectations with respect
to the variational distributions of the parameters, and these are easily evaluated to
giveExercise 10.14

Eµk,Λk

[
(xn − µk)TΛk(xn − µk)

]
= Dβ−1

k + νk(xn − mk)TWk(xn − mk) (10.64)

ln Λ̃k ≡ E [ln |Λk| ] =
D∑

i=1

ψ

(
νk + 1 − i

2

)
+ D ln 2 + ln |Wk| (10.65)

ln π̃k ≡ E [lnπk] = ψ(αk) − ψ(α̂) (10.66)



10.2. Illustration: Variational Mixture of Gaussians 479

where we have introduced definitions of Λ̃k and π̃k, and ψ(·) is the digamma function
defined by (B.25), with α̂ =

∑
k αk. The results (10.65) and (10.66) follow from

the standard properties of the Wishart and Dirichlet distributions.Appendix B
If we substitute (10.64), (10.65), and (10.66) into (10.46) and make use of

(10.49), we obtain the following result for the responsibilities

rnk ∝ π̃kΛ̃1/2
k exp

{
− D

2βk
− νk

2
(xn − mk)TWk(xn − mk)

}
. (10.67)

Notice the similarity to the corresponding result for the responsibilities in maximum
likelihood EM, which from (9.13) can be written in the form

rnk ∝ πk|Λk|1/2 exp
{
−1

2
(xn − µk)TΛk(xn − µk)

}
(10.68)

where we have used the precision in place of the covariance to highlight the similarity
to (10.67).

Thus the optimization of the variational posterior distribution involves cycling
between two stages analogous to the E and M steps of the maximum likelihood EM
algorithm. In the variational equivalent of the E step, we use the current distributions
over the model parameters to evaluate the moments in (10.64), (10.65), and (10.66)
and hence evaluate E[znk] = rnk. Then in the subsequent variational equivalent
of the M step, we keep these responsibilities fixed and use them to re-compute the
variational distribution over the parameters using (10.57) and (10.59). In each case,
we see that the variational posterior distribution has the same functional form as the
corresponding factor in the joint distribution (10.41). This is a general result and is
a consequence of the choice of conjugate distributions.Section 10.4.1

Figure 10.6 shows the results of applying this approach to the rescaled Old Faith-
ful data set for a Gaussian mixture model having K = 6 components. We see that
after convergence, there are only two components for which the expected values
of the mixing coefficients are numerically distinguishable from their prior values.
This effect can be understood qualitatively in terms of the automatic trade-off in a
Bayesian model between fitting the data and the complexity of the model, in whichSection 3.4
the complexity penalty arises from components whose parameters are pushed away
from their prior values. Components that take essentially no responsibility for ex-
plaining the data points have rnk � 0 and hence Nk � 0. From (10.58), we see
that αk � α0 and from (10.60)–(10.63) we see that the other parameters revert to
their prior values. In principle such components are fitted slightly to the data points,
but for broad priors this effect is too small to be seen numerically. For the varia-
tional Gaussian mixture model the expected values of the mixing coefficients in the
posterior distribution are given byExercise 10.15

E[πk] =
αk + Nk

Kα0 + N
. (10.69)

Consider a component for which Nk � 0 and αk � α0. If the prior is broad so that
α0 → 0, then E[πk] → 0 and the component plays no role in the model, whereas if
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Figure 10.6 Variational Bayesian
mixture of K = 6 Gaussians ap-
plied to the Old Faithful data set, in
which the ellipses denote the one
standard-deviation density contours
for each of the components, and the
density of red ink inside each ellipse
corresponds to the mean value of
the mixing coefficient for each com-
ponent. The number in the top left
of each diagram shows the num-
ber of iterations of variational infer-
ence. Components whose expected
mixing coefficient are numerically in-
distinguishable from zero are not
plotted.

0 15

60 120

the prior tightly constrains the mixing coefficients so that α0 → ∞, then E[πk] →
1/K.

In Figure 10.6, the prior over the mixing coefficients is a Dirichlet of the form
(10.39). Recall from Figure 2.5 that for α0 < 1 the prior favours solutions in which
some of the mixing coefficients are zero. Figure 10.6 was obtained using α0 = 10−3,
and resulted in two components having nonzero mixing coefficients. If instead we
choose α0 = 1 we obtain three components with nonzero mixing coefficients, and
for α = 10 all six components have nonzero mixing coefficients.

As we have seen there is a close similarity between the variational solution for
the Bayesian mixture of Gaussians and the EM algorithm for maximum likelihood.
In fact if we consider the limit N → ∞ then the Bayesian treatment converges to the
maximum likelihood EM algorithm. For anything other than very small data sets,
the dominant computational cost of the variational algorithm for Gaussian mixtures
arises from the evaluation of the responsibilities, together with the evaluation and
inversion of the weighted data covariance matrices. These computations mirror pre-
cisely those that arise in the maximum likelihood EM algorithm, and so there is little
computational overhead in using this Bayesian approach as compared to the tradi-
tional maximum likelihood one. There are, however, some substantial advantages.
First of all, the singularities that arise in maximum likelihood when a Gaussian com-
ponent ‘collapses’ onto a specific data point are absent in the Bayesian treatment.
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Indeed, these singularities are removed if we simply introduce a prior and then use a
MAP estimate instead of maximum likelihood. Furthermore, there is no over-fitting
if we choose a large number K of components in the mixture, as we saw in Fig-
ure 10.6. Finally, the variational treatment opens up the possibility of determining
the optimal number of components in the mixture without resorting to techniques
such as cross validation.Section 10.2.4

10.2.2 Variational lower bound
We can also straightforwardly evaluate the lower bound (10.3) for this model.

In practice, it is useful to be able to monitor the bound during the re-estimation in
order to test for convergence. It can also provide a valuable check on both the math-
ematical expressions for the solutions and their software implementation, because at
each step of the iterative re-estimation procedure the value of this bound should not
decrease. We can take this a stage further to provide a deeper test of the correctness
of both the mathematical derivation of the update equations and of their software im-
plementation by using finite differences to check that each update does indeed give
a (constrained) maximum of the bound (Svensén and Bishop, 2004).

For the variational mixture of Gaussians, the lower bound (10.3) is given by

L =
∑
Z

∫∫∫
q(Z, π, µ,Λ) ln

{
p(X,Z, π, µ,Λ)

q(Z, π, µ,Λ)

}
dπ dµdΛ

= E[ln p(X,Z, π, µ,Λ)] − E[ln q(Z, π, µ,Λ)]
= E[ln p(X|Z, µ,Λ)] + E[ln p(Z|π)] + E[ln p(π)] + E[ln p(µ,Λ)]

−E[ln q(Z)] − E[ln q(π)] − E[ln q(µ,Λ)] (10.70)

where, to keep the notation uncluttered, we have omitted the � superscript on the
q distributions, along with the subscripts on the expectation operators because each
expectation is taken with respect to all of the random variables in its argument. The
various terms in the bound are easily evaluated to give the following resultsExercise 10.16

E[ln p(X|Z, µ,Λ)] =
1
2

K∑
k=1

Nk

{
ln Λ̃k − Dβ−1

k − νkTr(SkWk)

−νk(xk − mk)TWk(xk − mk) − D ln(2π)
}

(10.71)

E[ln p(Z|π)] =
N∑

n=1

K∑
k=1

rnk ln π̃k (10.72)

E[ln p(π)] = ln C(α0) + (α0 − 1)
K∑

k=1

ln π̃k (10.73)
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E[ln p(µ,Λ)] =
1
2

K∑
k=1

{
D ln(β0/2π) + ln Λ̃k − Dβ0

βk

−β0νk(mk − m0)TWk(mk − m0)
}

+ K lnB(W0, ν0)

+
(ν0 − D − 1)

2

K∑
k=1

ln Λ̃k − 1
2

K∑
k=1

νkTr(W−1
0 Wk) (10.74)

E[ln q(Z)] =
N∑

n=1

K∑
k=1

rnk ln rnk (10.75)

E[ln q(π)] =
K∑

k=1

(αk − 1) ln π̃k + lnC(α) (10.76)

E[ln q(µ,Λ)] =
K∑

k=1

{
1
2

ln Λ̃k +
D

2
ln
(

βk

2π

)
− D

2
− H [q(Λk)]

}
(10.77)

where D is the dimensionality of x, H[q(Λk)] is the entropy of the Wishart distribu-
tion given by (B.82), and the coefficients C(α) and B(W, ν) are defined by (B.23)
and (B.79), respectively. Note that the terms involving expectations of the logs of the
q distributions simply represent the negative entropies of those distributions. Some
simplifications and combination of terms can be performed when these expressions
are summed to give the lower bound. However, we have kept the expressions sepa-
rate for ease of understanding.

Finally, it is worth noting that the lower bound provides an alternative approach
for deriving the variational re-estimation equations obtained in Section 10.2.1. To do
this we use the fact that, since the model has conjugate priors, the functional form of
the factors in the variational posterior distribution is known, namely discrete for Z,
Dirichlet for π, and Gaussian-Wishart for (µk,Λk). By taking general parametric
forms for these distributions we can derive the form of the lower bound as a function
of the parameters of the distributions. Maximizing the bound with respect to these
parameters then gives the required re-estimation equations.Exercise 10.18

10.2.3 Predictive density
In applications of the Bayesian mixture of Gaussians model we will often be

interested in the predictive density for a new value x̂ of the observed variable. As-
sociated with this observation will be a corresponding latent variable ẑ, and the pre-
dictive density is then given by

p(x̂|X) =
∑

bz

∫∫∫
p(x̂|ẑ, µ,Λ)p(ẑ|π)p(π, µ,Λ|X) dπ dµ dΛ (10.78)
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where p(π, µ,Λ|X) is the (unknown) true posterior distribution of the parameters.
Using (10.37) and (10.38) we can first perform the summation over ẑ to give

p(x̂|X) =
K∑

k=1

∫∫∫
πkN

(
x̂|µk,Λ−1

k

)
p(π, µ,Λ|X) dπ dµdΛ. (10.79)

Because the remaining integrations are intractable, we approximate the predictive
density by replacing the true posterior distribution p(π, µ,Λ|X) with its variational
approximation q(π)q(µ,Λ) to give

p(x̂|X) =
K∑

k=1

∫∫∫
πkN

(
x̂|µk,Λ−1

k

)
q(π)q(µk,Λk) dπ dµk dΛk (10.80)

where we have made use of the factorization (10.55) and in each term we have im-
plicitly integrated out all variables {µj ,Λj} for j 	= k The remaining integrations
can now be evaluated analytically giving a mixture of Student’s t-distributionsExercise 10.19

p(x̂|X) =
1
α̂

K∑
k=1

αkSt(x̂|mk,Lk, νk + 1 − D) (10.81)

in which the kth component has mean mk, and the precision is given by

Lk =
(νk + 1 − D)βk

(1 + βk)
Wk (10.82)

in which νk is given by (10.63). When the size N of the data set is large the predictive
distribution (10.81) reduces to a mixture of Gaussians.Exercise 10.20

10.2.4 Determining the number of components
We have seen that the variational lower bound can be used to determine a pos-

terior distribution over the number K of components in the mixture model. ThereSection 10.1.4
is, however, one subtlety that needs to be addressed. For any given setting of the
parameters in a Gaussian mixture model (except for specific degenerate settings),
there will exist other parameter settings for which the density over the observed vari-
ables will be identical. These parameter values differ only through a re-labelling of
the components. For instance, consider a mixture of two Gaussians and a single ob-
served variable x, in which the parameters have the values π1 = a, π2 = b, µ1 = c,
µ2 = d, σ1 = e, σ2 = f . Then the parameter values π1 = b, π2 = a, µ1 = d,
µ2 = c, σ1 = f , σ2 = e, in which the two components have been exchanged, will
by symmetry give rise to the same value of p(x). If we have a mixture model com-
prising K components, then each parameter setting will be a member of a family of
K! equivalent settings.Exercise 10.21

In the context of maximum likelihood, this redundancy is irrelevant because the
parameter optimization algorithm (for example EM) will, depending on the initial-
ization of the parameters, find one specific solution, and the other equivalent solu-
tions play no role. In a Bayesian setting, however, we marginalize over all possible
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Figure 10.7 Plot of the variational lower bound
L versus the number K of com-
ponents in the Gaussian mixture
model, for the Old Faithful data,
showing a distinct peak at K =
2 components. For each value
of K, the model is trained from
100 different random starts, and
the results shown as ‘+’ symbols
plotted with small random hori-
zontal perturbations so that they
can be distinguished. Note that
some solutions find suboptimal
local maxima, but that this hap-
pens infrequently.
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p(D|K)

1 2 3 4 5 6

parameter values. We have seen in Figure 10.2 that if the true posterior distribution
is multimodal, variational inference based on the minimization of KL(q‖p) will tend
to approximate the distribution in the neighbourhood of one of the modes and ignore
the others. Again, because equivalent modes have equivalent predictive densities,
this is of no concern provided we are considering a model having a specific number
K of components. If, however, we wish to compare different values of K, then we
need to take account of this multimodality. A simple approximate solution is to add
a term lnK! onto the lower bound when used for model comparison and averaging.Exercise 10.22

Figure 10.7 shows a plot of the lower bound, including the multimodality fac-
tor, versus the number K of components for the Old Faithful data set. It is worth
emphasizing once again that maximum likelihood would lead to values of the likeli-
hood function that increase monotonically with K (assuming the singular solutions
have been avoided, and discounting the effects of local maxima) and so cannot be
used to determine an appropriate model complexity. By contrast, Bayesian inference
automatically makes the trade-off between model complexity and fitting the data.Section 3.4

This approach to the determination of K requires that a range of models having
different K values be trained and compared. An alternative approach to determining
a suitable value for K is to treat the mixing coefficients π as parameters and make
point estimates of their values by maximizing the lower bound (Corduneanu and
Bishop, 2001) with respect to π instead of maintaining a probability distribution
over them as in the fully Bayesian approach. This leads to the re-estimation equationExercise 10.23

πk =
1
N

N∑
n=1

rnk (10.83)

and this maximization is interleaved with the variational updates for the q distribution
over the remaining parameters. Components that provide insufficient contribution
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to explaining the data will have their mixing coefficients driven to zero during the
optimization, and so they are effectively removed from the model through automatic
relevance determination. This allows us to make a single training run in which we
start with a relatively large initial value of K, and allow surplus components to be
pruned out of the model. The origins of the sparsity when optimizing with respect to
hyperparameters is discussed in detail in the context of the relevance vector machine.Section 7.2.2

10.2.5 Induced factorizations
In deriving these variational update equations for the Gaussian mixture model,

we assumed a particular factorization of the variational posterior distribution given
by (10.42). However, the optimal solutions for the various factors exhibit additional
factorizations. In particular, the solution for q�(µ,Λ) is given by the product of an
independent distribution q�(µk,Λk) over each of the components k of the mixture,
whereas the variational posterior distribution q�(Z) over the latent variables, given
by (10.48), factorizes into an independent distribution q�(zn) for each observation n
(note that it does not further factorize with respect to k because, for each value of n,
the znk are constrained to sum to one over k). These additional factorizations are a
consequence of the interaction between the assumed factorization and the conditional
independence properties of the true distribution, as characterized by the directed
graph in Figure 10.5.

We shall refer to these additional factorizations as induced factorizations be-
cause they arise from an interaction between the factorization assumed in the varia-
tional posterior distribution and the conditional independence properties of the true
joint distribution. In a numerical implementation of the variational approach it is
important to take account of such additional factorizations. For instance, it would
be very inefficient to maintain a full precision matrix for the Gaussian distribution
over a set of variables if the optimal form for that distribution always had a diago-
nal precision matrix (corresponding to a factorization with respect to the individual
variables described by that Gaussian).

Such induced factorizations can easily be detected using a simple graphical test
based on d-separation as follows. We partition the latent variables into three disjoint
groups A,B,C and then let us suppose that we are assuming a factorization between
C and the remaining latent variables, so that

q(A,B,C) = q(A,B)q(C). (10.84)

Using the general result (10.9), together with the product rule for probabilities, we
see that the optimal solution for q(A,B) is given by

ln q�(A,B) = EC[ln p(X,A,B,C)] + const
= EC[ln p(A,B|X,C)] + const. (10.85)

We now ask whether this resulting solution will factorize between A and B, in
other words whether q�(A,B) = q�(A)q�(B). This will happen if, and only if,
ln p(A,B|X,C) = ln p(A|X,C) + ln p(B|X,C), that is, if the conditional inde-
pendence relation

A ⊥⊥ B | X,C (10.86)
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is satisfied. We can test to see if this relation does hold, for any choice of A and B
by making use of the d-separation criterion.

To illustrate this, consider again the Bayesian mixture of Gaussians represented
by the directed graph in Figure 10.5, in which we are assuming a variational fac-
torization given by (10.42). We can see immediately that the variational posterior
distribution over the parameters must factorize between π and the remaining param-
eters µ and Λ because all paths connecting π to either µ or Λ must pass through
one of the nodes zn all of which are in the conditioning set for our conditional inde-
pendence test and all of which are head-to-tail with respect to such paths.

10.3. Variational Linear Regression

As a second illustration of variational inference, we return to the Bayesian linear
regression model of Section 3.3. In the evidence framework, we approximated the
integration over α and β by making point estimates obtained by maximizing the log
marginal likelihood. A fully Bayesian approach would integrate over the hyperpa-
rameters as well as over the parameters. Although exact integration is intractable,
we can use variational methods to find a tractable approximation. In order to sim-
plify the discussion, we shall suppose that the noise precision parameter β is known,
and is fixed to its true value, although the framework is easily extended to include
the distribution over β. For the linear regression model, the variational treatmentExercise 10.26
will turn out to be equivalent to the evidence framework. Nevertheless, it provides a
good exercise in the use of variational methods and will also lay the foundation for
variational treatment of Bayesian logistic regression in Section 10.6.

Recall that the likelihood function for w, and the prior over w, are given by

p(t|w) =
N∏

n=1

N (tn|wTφn, β−1) (10.87)

p(w|α) = N (w|0, α−1I) (10.88)

where φn = φ(xn). We now introduce a prior distribution over α. From our dis-
cussion in Section 2.3.6, we know that the conjugate prior for the precision of a
Gaussian is given by a gamma distribution, and so we choose

p(α) = Gam(α|a0, b0) (10.89)

where Gam(·|·, ·) is defined by (B.26). Thus the joint distribution of all the variables
is given by

p(t,w, α) = p(t|w)p(w|α)p(α). (10.90)

This can be represented as a directed graphical model as shown in Figure 10.8.

10.3.1 Variational distribution
Our first goal is to find an approximation to the posterior distribution p(w, α|t).

To do this, we employ the variational framework of Section 10.1, with a variational



10.3. Variational Linear Regression 487

Figure 10.8 Probabilistic graphical model representing the joint dis-
tribution (10.90) for the Bayesian linear regression
model.
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posterior distribution given by the factorized expression

q(w, α) = q(w)q(α). (10.91)

We can find re-estimation equations for the factors in this distribution by making use
of the general result (10.9). Recall that for each factor, we take the log of the joint
distribution over all variables and then average with respect to those variables not in
that factor. Consider first the distribution over α. Keeping only terms that have a
functional dependence on α, we have

ln q�(α) = ln p(α) + Ew [ln p(w|α)] + const

= (a0 − 1) lnα − b0α +
M

2
lnα − α

2
E[wTw] + const. (10.92)

We recognize this as the log of a gamma distribution, and so identifying the coeffi-
cients of α and lnα we obtain

q�(α) = Gam(α|aN , bN ) (10.93)

where

aN = a0 +
M

2
(10.94)

bN = b0 +
1
2

E[wTw]. (10.95)

Similarly, we can find the variational re-estimation equation for the posterior
distribution over w. Again, using the general result (10.9), and keeping only those
terms that have a functional dependence on w, we have

ln q�(w) = ln p(t|w) + Eα [ln p(w|α)] + const (10.96)

= −β

2

N∑
n=1

{wTφn − tn}2 − 1
2

E[α]wTw + const (10.97)

= −1
2
wT

(
E[α]I + βΦTΦ

)
w + βwTΦTt + const. (10.98)

Because this is a quadratic form, the distribution q�(w) is Gaussian, and so we can
complete the square in the usual way to identify the mean and covariance, giving

q�(w) = N (w|mN ,SN ) (10.99)
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where

mN = βSNΦTt (10.100)

SN =
(
E[α]I + βΦTΦ

)−1
. (10.101)

Note the close similarity to the posterior distribution (3.52) obtained when α was
treated as a fixed parameter. The difference is that here α is replaced by its expecta-
tion E[α] under the variational distribution. Indeed, we have chosen to use the same
notation for the covariance matrix SN in both cases.

Using the standard results (B.27), (B.38), and (B.39), we can obtain the required
moments as follows

E[α] = aN/bN (10.102)

E[wwT] = mNmT
N + SN . (10.103)

The evaluation of the variational posterior distribution begins by initializing the pa-
rameters of one of the distributions q(w) or q(α), and then alternately re-estimates
these factors in turn until a suitable convergence criterion is satisfied (usually speci-
fied in terms of the lower bound to be discussed shortly).

It is instructive to relate the variational solution to that found using the evidence
framework in Section 3.5. To do this consider the case a0 = b0 = 0, corresponding
to the limit of an infinitely broad prior over α. The mean of the variational posterior
distribution q(α) is then given by

E[α] =
aN

bN
=

M/2
E[wTw]/2

=
M

mT
NmN + Tr(SN )

. (10.104)

Comparison with (9.63) shows that in the case of this particularly simple model,
the variational approach gives precisely the same expression as that obtained by
maximizing the evidence function using EM except that the point estimate for α
is replaced by its expected value. Because the distribution q(w) depends on q(α)
only through the expectation E[α], we see that the two approaches will give identical
results for the case of an infinitely broad prior.

10.3.2 Predictive distribution
The predictive distribution over t, given a new input x, is easily evaluated for

this model using the Gaussian variational posterior for the parameters

p(t|x, t) =
∫

p(t|x,w)p(w|t) dw

�
∫

p(t|x,w)q(w) dw

=
∫

N (t|wTφ(x), β−1)N (w|mN ,SN ) dw

= N (t|mT
Nφ(x), σ2(x)) (10.105)
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where we have evaluated the integral by making use of the result (2.115) for the
linear-Gaussian model. Here the input-dependent variance is given by

σ2(x) =
1
β

+ φ(x)TSNφ(x). (10.106)

Note that this takes the same form as the result (3.59) obtained with fixed α except
that now the expected value E[α] appears in the definition of SN .

10.3.3 Lower bound
Another quantity of importance is the lower bound L defined by

L(q) = E[ln p(w, α, t)] − E[ln q(w, α)]
= Ew[ln p(t|w)] + Ew,α[ln p(w|α)] + Eα[ln p(α)]

−Eα[ln q(w)]w − E[ln q(α)]. (10.107)

Evaluation of the various terms is straightforward, making use of results obtained inExercise 10.27
previous chapters, and gives

E[ln p(t|w)]w =
N

2
ln
(

β

2π

)
− β

2
tTt + βmT

NΦTt

−β

2
Tr
[
ΦTΦ(mNmT

N + SN )
]

(10.108)

E[ln p(w|α)]w,α = −M

2
ln(2π) +

M

2
(ψ(aN ) − ln bN )

− aN

2bN

[
mT

NmN + Tr(SN )
]

(10.109)

E[ln p(α)]α = a0 ln b0 + (a0 − 1) [ψ(aN ) − ln bN ]

−b0
aN

bN
− ln Γ(aN ) (10.110)

−E[ln q(w)]w =
1
2

ln |SN | + M

2
[1 + ln(2π)] (10.111)

−E[ln q(α)]α = ln Γ(aN ) − (aN − 1)ψ(aN ) − ln bN + aN . (10.112)

Figure 10.9 shows a plot of the lower bound L(q) versus the degree of a polynomial
model for a synthetic data set generated from a degree three polynomial. Here the
prior parameters have been set to a0 = b0 = 0, corresponding to the noninformative
prior p(α) ∝ 1/α, which is uniform over lnα as discussed in Section 2.3.6. As
we saw in Section 10.1, the quantity L represents lower bound on the log marginal
likelihood p(t|M) for the model. If we assign equal prior probabilities p(M) to the
different values of M , then we can interpret L as an approximation to the poste-
rior model probability p(M |t). Thus the variational framework assigns the highest
probability to the model with M = 3. This should be contrasted with the maximum
likelihood result, which assigns ever smaller residual error to models of increasing
complexity until the residual error is driven to zero, causing maximum likelihood to
favour severely over-fitted models.
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Figure 10.9 Plot of the lower bound L ver-
sus the order M of the polyno-
mial, for a polynomial model, in
which a set of 10 data points is
generated from a polynomial with
M = 3 sampled over the inter-
val (−5, 5) with additive Gaussian
noise of variance 0.09. The value
of the bound gives the log prob-
ability of the model, and we see
that the value of the bound peaks
at M = 3, corresponding to the
true model from which the data
set was generated.

1 3 5 7 9

10.4. Exponential Family Distributions

In Chapter 2, we discussed the important role played by the exponential family of
distributions and their conjugate priors. For many of the models discussed in this
book, the complete-data likelihood is drawn from the exponential family. However,
in general this will not be the case for the marginal likelihood function for the ob-
served data. For example, in a mixture of Gaussians, the joint distribution of obser-
vations xn and corresponding hidden variables zn is a member of the exponential
family, whereas the marginal distribution of xn is a mixture of Gaussians and hence
is not.

Up to now we have grouped the variables in the model into observed variables
and hidden variables. We now make a further distinction between latent variables,
denoted Z, and parameters, denoted θ, where parameters are intensive (fixed in num-
ber independent of the size of the data set), whereas latent variables are extensive
(scale in number with the size of the data set). For example, in a Gaussian mixture
model, the indicator variables zkn (which specify which component k is responsible
for generating data point xn) represent the latent variables, whereas the means µk,
precisions Λk and mixing proportions πk represent the parameters.

Consider the case of independent identically distributed data. We denote the
data values by X = {xn}, where n = 1, . . . N , with corresponding latent variables
Z = {zn}. Now suppose that the joint distribution of observed and latent variables
is a member of the exponential family, parameterized by natural parameters η so that

p(X,Z|η) =
N∏

n=1

h(xn, zn)g(η) exp
{
ηTu(xn, zn)

}
. (10.113)

We shall also use a conjugate prior for η, which can be written as

p(η|ν0,v0) = f(ν0, χ0)g(η)ν0 exp
{
νoη

Tχ0

}
. (10.114)

Recall that the conjugate prior distribution can be interpreted as a prior number ν0

of observations all having the value χ0 for the u vector. Now consider a variational
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distribution that factorizes between the latent variables and the parameters, so that
q(Z, η) = q(Z)q(η). Using the general result (10.9), we can solve for the two
factors as follows

ln q�(Z) = Eη[ln p(X,Z|η)] + const

=
N∑

n=1

{
ln h(xn, zn) + E[ηT]u(xn, zn)

}
+ const. (10.115)

Thus we see that this decomposes into a sum of independent terms, one for each
value of n, and hence the solution for q�(Z) will factorize over n so that q�(Z) =∏

n q�(zn). This is an example of an induced factorization. Taking the exponentialSection 10.2.5
of both sides, we have

q�(zn) = h(xn, zn)g (E[η]) exp
{

E[ηT]u(xn, zn)
}

(10.116)

where the normalization coefficient has been re-instated by comparison with the
standard form for the exponential family.

Similarly, for the variational distribution over the parameters, we have

ln q�(η) = ln p(η|ν0, χ0) + EZ[ln p(X,Z|η)] + const (10.117)

= ν0 ln g(η) + ηTχ0 +
N∑

n=1

{
ln g(η) + ηT

Ezn [u(xn, zn)]
}

+ const. (10.118)

Again, taking the exponential of both sides, and re-instating the normalization coef-
ficient by inspection, we have

q�(η) = f(νN , χN )g(η)νN exp
{
ηTχN

}
(10.119)

where we have defined

νN = ν0 + N (10.120)

χN = χ0 +
N∑

n=1

Ezn [u(xn, zn)]. (10.121)

Note that the solutions for q�(zn) and q�(η) are coupled, and so we solve them iter-
atively in a two-stage procedure. In the variational E step, we evaluate the expected
sufficient statistics E[u(xn, zn)] using the current posterior distribution q(zn) over
the latent variables and use this to compute a revised posterior distribution q(η) over
the parameters. Then in the subsequent variational M step, we use this revised pa-
rameter posterior distribution to find the expected natural parameters E[ηT], which
gives rise to a revised variational distribution over the latent variables.

10.4.1 Variational message passing
We have illustrated the application of variational methods by considering a spe-

cific model, the Bayesian mixture of Gaussians, in some detail. This model can be
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described by the directed graph shown in Figure 10.5. Here we consider more gen-
erally the use of variational methods for models described by directed graphs and
derive a number of widely applicable results.

The joint distribution corresponding to a directed graph can be written using the
decomposition

p(x) =
∏

i

p(xi|pai) (10.122)

where xi denotes the variable(s) associated with node i, and pai denotes the parent
set corresponding to node i. Note that xi may be a latent variable or it may belong
to the set of observed variables. Now consider a variational approximation in which
the distribution q(x) is assumed to factorize with respect to the xi so that

q(x) =
∏

i

qi(xi). (10.123)

Note that for observed nodes, there is no factor q(xi) in the variational distribution.
We now substitute (10.122) into our general result (10.9) to give

ln q�
j (xj) = Ei	=j

[∑
i

ln p(xi|pai)

]
+ const. (10.124)

Any terms on the right-hand side that do not depend on xj can be absorbed into
the additive constant. In fact, the only terms that do depend on xj are the con-
ditional distribution for xj given by p(xj |paj) together with any other conditional
distributions that have xj in the conditioning set. By definition, these conditional
distributions correspond to the children of node j, and they therefore also depend on
the co-parents of the child nodes, i.e., the other parents of the child nodes besides
node xj itself. We see that the set of all nodes on which q�(xj) depends corresponds
to the Markov blanket of node xj , as illustrated in Figure 8.26. Thus the update
of the factors in the variational posterior distribution represents a local calculation
on the graph. This makes possible the construction of general purpose software for
variational inference in which the form of the model does not need to be specified in
advance (Bishop et al., 2003).

If we now specialize to the case of a model in which all of the conditional dis-
tributions have a conjugate-exponential structure, then the variational update proce-
dure can be cast in terms of a local message passing algorithm (Winn and Bishop,
2005). In particular, the distribution associated with a particular node can be updated
once that node has received messages from all of its parents and all of its children.
This in turn requires that the children have already received messages from their co-
parents. The evaluation of the lower bound can also be simplified because many of
the required quantities are already evaluated as part of the message passing scheme.
This distributed message passing formulation has good scaling properties and is well
suited to large networks.
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10.5. Local Variational Methods

The variational framework discussed in Sections 10.1 and 10.2 can be considered a
‘global’ method in the sense that it directly seeks an approximation to the full poste-
rior distribution over all random variables. An alternative ‘local’ approach involves
finding bounds on functions over individual variables or groups of variables within
a model. For instance, we might seek a bound on a conditional distribution p(y|x),
which is itself just one factor in a much larger probabilistic model specified by a
directed graph. The purpose of introducing the bound of course is to simplify the
resulting distribution. This local approximation can be applied to multiple variables
in turn until a tractable approximation is obtained, and in Section 10.6.1 we shall
give a practical example of this approach in the context of logistic regression. Here
we focus on developing the bounds themselves.

We have already seen in our discussion of the Kullback-Leibler divergence that
the convexity of the logarithm function played a key role in developing the lower
bound in the global variational approach. We have defined a (strictly) convex func-
tion as one for which every chord lies above the function. Convexity also plays aSection 1.6.1
central role in the local variational framework. Note that our discussion will ap-
ply equally to concave functions with ‘min’ and ‘max’ interchanged and with lower
bounds replaced by upper bounds.

Let us begin by considering a simple example, namely the function f(x) =
exp(−x), which is a convex function of x, and which is shown in the left-hand plot
of Figure 10.10. Our goal is to approximate f(x) by a simpler function, in particular
a linear function of x. From Figure 10.10, we see that this linear function will be a
lower bound on f(x) if it corresponds to a tangent. We can obtain the tangent line
y(x) at a specific value of x, say x = ξ, by making a first order Taylor expansion

y(x) = f(ξ) + f ′(ξ)(x − ξ) (10.125)

so that y(x) � f(x) with equality when x = ξ. For our example function f(x) =

Figure 10.10 In the left-hand fig-
ure the red curve shows the function
exp(−x), and the blue line shows
the tangent at x = ξ defined by
(10.125) with ξ = 1. This line has
slope λ = f ′(ξ) = − exp(−ξ). Note
that any other tangent line, for ex-
ample the ones shown in green, will
have a smaller value of y at x =
ξ. The right-hand figure shows the
corresponding plot of the function
λξ − g(λ), where g(λ) is given by
(10.131), versus λ for ξ = 1, in
which the maximum corresponds to
λ = − exp(−ξ) = −1/e.
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Figure 10.11 In the left-hand plot the red curve shows a convex function f(x), and the blue line represents the
linear function λx, which is a lower bound on f(x) because f(x) > λx for all x. For the given value of slope λ the
contact point of the tangent line having the same slope is found by minimizing with respect to x the discrepancy
(shown by the green dashed lines) given by f(x) − λx. This defines the dual function g(λ), which corresponds
to the (negative of the) intercept of the tangent line having slope λ.

exp(−x), we therefore obtain the tangent line in the form

y(x) = exp(−ξ) − exp(−ξ)(x − ξ) (10.126)

which is a linear function parameterized by ξ. For consistency with subsequent
discussion, let us define λ = − exp(−ξ) so that

y(x, λ) = λx − λ + λ ln(−λ). (10.127)

Different values of λ correspond to different tangent lines, and because all such lines
are lower bounds on the function, we have f(x) � y(x, λ). Thus we can write the
function in the form

f(x) = max
λ

{λx − λ + λ ln(−λ)} . (10.128)

We have succeeded in approximating the convex function f(x) by a simpler, lin-
ear function y(x, λ). The price we have paid is that we have introduced a variational
parameter λ, and to obtain the tightest bound we must optimize with respect to λ.

We can formulate this approach more generally using the framework of convex
duality (Rockafellar, 1972; Jordan et al., 1999). Consider the illustration of a convex
function f(x) shown in the left-hand plot in Figure 10.11. In this example, the
function λx is a lower bound on f(x) but it is not the best lower bound that can
be achieved by a linear function having slope λ, because the tightest bound is given
by the tangent line. Let us write the equation of the tangent line, having slope λ as
λx − g(λ) where the (negative) intercept g(λ) clearly depends on the slope λ of the
tangent. To determine the intercept, we note that the line must be moved vertically by
an amount equal to the smallest vertical distance between the line and the function,
as shown in Figure 10.11. Thus

g(λ) = −min
x

{f(x) − λx}
= max

x
{λx − f(x)} . (10.129)
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Now, instead of fixing λ and varying x, we can consider a particular x and then
adjust λ until the tangent plane is tangent at that particular x. Because the y value
of the tangent line at a particular x is maximized when that value coincides with its
contact point, we have

f(x) = max
λ

{λx − g(λ)} . (10.130)

We see that the functions f(x) and g(λ) play a dual role, and are related through
(10.129) and (10.130).

Let us apply these duality relations to our simple example f(x) = exp(−x).
From (10.129) we see that the maximizing value of x is given by ξ = − ln(−λ), and
back-substituting we obtain the conjugate function g(λ) in the form

g(λ) = λ − λ ln(−λ) (10.131)

as obtained previously. The function λξ− g(λ) is shown, for ξ = 1 in the right-hand
plot in Figure 10.10. As a check, we can substitute (10.131) into (10.130), which
gives the maximizing value of λ = − exp(−x), and back-substituting then recovers
the original function f(x) = exp(−x).

For concave functions, we can follow a similar argument to obtain upper bounds,
in which max’ is replaced with ‘min’, so that

f(x) = min
λ

{λx − g(λ)} (10.132)

g(λ) = min
x

{λx − f(x)} . (10.133)

If the function of interest is not convex (or concave), then we cannot directly
apply the method above to obtain a bound. However, we can first seek invertible
transformations either of the function or of its argument which change it into a con-
vex form. We then calculate the conjugate function and then transform back to the
original variables.

An important example, which arises frequently in pattern recognition, is the
logistic sigmoid function defined by

σ(x) =
1

1 + e−x
. (10.134)

As it stands this function is neither convex nor concave. However, if we take the
logarithm we obtain a function which is concave, as is easily verified by finding the
second derivative. From (10.133) the corresponding conjugate function then takesExercise 10.30
the form

g(λ) = min
x

{λx − f(x)} = −λ ln λ − (1 − λ) ln(1 − λ) (10.135)

which we recognize as the binary entropy function for a variable whose probability
of having the value 1 is λ. Using (10.132), we then obtain an upper bound on the logAppendix B
sigmoid

ln σ(x) � λx − g(λ) (10.136)
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Figure 10.12 The left-hand plot shows the logistic sigmoid function σ(x) defined by (10.134) in red, together
with two examples of the exponential upper bound (10.137) shown in blue. The right-hand plot shows the logistic
sigmoid again in red together with the Gaussian lower bound (10.144) shown in blue. Here the parameter
ξ = 2.5, and the bound is exact at x = ξ and x = −ξ, denoted by the dashed green lines.

and taking the exponential, we obtain an upper bound on the logistic sigmoid itself
of the form

σ(x) � exp(λx − g(λ)) (10.137)

which is plotted for two values of λ on the left-hand plot in Figure 10.12.
We can also obtain a lower bound on the sigmoid having the functional form of

a Gaussian. To do this, we follow Jaakkola and Jordan (2000) and make transforma-
tions both of the input variable and of the function itself. First we take the log of the
logistic function and then decompose it so that

ln σ(x) = − ln(1 + e−x) = − ln
{
e−x/2(ex/2 + e−x/2)

}
= x/2 − ln(ex/2 + e−x/2). (10.138)

We now note that the function f(x) = − ln(ex/2 + e−x/2) is a convex function of
the variable x2, as can again be verified by finding the second derivative. This leadsExercise 10.31
to a lower bound on f(x), which is a linear function of x2 whose conjugate function
is given by

g(λ) = max
x2

{
λx2 − f

(√
x2

)}
. (10.139)

The stationarity condition leads to

0 = λ − dx

dx2

d

dx
f(x) = λ +

1
4x

tanh
(x

2

)
. (10.140)

If we denote this value of x, corresponding to the contact point of the tangent line
for this particular value of λ, by ξ, then we have

λ(ξ) = − 1
4ξ

tanh
(

ξ

2

)
= − 1

2ξ

[
σ(ξ) − 1

2

]
. (10.141)
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Instead of thinking of λ as the variational parameter, we can let ξ play this role as
this leads to simpler expressions for the conjugate function, which is then given by

g(λ) = λ(ξ)ξ2 − f(ξ) = λ(ξ)ξ2 + ln(eξ/2 + e−ξ/2). (10.142)

Hence the bound on f(x) can be written as

f(x) � λx2 − g(λ) = λx2 − λξ2 − ln(eξ/2 + e−ξ/2). (10.143)

The bound on the sigmoid then becomes

σ(x) � σ(ξ) exp
{
(x − ξ)/2 − λ(ξ)(x2 − ξ2)

}
(10.144)

where λ(ξ) is defined by (10.141). This bound is illustrated in the right-hand plot of
Figure 10.12. We see that the bound has the form of the exponential of a quadratic
function of x, which will prove useful when we seek Gaussian representations of
posterior distributions defined through logistic sigmoid functions.Section 4.5

The logistic sigmoid arises frequently in probabilistic models over binary vari-
ables because it is the function that transforms a log odds ratio into a posterior prob-
ability. The corresponding transformation for a multiclass distribution is given by
the softmax function. Unfortunately, the lower bound derived here for the logisticSection 4.3
sigmoid does not directly extend to the softmax. Gibbs (1997) proposes a method
for constructing a Gaussian distribution that is conjectured to be a bound (although
no rigorous proof is given), which may be used to apply local variational methods to
multiclass problems.

We shall see an example of the use of local variational bounds in Sections 10.6.1.
For the moment, however, it is instructive to consider in general terms how these
bounds can be used. Suppose we wish to evaluate an integral of the form

I =
∫

σ(a)p(a) da (10.145)

where σ(a) is the logistic sigmoid, and p(a) is a Gaussian probability density. Such
integrals arise in Bayesian models when, for instance, we wish to evaluate the pre-
dictive distribution, in which case p(a) represents a posterior parameter distribution.
Because the integral is intractable, we employ the variational bound (10.144), which
we write in the form σ(a) � f(a, ξ) where ξ is a variational parameter. The inte-
gral now becomes the product of two exponential-quadratic functions and so can be
integrated analytically to give a bound on I

I �
∫

f(a, ξ)p(a) da = F (ξ). (10.146)

We now have the freedom to choose the variational parameter ξ, which we do by
finding the value ξ� that maximizes the function F (ξ). The resulting value F (ξ�)
represents the tightest bound within this family of bounds and can be used as an
approximation to I . This optimized bound, however, will in general not be exact.
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Although the bound σ(a) � f(a, ξ) on the logistic sigmoid can be optimized exactly,
the required choice for ξ depends on the value of a, so that the bound is exact for one
value of a only. Because the quantity F (ξ) is obtained by integrating over all values
of a, the value of ξ� represents a compromise, weighted by the distribution p(a).

10.6. Variational Logistic Regression

We now illustrate the use of local variational methods by returning to the Bayesian
logistic regression model studied in Section 4.5. There we focussed on the use of
the Laplace approximation, while here we consider a variational treatment based on
the approach of Jaakkola and Jordan (2000). Like the Laplace method, this also
leads to a Gaussian approximation to the posterior distribution. However, the greater
flexibility of the variational approximation leads to improved accuracy compared
to the Laplace method. Furthermore (unlike the Laplace method), the variational
approach is optimizing a well defined objective function given by a rigourous bound
on the model evidence. Logistic regression has also been treated by Dybowski and
Roberts (2005) from a Bayesian perspective using Monte Carlo sampling techniques.

10.6.1 Variational posterior distribution
Here we shall make use of a variational approximation based on the local bounds

introduced in Section 10.5. This allows the likelihood function for logistic regres-
sion, which is governed by the logistic sigmoid, to be approximated by the expo-
nential of a quadratic form. It is therefore again convenient to choose a conjugate
Gaussian prior of the form (4.140). For the moment, we shall treat the hyperparam-
eters m0 and S0 as fixed constants. In Section 10.6.3, we shall demonstrate how the
variational formalism can be extended to the case where there are unknown hyper-
parameters whose values are to be inferred from the data.

In the variational framework, we seek to maximize a lower bound on the marginal
likelihood. For the Bayesian logistic regression model, the marginal likelihood takes
the form

p(t) =
∫

p(t|w)p(w) dw =
∫ [

N∏
n=1

p(tn|w)

]
p(w) dw. (10.147)

We first note that the conditional distribution for t can be written as

p(t|w) = σ(a)t {1 − σ(a)}1−t

=
(

1
1 + e−a

)t (
1 − 1

1 + e−a

)1−t

= eat e−a

1 + e−a
= eatσ(−a) (10.148)

where a = wTφ. In order to obtain a lower bound on p(t), we make use of the
variational lower bound on the logistic sigmoid function given by (10.144), which
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we reproduce here for convenience

σ(z) � σ(ξ) exp
{
(z − ξ)/2 − λ(ξ)(z2 − ξ2)

}
(10.149)

where

λ(ξ) =
1
2ξ

[
σ(ξ) − 1

2

]
. (10.150)

We can therefore write

p(t|w) = eatσ(−a) � eatσ(ξ) exp
{−(a + ξ)/2 − λ(ξ)(a2 − ξ2)

}
. (10.151)

Note that because this bound is applied to each of the terms in the likelihood function
separately, there is a variational parameter ξn corresponding to each training set
observation (φn, tn). Using a = wTφ, and multiplying by the prior distribution, we
obtain the following bound on the joint distribution of t and w

p(t,w) = p(t|w)p(w) � h(w, ξ)p(w) (10.152)

where ξ denotes the set {ξn} of variational parameters, and

h(w, ξ) =
N∏

n=1

σ(ξn) exp
{
wTφntn − (wTφn + ξn)/2

− λ(ξn)([wTφn]2 − ξ2
n)
}

. (10.153)

Evaluation of the exact posterior distribution would require normalization of the left-
hand side of this inequality. Because this is intractable, we work instead with the
right-hand side. Note that the function on the right-hand side cannot be interpreted
as a probability density because it is not normalized. Once it is normalized to give a
variational posterior distribution q(w), however, it no longer represents a bound.

Because the logarithm function is monotonically increasing, the inequality A �
B implies ln A � lnB. This gives a lower bound on the log of the joint distribution
of t and w of the form

ln {p(t|w)p(w)} � ln p(w) +
N∑

n=1

{
lnσ(ξn) + wTφntn

− (wTφn + ξn)/2 − λ(ξn)([wTφn]2 − ξ2
n)
}

. (10.154)

Substituting for the prior p(w), the right-hand side of this inequality becomes, as a
function of w

−1
2
(w − m0)TS−1

0 (w − m0)

+
N∑

n=1

{
wTφn(tn − 1/2) − λ(ξn)wT(φnφT

n)w
}

+ const. (10.155)
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This is a quadratic function of w, and so we can obtain the corresponding variational
approximation to the posterior distribution by identifying the linear and quadratic
terms in w, giving a Gaussian variational posterior of the form

q(w) = N (w|mN ,SN ) (10.156)

where

mN = SN

(
S−1

0 m0 +
N∑

n=1

(tn − 1/2)φn

)
(10.157)

S−1
N = S−1

0 + 2
N∑

n=1

λ(ξn)φnφT
n . (10.158)

As with the Laplace framework, we have again obtained a Gaussian approximation
to the posterior distribution. However, the additional flexibility provided by the vari-
ational parameters {ξn} leads to improved accuracy in the approximation (Jaakkola
and Jordan, 2000).

Here we have considered a batch learning context in which all of the training
data is available at once. However, Bayesian methods are intrinsically well suited
to sequential learning in which the data points are processed one at a time and then
discarded. The formulation of this variational approach for the sequential case is
straightforward.Exercise 10.32

Note that the bound given by (10.149) applies only to the two-class problem and
so this approach does not directly generalize to classification problems with K > 2
classes. An alternative bound for the multiclass case has been explored by Gibbs
(1997).

10.6.2 Optimizing the variational parameters
We now have a normalized Gaussian approximation to the posterior distribution,

which we shall use shortly to evaluate the predictive distribution for new data points.
First, however, we need to determine the variational parameters {ξn} by maximizing
the lower bound on the marginal likelihood.

To do this, we substitute the inequality (10.152) back into the marginal likeli-
hood to give

ln p(t) = ln
∫

p(t|w)p(w) dw � ln
∫

h(w, ξ)p(w) dw = L(ξ). (10.159)

As with the optimization of the hyperparameter α in the linear regression model of
Section 3.5, there are two approaches to determining the ξn. In the first approach, we
recognize that the function L(ξ) is defined by an integration over w and so we can
view w as a latent variable and invoke the EM algorithm. In the second approach,
we integrate over w analytically and then perform a direct maximization over ξ. Let
us begin by considering the EM approach.

The EM algorithm starts by choosing some initial values for the parameters
{ξn}, which we denote collectively by ξold. In the E step of the EM algorithm,
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we then use these parameter values to find the posterior distribution over w, which
is given by (10.156). In the M step, we then maximize the expected complete-data
log likelihood which is given by

Q(ξ, ξold) = E [lnh(w, ξ)p(w)] (10.160)

where the expectation is taken with respect to the posterior distribution q(w) evalu-
ated using ξold. Noting that p(w) does not depend on ξ, and substituting for h(w, ξ)
we obtain

Q(ξ, ξold) =
N∑

n=1

{
ln σ(ξn) − ξn/2 − λ(ξn)(φT

nE[wwT]φn − ξ2
n)
}

+ const

(10.161)
where ‘const’ denotes terms that are independent of ξ. We now set the derivative with
respect to ξn equal to zero. A few lines of algebra, making use of the definitions of
σ(ξ) and λ(ξ), then gives

0 = λ′(ξn)(φT
nE[wwT]φn − ξ2

n). (10.162)

We now note that λ′(ξ) is a monotonic function of ξ for ξ � 0, and that we can
restrict attention to nonnegative values of ξ without loss of generality due to the
symmetry of the bound around ξ = 0. Thus λ′(ξ) 	= 0, and hence we obtain the
following re-estimation equationsExercise 10.33

(ξnew
n )2 = φT

nE[wwT]φn = φT
n

(
SN + mNmT

N

)
φn (10.163)

where we have used (10.156).
Let us summarize the EM algorithm for finding the variational posterior distri-

bution. We first initialize the variational parameters ξold. In the E step, we evaluate
the posterior distribution over w given by (10.156), in which the mean and covari-
ance are defined by (10.157) and (10.158). In the M step, we then use this variational
posterior to compute a new value for ξ given by (10.163). The E and M steps are
repeated until a suitable convergence criterion is satisfied, which in practice typically
requires only a few iterations.

An alternative approach to obtaining re-estimation equations for ξ is to note
that in the integral over w in the definition (10.159) of the lower bound L(ξ), the
integrand has a Gaussian-like form and so the integral can be evaluated analytically.
Having evaluated the integral, we can then differentiate with respect to ξn. It turns
out that this gives rise to exactly the same re-estimation equations as does the EM
approach given by (10.163).Exercise 10.34

As we have emphasized already, in the application of variational methods it is
useful to be able to evaluate the lower bound L(ξ) given by (10.159). The integration
over w can be performed analytically by noting that p(w) is Gaussian and h(w, ξ)
is the exponential of a quadratic function of w. Thus, by completing the square
and making use of the standard result for the normalization coefficient of a Gaussian
distribution, we can obtain a closed form solution which takes the formExercise 10.35
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Figure 10.13 Illustration of the Bayesian approach to logistic regression for a simple linearly separable data
set. The plot on the left shows the predictive distribution obtained using variational inference. We see that
the decision boundary lies roughly mid way between the clusters of data points, and that the contours of the
predictive distribution splay out away from the data reflecting the greater uncertainty in the classification of such
regions. The plot on the right shows the decision boundaries corresponding to five samples of the parameter
vector w drawn from the posterior distribution p(w|t).

L(ξ) =
1
2

ln
|SN |
|S0| − 1

2
mT

NS−1
N mN +

1
2
mT

0 S−1
0 m0

+
N∑

n=1

{
lnσ(ξn) − 1

2
ξn − λ(ξn)ξ2

n

}
. (10.164)

This variational framework can also be applied to situations in which the data
is arriving sequentially (Jaakkola and Jordan, 2000). In this case we maintain a
Gaussian posterior distribution over w, which is initialized using the prior p(w). As
each data point arrives, the posterior is updated by making use of the bound (10.151)
and then normalized to give an updated posterior distribution.

The predictive distribution is obtained by marginalizing over the posterior dis-
tribution, and takes the same form as for the Laplace approximation discussed in
Section 4.5.2. Figure 10.13 shows the variational predictive distributions for a syn-
thetic data set. This example provides interesting insights into the concept of ‘large
margin’, which was discussed in Section 7.1 and which has qualitatively similar be-
haviour to the Bayesian solution.

10.6.3 Inference of hyperparameters
So far, we have treated the hyperparameter α in the prior distribution as a known

constant. We now extend the Bayesian logistic regression model to allow the value of
this parameter to be inferred from the data set. This can be achieved by combining
the global and local variational approximations into a single framework, so as to
maintain a lower bound on the marginal likelihood at each stage. Such a combined
approach was adopted by Bishop and Svensén (2003) in the context of a Bayesian
treatment of the hierarchical mixture of experts model.
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Specifically, we consider once again a simple isotropic Gaussian prior distribu-
tion of the form

p(w|α) = N (w|0, α−1I). (10.165)

Our analysis is readily extended to more general Gaussian priors, for instance if we
wish to associate a different hyperparameter with different subsets of the parame-
ters wj . As usual, we consider a conjugate hyperprior over α given by a gamma
distribution

p(α) = Gam(α|a0, b0) (10.166)

governed by the constants a0 and b0.
The marginal likelihood for this model now takes the form

p(t) =
∫∫

p(w, α, t) dw dα (10.167)

where the joint distribution is given by

p(w, α, t) = p(t|w)p(w|α)p(α). (10.168)

We are now faced with an analytically intractable integration over w and α, which
we shall tackle by using both the local and global variational approaches in the same
model

To begin with, we introduce a variational distribution q(w, α), and then apply
the decomposition (10.2), which in this instance takes the form

ln p(t) = L(q) + KL(q‖p) (10.169)

where the lower bound L(q) and the Kullback-Leibler divergence KL(q‖p) are de-
fined by

L(q) =
∫∫

q(w, α) ln
{

p(w, α, t)
q(w, α)

}
dw dα (10.170)

KL(q‖p) = −
∫∫

q(w, α) ln
{

p(w, α|t))
q(w, α)

}
dw dα. (10.171)

At this point, the lower bound L(q) is still intractable due to the form of the
likelihood factor p(t|w). We therefore apply the local variational bound to each of
the logistic sigmoid factors as before. This allows us to use the inequality (10.152)
and place a lower bound on L(q), which will therefore also be a lower bound on the
log marginal likelihood

ln p(t) � L(q) � L̃(q, ξ)

=
∫∫

q(w, α) ln
{

h(w, ξ)p(w|α)p(α)
q(w, α)

}
dw dα. (10.172)

Next we assume that the variational distribution factorizes between parameters and
hyperparameters so that

q(w, α) = q(w)q(α). (10.173)
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With this factorization we can appeal to the general result (10.9) to find expressions
for the optimal factors. Consider first the distribution q(w). Discarding terms that
are independent of w, we have

ln q(w) = Eα [ln {h(w, ξ)p(w|α)p(α)}] + const
= lnh(w, ξ) + Eα [ln p(w|α)] + const.

We now substitute for lnh(w, ξ) using (10.153), and for ln p(w|α) using (10.165),
giving

ln q(w) = −E[α]
2

wTw +
N∑

n=1

{
(tn − 1/2)wTφn − λ(ξn)wTφnφT

nw
}

+ const.

We see that this is a quadratic function of w and so the solution for q(w) will be
Gaussian. Completing the square in the usual way, we obtain

q(w) = N (w|µN ,ΣN ) (10.174)

where we have defined

Σ−1
N µN =

N∑
n=1

(tn − 1/2)φn (10.175)

Σ−1
N = E[α]I + 2

N∑
n=1

λ(ξn)φnφT
n . (10.176)

Similarly, the optimal solution for the factor q(α) is obtained from

ln q(α) = Ew [ln p(w|α)] + ln p(α) + const.

Substituting for ln p(w|α) using (10.165), and for ln p(α) using (10.166), we obtain

ln q(α) =
M

2
lnα − α

2
E
[
wTw

]
+ (a0 − 1) lnα − b0α + const.

We recognize this as the log of a gamma distribution, and so we obtain

q(α) = Gam(α|aN , bN ) =
1

Γ(a0)
ab0

0 αa0−1e−b0α (10.177)

where

aN = a0 +
M

2
(10.178)

bN = b0 +
1
2

Ew

[
wTw

]
. (10.179)
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We also need to optimize the variational parameters ξn, and this is also done by
maximizing the lower bound L̃(q, ξ). Omitting terms that are independent of ξ, and
integrating over α, we have

L̃(q, ξ) =
∫

q(w) lnh(w, ξ) dw + const. (10.180)

Note that this has precisely the same form as (10.159), and so we can again appeal
to our earlier result (10.163), which can be obtained by direct optimization of the
marginal likelihood function, leading to re-estimation equations of the form

(ξnew
n )2 = φT

n

(
ΣN + µNµT

N

)
φn. (10.181)

We have obtained re-estimation equations for the three quantities q(w), q(α),
and ξ, and so after making suitable initializations, we can cycle through these quan-
tities, updating each in turn. The required moments are given byAppendix B

E [α] =
aN

bN
(10.182)

E
[
wTw

]
= ΣN + µT

NµN . (10.183)

10.7. Expectation Propagation

We conclude this chapter by discussing an alternative form of deterministic approx-
imate inference, known as expectation propagation or EP (Minka, 2001a; Minka,
2001b). As with the variational Bayes methods discussed so far, this too is based
on the minimization of a Kullback-Leibler divergence but now of the reverse form,
which gives the approximation rather different properties.

Consider for a moment the problem of minimizing KL(p‖q) with respect to q(z)
when p(z) is a fixed distribution and q(z) is a member of the exponential family and
so, from (2.194), can be written in the form

q(z) = h(z)g(η) exp
{
ηTu(z)

}
. (10.184)

As a function of η, the Kullback-Leibler divergence then becomes

KL(p‖q) = − ln g(η) − ηT
Ep(z)[u(z)] + const (10.185)

where the constant terms are independent of the natural parameters η. We can mini-
mize KL(p‖q) within this family of distributions by setting the gradient with respect
to η to zero, giving

−∇ ln g(η) = Ep(z)[u(z)]. (10.186)

However, we have already seen in (2.226) that the negative gradient of ln g(η) is
given by the expectation of u(z) under the distribution q(z). Equating these two
results, we obtain

Eq(z)[u(z)] = Ep(z)[u(z)]. (10.187)
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We see that the optimum solution simply corresponds to matching the expected suf-
ficient statistics. So, for instance, if q(z) is a Gaussian N (z|µ,Σ) then we minimize
the Kullback-Leibler divergence by setting the mean µ of q(z) equal to the mean of
the distribution p(z) and the covariance Σ equal to the covariance of p(z). This is
sometimes called moment matching. An example of this was seen in Figure 10.3(a).

Now let us exploit this result to obtain a practical algorithm for approximate
inference. For many probabilistic models, the joint distribution of data D and hidden
variables (including parameters) θ comprises a product of factors in the form

p(D, θ) =
∏

i

fi(θ). (10.188)

This would arise, for example, in a model for independent, identically distributed
data in which there is one factor fn(θ) = p(xn|θ) for each data point xn, along
with a factor f0(θ) = p(θ) corresponding to the prior. More generally, it would also
apply to any model defined by a directed probabilistic graph in which each factor is a
conditional distribution corresponding to one of the nodes, or an undirected graph in
which each factor is a clique potential. We are interested in evaluating the posterior
distribution p(θ|D) for the purpose of making predictions, as well as the model
evidence p(D) for the purpose of model comparison. From (10.188) the posterior is
given by

p(θ|D) =
1

p(D)

∏
i

fi(θ) (10.189)

and the model evidence is given by

p(D) =
∫ ∏

i

fi(θ) dθ. (10.190)

Here we are considering continuous variables, but the following discussion applies
equally to discrete variables with integrals replaced by summations. We shall sup-
pose that the marginalization over θ, along with the marginalizations with respect to
the posterior distribution required to make predictions, are intractable so that some
form of approximation is required.

Expectation propagation is based on an approximation to the posterior distribu-
tion which is also given by a product of factors

q(θ) =
1
Z

∏
i

f̃i(θ) (10.191)

in which each factor f̃i(θ) in the approximation corresponds to one of the factors
fi(θ) in the true posterior (10.189), and the factor 1/Z is the normalizing constant
needed to ensure that the left-hand side of (10.191) integrates to unity. In order to
obtain a practical algorithm, we need to constrain the factors f̃i(θ) in some way,
and in particular we shall assume that they come from the exponential family. The
product of the factors will therefore also be from the exponential family and so can
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be described by a finite set of sufficient statistics. For example, if each of the f̃i(θ)
is a Gaussian, then the overall approximation q(θ) will also be Gaussian.

Ideally we would like to determine the f̃i(θ) by minimizing the Kullback-Leibler
divergence between the true posterior and the approximation given by

KL (p‖q) = KL

(
1

p(D)

∏
i

fi(θ)

∥∥∥∥∥ 1
Z

∏
i

f̃i(θ)

)
. (10.192)

Note that this is the reverse form of KL divergence compared with that used in varia-
tional inference. In general, this minimization will be intractable because the KL di-
vergence involves averaging with respect to the true distribution. As a rough approx-
imation, we could instead minimize the KL divergences between the corresponding
pairs fi(θ) and f̃i(θ) of factors. This represents a much simpler problem to solve,
and has the advantage that the algorithm is noniterative. However, because each fac-
tor is individually approximated, the product of the factors could well give a poor
approximation.

Expectation propagation makes a much better approximation by optimizing each
factor in turn in the context of all of the remaining factors. It starts by initializing
the factors f̃i(θ), and then cycles through the factors refining them one at a time.
This is similar in spirit to the update of factors in the variational Bayes framework
considered earlier. Suppose we wish to refine factor f̃j(θ). We first remove this
factor from the product to give

∏
i	=j f̃i(θ). Conceptually, we will now determine a

revised form of the factor f̃j(θ) by ensuring that the product

qnew(θ) ∝ f̃j(θ)
∏
i	=j

f̃i(θ) (10.193)

is as close as possible to

fj(θ)
∏
i	=j

f̃i(θ) (10.194)

in which we keep fixed all of the factors f̃i(θ) for i 	= j. This ensures that the
approximation is most accurate in the regions of high posterior probability as defined
by the remaining factors. We shall see an example of this effect when we apply EP
to the ‘clutter problem’. To achieve this, we first remove the factor f̃j(θ) from theSection 10.7.1
current approximation to the posterior by defining the unnormalized distribution

q\j(θ) =
q(θ)

f̃j(θ)
. (10.195)

Note that we could instead find q\j(θ) from the product of factors i 	= j, although
in practice division is usually easier. This is now combined with the factor fj(θ) to
give a distribution

1
Zj

fj(θ)q\j(θ) (10.196)
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Figure 10.14 Illustration of the expectation propagation approximation using a Gaussian distribution for the
example considered earlier in Figures 4.14 and 10.1. The left-hand plot shows the original distribution (yellow)
along with the Laplace (red), global variational (green), and EP (blue) approximations, and the right-hand plot
shows the corresponding negative logarithms of the distributions. Note that the EP distribution is broader than
that variational inference, as a consequence of the different form of KL divergence.

where Zj is the normalization constant given by

Zj =
∫

fj(θ)q\j(θ) dθ. (10.197)

We now determine a revised factor f̃j(θ) by minimizing the Kullback-Leibler diver-
gence

KL
(

fj(θ)q\j(θ)
Zj

∥∥∥∥ qnew(θ)
)

. (10.198)

This is easily solved because the approximating distribution qnew(θ) is from the ex-
ponential family, and so we can appeal to the result (10.187), which tells us that the
parameters of qnew(θ) are obtained by matching its expected sufficient statistics to
the corresponding moments of (10.196). We shall assume that this is a tractable oper-
ation. For example, if we choose q(θ) to be a Gaussian distribution N (θ|µ,Σ), then
µ is set equal to the mean of the (unnormalized) distribution fj(θ)q\j(θ), and Σ is
set to its covariance. More generally, it is straightforward to obtain the required ex-
pectations for any member of the exponential family, provided it can be normalized,
because the expected statistics can be related to the derivatives of the normalization
coefficient, as given by (2.226). The EP approximation is illustrated in Figure 10.14.

From (10.193), we see that the revised factor f̃j(θ) can be found by taking
qnew(θ) and dividing out the remaining factors so that

f̃j(θ) = K
qnew(θ)
q\j(θ)

(10.199)

where we have used (10.195). The coefficient K is determined by multiplying both
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sides of (10.199) by q\i(θ) and integrating to give

K =
∫

f̃j(θ)q\j(θ) dθ (10.200)

where we have used the fact that qnew(θ) is normalized. The value of K can therefore
be found by matching zeroth-order moments∫

f̃j(θ)q\j(θ) dθ =
∫

fj(θ)q\j(θ) dθ. (10.201)

Combining this with (10.197), we then see that K = Zj and so can be found by
evaluating the integral in (10.197).

In practice, several passes are made through the set of factors, revising each
factor in turn. The posterior distribution p(θ|D) is then approximated using (10.191),
and the model evidence p(D) can be approximated by using (10.190) with the factors
fi(θ) replaced by their approximations f̃i(θ).

Expectation Propagation

We are given a joint distribution over observed data D and stochastic variables
θ in the form of a product of factors

p(D, θ) =
∏

i

fi(θ) (10.202)

and we wish to approximate the posterior distribution p(θ|D) by a distribution
of the form

q(θ) =
1
Z

∏
i

f̃i(θ). (10.203)

We also wish to approximate the model evidence p(D).

1. Initialize all of the approximating factors f̃i(θ).

2. Initialize the posterior approximation by setting

q(θ) ∝
∏

i

f̃i(θ). (10.204)

3. Until convergence:

(a) Choose a factor f̃j(θ) to refine.

(b) Remove f̃j(θ) from the posterior by division

q\j(θ) =
q(θ)

f̃j(θ)
. (10.205)
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(c) Evaluate the new posterior by setting the sufficient statistics (moments)
of qnew(θ) equal to those of q\j(θ)fj(θ), including evaluation of the
normalization constant

Zj =
∫

q\j(θ)fj(θ) dθ. (10.206)

(d) Evaluate and store the new factor

f̃j(θ) = Zj
qnew(θ)
q\j(θ)

. (10.207)

4. Evaluate the approximation to the model evidence

p(D) �
∫ ∏

i

f̃i(θ) dθ. (10.208)

A special case of EP, known as assumed density filtering (ADF) or moment
matching (Maybeck, 1982; Lauritzen, 1992; Boyen and Koller, 1998; Opper and
Winther, 1999), is obtained by initializing all of the approximating factors except
the first to unity and then making one pass through the factors updating each of them
once. Assumed density filtering can be appropriate for on-line learning in which data
points are arriving in a sequence and we need to learn from each data point and then
discard it before considering the next point. However, in a batch setting we have the
opportunity to re-use the data points many times in order to achieve improved ac-
curacy, and it is this idea that is exploited in expectation propagation. Furthermore,
if we apply ADF to batch data, the results will have an undesirable dependence on
the (arbitrary) order in which the data points are considered, which again EP can
overcome.

One disadvantage of expectation propagation is that there is no guarantee that
the iterations will converge. However, for approximations q(θ) in the exponential
family, if the iterations do converge, the resulting solution will be a stationary point
of a particular energy function (Minka, 2001a), although each iteration of EP does
not necessarily decrease the value of this energy function. This is in contrast to
variational Bayes, which iteratively maximizes a lower bound on the log marginal
likelihood, in which each iteration is guaranteed not to decrease the bound. It is
possible to optimize the EP cost function directly, in which case it is guaranteed
to converge, although the resulting algorithms can be slower and more complex to
implement.

Another difference between variational Bayes and EP arises from the form of
KL divergence that is minimized by the two algorithms, because the former mini-
mizes KL(q‖p) whereas the latter minimizes KL(p‖q). As we saw in Figure 10.3,
for distributions p(θ) which are multimodal, minimizing KL(p‖q) can lead to poor
approximations. In particular, if EP is applied to mixtures the results are not sen-
sible because the approximation tries to capture all of the modes of the posterior
distribution. Conversely, in logistic-type models, EP often out-performs both local
variational methods and the Laplace approximation (Kuss and Rasmussen, 2006).
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Figure 10.15 Illustration of the clutter problem
for a data space dimensionality of
D = 1. Training data points, de-
noted by the crosses, are drawn
from a mixture of two Gaussians
with components shown in red
and green. The goal is to infer the
mean of the green Gaussian from
the observed data.
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10.7.1 Example: The clutter problem
Following Minka (2001b), we illustrate the EP algorithm using a simple exam-

ple in which the goal is to infer the mean θ of a multivariate Gaussian distribution
over a variable x given a set of observations drawn from that distribution. To make
the problem more interesting, the observations are embedded in background clutter,
which itself is also Gaussian distributed, as illustrated in Figure 10.15. The distribu-
tion of observed values x is therefore a mixture of Gaussians, which we take to be
of the form

p(x|θ) = (1 − w)N (x|θ, I) + wN (x|0, aI) (10.209)

where w is the proportion of background clutter and is assumed to be known. The
prior over θ is taken to be Gaussian

p(θ) = N (θ|0, bI) (10.210)

and Minka (2001a) chooses the parameter values a = 10, b = 100 and w = 0.5.
The joint distribution of N observations D = {x1, . . . ,xN} and θ is given by

p(D, θ) = p(θ)
N∏

n=1

p(xn|θ) (10.211)

and so the posterior distribution comprises a mixture of 2N Gaussians. Thus the
computational cost of solving this problem exactly would grow exponentially with
the size of the data set, and so an exact solution is intractable for moderately large
N .

To apply EP to the clutter problem, we first identify the factors f0(θ) = p(θ)
and fn(θ) = p(xn|θ). Next we select an approximating distribution from the expo-
nential family, and for this example it is convenient to choose a spherical Gaussian

q(θ) = N (θ|m, vI). (10.212)
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The factor approximations will therefore take the form of exponential-quadratic
functions of the form

f̃n(θ) = snN (θ|mn, vnI) (10.213)

where n = 1, . . . , N , and we set f̃0(θ) equal to the prior p(θ). Note that the use of
N (θ|·, ·) does not imply that the right-hand side is a well-defined Gaussian density
(in fact, as we shall see, the variance parameter vn can be negative) but is simply a
convenient shorthand notation. The approximations f̃n(θ), for n = 1, . . . , N , can
be initialized to unity, corresponding to sn = (2πvn)D/2, vn → ∞ and mn = 0,
where D is the dimensionality of x and hence of θ. The initial q(θ), defined by
(10.191), is therefore equal to the prior.

We then iteratively refine the factors by taking one factor fn(θ) at a time and
applying (10.205), (10.206), and (10.207). Note that we do not need to revise the
term f0(θ) because an EP update will leave this term unchanged. Here we state theExercise 10.37
results and leave the reader to fill in the details.

First we remove the current estimate f̃n(θ) from q(θ) by division using (10.205)
to give q\n(θ), which has mean and inverse variance given byExercise 10.38

m\n = m + v\nv−1
n (m − mn) (10.214)

(v\n)−1 = v−1 − v−1
n . (10.215)

Next we evaluate the normalization constant Zn using (10.206) to give

Zn = (1 − w)N (xn|m\n, (v\n + 1)I) + wN (xn|0, aI). (10.216)

Similarly, we compute the mean and variance of qnew(θ) by finding the mean and
variance of q\n(θ)fn(θ) to giveExercise 10.39

m = m\n + ρn
v\n

v\n + 1
(xn − m\n) (10.217)

v = v\n − ρn
(v\n)2

v\n + 1
+ ρn(1 − ρn)

(v\n)2‖xn − m\n‖2

D(v\n + 1)2
(10.218)

where the quantity

ρn = 1 − w

Zn
N (xn|0, aI) (10.219)

has a simple interpretation as the probability of the point xn not being clutter. Then
we use (10.207) to compute the refined factor f̃n(θ) whose parameters are given by

v−1
n = (vnew)−1 − (v\n)−1 (10.220)

mn = m\n + (vn + v\n)(v\n)−1(mnew − m\n) (10.221)

sn =
Zn

(2πvn)D/2N (mn|m\n, (vn + v\n)I)
. (10.222)

This refinement process is repeated until a suitable termination criterion is satisfied,
for instance that the maximum change in parameter values resulting from a complete
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Figure 10.16 Examples of the approximation of specific factors for a one-dimensional version of the clutter
problem, showing fn(θ) in blue, efn(θ) in red, and q\n(θ) in green. Notice that the current form for q\n(θ) controls
the range of θ over which efn(θ) will be a good approximation to fn(θ).

pass through all factors is less than some threshold. Finally, we use (10.208) to
evaluate the approximation to the model evidence, given by

p(D) � (2πvnew)D/2 exp(B/2)
N∏

n=1

{
sn(2πvn)−D/2

}
(10.223)

where

B =
(mnew)Tmnew

v
−

N∑
n=1

mT
nmn

vn
. (10.224)

Examples factor approximations for the clutter problem with a one-dimensional pa-
rameter space θ are shown in Figure 10.16. Note that the factor approximations can
have infinite or even negative values for the ‘variance’ parameter vn. This simply
corresponds to approximations that curve upwards instead of downwards and are not
necessarily problematic provided the overall approximate posterior q(θ) has posi-
tive variance. Figure 10.17 compares the performance of EP with variational Bayes
(mean field theory) and the Laplace approximation on the clutter problem.

10.7.2 Expectation propagation on graphs
So far in our general discussion of EP, we have allowed the factors fi(θ) in the

distribution p(θ) to be functions of all of the components of θ, and similarly for the
approximating factors f̃(θ) in the approximating distribution q(θ). We now consider
situations in which the factors depend only on subsets of the variables. Such restric-
tions can be conveniently expressed using the framework of probabilistic graphical
models, as discussed in Chapter 8. Here we use a factor graph representation because
this encompasses both directed and undirected graphs.
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Figure 10.17 Comparison of expectation propagation, variational inference, and the Laplace approximation on
the clutter problem. The left-hand plot shows the error in the predicted posterior mean versus the number of
floating point operations, and the right-hand plot shows the corresponding results for the model evidence.

We shall focus on the case in which the approximating distribution is fully fac-
torized, and we shall show that in this case expectation propagation reduces to loopy
belief propagation (Minka, 2001a). To start with, we show this in the context of a
simple example, and then we shall explore the general case.

First of all, recall from (10.17) that if we minimize the Kullback-Leibler diver-
gence KL(p‖q) with respect to a factorized distribution q, then the optimal solution
for each factor is simply the corresponding marginal of p.

Now consider the factor graph shown on the left in Figure 10.18, which was
introduced earlier in the context of the sum-product algorithm. The joint distributionSection 8.4.4
is given by

p(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (10.225)

We seek an approximation q(x) that has the same factorization, so that

q(x) ∝ f̃a(x1, x2)f̃b(x2, x3)f̃c(x2, x4). (10.226)

Note that normalization constants have been omitted, and these can be re-instated at
the end by local normalization, as is generally done in belief propagation. Now sup-
pose we restrict attention to approximations in which the factors themselves factorize
with respect to the individual variables so that

q(x) ∝ f̃a1(x1)f̃a2(x2)f̃b2(x2)f̃b3(x3)f̃c2(x2)f̃c4(x4) (10.227)

which corresponds to the factor graph shown on the right in Figure 10.18. Because
the individual factors are factorized, the overall distribution q(x) is itself fully fac-
torized.

Now we apply the EP algorithm using the fully factorized approximation. Sup-
pose that we have initialized all of the factors and that we choose to refine factor
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Figure 10.18 On the left is a simple factor graph from Figure 8.51 and reproduced here for convenience. On
the right is the corresponding factorized approximation.

f̃b(x2, x3) = f̃b2(x2)f̃b3(x3). We first remove this factor from the approximating
distribution to give

q\b(x) = f̃a1(x1)f̃a2(x2)f̃c2(x2)f̃c4(x4) (10.228)

and we then multiply this by the exact factor fb(x2, x3) to give

p̂(x) = q\b(x)fb(x2, x3) = f̃a1(x1)f̃a2(x2)f̃c2(x2)f̃c4(x4)fb(x2, x3). (10.229)

We now find qnew(x) by minimizing the Kullback-Leibler divergence KL(p̂‖qnew).
The result, as noted above, is that qnew(z) comprises the product of factors, one for
each variable xi, in which each factor is given by the corresponding marginal of
p̂(x). These four marginals are given by

p̂(x1) ∝ f̃a1(x1) (10.230)

p̂(x2) ∝ f̃a2(x2)f̃c2(x2)
∑
x3

fb(x2, x3) (10.231)

p̂(x3) ∝
∑
x2

{
fb(x2, x3)f̃a2(x2)f̃c2(x2)

}
(10.232)

p̂(x4) ∝ f̃c4(x4) (10.233)

and qnew(x) is obtained by multiplying these marginals together. We see that the
only factors in q(x) that change when we update f̃b(x2, x3) are those that involve
the variables in fb namely x2 and x3. To obtain the refined factor f̃b(x2, x3) =
f̃b2(x2)f̃b3(x3) we simply divide qnew(x) by q\b(x), which gives

f̃b2(x2) ∝
∑
x3

fb(x2, x3) (10.234)

f̃b3(x3) ∝
∑
x2

{
fb(x2, x3)f̃a2(x2)f̃c2(x2)

}
. (10.235)
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These are precisely the messages obtained using belief propagation in which mes-Section 8.4.4
sages from variable nodes to factor nodes have been folded into the messages from
factor nodes to variable nodes. In particular, f̃b2(x2) corresponds to the message
µfb→x2(x2) sent by factor node fb to variable node x2 and is given by (8.81). Simi-
larly, if we substitute (8.78) into (8.79), we obtain (10.235) in which f̃a2(x2) corre-
sponds to µfa→x2(x2) and f̃c2(x2) corresponds to µfc→x2(x2), giving the message
f̃b3(x3) which corresponds to µfb→x3(x3).

This result differs slightly from standard belief propagation in that messages are
passed in both directions at the same time. We can easily modify the EP procedure
to give the standard form of the sum-product algorithm by updating just one of the
factors at a time, for instance if we refine only f̃b3(x3), then f̃b2(x2) is unchanged
by definition, while the refined version of f̃b3(x3) is again given by (10.235). If
we are refining only one term at a time, then we can choose the order in which the
refinements are done as we wish. In particular, for a tree-structured graph we can
follow a two-pass update scheme, corresponding to the standard belief propagation
schedule, which will result in exact inference of the variable and factor marginals.
The initialization of the approximation factors in this case is unimportant.

Now let us consider a general factor graph corresponding to the distribution

p(θ) =
∏

i

fi(θi) (10.236)

where θi represents the subset of variables associated with factor fi. We approximate
this using a fully factorized distribution of the form

q(θ) ∝
∏

i

∏
k

f̃ik(θk) (10.237)

where θk corresponds to an individual variable node. Suppose that we wish to refine
the particular term f̃jl(θl) keeping all other terms fixed. We first remove the term
f̃j(θj) from q(θ) to give

q\j(θ) ∝
∏
i	=j

∏
k

f̃ik(θk) (10.238)

and then multiply by the exact factor fj(θj). To determine the refined term f̃jl(θl),
we need only consider the functional dependence on θl, and so we simply find the
corresponding marginal of

q\j(θ)fj(θj). (10.239)

Up to a multiplicative constant, this involves taking the marginal of fj(θj) multiplied
by any terms from q\j(θ) that are functions of any of the variables in θj . Terms that
correspond to other factors f̃i(θi) for i 	= j will cancel between numerator and
denominator when we subsequently divide by q\j(θ). We therefore obtain

f̃jl(θl) ∝
∑

θm �=l∈θj

fj(θj)
∏
k

∏
m	=l

f̃km(θm). (10.240)
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We recognize this as the sum-product rule in the form in which messages from vari-
able nodes to factor nodes have been eliminated, as illustrated by the example shown
in Figure 8.50. The quantity f̃jm(θm) corresponds to the message µfj→θm(θm),
which factor node j sends to variable node m, and the product over k in (10.240)
is over all factors that depend on the variables θm that have variables (other than
variable θl) in common with factor fj(θj). In other words, to compute the outgoing
message from a factor node, we take the product of all the incoming messages from
other factor nodes, multiply by the local factor, and then marginalize.

Thus, the sum-product algorithm arises as a special case of expectation propa-
gation if we use an approximating distribution that is fully factorized. This suggests
that more flexible approximating distributions, corresponding to partially discon-
nected graphs, could be used to achieve higher accuracy. Another generalization is
to group factors fi(θi) together into sets and to refine all the factors in a set together
at each iteration. Both of these approaches can lead to improvements in accuracy
(Minka, 2001b). In general, the problem of choosing the best combination of group-
ing and disconnection is an open research issue.

We have seen that variational message passing and expectation propagation op-
timize two different forms of the Kullback-Leibler divergence. Minka (2005) has
shown that a broad range of message passing algorithms can be derived from a com-
mon framework involving minimization of members of the alpha family of diver-
gences, given by (10.19). These include variational message passing, loopy belief
propagation, and expectation propagation, as well as a range of other algorithms,
which we do not have space to discuss here, such as tree-reweighted message pass-
ing (Wainwright et al., 2005), fractional belief propagation (Wiegerinck and Heskes,
2003), and power EP (Minka, 2004).

Exercises
10.1 (�) www Verify that the log marginal distribution of the observed data ln p(X)

can be decomposed into two terms in the form (10.2) where L(q) is given by (10.3)
and KL(q‖p) is given by (10.4).

10.2 (�) Use the properties E[z1] = m1 and E[z2] = m2 to solve the simultaneous equa-
tions (10.13) and (10.15), and hence show that, provided the original distribution
p(z) is nonsingular, the unique solution for the means of the factors in the approxi-
mation distribution is given by E[z1] = µ1 and E[z2] = µ2.

10.3 (� �) www Consider a factorized variational distribution q(Z) of the form (10.5).
By using the technique of Lagrange multipliers, verify that minimization of the
Kullback-Leibler divergence KL(p‖q) with respect to one of the factors qi(Zi),
keeping all other factors fixed, leads to the solution (10.17).

10.4 (� �) Suppose that p(x) is some fixed distribution and that we wish to approximate
it using a Gaussian distribution q(x) = N (x|µ,Σ). By writing down the form of
the KL divergence KL(p‖q) for a Gaussian q(x) and then differentiating, show that
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minimization of KL(p‖q) with respect to µ and Σ leads to the result that µ is given
by the expectation of x under p(x) and that Σ is given by the covariance.

10.5 (� �) www Consider a model in which the set of all hidden stochastic variables, de-
noted collectively by Z, comprises some latent variables z together with some model
parameters θ. Suppose we use a variational distribution that factorizes between la-
tent variables and parameters so that q(z, θ) = qz(z)qθ(θ), in which the distribution
qθ(θ) is approximated by a point estimate of the form qθ(θ) = δ(θ − θ0) where θ0

is a vector of free parameters. Show that variational optimization of this factorized
distribution is equivalent to an EM algorithm, in which the E step optimizes qz(z),
and the M step maximizes the expected complete-data log posterior distribution of θ
with respect to θ0.

10.6 (� �) The alpha family of divergences is defined by (10.19). Show that the Kullback-
Leibler divergence KL(p‖q) corresponds to α → 1. This can be done by writing
pε = exp(ε ln p) = 1 + ε ln p + O(ε2) and then taking ε → 0. Similarly show that
KL(q‖p) corresponds to α → −1.

10.7 (� �) Consider the problem of inferring the mean and precision of a univariate Gaus-
sian using a factorized variational approximation, as considered in Section 10.1.3.
Show that the factor qµ(µ) is a Gaussian of the form N (µ|µN , λ−1

N ) with mean and
precision given by (10.26) and (10.27), respectively. Similarly show that the factor
qτ (τ) is a gamma distribution of the form Gam(τ |aN , bN ) with parameters given by
(10.29) and (10.30).

10.8 (�) Consider the variational posterior distribution for the precision of a univariate
Gaussian whose parameters are given by (10.29) and (10.30). By using the standard
results for the mean and variance of the gamma distribution given by (B.27) and
(B.28), show that if we let N → ∞, this variational posterior distribution has a
mean given by the inverse of the maximum likelihood estimator for the variance of
the data, and a variance that goes to zero.

10.9 (� �) By making use of the standard result E[τ ] = aN/bN for the mean of a gamma
distribution, together with (10.26), (10.27), (10.29), and (10.30), derive the result
(10.33) for the reciprocal of the expected precision in the factorized variational treat-
ment of a univariate Gaussian.

10.10 (�) www Derive the decomposition given by (10.34) that is used to find approxi-
mate posterior distributions over models using variational inference.

10.11 (� �) www By using a Lagrange multiplier to enforce the normalization constraint
on the distribution q(m), show that the maximum of the lower bound (10.35) is given
by (10.36).

10.12 (� �) Starting from the joint distribution (10.41), and applying the general result
(10.9), show that the optimal variational distribution q�(Z) over the latent variables
for the Bayesian mixture of Gaussians is given by (10.48) by verifying the steps
given in the text.
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10.13 (� �) www Starting from (10.54), derive the result (10.59) for the optimum vari-
ational posterior distribution over µk and Λk in the Bayesian mixture of Gaussians,
and hence verify the expressions for the parameters of this distribution given by
(10.60)–(10.63).

10.14 (� �) Using the distribution (10.59), verify the result (10.64).

10.15 (�) Using the result (B.17), show that the expected value of the mixing coefficients
in the variational mixture of Gaussians is given by (10.69).

10.16 (� �) www Verify the results (10.71) and (10.72) for the first two terms in the
lower bound for the variational Gaussian mixture model given by (10.70).

10.17 (� � �) Verify the results (10.73)–(10.77) for the remaining terms in the lower bound
for the variational Gaussian mixture model given by (10.70).

10.18 (� � �) In this exercise, we shall derive the variational re-estimation equations for
the Gaussian mixture model by direct differentiation of the lower bound. To do this
we assume that the variational distribution has the factorization defined by (10.42)
and (10.55) with factors given by (10.48), (10.57), and (10.59). Substitute these into
(10.70) and hence obtain the lower bound as a function of the parameters of the varia-
tional distribution. Then, by maximizing the bound with respect to these parameters,
derive the re-estimation equations for the factors in the variational distribution, and
show that these are the same as those obtained in Section 10.2.1.

10.19 (� �) Derive the result (10.81) for the predictive distribution in the variational treat-
ment of the Bayesian mixture of Gaussians model.

10.20 (� �) www This exercise explores the variational Bayes solution for the mixture of
Gaussians model when the size N of the data set is large and shows that it reduces (as
we would expect) to the maximum likelihood solution based on EM derived in Chap-
ter 9. Note that results from Appendix B may be used to help answer this exercise.
First show that the posterior distribution q�(Λk) of the precisions becomes sharply
peaked around the maximum likelihood solution. Do the same for the posterior dis-
tribution of the means q�(µk|Λk). Next consider the posterior distribution q�(π)
for the mixing coefficients and show that this too becomes sharply peaked around
the maximum likelihood solution. Similarly, show that the responsibilities become
equal to the corresponding maximum likelihood values for large N , by making use
of the following asymptotic result for the digamma function for large x

ψ(x) = lnx + O (1/x) . (10.241)

Finally, by making use of (10.80), show that for large N , the predictive distribution
becomes a mixture of Gaussians.

10.21 (�) Show that the number of equivalent parameter settings due to interchange sym-
metries in a mixture model with K components is K!.
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10.22 (� �) We have seen that each mode of the posterior distribution in a Gaussian mix-
ture model is a member of a family of K! equivalent modes. Suppose that the result
of running the variational inference algorithm is an approximate posterior distribu-
tion q that is localized in the neighbourhood of one of the modes. We can then
approximate the full posterior distribution as a mixture of K! such q distributions,
once centred on each mode and having equal mixing coefficients. Show that if we
assume negligible overlap between the components of the q mixture, the resulting
lower bound differs from that for a single component q distribution through the ad-
dition of an extra term ln K!.

10.23 (� �) www Consider a variational Gaussian mixture model in which there is no
prior distribution over mixing coefficients {πk}. Instead, the mixing coefficients are
treated as parameters, whose values are to be found by maximizing the variational
lower bound on the log marginal likelihood. Show that maximizing this lower bound
with respect to the mixing coefficients, using a Lagrange multiplier to enforce the
constraint that the mixing coefficients sum to one, leads to the re-estimation result
(10.83). Note that there is no need to consider all of the terms in the lower bound but
only the dependence of the bound on the {πk}.

10.24 (� �) www We have seen in Section 10.2 that the singularities arising in the max-
imum likelihood treatment of Gaussian mixture models do not arise in a Bayesian
treatment. Discuss whether such singularities would arise if the Bayesian model
were solved using maximum posterior (MAP) estimation.

10.25 (� �) The variational treatment of the Bayesian mixture of Gaussians, discussed in
Section 10.2, made use of a factorized approximation (10.5) to the posterior distribu-
tion. As we saw in Figure 10.2, the factorized assumption causes the variance of the
posterior distribution to be under-estimated for certain directions in parameter space.
Discuss qualitatively the effect this will have on the variational approximation to the
model evidence, and how this effect will vary with the number of components in
the mixture. Hence explain whether the variational Gaussian mixture will tend to
under-estimate or over-estimate the optimal number of components.

10.26 (� � �) Extend the variational treatment of Bayesian linear regression to include
a gamma hyperprior Gam(β|c0, d0) over β and solve variationally, by assuming a
factorized variational distribution of the form q(w)q(α)q(β). Derive the variational
update equations for the three factors in the variational distribution and also obtain
an expression for the lower bound and for the predictive distribution.

10.27 (� �) By making use of the formulae given in Appendix B show that the variational
lower bound for the linear basis function regression model, defined by (10.107), can
be written in the form (10.107) with the various terms defined by (10.108)–(10.112).

10.28 (� � �) Rewrite the model for the Bayesian mixture of Gaussians, introduced in
Section 10.2, as a conjugate model from the exponential family, as discussed in
Section 10.4. Hence use the general results (10.115) and (10.119) to derive the
specific results (10.48), (10.57), and (10.59).
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10.29 (�) www Show that the function f(x) = ln(x) is concave for 0 < x < ∞
by computing its second derivative. Determine the form of the dual function g(λ)
defined by (10.133), and verify that minimization of λx − g(λ) with respect to λ
according to (10.132) indeed recovers the function ln(x).

10.30 (�) By evaluating the second derivative, show that the log logistic function f(x) =
− ln(1 + e−x) is concave. Derive the variational upper bound (10.137) directly by
making a second order Taylor expansion of the log logistic function around a point
x = ξ.

10.31 (� �) By finding the second derivative with respect to x, show that the function
f(x) = − ln(ex/2 + e−x/2) is a concave function of x. Now consider the second
derivatives with respect to the variable x2 and hence show that it is a convex function
of x2. Plot graphs of f(x) against x and against x2. Derive the lower bound (10.144)
on the logistic sigmoid function directly by making a first order Taylor series expan-
sion of the function f(x) in the variable x2 centred on the value ξ2.

10.32 (� �) www Consider the variational treatment of logistic regression with sequen-
tial learning in which data points are arriving one at a time and each must be pro-
cessed and discarded before the next data point arrives. Show that a Gaussian ap-
proximation to the posterior distribution can be maintained through the use of the
lower bound (10.151), in which the distribution is initialized using the prior, and as
each data point is absorbed its corresponding variational parameter ξn is optimized.

10.33 (�) By differentiating the quantity Q(ξ, ξold) defined by (10.161) with respect to
the variational parameter ξn show that the update equation for ξn for the Bayesian
logistic regression model is given by (10.163).

10.34 (� �) In this exercise we derive re-estimation equations for the variational parame-
ters ξ in the Bayesian logistic regression model of Section 4.5 by direct maximization
of the lower bound given by (10.164). To do this set the derivative of L(ξ) with re-
spect to ξn equal to zero, making use of the result (3.117) for the derivative of the log
of a determinant, together with the expressions (10.157) and (10.158) which define
the mean and covariance of the variational posterior distribution q(w).

10.35 (� �) Derive the result (10.164) for the lower bound L(ξ) in the variational logistic
regression model. This is most easily done by substituting the expressions for the
Gaussian prior q(w) = N (w|m0,S0), together with the lower bound h(w, ξ) on
the likelihood function, into the integral (10.159) which defines L(ξ). Next gather
together the terms which depend on w in the exponential and complete the square
to give a Gaussian integral, which can then be evaluated by invoking the standard
result for the normalization coefficient of a multivariate Gaussian. Finally take the
logarithm to obtain (10.164).

10.36 (� �) Consider the ADF approximation scheme discussed in Section 10.7, and show
that inclusion of the factor fj(θ) leads to an update of the model evidence of the
form

pj(D) � pj−1(D)Zj (10.242)
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where Zj is the normalization constant defined by (10.197). By applying this result
recursively, and initializing with p0(D) = 1, derive the result

p(D) �
∏

j

Zj . (10.243)

10.37 (�) www Consider the expectation propagation algorithm from Section 10.7, and
suppose that one of the factors f0(θ) in the definition (10.188) has the same expo-
nential family functional form as the approximating distribution q(θ). Show that if
the factor f̃0(θ) is initialized to be f0(θ), then an EP update to refine f̃0(θ) leaves
f̃0(θ) unchanged. This situation typically arises when one of the factors is the prior
p(θ), and so we see that the prior factor can be incorporated once exactly and does
not need to be refined.

10.38 (� � �) In this exercise and the next, we shall verify the results (10.214)–(10.224)
for the expectation propagation algorithm applied to the clutter problem. Begin by
using the division formula (10.205) to derive the expressions (10.214) and (10.215)
by completing the square inside the exponential to identify the mean and variance.
Also, show that the normalization constant Zn, defined by (10.206), is given for the
clutter problem by (10.216). This can be done by making use of the general result
(2.115).

10.39 (� � �) Show that the mean and variance of qnew(θ) for EP applied to the clutter
problem are given by (10.217) and (10.218). To do this, first prove the following
results for the expectations of θ and θθT under qnew(θ)

E[θ] = m\n + v\n∇m\n lnZn (10.244)

E[θTθ] = 2(v\n)2∇v\n ln Zn + 2E[θ]Tm\n − ‖m\n‖2 (10.245)

and then make use of the result (10.216) for Zn. Next, prove the results (10.220)–
(10.222) by using (10.207) and completing the square in the exponential. Finally,
use (10.208) to derive the result (10.223).



11
Sampling
Methods

For most probabilistic models of practical interest, exact inference is intractable, and
so we have to resort to some form of approximation. In Chapter 10, we discussed
inference algorithms based on deterministic approximations, which include methods
such as variational Bayes and expectation propagation. Here we consider approxi-
mate inference methods based on numerical sampling, also known as Monte Carlo
techniques.

Although for some applications the posterior distribution over unobserved vari-
ables will be of direct interest in itself, for most situations the posterior distribution
is required primarily for the purpose of evaluating expectations, for example in order
to make predictions. The fundamental problem that we therefore wish to address in
this chapter involves finding the expectation of some function f(z) with respect to a
probability distribution p(z). Here, the components of z might comprise discrete or
continuous variables or some combination of the two. Thus in the case of continuous

523
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Figure 11.1 Schematic illustration of a function f(z)
whose expectation is to be evaluated with
respect to a distribution p(z).

p(z) f(z)

z

variables, we wish to evaluate the expectation

E[f ] =
∫

f(z)p(z) dz (11.1)

where the integral is replaced by summation in the case of discrete variables. This
is illustrated schematically for a single continuous variable in Figure 11.1. We shall
suppose that such expectations are too complex to be evaluated exactly using analyt-
ical techniques.

The general idea behind sampling methods is to obtain a set of samples z(l)

(where l = 1, . . . , L) drawn independently from the distribution p(z). This allows
the expectation (11.1) to be approximated by a finite sum

f̂ =
1
L

L∑
l=1

f(z(l)). (11.2)

As long as the samples z(l) are drawn from the distribution p(z), then E[f̂ ] = E[f ]
and so the estimator f̂ has the correct mean. The variance of the estimator is given
byExercise 11.1

var[f̂ ] =
1
L

E
[
(f − E[f ])2

]
(11.3)

is the variance of the function f(z) under the distribution p(z). It is worth emphasiz-
ing that the accuracy of the estimator therefore does not depend on the dimension-
ality of z, and that, in principle, high accuracy may be achievable with a relatively
small number of samples z(l). In practice, ten or twenty independent samples may
suffice to estimate an expectation to sufficient accuracy.

The problem, however, is that the samples {z(l)} might not be independent, and
so the effective sample size might be much smaller than the apparent sample size.
Also, referring back to Figure 11.1, we note that if f(z) is small in regions where
p(z) is large, and vice versa, then the expectation may be dominated by regions
of small probability, implying that relatively large sample sizes will be required to
achieve sufficient accuracy.

For many models, the joint distribution p(z) is conveniently specified in terms
of a graphical model. In the case of a directed graph with no observed variables, it is
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straightforward to sample from the joint distribution (assuming that it is possible to
sample from the conditional distributions at each node) using the following ances-
tral sampling approach, discussed briefly in Section 8.1.2. The joint distribution is
specified by

p(z) =
M∏
i=1

p(zi|pai) (11.4)

where zi are the set of variables associated with node i, and pai denotes the set of
variables associated with the parents of node i. To obtain a sample from the joint
distribution, we make one pass through the set of variables in the order z1, . . . , zM

sampling from the conditional distributions p(zi|pai). This is always possible be-
cause at each step all of the parent values will have been instantiated. After one pass
through the graph, we will have obtained a sample from the joint distribution.

Now consider the case of a directed graph in which some of the nodes are in-
stantiated with observed values. We can in principle extend the above procedure, at
least in the case of nodes representing discrete variables, to give the following logic
sampling approach (Henrion, 1988), which can be seen as a special case of impor-
tance sampling discussed in Section 11.1.4. At each step, when a sampled value is
obtained for a variable zi whose value is observed, the sampled value is compared
to the observed value, and if they agree then the sample value is retained and the al-
gorithm proceeds to the next variable in turn. However, if the sampled value and the
observed value disagree, then the whole sample so far is discarded and the algorithm
starts again with the first node in the graph. This algorithm samples correctly from
the posterior distribution because it corresponds simply to drawing samples from the
joint distribution of hidden variables and data variables and then discarding those
samples that disagree with the observed data (with the slight saving of not continu-
ing with the sampling from the joint distribution as soon as one contradictory value is
observed). However, the overall probability of accepting a sample from the posterior
decreases rapidly as the number of observed variables increases and as the number
of states that those variables can take increases, and so this approach is rarely used
in practice.

In the case of probability distributions defined by an undirected graph, there is
no one-pass sampling strategy that will sample even from the prior distribution with
no observed variables. Instead, computationally more expensive techniques must be
employed, such as Gibbs sampling, which is discussed in Section 11.3.

As well as sampling from conditional distributions, we may also require samples
from a marginal distribution. If we already have a strategy for sampling from a joint
distribution p(u,v), then it is straightforward to obtain samples from the marginal
distribution p(u) simply by ignoring the values for v in each sample.

There are numerous texts dealing with Monte Carlo methods. Those of partic-
ular interest from the statistical inference perspective include Chen et al. (2001),
Gamerman (1997), Gilks et al. (1996), Liu (2001), Neal (1996), and Robert and
Casella (1999). Also there are review articles by Besag et al. (1995), Brooks (1998),
Diaconis and Saloff-Coste (1998), Jerrum and Sinclair (1996), Neal (1993), Tierney
(1994), and Andrieu et al. (2003) that provide additional information on sampling
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methods for statistical inference.
Diagnostic tests for convergence of Markov chain Monte Carlo algorithms are

summarized in Robert and Casella (1999), and some practical guidance on the use of
sampling methods in the context of machine learning is given in Bishop and Nabney
(2008).

11.1. Basic Sampling Algorithms

In this section, we consider some simple strategies for generating random samples
from a given distribution. Because the samples will be generated by a computer
algorithm they will in fact be pseudo-random numbers, that is, they will be deter-
ministically calculated, but must nevertheless pass appropriate tests for randomness.
Generating such numbers raises several subtleties (Press et al., 1992) that lie outside
the scope of this book. Here we shall assume that an algorithm has been provided
that generates pseudo-random numbers distributed uniformly over (0, 1), and indeed
most software environments have such a facility built in.

11.1.1 Standard distributions
We first consider how to generate random numbers from simple nonuniform dis-

tributions, assuming that we already have available a source of uniformly distributed
random numbers. Suppose that z is uniformly distributed over the interval (0, 1),
and that we transform the values of z using some function f(·) so that y = f(z).
The distribution of y will be governed by

p(y) = p(z)
∣∣∣∣dz

dy

∣∣∣∣ (11.5)

where, in this case, p(z) = 1. Our goal is to choose the function f(z) such that the
resulting values of y have some specific desired distribution p(y). Integrating (11.5)
we obtain

z = h(y) ≡
∫ y

−∞
p(ŷ) dŷ (11.6)

which is the indefinite integral of p(y). Thus, y = h−1(z), and so we have toExercise 11.2
transform the uniformly distributed random numbers using a function which is the
inverse of the indefinite integral of the desired distribution. This is illustrated in
Figure 11.2.

Consider for example the exponential distribution

p(y) = λ exp(−λy) (11.7)

where 0 � y < ∞. In this case the lower limit of the integral in (11.6) is 0, and so
h(y) = 1 − exp(−λy). Thus, if we transform our uniformly distributed variable z
using y = −λ−1 ln(1 − z), then y will have an exponential distribution.
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Figure 11.2 Geometrical interpretation of the trans-
formation method for generating nonuni-
formly distributed random numbers. h(y)
is the indefinite integral of the desired dis-
tribution p(y). If a uniformly distributed
random variable z is transformed using
y = h−1(z), then y will be distributed ac-
cording to p(y). p(y)

h(y)

y0

1

Another example of a distribution to which the transformation method can be
applied is given by the Cauchy distribution

p(y) =
1
π

1
1 + y2

. (11.8)

In this case, the inverse of the indefinite integral can be expressed in terms of the
‘tan’ function.Exercise 11.3

The generalization to multiple variables is straightforward and involves the Ja-
cobian of the change of variables, so that

p(y1, . . . , yM ) = p(z1, . . . , zM )
∣∣∣∣∂(z1, . . . , zM )
∂(y1, . . . , yM )

∣∣∣∣ . (11.9)

As a final example of the transformation method we consider the Box-Muller
method for generating samples from a Gaussian distribution. First, suppose we gen-
erate pairs of uniformly distributed random numbers z1, z2 ∈ (−1, 1), which we can
do by transforming a variable distributed uniformly over (0, 1) using z → 2z − 1.
Next we discard each pair unless it satisfies z2

1 + z2
2 � 1. This leads to a uniform

distribution of points inside the unit circle with p(z1, z2) = 1/π, as illustrated in
Figure 11.3. Then, for each pair z1, z2 we evaluate the quantities

Figure 11.3 The Box-Muller method for generating Gaussian dis-
tributed random numbers starts by generating samples
from a uniform distribution inside the unit circle.

−1
−1

1

1z1

z2
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y1 = z1

(−2 ln z1

r2

)1/2

(11.10)

y2 = z2

(−2 ln z2

r2

)1/2

(11.11)

where r2 = z2
1 + z2

2 . Then the joint distribution of y1 and y2 is given byExercise 11.4

p(y1, y2) = p(z1, z2)
∣∣∣∣∂(z1, z2)
∂(y1, y2)

∣∣∣∣
=

[
1√
2π

exp(−y2
1/2)

] [
1√
2π

exp(−y2
2/2)

]
(11.12)

and so y1 and y2 are independent and each has a Gaussian distribution with zero
mean and unit variance.

If y has a Gaussian distribution with zero mean and unit variance, then σy + µ
will have a Gaussian distribution with mean µ and variance σ2. To generate vector-
valued variables having a multivariate Gaussian distribution with mean µ and co-
variance Σ, we can make use of the Cholesky decomposition, which takes the form
Σ = LLT (Press et al., 1992). Then, if z is a vector valued random variable whose
components are independent and Gaussian distributed with zero mean and unit vari-
ance, then y = µ + Lz will have mean µ and covariance Σ.Exercise 11.5

Obviously, the transformation technique depends for its success on the ability
to calculate and then invert the indefinite integral of the required distribution. Such
operations will only be feasible for a limited number of simple distributions, and so
we must turn to alternative approaches in search of a more general strategy. Here
we consider two techniques called rejection sampling and importance sampling. Al-
though mainly limited to univariate distributions and thus not directly applicable to
complex problems in many dimensions, they do form important components in more
general strategies.

11.1.2 Rejection sampling
The rejection sampling framework allows us to sample from relatively complex

distributions, subject to certain constraints. We begin by considering univariate dis-
tributions and discuss the extension to multiple dimensions subsequently.

Suppose we wish to sample from a distribution p(z) that is not one of the simple,
standard distributions considered so far, and that sampling directly from p(z) is dif-
ficult. Furthermore suppose, as is often the case, that we are easily able to evaluate
p(z) for any given value of z, up to some normalizing constant Z, so that

p(z) =
1
Zp

p̃(z) (11.13)

where p̃(z) can readily be evaluated, but Zp is unknown.
In order to apply rejection sampling, we need some simpler distribution q(z),

sometimes called a proposal distribution, from which we can readily draw samples.



11.1. Basic Sampling Algorithms 529

Figure 11.4 In the rejection sampling method,
samples are drawn from a sim-
ple distribution q(z) and rejected
if they fall in the grey area be-
tween the unnormalized distribu-
tion ep(z) and the scaled distribu-
tion kq(z). The resulting samples
are distributed according to p(z),
which is the normalized version of
ep(z). z0 z

u0

kq(z0) kq(z)

p̃(z)

We next introduce a constant k whose value is chosen such that kq(z) � p̃(z) for
all values of z. The function kq(z) is called the comparison function and is illus-
trated for a univariate distribution in Figure 11.4. Each step of the rejection sampler
involves generating two random numbers. First, we generate a number z0 from the
distribution q(z). Next, we generate a number u0 from the uniform distribution over
[0, kq(z0)]. This pair of random numbers has uniform distribution under the curve
of the function kq(z). Finally, if u0 > p̃(z0) then the sample is rejected, otherwise
u0 is retained. Thus the pair is rejected if it lies in the grey shaded region in Fig-
ure 11.4. The remaining pairs then have uniform distribution under the curve of p̃(z),
and hence the corresponding z values are distributed according to p(z), as desired.Exercise 11.6

The original values of z are generated from the distribution q(z), and these sam-
ples are then accepted with probability p̃(z)/kq(z), and so the probability that a
sample will be accepted is given by

p(accept) =
∫

{p̃(z)/kq(z)} q(z) dz

=
1
k

∫
p̃(z) dz. (11.14)

Thus the fraction of points that are rejected by this method depends on the ratio of
the area under the unnormalized distribution p̃(z) to the area under the curve kq(z).
We therefore see that the constant k should be as small as possible subject to the
limitation that kq(z) must be nowhere less than p̃(z).

As an illustration of the use of rejection sampling, consider the task of sampling
from the gamma distribution

Gam(z|a, b) =
baza−1 exp(−bz)

Γ(a)
(11.15)

which, for a > 1, has a bell-shaped form, as shown in Figure 11.5. A suitable
proposal distribution is therefore the Cauchy (11.8) because this too is bell-shaped
and because we can use the transformation method, discussed earlier, to sample from
it. We need to generalize the Cauchy slightly to ensure that it nowhere has a smaller
value than the gamma distribution. This can be achieved by transforming a uniform
random variable y using z = b tan y + c, which gives random numbers distributed
according to.Exercise 11.7
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Figure 11.5 Plot showing the gamma distribu-
tion given by (11.15) as the green
curve, with a scaled Cauchy pro-
posal distribution shown by the red
curve. Samples from the gamma
distribution can be obtained by
sampling from the Cauchy and
then applying the rejection sam-
pling criterion.

z

p(z)

0 10 20 30
0
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q(z) =
k

1 + (z − c)2/b2
. (11.16)

The minimum reject rate is obtained by setting c = a − 1, b2 = 2a − 1 and choos-
ing the constant k to be as small as possible while still satisfying the requirement
kq(z) � p̃(z). The resulting comparison function is also illustrated in Figure 11.5.

11.1.3 Adaptive rejection sampling
In many instances where we might wish to apply rejection sampling, it proves

difficult to determine a suitable analytic form for the envelope distribution q(z). An
alternative approach is to construct the envelope function on the fly based on mea-
sured values of the distribution p(z) (Gilks and Wild, 1992). Construction of an
envelope function is particularly straightforward for cases in which p(z) is log con-
cave, in other words when ln p(z) has derivatives that are nonincreasing functions
of z. The construction of a suitable envelope function is illustrated graphically in
Figure 11.6.

The function ln p(z) and its gradient are evaluated at some initial set of grid
points, and the intersections of the resulting tangent lines are used to construct the
envelope function. Next a sample value is drawn from the envelope distribution.
This is straightforward because the log of the envelope distribution is a successionExercise 11.9

Figure 11.6 In the case of distributions that are
log concave, an envelope function
for use in rejection sampling can be
constructed using the tangent lines
computed at a set of grid points. If a
sample point is rejected, it is added
to the set of grid points and used to
refine the envelope distribution.

z1 z2 z3 z

ln p(z)
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Figure 11.7 Illustrative example of rejection
sampling involving sampling from a
Gaussian distribution p(z) shown by
the green curve, by using rejection
sampling from a proposal distri-
bution q(z) that is also Gaussian
and whose scaled version kq(z) is
shown by the red curve.

z

p(z)

−5 0 5
0

0.25

0.5

of linear functions, and hence the envelope distribution itself comprises a piecewise
exponential distribution of the form

q(z) = kiλi exp {−λi(z − zi−1)} zi−1 < z � zi. (11.17)

Once a sample has been drawn, the usual rejection criterion can be applied. If the
sample is accepted, then it will be a draw from the desired distribution. If, however,
the sample is rejected, then it is incorporated into the set of grid points, a new tangent
line is computed, and the envelope function is thereby refined. As the number of
grid points increases, so the envelope function becomes a better approximation of
the desired distribution p(z) and the probability of rejection decreases.

A variant of the algorithm exists that avoids the evaluation of derivatives (Gilks,
1992). The adaptive rejection sampling framework can also be extended to distri-
butions that are not log concave, simply by following each rejection sampling step
with a Metropolis-Hastings step (to be discussed in Section 11.2.2), giving rise to
adaptive rejection Metropolis sampling (Gilks et al., 1995).

Clearly for rejection sampling to be of practical value, we require that the com-
parison function be close to the required distribution so that the rate of rejection is
kept to a minimum. Now let us examine what happens when we try to use rejection
sampling in spaces of high dimensionality. Consider, for the sake of illustration,
a somewhat artificial problem in which we wish to sample from a zero-mean mul-
tivariate Gaussian distribution with covariance σ2

pI, where I is the unit matrix, by
rejection sampling from a proposal distribution that is itself a zero-mean Gaussian
distribution having covariance σ2

qI. Obviously, we must have σ2
q � σ2

p in order that
there exists a k such that kq(z) � p(z). In D-dimensions the optimum value of k
is given by k = (σq/σp)D, as illustrated for D = 1 in Figure 11.7. The acceptance
rate will be the ratio of volumes under p(z) and kq(z), which, because both distribu-
tions are normalized, is just 1/k. Thus the acceptance rate diminishes exponentially
with dimensionality. Even if σq exceeds σp by just one percent, for D = 1, 000 the
acceptance ratio will be approximately 1/20, 000. In this illustrative example the
comparison function is close to the required distribution. For more practical exam-
ples, where the desired distribution may be multimodal and sharply peaked, it will
be extremely difficult to find a good proposal distribution and comparison function.
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Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] �
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over
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samples {z(l)} drawn from q(z)

E[f ] =
∫

f(z)p(z) dz

=
∫

f(z)
p(z)
q(z)

q(z) dz

� 1
L

L∑
l=1

p(z(l))
q(z(l))

f(z(l)). (11.19)

The quantities rl = p(z(l))/q(z(l)) are known as importance weights, and they cor-
rect the bias introduced by sampling from the wrong distribution. Note that, unlike
rejection sampling, all of the samples generated are retained.

It will often be the case that the distribution p(z) can only be evaluated up to a
normalization constant, so that p(z) = p̃(z)/Zp where p̃(z) can be evaluated easily,
whereas Zp is unknown. Similarly, we may wish to use an importance sampling
distribution q(z) = q̃(z)/Zq, which has the same property. We then have

E[f ] =
∫

f(z)p(z) dz

=
Zq

Zp

∫
f(z)

p̃(z)
q̃(z)

q(z) dz

� Zq

Zp

1
L

L∑
l=1

r̃lf(z(l)). (11.20)

where r̃l = p̃(z(l))/q̃(z(l)). We can use the same sample set to evaluate the ratio
Zp/Zq with the result

Zp

Zq
=

1
Zq

∫
p̃(z) dz =

∫
p̃(z)
q̃(z)

q(z) dz

� 1
L

L∑
l=1

r̃l (11.21)

and hence

E[f ] �
L∑

l=1

wlf(z(l)) (11.22)

where we have defined

wl =
r̃l∑
m r̃m

=
p̃(z(l))/q(z(l))∑

m p̃(z(m))/q(z(m))
. (11.23)

As with rejection sampling, the success of the importance sampling approach
depends crucially on how well the sampling distribution q(z) matches the desired
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distribution p(z). If, as is often the case, p(z)f(z) is strongly varying and has a sig-
nificant proportion of its mass concentrated over relatively small regions of z space,
then the set of importance weights {rl} may be dominated by a few weights hav-
ing large values, with the remaining weights being relatively insignificant. Thus the
effective sample size can be much smaller than the apparent sample size L. The prob-
lem is even more severe if none of the samples falls in the regions where p(z)f(z)
is large. In that case, the apparent variances of rl and rlf(z(l)) may be small even
though the estimate of the expectation may be severely wrong. Hence a major draw-
back of the importance sampling method is the potential to produce results that are
arbitrarily in error and with no diagnostic indication. This also highlights a key re-
quirement for the sampling distribution q(z), namely that it should not be small or
zero in regions where p(z) may be significant.

For distributions defined in terms of a graphical model, we can apply the impor-
tance sampling technique in various ways. For discrete variables, a simple approach
is called uniform sampling. The joint distribution for a directed graph is defined
by (11.4). Each sample from the joint distribution is obtained by first setting those
variables zi that are in the evidence set equal to their observed values. Each of the
remaining variables is then sampled independently from a uniform distribution over
the space of possible instantiations. To determine the corresponding weight associ-
ated with a sample z(l), we note that the sampling distribution q̃(z) is uniform over
the possible choices for z, and that p̃(z|x) = p̃(z), where x denotes the subset of
variables that are observed, and the equality follows from the fact that every sample
z that is generated is necessarily consistent with the evidence. Thus the weights rl

are simply proportional to p(z). Note that the variables can be sampled in any order.
This approach can yield poor results if the posterior distribution is far from uniform,
as is often the case in practice.

An improvement on this approach is called likelihood weighted sampling (Fung
and Chang, 1990; Shachter and Peot, 1990) and is based on ancestral sampling of
the variables. For each variable in turn, if that variable is in the evidence set, then it
is just set to its instantiated value. If it is not in the evidence set, then it is sampled
from the conditional distribution p(zi|pai) in which the conditioning variables are
set to their currently sampled values. The weighting associated with the resulting
sample z is then given by

r(z) =
∏
zi 	∈e

p(zi|pai)
p(zi|pai)

∏
zi∈e

p(zi|pai)
1

=
∏
zi∈e

p(zi|pai). (11.24)

This method can be further extended using self-importance sampling (Shachter and
Peot, 1990) in which the importance sampling distribution is continually updated to
reflect the current estimated posterior distribution.

11.1.5 Sampling-importance-resampling
The rejection sampling method discussed in Section 11.1.2 depends in part for

its success on the determination of a suitable value for the constant k. For many
pairs of distributions p(z) and q(z), it will be impractical to determine a suitable
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value for k in that any value that is sufficiently large to guarantee a bound on the
desired distribution will lead to impractically small acceptance rates.

As in the case of rejection sampling, the sampling-importance-resampling (SIR)
approach also makes use of a sampling distribution q(z) but avoids having to de-
termine the constant k. There are two stages to the scheme. In the first stage,
L samples z(1), . . . , z(L) are drawn from q(z). Then in the second stage, weights
w1, . . . , wL are constructed using (11.23). Finally, a second set of L samples is
drawn from the discrete distribution (z(1), . . . , z(L)) with probabilities given by the
weights (w1, . . . , wL).

The resulting L samples are only approximately distributed according to p(z),
but the distribution becomes correct in the limit L → ∞. To see this, consider the
univariate case, and note that the cumulative distribution of the resampled values is
given by

p(z � a) =
∑

l:z(l)�a

wl

=
∑

l I(z(l) � a)p̃(z(l))/q(z(l))∑
l p̃(z(l))/q(z(l))

(11.25)

where I(.) is the indicator function (which equals 1 if its argument is true and 0
otherwise). Taking the limit L → ∞, and assuming suitable regularity of the dis-
tributions, we can replace the sums by integrals weighted according to the original
sampling distribution q(z)

p(z � a) =

∫
I(z � a) {p̃(z)/q(z)} q(z) dz∫

{p̃(z)/q(z)} q(z) dz

=

∫
I(z � a)p̃(z) dz∫

p̃(z) dz

=
∫

I(z � a)p(z) dz (11.26)

which is the cumulative distribution function of p(z). Again, we see that the normal-
ization of p(z) is not required.

For a finite value of L, and a given initial sample set, the resampled values will
only approximately be drawn from the desired distribution. As with rejection sam-
pling, the approximation improves as the sampling distribution q(z) gets closer to
the desired distribution p(z). When q(z) = p(z), the initial samples (z(1), . . . , z(L))
have the desired distribution, and the weights wn = 1/L so that the resampled values
also have the desired distribution.

If moments with respect to the distribution p(z) are required, then they can be
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evaluated directly using the original samples together with the weights, because

E[f(z)] =
∫

f(z)p(z) dz

=

∫
f(z)[p̃(z)/q(z)]q(z) dz∫

[p̃(z)/q(z)]q(z) dz

�
L∑

l=1

wlf(zl). (11.27)

11.1.6 Sampling and the EM algorithm
In addition to providing a mechanism for direct implementation of the Bayesian

framework, Monte Carlo methods can also play a role in the frequentist paradigm,
for example to find maximum likelihood solutions. In particular, sampling methods
can be used to approximate the E step of the EM algorithm for models in which the
E step cannot be performed analytically. Consider a model with hidden variables
Z, visible (observed) variables X, and parameters θ. The function that is optimized
with respect to θ in the M step is the expected complete-data log likelihood, given
by

Q(θ, θold) =
∫

p(Z|X, θold) ln p(Z,X|θ) dZ. (11.28)

We can use sampling methods to approximate this integral by a finite sum over sam-
ples {Z(l)}, which are drawn from the current estimate for the posterior distribution
p(Z|X, θold), so that

Q(θ, θold) � 1
L

L∑
l=1

ln p(Z(l),X|θ). (11.29)

The Q function is then optimized in the usual way in the M step. This procedure is
called the Monte Carlo EM algorithm.

It is straightforward to extend this to the problem of finding the mode of the
posterior distribution over θ (the MAP estimate) when a prior distribution p(θ) has
been defined, simply by adding ln p(θ) to the function Q(θ, θold) before performing
the M step.

A particular instance of the Monte Carlo EM algorithm, called stochastic EM,
arises if we consider a finite mixture model, and draw just one sample at each E step.
Here the latent variable Z characterizes which of the K components of the mixture
is responsible for generating each data point. In the E step, a sample of Z is taken
from the posterior distribution p(Z|X, θold) where X is the data set. This effectively
makes a hard assignment of each data point to one of the components in the mixture.
In the M step, this sampled approximation to the posterior distribution is used to
update the model parameters in the usual way.
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Now suppose we move from a maximum likelihood approach to a full Bayesian
treatment in which we wish to sample from the posterior distribution over the param-
eter vector θ. In principle, we would like to draw samples from the joint posterior
p(θ,Z|X), but we shall suppose that this is computationally difficult. Suppose fur-
ther that it is relatively straightforward to sample from the complete-data parameter
posterior p(θ|Z,X). This inspires the data augmentation algorithm, which alter-
nates between two steps known as the I-step (imputation step, analogous to an E
step) and the P-step (posterior step, analogous to an M step).

IP Algorithm

I-step. We wish to sample from p(Z|X) but we cannot do this directly. We
therefore note the relation

p(Z|X) =
∫

p(Z|θ,X)p(θ|X) dθ (11.30)

and hence for l = 1, . . . , L we first draw a sample θ(l) from the current esti-
mate for p(θ|X), and then use this to draw a sample Z(l) from p(Z|θ(l),X).

P-step. Given the relation

p(θ|X) =
∫

p(θ|Z,X)p(Z|X) dZ (11.31)

we use the samples {Z(l)} obtained from the I-step to compute a revised
estimate of the posterior distribution over θ given by

p(θ|X) � 1
L

L∑
l=1

p(θ|Z(l),X). (11.32)

By assumption, it will be feasible to sample from this approximation in the
I-step.

Note that we are making a (somewhat artificial) distinction between parameters θ
and hidden variables Z. From now on, we blur this distinction and focus simply on
the problem of drawing samples from a given posterior distribution.

11.2. Markov Chain Monte Carlo

In the previous section, we discussed the rejection sampling and importance sam-
pling strategies for evaluating expectations of functions, and we saw that they suffer
from severe limitations particularly in spaces of high dimensionality. We therefore
turn in this section to a very general and powerful framework called Markov chain
Monte Carlo (MCMC), which allows sampling from a large class of distributions,
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and which scales well with the dimensionality of the sample space. Markov chain
Monte Carlo methods have their origins in physics (Metropolis and Ulam, 1949),
and it was only towards the end of the 1980s that they started to have a significant
impact in the field of statistics.

As with rejection and importance sampling, we again sample from a proposal
distribution. This time, however, we maintain a record of the current state z(τ), and
the proposal distribution q(z|z(τ)) depends on this current state, and so the sequence
of samples z(1), z(2), . . . forms a Markov chain. Again, if we write p(z) = p̃(z)/Zp,Section 11.2.1
we will assume that p̃(z) can readily be evaluated for any given value of z, although
the value of Zp may be unknown. The proposal distribution itself is chosen to be
sufficiently simple that it is straightforward to draw samples from it directly. At
each cycle of the algorithm, we generate a candidate sample z� from the proposal
distribution and then accept the sample according to an appropriate criterion.

In the basic Metropolis algorithm (Metropolis et al., 1953), we assume that the
proposal distribution is symmetric, that is q(zA|zB) = q(zB|zA) for all values of
zA and zB . The candidate sample is then accepted with probability

A(z�, z(τ)) = min
(

1,
p̃(z�)
p̃(z(τ))

)
. (11.33)

This can be achieved by choosing a random number u with uniform distribution over
the unit interval (0, 1) and then accepting the sample if A(z�, z(τ)) > u. Note that
if the step from z(τ) to z� causes an increase in the value of p(z), then the candidate
point is certain to be kept.

If the candidate sample is accepted, then z(τ+1) = z�, otherwise the candidate
point z� is discarded, z(τ+1) is set to z(τ) and another candidate sample is drawn
from the distribution q(z|z(τ+1)). This is in contrast to rejection sampling, where re-
jected samples are simply discarded. In the Metropolis algorithm when a candidate
point is rejected, the previous sample is included instead in the final list of samples,
leading to multiple copies of samples. Of course, in a practical implementation,
only a single copy of each retained sample would be kept, along with an integer
weighting factor recording how many times that state appears. As we shall see, as
long as q(zA|zB) is positive for any values of zA and zB (this is a sufficient but
not necessary condition), the distribution of z(τ) tends to p(z) as τ → ∞. It should
be emphasized, however, that the sequence z(1), z(2), . . . is not a set of independent
samples from p(z) because successive samples are highly correlated. If we wish to
obtain independent samples, then we can discard most of the sequence and just re-
tain every M th sample. For M sufficiently large, the retained samples will for all
practical purposes be independent. Figure 11.9 shows a simple illustrative exam-
ple of sampling from a two-dimensional Gaussian distribution using the Metropolis
algorithm in which the proposal distribution is an isotropic Gaussian.

Further insight into the nature of Markov chain Monte Carlo algorithms can be
gleaned by looking at the properties of a specific example, namely a simple random
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Figure 11.9 A simple illustration using Metropo-
lis algorithm to sample from a
Gaussian distribution whose one
standard-deviation contour is shown
by the ellipse. The proposal distribu-
tion is an isotropic Gaussian distri-
bution whose standard deviation is
0.2. Steps that are accepted are
shown as green lines, and rejected
steps are shown in red. A total of
150 candidate samples are gener-
ated, of which 43 are rejected.
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walk. Consider a state space z consisting of the integers, with probabilities

p(z(τ+1) = z(τ)) = 0.5 (11.34)

p(z(τ+1) = z(τ) + 1) = 0.25 (11.35)

p(z(τ+1) = z(τ) − 1) = 0.25 (11.36)

where z(τ) denotes the state at step τ . If the initial state is z(1) = 0, then by sym-
metry the expected state at time τ will also be zero E[z(τ)] = 0, and similarly it is
easily seen that E[(z(τ))2] = τ/2. Thus after τ steps, the random walk has only trav-Exercise 11.10
elled a distance that on average is proportional to the square root of τ . This square
root dependence is typical of random walk behaviour and shows that random walks
are very inefficient in exploring the state space. As we shall see, a central goal in
designing Markov chain Monte Carlo methods is to avoid random walk behaviour.

11.2.1 Markov chains
Before discussing Markov chain Monte Carlo methods in more detail, it is use-

ful to study some general properties of Markov chains in more detail. In particular,
we ask under what circumstances will a Markov chain converge to the desired dis-
tribution. A first-order Markov chain is defined to be a series of random variables
z(1), . . . , z(M) such that the following conditional independence property holds for
m ∈ {1, . . . , M − 1}

p(z(m+1)|z(1), . . . , z(m)) = p(z(m+1)|z(m)). (11.37)

This of course can be represented as a directed graph in the form of a chain, an ex-
ample of which is shown in Figure 8.38. We can then specify the Markov chain by
giving the probability distribution for the initial variable p(z(0)) together with the
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conditional probabilities for subsequent variables in the form of transition probabil-
ities Tm(z(m), z(m+1)) ≡ p(z(m+1)|z(m)). A Markov chain is called homogeneous
if the transition probabilities are the same for all m.

The marginal probability for a particular variable can be expressed in terms of
the marginal probability for the previous variable in the chain in the form

p(z(m+1)) =
∑
z(m)

p(z(m+1)|z(m))p(z(m)). (11.38)

A distribution is said to be invariant, or stationary, with respect to a Markov chain
if each step in the chain leaves that distribution invariant. Thus, for a homogeneous
Markov chain with transition probabilities T (z′, z), the distribution p�(z) is invariant
if

p�(z) =
∑
z′

T (z′, z)p�(z′). (11.39)

Note that a given Markov chain may have more than one invariant distribution. For
instance, if the transition probabilities are given by the identity transformation, then
any distribution will be invariant.

A sufficient (but not necessary) condition for ensuring that the required distribu-
tion p(z) is invariant is to choose the transition probabilities to satisfy the property
of detailed balance, defined by

p�(z)T (z, z′) = p�(z′)T (z′, z) (11.40)

for the particular distribution p�(z). It is easily seen that a transition probability
that satisfies detailed balance with respect to a particular distribution will leave that
distribution invariant, because∑

z′
p�(z′)T (z′, z) =

∑
z′

p�(z)T (z, z′) = p�(z)
∑
z′

p(z′|z) = p�(z). (11.41)

A Markov chain that respects detailed balance is said to be reversible.
Our goal is to use Markov chains to sample from a given distribution. We can

achieve this if we set up a Markov chain such that the desired distribution is invariant.
However, we must also require that for m → ∞, the distribution p(z(m)) converges
to the required invariant distribution p�(z), irrespective of the choice of initial dis-
tribution p(z(0)). This property is called ergodicity, and the invariant distribution
is then called the equilibrium distribution. Clearly, an ergodic Markov chain can
have only one equilibrium distribution. It can be shown that a homogeneous Markov
chain will be ergodic, subject only to weak restrictions on the invariant distribution
and the transition probabilities (Neal, 1993).

In practice we often construct the transition probabilities from a set of ‘base’
transitions B1, . . . , BK . This can be achieved through a mixture distribution of the
form

T (z′, z) =
K∑

k=1

αkBk(z′, z) (11.42)
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for some set of mixing coefficients α1, . . . , αK satisfying αk � 0 and
∑

k αk = 1.
Alternatively, the base transitions may be combined through successive application,
so that

T (z′, z) =
∑
z1

. . .
∑
zn−1

B1(z′, z1) . . . BK−1(zK−2, zK−1)BK(zK−1, z). (11.43)

If a distribution is invariant with respect to each of the base transitions, then obvi-
ously it will also be invariant with respect to either of the T (z′, z) given by (11.42)
or (11.43). For the case of the mixture (11.42), if each of the base transitions sat-
isfies detailed balance, then the mixture transition T will also satisfy detailed bal-
ance. This does not hold for the transition probability constructed using (11.43), al-
though by symmetrizing the order of application of the base transitions, in the form
B1, B2, . . . , BK , BK , . . . , B2, B1, detailed balance can be restored. A common ex-
ample of the use of composite transition probabilities is where each base transition
changes only a subset of the variables.

11.2.2 The Metropolis-Hastings algorithm
Earlier we introduced the basic Metropolis algorithm, without actually demon-

strating that it samples from the required distribution. Before giving a proof, we
first discuss a generalization, known as the Metropolis-Hastings algorithm (Hast-
ings, 1970), to the case where the proposal distribution is no longer a symmetric
function of its arguments. In particular at step τ of the algorithm, in which the cur-
rent state is z(τ), we draw a sample z� from the distribution qk(z|z(τ)) and then
accept it with probability Ak(z�, zτ ) where

Ak(z�, z(τ)) = min
(

1,
p̃(z�)qk(z(τ)|z�)
p̃(z(τ))qk(z�|z(τ))

)
. (11.44)

Here k labels the members of the set of possible transitions being considered. Again,
the evaluation of the acceptance criterion does not require knowledge of the normal-
izing constant Zp in the probability distribution p(z) = p̃(z)/Zp. For a symmetric
proposal distribution the Metropolis-Hastings criterion (11.44) reduces to the stan-
dard Metropolis criterion given by (11.33).

We can show that p(z) is an invariant distribution of the Markov chain defined
by the Metropolis-Hastings algorithm by showing that detailed balance, defined by
(11.40), is satisfied. Using (11.44) we have

p(z)qk(z|z′)Ak(z′, z) = min (p(z)qk(z|z′), p(z′)qk(z′|z))
= min (p(z′)qk(z′|z), p(z)qk(z|z′))
= p(z′)qk(z′|z)Ak(z, z′) (11.45)

as required.
The specific choice of proposal distribution can have a marked effect on the

performance of the algorithm. For continuous state spaces, a common choice is a
Gaussian centred on the current state, leading to an important trade-off in determin-
ing the variance parameter of this distribution. If the variance is small, then the
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Figure 11.10 Schematic illustration of the use of an isotropic
Gaussian proposal distribution (blue circle) to
sample from a correlated multivariate Gaussian
distribution (red ellipse) having very different stan-
dard deviations in different directions, using the
Metropolis-Hastings algorithm. In order to keep
the rejection rate low, the scale ρ of the proposal
distribution should be on the order of the smallest
standard deviation σmin, which leads to random
walk behaviour in which the number of steps sep-
arating states that are approximately independent
is of order (σmax/σmin)2 where σmax is the largest
standard deviation.

σmax

σmin

ρ

proportion of accepted transitions will be high, but progress through the state space
takes the form of a slow random walk leading to long correlation times. However,
if the variance parameter is large, then the rejection rate will be high because, in the
kind of complex problems we are considering, many of the proposed steps will be
to states for which the probability p(z) is low. Consider a multivariate distribution
p(z) having strong correlations between the components of z, as illustrated in Fig-
ure 11.10. The scale ρ of the proposal distribution should be as large as possible
without incurring high rejection rates. This suggests that ρ should be of the same
order as the smallest length scale σmin. The system then explores the distribution
along the more extended direction by means of a random walk, and so the number
of steps to arrive at a state that is more or less independent of the original state is
of order (σmax/σmin)2. In fact in two dimensions, the increase in rejection rate as ρ
increases is offset by the larger steps sizes of those transitions that are accepted, and
more generally for a multivariate Gaussian the number of steps required to obtain
independent samples scales like (σmax/σ2)2 where σ2 is the second-smallest stan-
dard deviation (Neal, 1993). These details aside, it remains the case that if the length
scales over which the distributions vary are very different in different directions, then
the Metropolis Hastings algorithm can have very slow convergence.

11.3. Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984) is a simple and widely applicable Markov
chain Monte Carlo algorithm and can be seen as a special case of the Metropolis-
Hastings algorithm.

Consider the distribution p(z) = p(z1, . . . , zM ) from which we wish to sample,
and suppose that we have chosen some initial state for the Markov chain. Each step
of the Gibbs sampling procedure involves replacing the value of one of the variables
by a value drawn from the distribution of that variable conditioned on the values of
the remaining variables. Thus we replace zi by a value drawn from the distribution
p(zi|z\i), where zi denotes the ith component of z, and z\i denotes z1, . . . , zM but
with zi omitted. This procedure is repeated either by cycling through the variables
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in some particular order or by choosing the variable to be updated at each step at
random from some distribution.

For example, suppose we have a distribution p(z1, z2, z3) over three variables,
and at step τ of the algorithm we have selected values z

(τ)
1 , z

(τ)
2 and z

(τ)
3 . We first

replace z
(τ)
1 by a new value z

(τ+1)
1 obtained by sampling from the conditional distri-

bution
p(z1|z(τ)

2 , z
(τ)
3 ). (11.46)

Next we replace z
(τ)
2 by a value z

(τ+1)
2 obtained by sampling from the conditional

distribution
p(z2|z(τ+1)

1 , z
(τ)
3 ) (11.47)

so that the new value for z1 is used straight away in subsequent sampling steps. Then
we update z3 with a sample z

(τ+1)
3 drawn from

p(z3|z(τ+1)
1 , z

(τ+1)
2 ) (11.48)

and so on, cycling through the three variables in turn.

Gibbs Sampling

1. Initialize {zi : i = 1, . . . , M}
2. For τ = 1, . . . , T :

– Sample z
(τ+1)
1 ∼ p(z1|z(τ)

2 , z
(τ)
3 , . . . , z

(τ)
M ).

– Sample z
(τ+1)
2 ∼ p(z2|z(τ+1)

1 , z
(τ)
3 , . . . , z

(τ)
M ).

...
– Sample z

(τ+1)
j ∼ p(zj |z(τ+1)

1 , . . . , z
(τ+1)
j−1 , z

(τ)
j+1, . . . , z

(τ)
M ).

...
– Sample z

(τ+1)
M ∼ p(zM |z(τ+1)

1 , z
(τ+1)
2 , . . . , z

(τ+1)
M−1 ).

Josiah Willard Gibbs
1839–1903

Gibbs spent almost his entire life liv-
ing in a house built by his father in
New Haven, Connecticut. In 1863,
Gibbs was granted the first PhD in
engineering in the United States,
and in 1871 he was appointed to

the first chair of mathematical physics in the United

States at Yale, a post for which he received no salary
because at the time he had no publications. He de-
veloped the field of vector analysis and made contri-
butions to crystallography and planetary orbits. His
most famous work, entitled On the Equilibrium of Het-
erogeneous Substances, laid the foundations for the
science of physical chemistry.
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To show that this procedure samples from the required distribution, we first of
all note that the distribution p(z) is an invariant of each of the Gibbs sampling steps
individually and hence of the whole Markov chain. This follows from the fact that
when we sample from p(zi|{z\i), the marginal distribution p(z\i) is clearly invariant
because the value of z\i is unchanged. Also, each step by definition samples from the
correct conditional distribution p(zi|z\i). Because these conditional and marginal
distributions together specify the joint distribution, we see that the joint distribution
is itself invariant.

The second requirement to be satisfied in order that the Gibbs sampling proce-
dure samples from the correct distribution is that it be ergodic. A sufficient condition
for ergodicity is that none of the conditional distributions be anywhere zero. If this
is the case, then any point in z space can be reached from any other point in a finite
number of steps involving one update of each of the component variables. If this
requirement is not satisfied, so that some of the conditional distributions have zeros,
then ergodicity, if it applies, must be proven explicitly.

The distribution of initial states must also be specified in order to complete the
algorithm, although samples drawn after many iterations will effectively become
independent of this distribution. Of course, successive samples from the Markov
chain will be highly correlated, and so to obtain samples that are nearly independent
it will be necessary to subsample the sequence.

We can obtain the Gibbs sampling procedure as a particular instance of the
Metropolis-Hastings algorithm as follows. Consider a Metropolis-Hastings sampling
step involving the variable zk in which the remaining variables z\k remain fixed, and
for which the transition probability from z to z� is given by qk(z�|z) = p(z�

k|z\k).
We note that z�

\k = z\k because these components are unchanged by the sampling
step. Also, p(z) = p(zk|z\k)p(z\k). Thus the factor that determines the acceptance
probability in the Metropolis-Hastings (11.44) is given by

A(z�, z) =
p(z�)qk(z|z�)
p(z)qk(z�|z)

=
p(z�

k|z�
\k)p(z�

\k)p(zk|z�
\k)

p(zk|z\k)p(z\k)p(z�
k|z\k)

= 1 (11.49)

where we have used z�
\k = z\k. Thus the Metropolis-Hastings steps are always

accepted.
As with the Metropolis algorithm, we can gain some insight into the behaviour of

Gibbs sampling by investigating its application to a Gaussian distribution. Consider
a correlated Gaussian in two variables, as illustrated in Figure 11.11, having con-
ditional distributions of width l and marginal distributions of width L. The typical
step size is governed by the conditional distributions and will be of order l. Because
the state evolves according to a random walk, the number of steps needed to obtain
independent samples from the distribution will be of order (L/l)2. Of course if the
Gaussian distribution were uncorrelated, then the Gibbs sampling procedure would
be optimally efficient. For this simple problem, we could rotate the coordinate sys-
tem in order to decorrelate the variables. However, in practical applications it will
generally be infeasible to find such transformations.

One approach to reducing random walk behaviour in Gibbs sampling is called
over-relaxation (Adler, 1981). In its original form, this applies to problems for which



11.3. Gibbs Sampling 545

Figure 11.11 Illustration of Gibbs sampling by alter-
nate updates of two variables whose
distribution is a correlated Gaussian.
The step size is governed by the stan-
dard deviation of the conditional distri-
bution (green curve), and is O(l), lead-
ing to slow progress in the direction of
elongation of the joint distribution (red
ellipse). The number of steps needed
to obtain an independent sample from
the distribution is O((L/l)2).

z1

z2

L

l

the conditional distributions are Gaussian, which represents a more general class of
distributions than the multivariate Gaussian because, for example, the non-Gaussian
distribution p(z, y) ∝ exp(−z2y2) has Gaussian conditional distributions. At each
step of the Gibbs sampling algorithm, the conditional distribution for a particular
component zi has some mean µi and some variance σ2

i . In the over-relaxation frame-
work, the value of zi is replaced with

z′i = µi + α(zi − µi) + σi(1 − α2
i )

1/2ν (11.50)

where ν is a Gaussian random variable with zero mean and unit variance, and α
is a parameter such that −1 < α < 1. For α = 0, the method is equivalent to
standard Gibbs sampling, and for α < 0 the step is biased to the opposite side of the
mean. This step leaves the desired distribution invariant because if zi has mean µi

and variance σ2
i , then so too does z′i. The effect of over-relaxation is to encourage

directed motion through state space when the variables are highly correlated. The
framework of ordered over-relaxation (Neal, 1999) generalizes this approach to non-
Gaussian distributions.

The practical applicability of Gibbs sampling depends on the ease with which
samples can be drawn from the conditional distributions p(zk|z\k). In the case of
probability distributions specified using graphical models, the conditional distribu-
tions for individual nodes depend only on the variables in the corresponding Markov
blankets, as illustrated in Figure 11.12. For directed graphs, a wide choice of condi-
tional distributions for the individual nodes conditioned on their parents will lead to
conditional distributions for Gibbs sampling that are log concave. The adaptive re-
jection sampling methods discussed in Section 11.1.3 therefore provide a framework
for Monte Carlo sampling from directed graphs with broad applicability.

If the graph is constructed using distributions from the exponential family, and
if the parent-child relationships preserve conjugacy, then the full conditional distri-
butions arising in Gibbs sampling will have the same functional form as the orig-
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Figure 11.12 The Gibbs sampling method requires samples
to be drawn from the conditional distribution of a variable condi-
tioned on the remaining variables. For graphical models, this
conditional distribution is a function only of the states of the
nodes in the Markov blanket. For an undirected graph this com-
prises the set of neighbours, as shown on the left, while for a
directed graph the Markov blanket comprises the parents, the
children, and the co-parents, as shown on the right.

inal conditional distributions (conditioned on the parents) defining each node, and
so standard sampling techniques can be employed. In general, the full conditional
distributions will be of a complex form that does not permit the use of standard sam-
pling algorithms. However, if these conditionals are log concave, then sampling can
be done efficiently using adaptive rejection sampling (assuming the corresponding
variable is a scalar).

If, at each stage of the Gibbs sampling algorithm, instead of drawing a sample
from the corresponding conditional distribution, we make a point estimate of the
variable given by the maximum of the conditional distribution, then we obtain the
iterated conditional modes (ICM) algorithm discussed in Section 8.3.3. Thus ICM
can be seen as a greedy approximation to Gibbs sampling.

Because the basic Gibbs sampling technique considers one variable at a time,
there are strong dependencies between successive samples. At the opposite extreme,
if we could draw samples directly from the joint distribution (an operation that we
are supposing is intractable), then successive samples would be independent. We can
hope to improve on the simple Gibbs sampler by adopting an intermediate strategy in
which we sample successively from groups of variables rather than individual vari-
ables. This is achieved in the blocking Gibbs sampling algorithm by choosing blocks
of variables, not necessarily disjoint, and then sampling jointly from the variables in
each block in turn, conditioned on the remaining variables (Jensen et al., 1995).

11.4. Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensi-
tivity to step size. If this is too small, the result is slow decorrelation due to random
walk behaviour, whereas if it is too large the result is inefficiency due to a high rejec-
tion rate. The technique of slice sampling (Neal, 2003) provides an adaptive step size
that is automatically adjusted to match the characteristics of the distribution. Again
it requires that we are able to evaluate the unnormalized distribution p̃(z).

Consider first the univariate case. Slice sampling involves augmenting z with
an additional variable u and then drawing samples from the joint (z, u) space. We
shall see another example of this approach when we discuss hybrid Monte Carlo in
Section 11.5. The goal is to sample uniformly from the area under the distribution
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p̃(z)

z(τ) z

u

(a)

p̃(z)

z(τ) z

uzmin zmax

(b)

Figure 11.13 Illustration of slice sampling. (a) For a given value z(τ), a value of u is chosen uniformly in
the region 0 � u � ep(z(τ)), which then defines a ‘slice’ through the distribution, shown by the solid horizontal
lines. (b) Because it is infeasible to sample directly from a slice, a new sample of z is drawn from a region
zmin � z � zmax, which contains the previous value z(τ).

given by

p̂(z, u) =
{

1/Zp if 0 � u � p̃(z)
0 otherwise

(11.51)

where Zp =
∫

p̃(z) dz. The marginal distribution over z is given by∫
p̂(z, u) du =

∫ ep(z)

0

1
Zp

du =
p̃(z)
Zp

= p(z) (11.52)

and so we can sample from p(z) by sampling from p̂(z, u) and then ignoring the u
values. This can be achieved by alternately sampling z and u. Given the value of z
we evaluate p̃(z) and then sample u uniformly in the range 0 � u � p̃(z), which is
straightforward. Then we fix u and sample z uniformly from the ‘slice’ through the
distribution defined by {z : p̃(z) > u}. This is illustrated in Figure 11.13(a).

In practice, it can be difficult to sample directly from a slice through the distribu-
tion and so instead we define a sampling scheme that leaves the uniform distribution
under p̂(z, u) invariant, which can be achieved by ensuring that detailed balance is
satisfied. Suppose the current value of z is denoted z(τ) and that we have obtained
a corresponding sample u. The next value of z is obtained by considering a region
zmin � z � zmax that contains z(τ). It is in the choice of this region that the adap-
tation to the characteristic length scales of the distribution takes place. We want the
region to encompass as much of the slice as possible so as to allow large moves in z
space while having as little as possible of this region lying outside the slice, because
this makes the sampling less efficient.

One approach to the choice of region involves starting with a region containing
z(τ) having some width w and then testing each of the end points to see if they lie
within the slice. If either end point does not, then the region is extended in that
direction by increments of value w until the end point lies outside the region. A
candidate value z′ is then chosen uniformly from this region, and if it lies within the
slice, then it forms z(τ+1). If it lies outside the slice, then the region is shrunk such
that z′ forms an end point and such that the region still contains z(τ). Then another
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candidate point is drawn uniformly from this reduced region and so on, until a value
of z is found that lies within the slice.

Slice sampling can be applied to multivariate distributions by repeatedly sam-
pling each variable in turn, in the manner of Gibbs sampling. This requires that
we are able to compute, for each component zi, a function that is proportional to
p(zi|z\i).

11.5. The Hybrid Monte Carlo Algorithm

As we have already noted, one of the major limitations of the Metropolis algorithm
is that it can exhibit random walk behaviour whereby the distance traversed through
the state space grows only as the square root of the number of steps. The problem
cannot be resolved simply by taking bigger steps as this leads to a high rejection rate.

In this section, we introduce a more sophisticated class of transitions based on an
analogy with physical systems and that has the property of being able to make large
changes to the system state while keeping the rejection probability small. It is ap-
plicable to distributions over continuous variables for which we can readily evaluate
the gradient of the log probability with respect to the state variables. We will discuss
the dynamical systems framework in Section 11.5.1, and then in Section 11.5.2 we
explain how this may be combined with the Metropolis algorithm to yield the pow-
erful hybrid Monte Carlo algorithm. A background in physics is not required as this
section is self-contained and the key results are all derived from first principles.

11.5.1 Dynamical systems
The dynamical approach to stochastic sampling has its origins in algorithms for

simulating the behaviour of physical systems evolving under Hamiltonian dynam-
ics. In a Markov chain Monte Carlo simulation, the goal is to sample from a given
probability distribution p(z). The framework of Hamiltonian dynamics is exploited
by casting the probabilistic simulation in the form of a Hamiltonian system. In order
to remain in keeping with the literature in this area, we make use of the relevant
dynamical systems terminology where appropriate, which will be defined as we go
along.

The dynamics that we consider corresponds to the evolution of the state variable
z = {zi} under continuous time, which we denote by τ . Classical dynamics is de-
scribed by Newton’s second law of motion in which the acceleration of an object is
proportional to the applied force, corresponding to a second-order differential equa-
tion over time. We can decompose a second-order equation into two coupled first-
order equations by introducing intermediate momentum variables r, corresponding
to the rate of change of the state variables z, having components

ri =
dzi

dτ
(11.53)

where the zi can be regarded as position variables in this dynamics perspective. Thus
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for each position variable there is a corresponding momentum variable, and the joint
space of position and momentum variables is called phase space.

Without loss of generality, we can write the probability distribution p(z) in the
form

p(z) =
1
Zp

exp (−E(z)) (11.54)

where E(z) is interpreted as the potential energy of the system when in state z. The
system acceleration is the rate of change of momentum and is given by the applied
force, which itself is the negative gradient of the potential energy

dri

dτ
= −∂E(z)

∂zi
. (11.55)

It is convenient to reformulate this dynamical system using the Hamiltonian
framework. To do this, we first define the kinetic energy by

K(r) =
1
2
‖r‖2 =

1
2

∑
i

r2
i . (11.56)

The total energy of the system is then the sum of its potential and kinetic energies

H(z, r) = E(z) + K(r) (11.57)

where H is the Hamiltonian function. Using (11.53), (11.55), (11.56), and (11.57),
we can now express the dynamics of the system in terms of the Hamiltonian equa-
tions given byExercise 11.15

dzi

dτ
=

∂H

∂ri
(11.58)

dri

dτ
= −∂H

∂zi
. (11.59)

William Hamilton
1805–1865

William Rowan Hamilton was an
Irish mathematician and physicist,
and child prodigy, who was ap-
pointed Professor of Astronomy at
Trinity College, Dublin, in 1827, be-
fore he had even graduated. One

of Hamilton’s most important contributions was a new
formulation of dynamics, which played a significant
role in the later development of quantum mechanics.

His other great achievement was the development of
quaternions, which generalize the concept of complex
numbers by introducing three distinct square roots of
minus one, which satisfy i2 = j2 = k2 = ijk = −1.
It is said that these equations occurred to him while
walking along the Royal Canal in Dublin with his wife,
on 16 October 1843, and he promptly carved the
equations into the side of Broome bridge. Although
there is no longer any evidence of the carving, there is
now a stone plaque on the bridge commemorating the
discovery and displaying the quaternion equations.
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During the evolution of this dynamical system, the value of the Hamiltonian H is
constant, as is easily seen by differentiation

dH

dτ
=

∑
i

{
∂H

∂zi

dzi

dτ
+

∂H

∂ri

dri

dτ

}
=

∑
i

{
∂H

∂zi

∂H

∂ri
− ∂H

∂ri

∂H

∂zi

}
= 0. (11.60)

A second important property of Hamiltonian dynamical systems, known as Li-
ouville’s Theorem, is that they preserve volume in phase space. In other words, if
we consider a region within the space of variables (z, r), then as this region evolves
under the equations of Hamiltonian dynamics, its shape may change but its volume
will not. This can be seen by noting that the flow field (rate of change of location in
phase space) is given by

V =
(

dz
dτ

,
dr
dτ

)
(11.61)

and that the divergence of this field vanishes

div V =
∑

i

{
∂

∂zi

dzi

dτ
+

∂

∂ri

dri

dτ

}
=

∑
i

{
− ∂

∂zi

∂H

∂ri
+

∂

∂ri

∂H

∂zi

}
= 0. (11.62)

Now consider the joint distribution over phase space whose total energy is the
Hamiltonian, i.e., the distribution given by

p(z, r) =
1

ZH
exp(−H(z, r)). (11.63)

Using the two results of conservation of volume and conservation of H , it follows
that the Hamiltonian dynamics will leave p(z, r) invariant. This can be seen by
considering a small region of phase space over which H is approximately constant.
If we follow the evolution of the Hamiltonian equations for a finite time, then the
volume of this region will remain unchanged as will the value of H in this region, and
hence the probability density, which is a function only of H , will also be unchanged.

Although H is invariant, the values of z and r will vary, and so by integrating
the Hamiltonian dynamics over a finite time duration it becomes possible to make
large changes to z in a systematic way that avoids random walk behaviour.

Evolution under the Hamiltonian dynamics will not, however, sample ergodi-
cally from p(z, r) because the value of H is constant. In order to arrive at an ergodic
sampling scheme, we can introduce additional moves in phase space that change
the value of H while also leaving the distribution p(z, r) invariant. The simplest
way to achieve this is to replace the value of r with one drawn from its distribution
conditioned on z. This can be regarded as a Gibbs sampling step, and hence from
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Section 11.3 we see that this also leaves the desired distribution invariant. Noting
that z and r are independent in the distribution p(z, r), we see that the conditional
distribution p(r|z) is a Gaussian from which it is straightforward to sample.Exercise 11.16

In a practical application of this approach, we have to address the problem of
performing a numerical integration of the Hamiltonian equations. This will neces-
sarily introduce numerical errors and so we should devise a scheme that minimizes
the impact of such errors. In fact, it turns out that integration schemes can be devised
for which Liouville’s theorem still holds exactly. This property will be important in
the hybrid Monte Carlo algorithm, which is discussed in Section 11.5.2. One scheme
for achieving this is called the leapfrog discretization and involves alternately updat-
ing discrete-time approximations ẑ and r̂ to the position and momentum variables
using

r̂i(τ + ε/2) = r̂i(τ) − ε

2
∂E

∂zi
(ẑ(τ)) (11.64)

ẑi(τ + ε) = ẑi(τ) + εr̂i(τ + ε/2) (11.65)

r̂i(τ + ε) = r̂i(τ + ε/2) − ε

2
∂E

∂zi
(ẑ(τ + ε)). (11.66)

We see that this takes the form of a half-step update of the momentum variables with
step size ε/2, followed by a full-step update of the position variables with step size ε,
followed by a second half-step update of the momentum variables. If several leapfrog
steps are applied in succession, it can be seen that half-step updates to the momentum
variables can be combined into full-step updates with step size ε. The successive
updates to position and momentum variables then leapfrog over each other. In order
to advance the dynamics by a time interval τ , we need to take τ/ε steps. The error
involved in the discretized approximation to the continuous time dynamics will go to
zero, assuming a smooth function E(z), in the limit ε → 0. However, for a nonzero
ε as used in practice, some residual error will remain. We shall see in Section 11.5.2
how the effects of such errors can be eliminated in the hybrid Monte Carlo algorithm.

In summary then, the Hamiltonian dynamical approach involves alternating be-
tween a series of leapfrog updates and a resampling of the momentum variables from
their marginal distribution.

Note that the Hamiltonian dynamics method, unlike the basic Metropolis algo-
rithm, is able to make use of information about the gradient of the log probability
distribution as well as about the distribution itself. An analogous situation is familiar
from the domain of function optimization. In most cases where gradient informa-
tion is available, it is highly advantageous to make use of it. Informally, this follows
from the fact that in a space of dimension D, the additional computational cost of
evaluating a gradient compared with evaluating the function itself will typically be a
fixed factor independent of D, whereas the D-dimensional gradient vector conveys
D pieces of information compared with the one piece of information given by the
function itself.
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11.5.2 Hybrid Monte Carlo
As we discussed in the previous section, for a nonzero step size ε, the discretiza-

tion of the leapfrog algorithm will introduce errors into the integration of the Hamil-
tonian dynamical equations. Hybrid Monte Carlo (Duane et al., 1987; Neal, 1996)
combines Hamiltonian dynamics with the Metropolis algorithm and thereby removes
any bias associated with the discretization.

Specifically, the algorithm uses a Markov chain consisting of alternate stochastic
updates of the momentum variable r and Hamiltonian dynamical updates using the
leapfrog algorithm. After each application of the leapfrog algorithm, the resulting
candidate state is accepted or rejected according to the Metropolis criterion based
on the value of the Hamiltonian H . Thus if (z, r) is the initial state and (z�, r�)
is the state after the leapfrog integration, then this candidate state is accepted with
probability

min (1, exp{H(z, r) − H(z�, r�)}) . (11.67)

If the leapfrog integration were to simulate the Hamiltonian dynamics perfectly,
then every such candidate step would automatically be accepted because the value
of H would be unchanged. Due to numerical errors, the value of H may sometimes
decrease, and we would like the Metropolis criterion to remove any bias due to this
effect and ensure that the resulting samples are indeed drawn from the required dis-
tribution. In order for this to be the case, we need to ensure that the update equations
corresponding to the leapfrog integration satisfy detailed balance (11.40). This is
easily achieved by modifying the leapfrog scheme as follows.

Before the start of each leapfrog integration sequence, we choose at random,
with equal probability, whether to integrate forwards in time (using step size ε) or
backwards in time (using step size −ε). We first note that the leapfrog integration
scheme (11.64), (11.65), and (11.66) is time-reversible, so that integration for L steps
using step size −ε will exactly undo the effect of integration for L steps using step
size ε. Next we show that the leapfrog integration preserves phase-space volume
exactly. This follows from the fact that each step in the leapfrog scheme updates
either a zi variable or an ri variable by an amount that is a function only of the other
variable. As shown in Figure 11.14, this has the effect of shearing a region of phase
space while not altering its volume.

Finally, we use these results to show that detailed balance holds. Consider a
small region R of phase space that, under a sequence of L leapfrog iterations of
step size ε, maps to a region R′. Using conservation of volume under the leapfrog
iteration, we see that if R has volume δV then so too will R′. If we choose an initial
point from the distribution (11.63) and then update it using L leapfrog interactions,
the probability of the transition going from R to R′ is given by

1
ZH

exp(−H(R))δV
1
2

min {1, exp(−H(R) + H(R′))} . (11.68)

where the factor of 1/2 arises from the probability of choosing to integrate with a
positive step size rather than a negative one. Similarly, the probability of starting in
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ri

zi

r′i

z′i

Figure 11.14 Each step of the leapfrog algorithm (11.64)–(11.66) modifies either a position variable zi or a
momentum variable ri. Because the change to one variable is a function only of the other, any region in phase
space will be sheared without change of volume.

region R′ and integrating backwards in time to end up in region R is given by

1
ZH

exp(−H(R′))δV
1
2

min {1, exp(−H(R′) + H(R))} . (11.69)

It is easily seen that the two probabilities (11.68) and (11.69) are equal, and hence
detailed balance holds. Note that this proof ignores any overlap between the regionsExercise 11.17
R and R′ but is easily generalized to allow for such overlap.

It is not difficult to construct examples for which the leapfrog algorithm returns
to its starting position after a finite number of iterations. In such cases, the random
replacement of the momentum values before each leapfrog integration will not be
sufficient to ensure ergodicity because the position variables will never be updated.
Such phenomena are easily avoided by choosing the magnitude of the step size at
random from some small interval, before each leapfrog integration.

We can gain some insight into the behaviour of the hybrid Monte Carlo algo-
rithm by considering its application to a multivariate Gaussian. For convenience,
consider a Gaussian distribution p(z) with independent components, for which the
Hamiltonian is given by

H(z, r) =
1
2

∑
i

1
σ2

i

z2
i +

1
2

∑
i

r2
i . (11.70)

Our conclusions will be equally valid for a Gaussian distribution having correlated
components because the hybrid Monte Carlo algorithm exhibits rotational isotropy.
During the leapfrog integration, each pair of phase-space variables zi, ri evolves in-
dependently. However, the acceptance or rejection of the candidate point is based
on the value of H , which depends on the values of all of the variables. Thus, a
significant integration error in any one of the variables could lead to a high prob-
ability of rejection. In order that the discrete leapfrog integration be a reasonably
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good approximation to the true continuous-time dynamics, it is necessary for the
leapfrog integration scale ε to be smaller than the shortest length-scale over which
the potential is varying significantly. This is governed by the smallest value of σi,
which we denote by σmin. Recall that the goal of the leapfrog integration in hybrid
Monte Carlo is to move a substantial distance through phase space to a new state
that is relatively independent of the initial state and still achieve a high probability of
acceptance. In order to achieve this, the leapfrog integration must be continued for a
number of iterations of order σmax/σmin.

By contrast, consider the behaviour of a simple Metropolis algorithm with an
isotropic Gaussian proposal distribution of variance s2, considered earlier. In order
to avoid high rejection rates, the value of s must be of order σmin. The exploration of
state space then proceeds by a random walk and takes of order (σmax/σmin)2 steps
to arrive at a roughly independent state.

11.6. Estimating the Partition Function

As we have seen, most of the sampling algorithms considered in this chapter re-
quire only the functional form of the probability distribution up to a multiplicative
constant. Thus if we write

pE(z) =
1

ZE
exp(−E(z)) (11.71)

then the value of the normalization constant ZE , also known as the partition func-
tion, is not needed in order to draw samples from p(z). However, knowledge of the
value of ZE can be useful for Bayesian model comparison since it represents the
model evidence (i.e., the probability of the observed data given the model), and so
it is of interest to consider how its value might be obtained. We assume that direct
evaluation by summing, or integrating, the function exp(−E(z)) over the state space
of z is intractable.

For model comparison, it is actually the ratio of the partition functions for two
models that is required. Multiplication of this ratio by the ratio of prior probabilities
gives the ratio of posterior probabilities, which can then be used for model selection
or model averaging.

One way to estimate a ratio of partition functions is to use importance sampling
from a distribution with energy function G(z)

ZE

ZG
=

∑
z exp(−E(z))∑
z exp(−G(z))

=
∑

z exp(−E(z) + G(z)) exp(−G(z))∑
z exp(−G(z))

= EG(z)[exp(−E + G)]

�
∑

l

exp(−E(z(l)) + G(z(l))) (11.72)
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where {z(l)} are samples drawn from the distribution defined by pG(z). If the dis-
tribution pG is one for which the partition function can be evaluated analytically, for
example a Gaussian, then the absolute value of ZE can be obtained.

This approach will only yield accurate results if the importance sampling distri-
bution pG is closely matched to the distribution pE , so that the ratio pE/pG does not
have wide variations. In practice, suitable analytically specified importance sampling
distributions cannot readily be found for the kinds of complex models considered in
this book.

An alternative approach is therefore to use the samples obtained from a Markov
chain to define the importance-sampling distribution. If the transition probability for
the Markov chain is given by T (z, z′), and the sample set is given by z(1), . . . , z(L),
then the sampling distribution can be written as

1
ZG

exp (−G(z)) =
L∑

l=1

T (z(l), z) (11.73)

which can be used directly in (11.72).
Methods for estimating the ratio of two partition functions require for their suc-

cess that the two corresponding distributions be reasonably closely matched. This is
especially problematic if we wish to find the absolute value of the partition function
for a complex distribution because it is only for relatively simple distributions that
the partition function can be evaluated directly, and so attempting to estimate the
ratio of partition functions directly is unlikely to be successful. This problem can be
tackled using a technique known as chaining (Neal, 1993; Barber and Bishop, 1997),
which involves introducing a succession of intermediate distributions p2, . . . , pM−1

that interpolate between a simple distribution p1(z) for which we can evaluate the
normalization coefficient Z1 and the desired complex distribution pM (z). We then
have

ZM

Z1

=
Z2

Z1

Z3

Z2

· · · ZM

ZM−1

(11.74)

in which the intermediate ratios can be determined using Monte Carlo methods as
discussed above. One way to construct such a sequence of intermediate systems
is to use an energy function containing a continuous parameter 0 � α � 1 that
interpolates between the two distributions

Eα(z) = (1 − α)E1(z) + αEM (z). (11.75)

If the intermediate ratios in (11.74) are to be found using Monte Carlo, it may be
more efficient to use a single Markov chain run than to restart the Markov chain for
each ratio. In this case, the Markov chain is run initially for the system p1 and then
after some suitable number of steps moves on to the next distribution in the sequence.
Note, however, that the system must remain close to the equilibrium distribution at
each stage.



556 11. SAMPLING METHODS

Exercises
11.1 (�) www Show that the finite sample estimator f̂ defined by (11.2) has mean

equal to E[f ] and variance given by (11.3).

11.2 (�) Suppose that z is a random variable with uniform distribution over (0, 1) and
that we transform z using y = h−1(z) where h(y) is given by (11.6). Show that y
has the distribution p(y).

11.3 (�) Given a random variable z that is uniformly distributed over (0, 1), find a trans-
formation y = f(z) such that y has a Cauchy distribution given by (11.8).

11.4 (� �) Suppose that z1 and z2 are uniformly distributed over the unit circle, as
shown in Figure 11.3, and that we make the change of variables given by (11.10)
and (11.11). Show that (y1, y2) will be distributed according to (11.12).

11.5 (�) www Let z be a D-dimensional random variable having a Gaussian distribu-
tion with zero mean and unit covariance matrix, and suppose that the positive definite
symmetric matrix Σ has the Cholesky decomposition Σ = LLT where L is a lower-
triangular matrix (i.e., one with zeros above the leading diagonal). Show that the
variable y = µ + Lz has a Gaussian distribution with mean µ and covariance Σ.
This provides a technique for generating samples from a general multivariate Gaus-
sian using samples from a univariate Gaussian having zero mean and unit variance.

11.6 (� �) www In this exercise, we show more carefully that rejection sampling does
indeed draw samples from the desired distribution p(z). Suppose the proposal dis-
tribution is q(z) and show that the probability of a sample value z being accepted is
given by p̃(z)/kq(z) where p̃ is any unnormalized distribution that is proportional to
p(z), and the constant k is set to the smallest value that ensures kq(z) � p̃(z) for all
values of z. Note that the probability of drawing a value z is given by the probability
of drawing that value from q(z) times the probability of accepting that value given
that it has been drawn. Make use of this, along with the sum and product rules of
probability, to write down the normalized form for the distribution over z, and show
that it equals p(z).

11.7 (�) Suppose that z has a uniform distribution over the interval [0, 1]. Show that the
variable y = b tan z + c has a Cauchy distribution given by (11.16).

11.8 (� �) Determine expressions for the coefficients ki in the envelope distribution
(11.17) for adaptive rejection sampling using the requirements of continuity and nor-
malization.

11.9 (� �) By making use of the technique discussed in Section 11.1.1 for sampling
from a single exponential distribution, devise an algorithm for sampling from the
piecewise exponential distribution defined by (11.17).

11.10 (�) Show that the simple random walk over the integers defined by (11.34), (11.35),
and (11.36) has the property that E[(z(τ))2] = E[(z(τ−1))2] + 1/2 and hence by
induction that E[(z(τ))2] = τ/2.
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Figure 11.15 A probability distribution over two variables z1

and z2 that is uniform over the shaded regions
and that is zero everywhere else.

z1

z2

11.11 (� �) www Show that the Gibbs sampling algorithm, discussed in Section 11.3,
satisfies detailed balance as defined by (11.40).

11.12 (�) Consider the distribution shown in Figure 11.15. Discuss whether the standard
Gibbs sampling procedure for this distribution is ergodic, and therefore whether it
would sample correctly from this distribution

11.13 (� �) Consider the simple 3-node graph shown in Figure 11.16 in which the observed
node x is given by a Gaussian distribution N (x|µ, τ−1) with mean µ and precision
τ . Suppose that the marginal distributions over the mean and precision are given
by N (µ|µ0, s0) and Gam(τ |a, b), where Gam(·|·, ·) denotes a gamma distribution.
Write down expressions for the conditional distributions p(µ|x, τ) and p(τ |x, µ) that
would be required in order to apply Gibbs sampling to the posterior distribution
p(µ, τ |x).

11.14 (�) Verify that the over-relaxation update (11.50), in which zi has mean µi and
variance σi, and where ν has zero mean and unit variance, gives a value z′i with
mean µi and variance σ2

i .

11.15 (�) www Using (11.56) and (11.57), show that the Hamiltonian equation (11.58)
is equivalent to (11.53). Similarly, using (11.57) show that (11.59) is equivalent to
(11.55).

11.16 (�) By making use of (11.56), (11.57), and (11.63), show that the conditional dis-
tribution p(r|z) is a Gaussian.

Figure 11.16 A graph involving an observed Gaussian variable x with
prior distributions over its mean µ and precision τ .

µ τ

x
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11.17 (�) www Verify that the two probabilities (11.68) and (11.69) are equal, and hence
that detailed balance holds for the hybrid Monte Carlo algorithm.



13
Sequential

Data

So far in this book, we have focussed primarily on sets of data points that were as-
sumed to be independent and identically distributed (i.i.d.). This assumption allowed
us to express the likelihood function as the product over all data points of the prob-
ability distribution evaluated at each data point. For many applications, however,
the i.i.d. assumption will be a poor one. Here we consider a particularly important
class of such data sets, namely those that describe sequential data. These often arise
through measurement of time series, for example the rainfall measurements on suc-
cessive days at a particular location, or the daily values of a currency exchange rate,
or the acoustic features at successive time frames used for speech recognition. An
example involving speech data is shown in Figure 13.1. Sequential data can also
arise in contexts other than time series, for example the sequence of nucleotide base
pairs along a strand of DNA or the sequence of characters in an English sentence.
For convenience, we shall sometimes refer to ‘past’ and ‘future’ observations in a
sequence. However, the models explored in this chapter are equally applicable to all

605



606 13. SEQUENTIAL DATA

Figure 13.1 Example of a spectro-
gram of the spoken words “Bayes’ theo-
rem” showing a plot of the intensity of the
spectral coefficients versus time index.

forms of sequential data, not just temporal sequences.
It is useful to distinguish between stationary and nonstationary sequential dis-

tributions. In the stationary case, the data evolves in time, but the distribution from
which it is generated remains the same. For the more complex nonstationary situa-
tion, the generative distribution itself is evolving with time. Here we shall focus on
the stationary case.

For many applications, such as financial forecasting, we wish to be able to pre-
dict the next value in a time series given observations of the previous values. In-
tuitively, we expect that recent observations are likely to be more informative than
more historical observations in predicting future values. The example in Figure 13.1
shows that successive observations of the speech spectrum are indeed highly cor-
related. Furthermore, it would be impractical to consider a general dependence of
future observations on all previous observations because the complexity of such a
model would grow without limit as the number of observations increases. This leads
us to consider Markov models in which we assume that future predictions are inde-
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Figure 13.2 The simplest approach to
modelling a sequence of ob-
servations is to treat them
as independent, correspond-
ing to a graph without links.

x1 x2 x3 x4

pendent of all but the most recent observations.
Although such models are tractable, they are also severely limited. We can ob-

tain a more general framework, while still retaining tractability, by the introduction
of latent variables, leading to state space models. As in Chapters 9 and 12, we shall
see that complex models can thereby be constructed from simpler components (in
particular, from distributions belonging to the exponential family) and can be read-
ily characterized using the framework of probabilistic graphical models. Here we
focus on the two most important examples of state space models, namely the hid-
den Markov model, in which the latent variables are discrete, and linear dynamical
systems, in which the latent variables are Gaussian. Both models are described by di-
rected graphs having a tree structure (no loops) for which inference can be performed
efficiently using the sum-product algorithm.

13.1. Markov Models

The easiest way to treat sequential data would be simply to ignore the sequential
aspects and treat the observations as i.i.d., corresponding to the graph in Figure 13.2.
Such an approach, however, would fail to exploit the sequential patterns in the data,
such as correlations between observations that are close in the sequence. Suppose,
for instance, that we observe a binary variable denoting whether on a particular day
it rained or not. Given a time series of recent observations of this variable, we wish
to predict whether it will rain on the next day. If we treat the data as i.i.d., then the
only information we can glean from the data is the relative frequency of rainy days.
However, we know in practice that the weather often exhibits trends that may last for
several days. Observing whether or not it rains today is therefore of significant help
in predicting if it will rain tomorrow.

To express such effects in a probabilistic model, we need to relax the i.i.d. as-
sumption, and one of the simplest ways to do this is to consider a Markov model.
First of all we note that, without loss of generality, we can use the product rule to
express the joint distribution for a sequence of observations in the form

p(x1, . . . ,xN ) =
N∏

n=1

p(xn|x1, . . . ,xn−1). (13.1)

If we now assume that each of the conditional distributions on the right-hand side
is independent of all previous observations except the most recent, we obtain the
first-order Markov chain, which is depicted as a graphical model in Figure 13.3. The
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Figure 13.3 A first-order Markov chain of ob-
servations {xn} in which the dis-
tribution p(xn|xn−1) of a particu-
lar observation xn is conditioned
on the value of the previous ob-
servation xn−1.

x1 x2 x3 x4

joint distribution for a sequence of N observations under this model is given by

p(x1, . . . ,xN ) = p(x1)
N∏

n=2

p(xn|xn−1). (13.2)

From the d-separation property, we see that the conditional distribution for observa-Section 8.2
tion xn, given all of the observations up to time n, is given by

p(xn|x1, . . . ,xn−1) = p(xn|xn−1) (13.3)

which is easily verified by direct evaluation starting from (13.2) and using the prod-
uct rule of probability. Thus if we use such a model to predict the next observationExercise 13.1
in a sequence, the distribution of predictions will depend only on the value of the im-
mediately preceding observation and will be independent of all earlier observations.

In most applications of such models, the conditional distributions p(xn|xn−1)
that define the model will be constrained to be equal, corresponding to the assump-
tion of a stationary time series. The model is then known as a homogeneous Markov
chain. For instance, if the conditional distributions depend on adjustable parameters
(whose values might be inferred from a set of training data), then all of the condi-
tional distributions in the chain will share the same values of those parameters.

Although this is more general than the independence model, it is still very re-
strictive. For many sequential observations, we anticipate that the trends in the data
over several successive observations will provide important information in predict-
ing the next value. One way to allow earlier observations to have an influence is to
move to higher-order Markov chains. If we allow the predictions to depend also on
the previous-but-one value, we obtain a second-order Markov chain, represented by
the graph in Figure 13.4. The joint distribution is now given by

p(x1, . . . ,xN ) = p(x1)p(x2|x1)
N∏

n=3

p(xn|xn−1,xn−2). (13.4)

Again, using d-separation or by direct evaluation, we see that the conditional distri-
bution of xn given xn−1 and xn−2 is independent of all observations x1, . . .xn−3.

Figure 13.4 A second-order Markov chain, in
which the conditional distribution
of a particular observation xn

depends on the values of the two
previous observations xn−1 and
xn−2.

x1 x2 x3 x4
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Figure 13.5 We can represent sequen-
tial data using a Markov chain of latent
variables, with each observation condi-
tioned on the state of the corresponding
latent variable. This important graphical
structure forms the foundation both for the
hidden Markov model and for linear dy-
namical systems.

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Each observation is now influenced by two previous observations. We can similarly
consider extensions to an M th order Markov chain in which the conditional distri-
bution for a particular variable depends on the previous M variables. However, we
have paid a price for this increased flexibility because the number of parameters in
the model is now much larger. Suppose the observations are discrete variables hav-
ing K states. Then the conditional distribution p(xn|xn−1) in a first-order Markov
chain will be specified by a set of K −1 parameters for each of the K states of xn−1

giving a total of K(K − 1) parameters. Now suppose we extend the model to an
M th order Markov chain, so that the joint distribution is built up from conditionals
p(xn|xn−M , . . . ,xn−1). If the variables are discrete, and if the conditional distri-
butions are represented by general conditional probability tables, then the number
of parameters in such a model will have KM−1(K − 1) parameters. Because this
grows exponentially with M , it will often render this approach impractical for larger
values of M .

For continuous variables, we can use linear-Gaussian conditional distributions
in which each node has a Gaussian distribution whose mean is a linear function
of its parents. This is known as an autoregressive or AR model (Box et al., 1994;
Thiesson et al., 2004). An alternative approach is to use a parametric model for
p(xn|xn−M , . . . ,xn−1) such as a neural network. This technique is sometimes
called a tapped delay line because it corresponds to storing (delaying) the previous
M values of the observed variable in order to predict the next value. The number
of parameters can then be much smaller than in a completely general model (for ex-
ample it may grow linearly with M ), although this is achieved at the expense of a
restricted family of conditional distributions.

Suppose we wish to build a model for sequences that is not limited by the
Markov assumption to any order and yet that can be specified using a limited number
of free parameters. We can achieve this by introducing additional latent variables to
permit a rich class of models to be constructed out of simple components, as we did
with mixture distributions in Chapter 9 and with continuous latent variable models in
Chapter 12. For each observation xn, we introduce a corresponding latent variable
zn (which may be of different type or dimensionality to the observed variable). We
now assume that it is the latent variables that form a Markov chain, giving rise to the
graphical structure known as a state space model, which is shown in Figure 13.5. It
satisfies the key conditional independence property that zn−1 and zn+1 are indepen-
dent given zn, so that

zn+1 ⊥⊥ zn−1 | zn. (13.5)
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The joint distribution for this model is given by

p(x1, . . . ,xN , z1, . . . , zN ) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn). (13.6)

Using the d-separation criterion, we see that there is always a path connecting any
two observed variables xn and xm via the latent variables, and that this path is never
blocked. Thus the predictive distribution p(xn+1|x1, . . . ,xn) for observation xn+1

given all previous observations does not exhibit any conditional independence prop-
erties, and so our predictions for xn+1 depends on all previous observations. The
observed variables, however, do not satisfy the Markov property at any order. We
shall discuss how to evaluate the predictive distribution in later sections of this chap-
ter.

There are two important models for sequential data that are described by this
graph. If the latent variables are discrete, then we obtain the hidden Markov model,
or HMM (Elliott et al., 1995). Note that the observed variables in an HMM maySection 13.2
be discrete or continuous, and a variety of different conditional distributions can be
used to model them. If both the latent and the observed variables are Gaussian (with
a linear-Gaussian dependence of the conditional distributions on their parents), then
we obtain the linear dynamical system.Section 13.3

13.2. Hidden Markov Models

The hidden Markov model can be viewed as a specific instance of the state space
model of Figure 13.5 in which the latent variables are discrete. However, if we
examine a single time slice of the model, we see that it corresponds to a mixture
distribution, with component densities given by p(x|z). It can therefore also be
interpreted as an extension of a mixture model in which the choice of mixture com-
ponent for each observation is not selected independently but depends on the choice
of component for the previous observation. The HMM is widely used in speech
recognition (Jelinek, 1997; Rabiner and Juang, 1993), natural language modelling
(Manning and Schütze, 1999), on-line handwriting recognition (Nag et al., 1986),
and for the analysis of biological sequences such as proteins and DNA (Krogh et al.,
1994; Durbin et al., 1998; Baldi and Brunak, 2001).

As in the case of a standard mixture model, the latent variables are the discrete
multinomial variables zn describing which component of the mixture is responsible
for generating the corresponding observation xn. Again, it is convenient to use a
1-of-K coding scheme, as used for mixture models in Chapter 9. We now allow the
probability distribution of zn to depend on the state of the previous latent variable
zn−1 through a conditional distribution p(zn|zn−1). Because the latent variables are
K-dimensional binary variables, this conditional distribution corresponds to a table
of numbers that we denote by A, the elements of which are known as transition
probabilities. They are given by Ajk ≡ p(znk = 1|zn−1,j = 1), and because they
are probabilities, they satisfy 0 � Ajk � 1 with

∑
k Ajk = 1, so that the matrix A
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Figure 13.6 Transition diagram showing a model whose la-
tent variables have three possible states corre-
sponding to the three boxes. The black lines
denote the elements of the transition matrix
Ajk.

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

has K(K−1) independent parameters. We can then write the conditional distribution
explicitly in the form

p(zn|zn−1,A) =
K∏

k=1

K∏
j=1

A
zn−1,jznk

jk . (13.7)

The initial latent node z1 is special in that it does not have a parent node, and so
it has a marginal distribution p(z1) represented by a vector of probabilities π with
elements πk ≡ p(z1k = 1), so that

p(z1|π) =
K∏

k=1

πz1k

k (13.8)

where
∑

k πk = 1.
The transition matrix is sometimes illustrated diagrammatically by drawing the

states as nodes in a state transition diagram as shown in Figure 13.6 for the case of
K = 3. Note that this does not represent a probabilistic graphical model, because
the nodes are not separate variables but rather states of a single variable, and so we
have shown the states as boxes rather than circles.

It is sometimes useful to take a state transition diagram, of the kind shown in
Figure 13.6, and unfold it over time. This gives an alternative representation of the
transitions between latent states, known as a lattice or trellis diagram, and which isSection 8.4.5
shown for the case of the hidden Markov model in Figure 13.7.

The specification of the probabilistic model is completed by defining the con-
ditional distributions of the observed variables p(xn|zn, φ), where φ is a set of pa-
rameters governing the distribution. These are known as emission probabilities, and
might for example be given by Gaussians of the form (9.11) if the elements of x are
continuous variables, or by conditional probability tables if x is discrete. Because
xn is observed, the distribution p(xn|zn, φ) consists, for a given value of φ, of a
vector of K numbers corresponding to the K possible states of the binary vector zn.
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Figure 13.7 If we unfold the state transition dia-
gram of Figure 13.6 over time, we obtain a lattice,
or trellis, representation of the latent states. Each
column of this diagram corresponds to one of the
latent variables zn.

k = 1

k = 2

k = 3

n − 2 n − 1 n n + 1

A11 A11 A11

A33 A33 A33

We can represent the emission probabilities in the form

p(xn|zn, φ) =
K∏

k=1

p(xn|φk)znk . (13.9)

We shall focuss attention on homogeneous models for which all of the condi-
tional distributions governing the latent variables share the same parameters A, and
similarly all of the emission distributions share the same parameters φ (the extension
to more general cases is straightforward). Note that a mixture model for an i.i.d. data
set corresponds to the special case in which the parameters Ajk are the same for all
values of j, so that the conditional distribution p(zn|zn−1) is independent of zn−1.
This corresponds to deleting the horizontal links in the graphical model shown in
Figure 13.5.

The joint probability distribution over both latent and observed variables is then
given by

p(X,Z|θ) = p(z1|π)

[
N∏

n=2

p(zn|zn−1,A)

]
N∏

m=1

p(xm|zm, φ) (13.10)

where X = {x1, . . . ,xN}, Z = {z1, . . . , zN}, and θ = {π,A, φ} denotes the set
of parameters governing the model. Most of our discussion of the hidden Markov
model will be independent of the particular choice of the emission probabilities.
Indeed, the model is tractable for a wide range of emission distributions including
discrete tables, Gaussians, and mixtures of Gaussians. It is also possible to exploit
discriminative models such as neural networks. These can be used to model theExercise 13.4
emission density p(x|z) directly, or to provide a representation for p(z|x) that can
be converted into the required emission density p(x|z) using Bayes’ theorem (Bishop
et al., 2004).

We can gain a better understanding of the hidden Markov model by considering
it from a generative point of view. Recall that to generate samples from a mixture of



13.2. Hidden Markov Models 613
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Figure 13.8 Illustration of sampling from a hidden Markov model having a 3-state latent variable z and a
Gaussian emission model p(x|z) where x is 2-dimensional. (a) Contours of constant probability density for the
emission distributions corresponding to each of the three states of the latent variable. (b) A sample of 50 points
drawn from the hidden Markov model, colour coded according to the component that generated them and with
lines connecting the successive observations. Here the transition matrix was fixed so that in any state there is a
5% probability of making a transition to each of the other states, and consequently a 90% probability of remaining
in the same state.

Gaussians, we first chose one of the components at random with probability given by
the mixing coefficients πk and then generate a sample vector x from the correspond-
ing Gaussian component. This process is repeated N times to generate a data set of
N independent samples. In the case of the hidden Markov model, this procedure is
modified as follows. We first choose the initial latent variable z1 with probabilities
governed by the parameters πk and then sample the corresponding observation x1.
Now we choose the state of the variable z2 according to the transition probabilities
p(z2|z1) using the already instantiated value of z1. Thus suppose that the sample for
z1 corresponds to state j. Then we choose the state k of z2 with probabilities Ajk

for k = 1, . . . , K. Once we know z2 we can draw a sample for x2 and also sample
the next latent variable z3 and so on. This is an example of ancestral sampling for
a directed graphical model. If, for instance, we have a model in which the diago-Section 8.1.2
nal transition elements Akk are much larger than the off-diagonal elements, then a
typical data sequence will have long runs of points generated from a single compo-
nent, with infrequent transitions from one component to another. The generation of
samples from a hidden Markov model is illustrated in Figure 13.8.

There are many variants of the standard HMM model, obtained for instance by
imposing constraints on the form of the transition matrix A (Rabiner, 1989). Here we
mention one of particular practical importance called the left-to-right HMM, which
is obtained by setting the elements Ajk of A to zero if k < j, as illustrated in the
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Figure 13.9 Example of the state transition diagram for a 3-state
left-to-right hidden Markov model. Note that once a
state has been vacated, it cannot later be re-entered.

k = 1 k = 2 k = 3

A11 A22 A33

A12 A23

A13

state transition diagram for a 3-state HMM in Figure 13.9. Typically for such models
the initial state probabilities for p(z1) are modified so that p(z11) = 1 and p(z1j) = 0
for j 	= 1, in other words every sequence is constrained to start in state j = 1. The
transition matrix may be further constrained to ensure that large changes in the state
index do not occur, so that Ajk = 0 if k > j + ∆. This type of model is illustrated
using a lattice diagram in Figure 13.10.

Many applications of hidden Markov models, for example speech recognition,
or on-line character recognition, make use of left-to-right architectures. As an illus-
tration of the left-to-right hidden Markov model, we consider an example involving
handwritten digits. This uses on-line data, meaning that each digit is represented
by the trajectory of the pen as a function of time in the form of a sequence of pen
coordinates, in contrast to the off-line digits data, discussed in Appendix A, which
comprises static two-dimensional pixellated images of the ink. Examples of the on-
line digits are shown in Figure 13.11. Here we train a hidden Markov model on a
subset of data comprising 45 examples of the digit ‘2’. There are K = 16 states,
each of which can generate a line segment of fixed length having one of 16 possible
angles, and so the emission distribution is simply a 16 × 16 table of probabilities
associated with the allowed angle values for each state index value. Transition prob-
abilities are all set to zero except for those that keep the state index k the same or
that increment it by 1, and the model parameters are optimized using 25 iterations of
EM. We can gain some insight into the resulting model by running it generatively, as
shown in Figure 13.11.

Figure 13.10 Lattice diagram for a 3-state left-
to-right HMM in which the state index k is allowed
to increase by at most 1 at each transition. k = 1

k = 2

k = 3

n − 2 n − 1 n n + 1

A11 A11 A11

A33 A33 A33
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Figure 13.11 Top row: examples of on-line handwritten
digits. Bottom row: synthetic digits sam-
pled generatively from a left-to-right hid-
den Markov model that has been trained
on a data set of 45 handwritten digits.

One of the most powerful properties of hidden Markov models is their ability to
exhibit some degree of invariance to local warping (compression and stretching) of
the time axis. To understand this, consider the way in which the digit ‘2’ is written
in the on-line handwritten digits example. A typical digit comprises two distinct
sections joined at a cusp. The first part of the digit, which starts at the top left, has a
sweeping arc down to the cusp or loop at the bottom left, followed by a second more-
or-less straight sweep ending at the bottom right. Natural variations in writing style
will cause the relative sizes of the two sections to vary, and hence the location of the
cusp or loop within the temporal sequence will vary. From a generative perspective
such variations can be accommodated by the hidden Markov model through changes
in the number of transitions to the same state versus the number of transitions to the
successive state. Note, however, that if a digit ‘2’ is written in the reverse order, that
is, starting at the bottom right and ending at the top left, then even though the pen tip
coordinates may be identical to an example from the training set, the probability of
the observations under the model will be extremely small. In the speech recognition
context, warping of the time axis is associated with natural variations in the speed of
speech, and again the hidden Markov model can accommodate such a distortion and
not penalize it too heavily.

13.2.1 Maximum likelihood for the HMM
If we have observed a data set X = {x1, . . . ,xN}, we can determine the param-

eters of an HMM using maximum likelihood. The likelihood function is obtained
from the joint distribution (13.10) by marginalizing over the latent variables

p(X|θ) =
∑
Z

p(X,Z|θ). (13.11)

Because the joint distribution p(X,Z|θ) does not factorize over n (in contrast to the
mixture distribution considered in Chapter 9), we cannot simply treat each of the
summations over zn independently. Nor can we perform the summations explicitly
because there are N variables to be summed over, each of which has K states, re-
sulting in a total of KN terms. Thus the number of terms in the summation grows
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exponentially with the length of the chain. In fact, the summation in (13.11) cor-
responds to summing over exponentially many paths through the lattice diagram in
Figure 13.7.

We have already encountered a similar difficulty when we considered the infer-
ence problem for the simple chain of variables in Figure 8.32. There we were able
to make use of the conditional independence properties of the graph to re-order the
summations in order to obtain an algorithm whose cost scales linearly, instead of
exponentially, with the length of the chain. We shall apply a similar technique to the
hidden Markov model.

A further difficulty with the expression (13.11) for the likelihood function is that,
because it corresponds to a generalization of a mixture distribution, it represents a
summation over the emission models for different settings of the latent variables.
Direct maximization of the likelihood function will therefore lead to complex ex-
pressions with no closed-form solutions, as was the case for simple mixture modelsSection 9.2
(recall that a mixture model for i.i.d. data is a special case of the HMM).

We therefore turn to the expectation maximization algorithm to find an efficient
framework for maximizing the likelihood function in hidden Markov models. The
EM algorithm starts with some initial selection for the model parameters, which we
denote by θold. In the E step, we take these parameter values and find the posterior
distribution of the latent variables p(Z|X, θold). We then use this posterior distri-
bution to evaluate the expectation of the logarithm of the complete-data likelihood
function, as a function of the parameters θ, to give the function Q(θ, θold) defined
by

Q(θ, θold) =
∑
Z

p(Z|X, θold) ln p(X,Z|θ). (13.12)

At this point, it is convenient to introduce some notation. We shall use γ(zn) to
denote the marginal posterior distribution of a latent variable zn, and ξ(zn−1, zn) to
denote the joint posterior distribution of two successive latent variables, so that

γ(zn) = p(zn|X, θold) (13.13)

ξ(zn−1, zn) = p(zn−1, zn|X, θold). (13.14)

For each value of n, we can store γ(zn) using a set of K nonnegative numbers
that sum to unity, and similarly we can store ξ(zn−1, zn) using a K × K matrix of
nonnegative numbers that again sum to unity. We shall also use γ(znk) to denote the
conditional probability of znk = 1, with a similar use of notation for ξ(zn−1,j , znk)
and for other probabilistic variables introduced later. Because the expectation of a
binary random variable is just the probability that it takes the value 1, we have

γ(znk) = E[znk] =
∑
z

γ(z)znk (13.15)

ξ(zn−1,j , znk) = E[zn−1,jznk] =
∑
z

γ(z)zn−1,jznk. (13.16)

If we substitute the joint distribution p(X,Z|θ) given by (13.10) into (13.12),
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and make use of the definitions of γ and ξ , we obtain

Q(θ, θold) =
K∑

k=1

γ(z1k) lnπk +
N∑

n=2

K∑
j=1

K∑
k=1

ξ(zn−1,j , znk) lnAjk

+
N∑

n=1

K∑
k=1

γ(znk) ln p(xn|φk). (13.17)

The goal of the E step will be to evaluate the quantities γ(zn) and ξ(zn−1, zn) effi-
ciently, and we shall discuss this in detail shortly.

In the M step, we maximize Q(θ, θold) with respect to the parameters θ =
{π,A, φ} in which we treat γ(zn) and ξ(zn−1, zn) as constant. Maximization with
respect to π and A is easily achieved using appropriate Lagrange multipliers with
the resultsExercise 13.5

πk =
γ(z1k)

K∑
j=1

γ(z1j)

(13.18)

Ajk =

N∑
n=2

ξ(zn−1,j , znk)

K∑
l=1

N∑
n=2

ξ(zn−1,j , znl)

. (13.19)

The EM algorithm must be initialized by choosing starting values for π and A, which
should of course respect the summation constraints associated with their probabilis-
tic interpretation. Note that any elements of π or A that are set to zero initially will
remain zero in subsequent EM updates. A typical initialization procedure wouldExercise 13.6
involve selecting random starting values for these parameters subject to the summa-
tion and non-negativity constraints. Note that no particular modification to the EM
results are required for the case of left-to-right models beyond choosing initial values
for the elements Ajk in which the appropriate elements are set to zero, because these
will remain zero throughout.

To maximize Q(θ, θold) with respect to φk, we notice that only the final term
in (13.17) depends on φk, and furthermore this term has exactly the same form as
the data-dependent term in the corresponding function for a standard mixture dis-
tribution for i.i.d. data, as can be seen by comparison with (9.40) for the case of a
Gaussian mixture. Here the quantities γ(znk) are playing the role of the responsibil-
ities. If the parameters φk are independent for the different components, then this
term decouples into a sum of terms one for each value of k, each of which can be
maximized independently. We are then simply maximizing the weighted log likeli-
hood function for the emission density p(x|φk) with weights γ(znk). Here we shall
suppose that this maximization can be done efficiently. For instance, in the case of
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Gaussian emission densities we have p(x|φk) = N (x|µk,Σk), and maximization
of the function Q(θ, θold) then gives

µk =

N∑
n=1

γ(znk)xn

N∑
n=1

γ(znk)

(13.20)

Σk =

N∑
n=1

γ(znk)(xn − µk)(xn − µk)T

N∑
n=1

γ(znk)

. (13.21)

For the case of discrete multinomial observed variables, the conditional distribution
of the observations takes the form

p(x|z) =
D∏

i=1

K∏
k=1

µxizk

ik (13.22)

and the corresponding M-step equations are given byExercise 13.8

µik =

N∑
n=1

γ(znk)xni

N∑
n=1

γ(znk)

. (13.23)

An analogous result holds for Bernoulli observed variables.
The EM algorithm requires initial values for the parameters of the emission dis-

tribution. One way to set these is first to treat the data initially as i.i.d. and fit the
emission density by maximum likelihood, and then use the resulting values to ini-
tialize the parameters for EM.

13.2.2 The forward-backward algorithm
Next we seek an efficient procedure for evaluating the quantities γ(znk) and

ξ(zn−1,j , znk), corresponding to the E step of the EM algorithm. The graph for the
hidden Markov model, shown in Figure 13.5, is a tree, and so we know that the
posterior distribution of the latent variables can be obtained efficiently using a two-
stage message passing algorithm. In the particular context of the hidden MarkovSection 8.4
model, this is known as the forward-backward algorithm (Rabiner, 1989), or the
Baum-Welch algorithm (Baum, 1972). There are in fact several variants of the basic
algorithm, all of which lead to the exact marginals, according to the precise form of
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the messages that are propagated along the chain (Jordan, 2007). We shall focus on
the most widely used of these, known as the alpha-beta algorithm.

As well as being of great practical importance in its own right, the forward-
backward algorithm provides us with a nice illustration of many of the concepts
introduced in earlier chapters. We shall therefore begin in this section with a ‘con-
ventional’ derivation of the forward-backward equations, making use of the sum
and product rules of probability, and exploiting conditional independence properties
which we shall obtain from the corresponding graphical model using d-separation.
Then in Section 13.2.3, we shall see how the forward-backward algorithm can be
obtained very simply as a specific example of the sum-product algorithm introduced
in Section 8.4.4.

It is worth emphasizing that evaluation of the posterior distributions of the latent
variables is independent of the form of the emission density p(x|z) or indeed of
whether the observed variables are continuous or discrete. All we require is the
values of the quantities p(xn|zn) for each value of zn for every n. Also, in this
section and the next we shall omit the explicit dependence on the model parameters
θold because these fixed throughout.

We therefore begin by writing down the following conditional independence
properties (Jordan, 2007)

p(X|zn) = p(x1, . . . ,xn|zn)
p(xn+1, . . . ,xN |zn) (13.24)

p(x1, . . . ,xn−1|xn, zn) = p(x1, . . . ,xn−1|zn) (13.25)

p(x1, . . . ,xn−1|zn−1, zn) = p(x1, . . . ,xn−1|zn−1) (13.26)

p(xn+1, . . . ,xN |zn, zn+1) = p(xn+1, . . . ,xN |zn+1) (13.27)

p(xn+2, . . . ,xN |zn+1,xn+1) = p(xn+2, . . . ,xN |zn+1) (13.28)

p(X|zn−1, zn) = p(x1, . . . ,xn−1|zn−1)
p(xn|zn)p(xn+1, . . . ,xN |zn) (13.29)

p(xN+1|X, zN+1) = p(xN+1|zN+1) (13.30)

p(zN+1|zN ,X) = p(zN+1|zN ) (13.31)

where X = {x1, . . . ,xN}. These relations are most easily proved using d-separation.
For instance in the first of these results, we note that every path from any one of the
nodes x1, . . . ,xn−1 to the node xn passes through the node zn, which is observed.
Because all such paths are head-to-tail, it follows that the conditional independence
property must hold. The reader should take a few moments to verify each of these
properties in turn, as an exercise in the application of d-separation. These relations
can also be proved directly, though with significantly greater effort, from the joint
distribution for the hidden Markov model using the sum and product rules of proba-
bility.Exercise 13.10

Let us begin by evaluating γ(znk). Recall that for a discrete multinomial ran-
dom variable the expected value of one of its components is just the probability of
that component having the value 1. Thus we are interested in finding the posterior
distribution p(zn|x1, . . . ,xN ) of zn given the observed data set x1, . . . ,xN . This
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represents a vector of length K whose entries correspond to the expected values of
znk. Using Bayes’ theorem, we have

γ(zn) = p(zn|X) =
p(X|zn)p(zn)

p(X)
. (13.32)

Note that the denominator p(X) is implicitly conditioned on the parameters θold

of the HMM and hence represents the likelihood function. Using the conditional
independence property (13.24), together with the product rule of probability, we
obtain

γ(zn) =
p(x1, . . . ,xn, zn)p(xn+1, . . . ,xN |zn)

p(X)
=

α(zn)β(zn)
p(X)

(13.33)

where we have defined

α(zn) ≡ p(x1, . . . ,xn, zn) (13.34)

β(zn) ≡ p(xn+1, . . . ,xN |zn). (13.35)

The quantity α(zn) represents the joint probability of observing all of the given
data up to time n and the value of zn, whereas β(zn) represents the conditional
probability of all future data from time n + 1 up to N given the value of zn. Again,
α(zn) and β(zn) each represent set of K numbers, one for each of the possible
settings of the 1-of-K coded binary vector zn. We shall use the notation α(znk) to
denote the value of α(zn) when znk = 1, with an analogous interpretation of β(znk).

We now derive recursion relations that allow α(zn) and β(zn) to be evaluated
efficiently. Again, we shall make use of conditional independence properties, in
particular (13.25) and (13.26), together with the sum and product rules, allowing us
to express α(zn) in terms of α(zn−1) as follows

α(zn) = p(x1, . . . ,xn, zn)
= p(x1, . . . ,xn|zn)p(zn)
= p(xn|zn)p(x1, . . . ,xn−1|zn)p(zn)
= p(xn|zn)p(x1, . . . ,xn−1, zn)

= p(xn|zn)
∑
zn−1

p(x1, . . . ,xn−1, zn−1, zn)

= p(xn|zn)
∑
zn−1

p(x1, . . . ,xn−1, zn|zn−1)p(zn−1)

= p(xn|zn)
∑
zn−1

p(x1, . . . ,xn−1|zn−1)p(zn|zn−1)p(zn−1)

= p(xn|zn)
∑
zn−1

p(x1, . . . ,xn−1, zn−1)p(zn|zn−1)

Making use of the definition (13.34) for α(zn), we then obtain

α(zn) = p(xn|zn)
∑
zn−1

α(zn−1)p(zn|zn−1). (13.36)
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Figure 13.12 Illustration of the forward recursion (13.36) for
evaluation of the α variables. In this fragment
of the lattice, we see that the quantity α(zn1)
is obtained by taking the elements α(zn−1,j) of
α(zn−1) at step n−1 and summing them up with
weights given by Aj1, corresponding to the val-
ues of p(zn|zn−1), and then multiplying by the
data contribution p(xn|zn1).

k = 1

k = 2

k = 3

n − 1 n

α(zn−1,1)

α(zn−1,2)

α(zn−1,3)

α(zn,1)
A11

A21

A31

p(xn|zn,1)

It is worth taking a moment to study this recursion relation in some detail. Note
that there are K terms in the summation, and the right-hand side has to be evaluated
for each of the K values of zn so each step of the α recursion has computational
cost that scaled like O(K2). The forward recursion equation for α(zn) is illustrated
using a lattice diagram in Figure 13.12.

In order to start this recursion, we need an initial condition that is given by

α(z1) = p(x1, z1) = p(z1)p(x1|z1) =
K∏

k=1

{πkp(x1|φk)}z1k (13.37)

which tells us that α(z1k), for k = 1, . . . , K, takes the value πkp(x1|φk). Starting
at the first node of the chain, we can then work along the chain and evaluate α(zn)
for every latent node. Because each step of the recursion involves multiplying by a
K × K matrix, the overall cost of evaluating these quantities for the whole chain is
of O(K2N).

We can similarly find a recursion relation for the quantities β(zn) by making
use of the conditional independence properties (13.27) and (13.28) giving

β(zn) = p(xn+1, . . . ,xN |zn)

=
∑
zn+1

p(xn+1, . . . ,xN , zn+1|zn)

=
∑
zn+1

p(xn+1, . . . ,xN |zn, zn+1)p(zn+1|zn)

=
∑
zn+1

p(xn+1, . . . ,xN |zn+1)p(zn+1|zn)

=
∑
zn+1

p(xn+2, . . . ,xN |zn+1)p(xn+1|zn+1)p(zn+1|zn).
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Figure 13.13 Illustration of the backward recursion
(13.38) for evaluation of the β variables. In
this fragment of the lattice, we see that the
quantity β(zn1) is obtained by taking the
components β(zn+1,k) of β(zn+1) at step
n + 1 and summing them up with weights
given by the products of A1k, correspond-
ing to the values of p(zn+1|zn) and the cor-
responding values of the emission density
p(xn|zn+1,k).

k = 1

k = 2

k = 3

n n + 1

β(zn,1) β(zn+1,1)

β(zn+1,2)

β(zn+1,3)

A11

A12

A13

p(xn|zn+1,1)

p(xn|zn+1,2)

p(xn|zn+1,3)

Making use of the definition (13.35) for β(zn), we then obtain

β(zn) =
∑
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn). (13.38)

Note that in this case we have a backward message passing algorithm that evaluates
β(zn) in terms of β(zn+1). At each step, we absorb the effect of observation xn+1

through the emission probability p(xn+1|zn+1), multiply by the transition matrix
p(zn+1|zn), and then marginalize out zn+1. This is illustrated in Figure 13.13.

Again we need a starting condition for the recursion, namely a value for β(zN ).
This can be obtained by setting n = N in (13.33) and replacing α(zN ) with its
definition (13.34) to give

p(zN |X) =
p(X, zN )β(zN )

p(X)
(13.39)

which we see will be correct provided we take β(zN ) = 1 for all settings of zN .
In the M step equations, the quantity p(X) will cancel out, as can be seen, for

instance, in the M-step equation for µk given by (13.20), which takes the form

µk =

n∑
n=1

γ(znk)xn

n∑
n=1

γ(znk)

=

n∑
n=1

α(znk)β(znk)xn

n∑
n=1

α(znk)β(znk)

. (13.40)

However, the quantity p(X) represents the likelihood function whose value we typ-
ically wish to monitor during the EM optimization, and so it is useful to be able to
evaluate it. If we sum both sides of (13.33) over zn, and use the fact that the left-hand
side is a normalized distribution, we obtain

p(X) =
∑
zn

α(zn)β(zn). (13.41)
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Thus we can evaluate the likelihood function by computing this sum, for any conve-
nient choice of n. For instance, if we only want to evaluate the likelihood function,
then we can do this by running the α recursion from the start to the end of the chain,
and then use this result for n = N , making use of the fact that β(zN ) is a vector of
1s. In this case no β recursion is required, and we simply have

p(X) =
∑
zN

α(zN ). (13.42)

Let us take a moment to interpret this result for p(X). Recall that to compute the
likelihood we should take the joint distribution p(X,Z) and sum over all possible
values of Z. Each such value represents a particular choice of hidden state for every
time step, in other words every term in the summation is a path through the lattice
diagram, and recall that there are exponentially many such paths. By expressing
the likelihood function in the form (13.42), we have reduced the computational cost
from being exponential in the length of the chain to being linear by swapping the
order of the summation and multiplications, so that at each time step n we sum
the contributions from all paths passing through each of the states znk to give the
intermediate quantities α(zn).

Next we consider the evaluation of the quantities ξ(zn−1, zn), which correspond
to the values of the conditional probabilities p(zn−1, zn|X) for each of the K × K
settings for (zn−1, zn). Using the definition of ξ(zn−1, zn), and applying Bayes’
theorem, we have

ξ(zn−1, zn) = p(zn−1, zn|X)

=
p(X|zn−1, zn)p(zn−1, zn)

p(X)

=
p(x1, . . . ,xn−1|zn−1)p(xn|zn)p(xn+1, . . . ,xN |zn)p(zn|zn−1)p(zn−1)

p(X)

=
α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X)
(13.43)

where we have made use of the conditional independence property (13.29) together
with the definitions of α(zn) and β(zn) given by (13.34) and (13.35). Thus we can
calculate the ξ(zn−1, zn) directly by using the results of the α and β recursions.

Let us summarize the steps required to train a hidden Markov model using
the EM algorithm. We first make an initial selection of the parameters θold where
θ ≡ (π,A, φ). The A and π parameters are often initialized either uniformly or
randomly from a uniform distribution (respecting their non-negativity and summa-
tion constraints). Initialization of the parameters φ will depend on the form of the
distribution. For instance in the case of Gaussians, the parameters µk might be ini-
tialized by applying the K-means algorithm to the data, and Σk might be initialized
to the covariance matrix of the corresponding K means cluster. Then we run both
the forward α recursion and the backward β recursion and use the results to evaluate
γ(zn) and ξ(zn−1, zn). At this stage, we can also evaluate the likelihood function.
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This completes the E step, and we use the results to find a revised set of parameters
θnew using the M-step equations from Section 13.2.1. We then continue to alternate
between E and M steps until some convergence criterion is satisfied, for instance
when the change in the likelihood function is below some threshold.

Note that in these recursion relations the observations enter through conditional
distributions of the form p(xn|zn). The recursions are therefore independent of
the type or dimensionality of the observed variables or the form of this conditional
distribution, so long as its value can be computed for each of the K possible states
of zn. Since the observed variables {xn} are fixed, the quantities p(xn|zn) can be
pre-computed as functions of zn at the start of the EM algorithm, and remain fixed
throughout.

We have seen in earlier chapters that the maximum likelihood approach is most
effective when the number of data points is large in relation to the number of parame-
ters. Here we note that a hidden Markov model can be trained effectively, using max-
imum likelihood, provided the training sequence is sufficiently long. Alternatively,
we can make use of multiple shorter sequences, which requires a straightforward
modification of the hidden Markov model EM algorithm. In the case of left-to-rightExercise 13.12
models, this is particularly important because, in a given observation sequence, a
given state transition corresponding to a nondiagonal element of A will seen at most
once.

Another quantity of interest is the predictive distribution, in which the observed
data is X = {x1, . . . ,xN} and we wish to predict xN+1, which would be important
for real-time applications such as financial forecasting. Again we make use of the
sum and product rules together with the conditional independence properties (13.29)
and (13.31) giving

p(xN+1|X) =
∑
zN+1

p(xN+1, zN+1|X)

=
∑
zN+1

p(xN+1|zN+1)p(zN+1|X)

=
∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1, zN |X)

=
∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1|zN )p(zN |X)

=
∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1|zN )
p(zN ,X)

p(X)

=
1

p(X)

∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1|zN )α(zN ) (13.44)

which can be evaluated by first running a forward α recursion and then computing
the final summations over zN and zN+1. The result of the first summation over zN

can be stored and used once the value of xN+1 is observed in order to run the α
recursion forward to the next step in order to predict the subsequent value xN+2.
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Figure 13.14 A fragment of the fac-
tor graph representation for the hidden
Markov model.

χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn

Note that in (13.44), the influence of all data from x1 to xN is summarized in the K
values of α(zN ). Thus the predictive distribution can be carried forward indefinitely
using a fixed amount of storage, as may be required for real-time applications.

Here we have discussed the estimation of the parameters of an HMM using max-
imum likelihood. This framework is easily extended to regularized maximum likeli-
hood by introducing priors over the model parameters π, A and φ whose values are
then estimated by maximizing their posterior probability. This can again be done us-
ing the EM algorithm in which the E step is the same as discussed above, and the M
step involves adding the log of the prior distribution p(θ) to the function Q(θ, θold)
before maximization and represents a straightforward application of the techniques
developed at various points in this book. Furthermore, we can use variational meth-
ods to give a fully Bayesian treatment of the HMM in which we marginalize over theSection 10.1
parameter distributions (MacKay, 1997). As with maximum likelihood, this leads to
a two-pass forward-backward recursion to compute posterior probabilities.

13.2.3 The sum-product algorithm for the HMM
The directed graph that represents the hidden Markov model, shown in Fig-

ure 13.5, is a tree and so we can solve the problem of finding local marginals for the
hidden variables using the sum-product algorithm. Not surprisingly, this turns out toSection 8.4.4
be equivalent to the forward-backward algorithm considered in the previous section,
and so the sum-product algorithm therefore provides us with a simple way to derive
the alpha-beta recursion formulae.

We begin by transforming the directed graph of Figure 13.5 into a factor graph,
of which a representative fragment is shown in Figure 13.14. This form of the fac-
tor graph shows all variables, both latent and observed, explicitly. However, for
the purpose of solving the inference problem, we shall always be conditioning on
the variables x1, . . . ,xN , and so we can simplify the factor graph by absorbing the
emission probabilities into the transition probability factors. This leads to the sim-
plified factor graph representation in Figure 13.15, in which the factors are given
by

h(z1) = p(z1)p(x1|z1) (13.45)

fn(zn−1, zn) = p(zn|zn−1)p(xn|zn). (13.46)
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Figure 13.15 A simplified form of fac-
tor graph to describe the hidden Markov
model.

h fn

z1 zn−1 zn

To derive the alpha-beta algorithm, we denote the final hidden variable zN as
the root node, and first pass messages from the leaf node h to the root. From the
general results (8.66) and (8.69) for message propagation, we see that the messages
which are propagated in the hidden Markov model take the form

µzn−1→fn(zn−1) = µfn−1→zn−1(zn−1) (13.47)

µfn→zn(zn) =
∑
zn−1

fn(zn−1, zn)µzn−1→fn(zn−1) (13.48)

These equations represent the propagation of messages forward along the chain and
are equivalent to the alpha recursions derived in the previous section, as we shall
now show. Note that because the variable nodes zn have only two neighbours, they
perform no computation.

We can eliminate µzn−1→fn(zn−1) from (13.48) using (13.47) to give a recur-
sion for the f → z messages of the form

µfn→zn(zn) =
∑
zn−1

fn(zn−1, zn)µfn−1→zn−1(zn−1). (13.49)

If we now recall the definition (13.46), and if we define

α(zn) = µfn→zn(zn) (13.50)

then we obtain the alpha recursion given by (13.36). We also need to verify that
the quantities α(zn) are themselves equivalent to those defined previously. This
is easily done by using the initial condition (8.71) and noting that α(z1) is given
by h(z1) = p(z1)p(x1|z1) which is identical to (13.37). Because the initial α is
the same, and because they are iteratively computed using the same equation, all
subsequent α quantities must be the same.

Next we consider the messages that are propagated from the root node back to
the leaf node. These take the form

µfn+1→fn(zn) =
∑
zn+1

fn+1(zn, zn+1)µfn+2→fn+1(zn+1) (13.51)

where, as before, we have eliminated the messages of the type z → f since the
variable nodes perform no computation. Using the definition (13.46) to substitute
for fn+1(zn, zn+1), and defining

β(zn) = µfn+1→zn(zn) (13.52)
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we obtain the beta recursion given by (13.38). Again, we can verify that the beta
variables themselves are equivalent by noting that (8.70) implies that the initial mes-
sage send by the root variable node is µzN→fN

(zN ) = 1, which is identical to the
initialization of β(zN ) given in Section 13.2.2.

The sum-product algorithm also specifies how to evaluate the marginals once all
the messages have been evaluated. In particular, the result (8.63) shows that the local
marginal at the node zn is given by the product of the incoming messages. Because
we have conditioned on the variables X = {x1, . . . ,xN}, we are computing the
joint distribution

p(zn,X) = µfn→zn(zn)µfn+1→zn(zn) = α(zn)β(zn). (13.53)

Dividing both sides by p(X), we then obtain

γ(zn) =
p(zn,X)

p(X)
=

α(zn)β(zn)
p(X)

(13.54)

in agreement with (13.33). The result (13.43) can similarly be derived from (8.72).Exercise 13.11

13.2.4 Scaling factors
There is an important issue that must be addressed before we can make use of the

forward backward algorithm in practice. From the recursion relation (13.36), we note
that at each step the new value α(zn) is obtained from the previous value α(zn−1)
by multiplying by quantities p(zn|zn−1) and p(xn|zn). Because these probabilities
are often significantly less than unity, as we work our way forward along the chain,
the values of α(zn) can go to zero exponentially quickly. For moderate lengths of
chain (say 100 or so), the calculation of the α(zn) will soon exceed the dynamic
range of the computer, even if double precision floating point is used.

In the case of i.i.d. data, we implicitly circumvented this problem with the eval-
uation of likelihood functions by taking logarithms. Unfortunately, this will not help
here because we are forming sums of products of small numbers (we are in fact im-
plicitly summing over all possible paths through the lattice diagram of Figure 13.7).
We therefore work with re-scaled versions of α(zn) and β(zn) whose values remain
of order unity. As we shall see, the corresponding scaling factors cancel out when
we use these re-scaled quantities in the EM algorithm.

In (13.34), we defined α(zn) = p(x1, . . . ,xn, zn) representing the joint distri-
bution of all the observations up to xn and the latent variable zn. Now we define a
normalized version of α given by

α̂(zn) = p(zn|x1, . . . ,xn) =
α(zn)

p(x1, . . . ,xn)
(13.55)

which we expect to be well behaved numerically because it is a probability distribu-
tion over K variables for any value of n. In order to relate the scaled and original al-
pha variables, we introduce scaling factors defined by conditional distributions over
the observed variables

cn = p(xn|x1, . . . ,xn−1). (13.56)
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From the product rule, we then have

p(x1, . . . ,xn) =
n∏

m=1

cm (13.57)

and so

α(zn) = p(zn|x1, . . . ,xn)p(x1, . . . ,xn) =

(
n∏

m=1

cm

)
α̂(zn). (13.58)

We can then turn the recursion equation (13.36) for α into one for α̂ given by

cnα̂(zn) = p(xn|zn)
∑
zn−1

α̂(zn−1)p(zn|zn−1). (13.59)

Note that at each stage of the forward message passing phase, used to evaluate α̂(zn),
we have to evaluate and store cn, which is easily done because it is the coefficient
that normalizes the right-hand side of (13.59) to give α̂(zn).

We can similarly define re-scaled variables β̂(zn) using

β(zn) =

(
N∏

m=n+1

cm

)
β̂(zn) (13.60)

which will again remain within machine precision because, from (13.35), the quan-
tities β̂(zn) are simply the ratio of two conditional probabilities

β̂(zn) =
p(xn+1, . . . ,xN |zn)

p(xn+1, . . . ,xN |x1, . . . ,xn)
. (13.61)

The recursion result (13.38) for β then gives the following recursion for the re-scaled
variables

cn+1β̂(zn) =
∑
zn+1

β̂(zn+1)p(xn+1|zn+1)p(zn+1|zn). (13.62)

In applying this recursion relation, we make use of the scaling factors cn that were
previously computed in the α phase.

From (13.57), we see that the likelihood function can be found using

p(X) =
N∏

n=1

cn. (13.63)

Similarly, using (13.33) and (13.43), together with (13.63), we see that the required
marginals are given byExercise 13.15

γ(zn) = α̂(zn)β̂(zn) (13.64)

ξ(zn−1, zn) = cnα̂(zn−1)p(xn|zn)p(zn|z−1)β̂(zn). (13.65)
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Finally, we note that there is an alternative formulation of the forward-backward
algorithm (Jordan, 2007) in which the backward pass is defined by a recursion based
the quantities γ(zn) = α̂(zn)β̂(zn) instead of using β̂(zn). This α–γ recursion
requires that the forward pass be completed first so that all the quantities α̂(zn)
are available for the backward pass, whereas the forward and backward passes of
the α–β algorithm can be done independently. Although these two algorithms have
comparable computational cost, the α–β version is the most commonly encountered
one in the case of hidden Markov models, whereas for linear dynamical systems aSection 13.3
recursion analogous to the α–γ form is more usual.

13.2.5 The Viterbi algorithm
In many applications of hidden Markov models, the latent variables have some

meaningful interpretation, and so it is often of interest to find the most probable
sequence of hidden states for a given observation sequence. For instance in speech
recognition, we might wish to find the most probable phoneme sequence for a given
series of acoustic observations. Because the graph for the hidden Markov model is
a directed tree, this problem can be solved exactly using the max-sum algorithm.
We recall from our discussion in Section 8.4.5 that the problem of finding the most
probable sequence of latent states is not the same as that of finding the set of states
that are individually the most probable. The latter problem can be solved by first
running the forward-backward (sum-product) algorithm to find the latent variable
marginals γ(zn) and then maximizing each of these individually (Duda et al., 2001).
However, the set of such states will not, in general, correspond to the most probable
sequence of states. In fact, this set of states might even represent a sequence having
zero probability, if it so happens that two successive states, which in isolation are
individually the most probable, are such that the transition matrix element connecting
them is zero.

In practice, we are usually interested in finding the most probable sequence of
states, and this can be solved efficiently using the max-sum algorithm, which in the
context of hidden Markov models is known as the Viterbi algorithm (Viterbi, 1967).
Note that the max-sum algorithm works with log probabilities and so there is no
need to use re-scaled variables as was done with the forward-backward algorithm.
Figure 13.16 shows a fragment of the hidden Markov model expanded as lattice
diagram. As we have already noted, the number of possible paths through the lattice
grows exponentially with the length of the chain. The Viterbi algorithm searches this
space of paths efficiently to find the most probable path with a computational cost
that grows only linearly with the length of the chain.

As with the sum-product algorithm, we first represent the hidden Markov model
as a factor graph, as shown in Figure 13.15. Again, we treat the variable node zN

as the root, and pass messages to the root starting with the leaf nodes. Using the
results (8.93) and (8.94), we see that the messages passed in the max-sum algorithm
are given by

µzn→fn+1(zn) = µfn→zn(zn) (13.66)

µfn+1→zn+1(zn+1) = max
zn

{
ln fn+1(zn, zn+1) + µzn→fn+1(zn)

}
. (13.67)
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Figure 13.16 A fragment of the HMM lattice
showing two possible paths. The Viterbi algorithm
efficiently determines the most probable path from
amongst the exponentially many possibilities. For
any given path, the corresponding probability is
given by the product of the elements of the tran-
sition matrix Ajk, corresponding to the probabil-
ities p(zn+1|zn) for each segment of the path,
along with the emission densities p(xn|k) asso-
ciated with each node on the path.

k = 1

k = 2

k = 3

n − 2 n − 1 n n + 1

If we eliminate µzn→fn+1(zn) between these two equations, and make use of (13.46),
we obtain a recursion for the f → z messages of the form

ω(zn+1) = ln p(xn+1|zn+1) + max
zn

{ln p(x+1|zn) + ω(zn)} (13.68)

where we have introduced the notation ω(zn) ≡ µfn→zn(zn).
From (8.95) and (8.96), these messages are initialized using

ω(z1) = ln p(z1) + ln p(x1|z1). (13.69)

where we have used (13.45). Note that to keep the notation uncluttered, we omit
the dependence on the model parameters θ that are held fixed when finding the most
probable sequence.

The Viterbi algorithm can also be derived directly from the definition (13.6) of
the joint distribution by taking the logarithm and then exchanging maximizations
and summations. It is easily seen that the quantities ω(zn) have the probabilisticExercise 13.16
interpretation

ω(zn) = max
z1,...,zn−1

p(x1, . . . ,xn, z1, . . . , zn). (13.70)

Once we have completed the final maximization over zN , we will obtain the
value of the joint distribution p(X,Z) corresponding to the most probable path. We
also wish to find the sequence of latent variable values that corresponds to this path.
To do this, we simply make use of the back-tracking procedure discussed in Sec-
tion 8.4.5. Specifically, we note that the maximization over zn must be performed
for each of the K possible values of zn+1. Suppose we keep a record of the values
of zn that correspond to the maxima for each value of the K values of zn+1. Let us
denote this function by ψ(kn) where k ∈ {1, . . . , K}. Once we have passed mes-
sages to the end of the chain and found the most probable state of zN , we can then
use this function to backtrack along the chain by applying it recursively

kmax
n = ψ(kmax

n+1). (13.71)
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Intuitively, we can understand the Viterbi algorithm as follows. Naively, we
could consider explicitly all of the exponentially many paths through the lattice,
evaluate the probability for each, and then select the path having the highest proba-
bility. However, we notice that we can make a dramatic saving in computational cost
as follows. Suppose that for each path we evaluate its probability by summing up
products of transition and emission probabilities as we work our way forward along
each path through the lattice. Consider a particular time step n and a particular state
k at that time step. There will be many possible paths converging on the correspond-
ing node in the lattice diagram. However, we need only retain that particular path
that so far has the highest probability. Because there are K states at time step n, we
need to keep track of K such paths. At time step n + 1, there will be K2 possible
paths to consider, comprising K possible paths leading out of each of the K current
states, but again we need only retain K of these corresponding to the best path for
each state at time n+1. When we reach the final time step N we will discover which
state corresponds to the overall most probable path. Because there is a unique path
coming into that state we can trace the path back to step N − 1 to see what state it
occupied at that time, and so on back through the lattice to the state n = 1.

13.2.6 Extensions of the hidden Markov model
The basic hidden Markov model, along with the standard training algorithm

based on maximum likelihood, has been extended in numerous ways to meet the
requirements of particular applications. Here we discuss a few of the more important
examples.

We see from the digits example in Figure 13.11 that hidden Markov models can
be quite poor generative models for the data, because many of the synthetic digits
look quite unrepresentative of the training data. If the goal is sequence classifica-
tion, there can be significant benefit in determining the parameters of hidden Markov
models using discriminative rather than maximum likelihood techniques. Suppose
we have a training set of R observation sequences Xr, where r = 1, . . . , R, each of
which is labelled according to its class m, where m = 1, . . . , M . For each class, we
have a separate hidden Markov model with its own parameters θm, and we treat the
problem of determining the parameter values as a standard classification problem in
which we optimize the cross-entropy

R∑
r=1

ln p(mr|Xr). (13.72)

Using Bayes’ theorem this can be expressed in terms of the sequence probabilities
associated with the hidden Markov models

R∑
r=1

ln

{
p(Xr|θr)p(mr)∑M
l=1 p(Xr|θl)p(lr)

}
(13.73)

where p(m) is the prior probability of class m. Optimization of this cost function
is more complex than for maximum likelihood (Kapadia, 1998), and in particular
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Figure 13.17 Section of an autoregressive hidden
Markov model, in which the distribution
of the observation xn depends on a
subset of the previous observations as
well as on the hidden state zn. In this
example, the distribution of xn depends
on the two previous observations xn−1

and xn−2.

zn−1 zn zn+1

xn−1 xn xn+1

requires that every training sequence be evaluated under each of the models in or-
der to compute the denominator in (13.73). Hidden Markov models, coupled with
discriminative training methods, are widely used in speech recognition (Kapadia,
1998).

A significant weakness of the hidden Markov model is the way in which it rep-
resents the distribution of times for which the system remains in a given state. To see
the problem, note that the probability that a sequence sampled from a given hidden
Markov model will spend precisely T steps in state k and then make a transition to a
different state is given by

p(T ) = (Akk)T (1 − Akk) ∝ exp (−T lnAkk) (13.74)

and so is an exponentially decaying function of T . For many applications, this will
be a very unrealistic model of state duration. The problem can be resolved by mod-
elling state duration directly in which the diagonal coefficients Akk are all set to zero,
and each state k is explicitly associated with a probability distribution p(T |k) of pos-
sible duration times. From a generative point of view, when a state k is entered, a
value T representing the number of time steps that the system will remain in state k
is then drawn from p(T |k). The model then emits T values of the observed variable
xt, which are generally assumed to be independent so that the corresponding emis-
sion density is simply

∏T
t=1 p(xt|k). This approach requires some straightforward

modifications to the EM optimization procedure (Rabiner, 1989).
Another limitation of the standard HMM is that it is poor at capturing long-

range correlations between the observed variables (i.e., between variables that are
separated by many time steps) because these must be mediated via the first-order
Markov chain of hidden states. Longer-range effects could in principle be included
by adding extra links to the graphical model of Figure 13.5. One way to address this
is to generalize the HMM to give the autoregressive hidden Markov model (Ephraim
et al., 1989), an example of which is shown in Figure 13.17. For discrete observa-
tions, this corresponds to expanded tables of conditional probabilities for the emis-
sion distributions. In the case of a Gaussian emission density, we can use the linear-
Gaussian framework in which the conditional distribution for xn given the values
of the previous observations, and the value of zn, is a Gaussian whose mean is a
linear combination of the values of the conditioning variables. Clearly the number
of additional links in the graph must be limited to avoid an excessive the number of
free parameters. In the example shown in Figure 13.17, each observation depends on
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Figure 13.18 Example of an input-output hidden
Markov model. In this case, both the
emission probabilities and the transition
probabilities depend on the values of a
sequence of observations u1, . . . ,uN .

zn−1 zn zn+1

xn−1 xn xn+1

un−1 un un+1

the two preceding observed variables as well as on the hidden state. Although this
graph looks messy, we can again appeal to d-separation to see that in fact it still has
a simple probabilistic structure. In particular, if we imagine conditioning on zn we
see that, as with the standard HMM, the values of zn−1 and zn+1 are independent,
corresponding to the conditional independence property (13.5). This is easily veri-
fied by noting that every path from node zn−1 to node zn+1 passes through at least
one observed node that is head-to-tail with respect to that path. As a consequence,
we can again use a forward-backward recursion in the E step of the EM algorithm to
determine the posterior distributions of the latent variables in a computational time
that is linear in the length of the chain. Similarly, the M step involves only a minor
modification of the standard M-step equations. In the case of Gaussian emission
densities this involves estimating the parameters using the standard linear regression
equations, discussed in Chapter 3.

We have seen that the autoregressive HMM appears as a natural extension of the
standard HMM when viewed as a graphical model. In fact the probabilistic graphical
modelling viewpoint motivates a plethora of different graphical structures based on
the HMM. Another example is the input-output hidden Markov model (Bengio and
Frasconi, 1995), in which we have a sequence of observed variables u1, . . . ,uN , in
addition to the output variables x1, . . . ,xN , whose values influence either the dis-
tribution of latent variables or output variables, or both. An example is shown in
Figure 13.18. This extends the HMM framework to the domain of supervised learn-
ing for sequential data. It is again easy to show, through the use of the d-separation
criterion, that the Markov property (13.5) for the chain of latent variables still holds.
To verify this, simply note that there is only one path from node zn−1 to node zn+1

and this is head-to-tail with respect to the observed node zn. This conditional inde-
pendence property again allows the formulation of a computationally efficient learn-
ing algorithm. In particular, we can determine the parameters θ of the model by
maximizing the likelihood function L(θ) = p(X|U, θ) where U is a matrix whose
rows are given by uT

n . As a consequence of the conditional independence property
(13.5) this likelihood function can be maximized efficiently using an EM algorithm
in which the E step involves forward and backward recursions.Exercise 13.18

Another variant of the HMM worthy of mention is the factorial hidden Markov
model (Ghahramani and Jordan, 1997), in which there are multiple independent
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Figure 13.19 A factorial hidden Markov model com-
prising two Markov chains of latent vari-
ables. For continuous observed variables
x, one possible choice of emission model
is a linear-Gaussian density in which the
mean of the Gaussian is a linear combi-
nation of the states of the corresponding
latent variables.

z(1)
n−1 z(1)

n z(1)
n+1

z(2)
n−1 z(2)

n z(2)
n+1

xn−1 xn xn+1

Markov chains of latent variables, and the distribution of the observed variable at
a given time step is conditional on the states of all of the corresponding latent vari-
ables at that same time step. Figure 13.19 shows the corresponding graphical model.
The motivation for considering factorial HMM can be seen by noting that in order to
represent, say, 10 bits of information at a given time step, a standard HMM would
need K = 210 = 1024 latent states, whereas a factorial HMM could make use of 10
binary latent chains. The primary disadvantage of factorial HMMs, however, lies in
the additional complexity of training them. The M step for the factorial HMM model
is straightforward. However, observation of the x variables introduces dependencies
between the latent chains, leading to difficulties with the E step. This can be seen
by noting that in Figure 13.19, the variables z(1)

n and z(2)
n are connected by a path

which is head-to-head at node xn and hence they are not d-separated. The exact E
step for this model does not correspond to running forward and backward recursions
along the M Markov chains independently. This is confirmed by noting that the key
conditional independence property (13.5) is not satisfied for the individual Markov
chains in the factorial HMM model, as is shown using d-separation in Figure 13.20.
Now suppose that there are M chains of hidden nodes and for simplicity suppose
that all latent variables have the same number K of states. Then one approach would
be to note that there are KM combinations of latent variables at a given time step

Figure 13.20 Example of a path, highlighted in green,
which is head-to-head at the observed
nodes xn−1 and xn+1, and head-to-tail
at the unobserved nodes z

(2)
n−1, z

(2)
n and

z
(2)
n+1. Thus the path is not blocked and

so the conditional independence property
(13.5) does not hold for the individual la-
tent chains of the factorial HMM model.
As a consequence, there is no efficient
exact E step for this model.

z(1)
n−1 z(1)

n z(1)
n+1

z(2)
n−1 z(2)

n z(2)
n+1

xn−1 xn xn+1
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and so we can transform the model into an equivalent standard HMM having a single
chain of latent variables each of which has KM latent states. We can then run the
standard forward-backward recursions in the E step. This has computational com-
plexity O(NK2M ) that is exponential in the number M of latent chains and so will
be intractable for anything other than small values of M . One solution would be
to use sampling methods (discussed in Chapter 11). As an elegant deterministic al-
ternative, Ghahramani and Jordan (1997) exploited variational inference techniquesSection 10.1
to obtain a tractable algorithm for approximate inference. This can be done using
a simple variational posterior distribution that is fully factorized with respect to the
latent variables, or alternatively by using a more powerful approach in which the
variational distribution is described by independent Markov chains corresponding to
the chains of latent variables in the original model. In the latter case, the variational
inference algorithms involves running independent forward and backward recursions
along each chain, which is computationally efficient and yet is also able to capture
correlations between variables within the same chain.

Clearly, there are many possible probabilistic structures that can be constructed
according to the needs of particular applications. Graphical models provide a general
technique for motivating, describing, and analysing such structures, and variational
methods provide a powerful framework for performing inference in those models for
which exact solution is intractable.

13.3. Linear Dynamical Systems

In order to motivate the concept of linear dynamical systems, let us consider the
following simple problem, which often arises in practical settings. Suppose we wish
to measure the value of an unknown quantity z using a noisy sensor that returns a
observation x representing the value of z plus zero-mean Gaussian noise. Given a
single measurement, our best guess for z is to assume that z = x. However, we
can improve our estimate for z by taking lots of measurements and averaging them,
because the random noise terms will tend to cancel each other. Now let’s make the
situation more complicated by assuming that we wish to measure a quantity z that
is changing over time. We can take regular measurements of x so that at some point
in time we have obtained x1, . . . ,xN and we wish to find the corresponding values
z1, . . . ,xN . If we simply average the measurements, the error due to random noise
will be reduced, but unfortunately we will just obtain a single averaged estimate, in
which we have averaged over the changing value of z, thereby introducing a new
source of error.

Intuitively, we could imagine doing a bit better as follows. To estimate the value
of zN , we take only the most recent few measurements, say xN−L, . . . ,xN and just
average these. If z is changing slowly, and the random noise level in the sensor is
high, it would make sense to choose a relatively long window of observations to
average. Conversely, if the signal is changing quickly, and the noise levels are small,
we might be better just to use xN directly as our estimate of zN . Perhaps we could
do even better if we take a weighted average, in which more recent measurements
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make a greater contribution than less recent ones.
Although this sort of intuitive argument seems plausible, it does not tell us how

to form a weighted average, and any sort of hand-crafted weighing is hardly likely
to be optimal. Fortunately, we can address problems such as this much more sys-
tematically by defining a probabilistic model that captures the time evolution and
measurement processes and then applying the inference and learning methods devel-
oped in earlier chapters. Here we shall focus on a widely used model known as a
linear dynamical system.

As we have seen, the HMM corresponds to the state space model shown in
Figure 13.5 in which the latent variables are discrete but with arbitrary emission
probability distributions. This graph of course describes a much broader class of
probability distributions, all of which factorize according to (13.6). We now consider
extensions to other distributions for the latent variables. In particular, we consider
continuous latent variables in which the summations of the sum-product algorithm
become integrals. The general form of the inference algorithms will, however, be
the same as for the hidden Markov model. It is interesting to note that, historically,
hidden Markov models and linear dynamical systems were developed independently.
Once they are both expressed as graphical models, however, the deep relationship
between them immediately becomes apparent.

One key requirement is that we retain an efficient algorithm for inference which
is linear in the length of the chain. This requires that, for instance, when we take
a quantity α̂(zn−1), representing the posterior probability of zn given observations
x1, . . . ,xn, and multiply by the transition probability p(zn|zn−1) and the emission
probability p(xn|zn) and then marginalize over zn−1, we obtain a distribution over
zn that is of the same functional form as that over α̂(zn−1). That is to say, the
distribution must not become more complex at each stage, but must only change in
its parameter values. Not surprisingly, the only distributions that have this property
of being closed under multiplication are those belonging to the exponential family.

Here we consider the most important example from a practical perspective,
which is the Gaussian. In particular, we consider a linear-Gaussian state space model
so that the latent variables {zn}, as well as the observed variables {xn}, are multi-
variate Gaussian distributions whose means are linear functions of the states of their
parents in the graph. We have seen that a directed graph of linear-Gaussian units
is equivalent to a joint Gaussian distribution over all of the variables. Furthermore,
marginals such as α̂(zn) are also Gaussian, so that the functional form of the mes-
sages is preserved and we will obtain an efficient inference algorithm. By contrast,
suppose that the emission densities p(xn|zn) comprise a mixture of K Gaussians
each of which has a mean that is linear in zn. Then even if α̂(z1) is Gaussian, the
quantity α̂(z2) will be a mixture of K Gaussians, α̂(z3) will be a mixture of K2

Gaussians, and so on, and exact inference will not be of practical value.
We have seen that the hidden Markov model can be viewed as an extension of

the mixture models of Chapter 9 to allow for sequential correlations in the data.
In a similar way, we can view the linear dynamical system as a generalization of the
continuous latent variable models of Chapter 12 such as probabilistic PCA and factor
analysis. Each pair of nodes {zn,xn} represents a linear-Gaussian latent variable



13.3. Linear Dynamical Systems 637

model for that particular observation. However, the latent variables {zn} are no
longer treated as independent but now form a Markov chain.

Because the model is represented by a tree-structured directed graph, inference
problems can be solved efficiently using the sum-product algorithm. The forward re-
cursions, analogous to the α messages of the hidden Markov model, are known as the
Kalman filter equations (Kalman, 1960; Zarchan and Musoff, 2005), and the back-
ward recursions, analogous to the β messages, are known as the Kalman smoother
equations, or the Rauch-Tung-Striebel (RTS) equations (Rauch et al., 1965). The
Kalman filter is widely used in many real-time tracking applications.

Because the linear dynamical system is a linear-Gaussian model, the joint distri-
bution over all variables, as well as all marginals and conditionals, will be Gaussian.
It follows that the sequence of individually most probable latent variable values is
the same as the most probable latent sequence. There is thus no need to consider theExercise 13.19
analogue of the Viterbi algorithm for the linear dynamical system.

Because the model has linear-Gaussian conditional distributions, we can write
the transition and emission distributions in the general form

p(zn|zn−1) = N (zn|Azn−1,Γ) (13.75)

p(xn|zn) = N (xn|Czn,Σ). (13.76)

The initial latent variable also has a Gaussian distribution which we write as

p(z1) = N (z1|µ0,V0). (13.77)

Note that in order to simplify the notation, we have omitted additive constant terms
from the means of the Gaussians. In fact, it is straightforward to include them if
desired. Traditionally, these distributions are more commonly expressed in an equiv-Exercise 13.24
alent form in terms of noisy linear equations given by

zn = Azn−1 + wn (13.78)

xn = Czn + vn (13.79)

z1 = µ0 + u (13.80)

where the noise terms have the distributions

w ∼ N (w|0,Γ) (13.81)

v ∼ N (v|0,Σ) (13.82)

u ∼ N (u|0,V0). (13.83)

The parameters of the model, denoted by θ = {A,Γ,C,Σ, µ0,V0}, can be
determined using maximum likelihood through the EM algorithm. In the E step, we
need to solve the inference problem of determining the local posterior marginals for
the latent variables, which can be solved efficiently using the sum-product algorithm,
as we discuss in the next section.
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13.3.1 Inference in LDS
We now turn to the problem of finding the marginal distributions for the latent

variables conditional on the observation sequence. For given parameter settings, we
also wish to make predictions of the next latent state zn and of the next observation
xn conditioned on the observed data x1, . . . ,xn−1 for use in real-time applications.
These inference problems can be solved efficiently using the sum-product algorithm,
which in the context of the linear dynamical system gives rise to the Kalman filter
and Kalman smoother equations.

It is worth emphasizing that because the linear dynamical system is a linear-
Gaussian model, the joint distribution over all latent and observed variables is simply
a Gaussian, and so in principle we could solve inference problems by using the
standard results derived in previous chapters for the marginals and conditionals of a
multivariate Gaussian. The role of the sum-product algorithm is to provide a more
efficient way to perform such computations.

Linear dynamical systems have the identical factorization, given by (13.6), to
hidden Markov models, and are again described by the factor graphs in Figures 13.14
and 13.15. Inference algorithms therefore take precisely the same form except that
summations over latent variables are replaced by integrations. We begin by consid-
ering the forward equations in which we treat zN as the root node, and propagate
messages from the leaf node h(z1) to the root. From (13.77), the initial message will
be Gaussian, and because each of the factors is Gaussian, all subsequent messages
will also be Gaussian. By convention, we shall propagate messages that are nor-
malized marginal distributions corresponding to p(zn|x1, . . . ,xn), which we denote
by

α̂(zn) = N (zn|µn,Vn). (13.84)

This is precisely analogous to the propagation of scaled variables α̂(zn) given by
(13.59) in the discrete case of the hidden Markov model, and so the recursion equa-
tion now takes the form

cnα̂(zn) = p(xn|zn)
∫

α̂(zn−1)p(zn|zn−1) dzn−1. (13.85)

Substituting for the conditionals p(zn|zn−1) and p(xn|zn), using (13.75) and (13.76),
respectively, and making use of (13.84), we see that (13.85) becomes

cnN (zn|µn,Vn) = N (xn|Czn,Σ)∫
N (zn|Azn−1,Γ)N (zn−1|µn−1,Vn−1) dzn−1. (13.86)

Here we are supposing that µn−1 and Vn−1 are known, and by evaluating the inte-
gral in (13.86), we wish to determine values for µn and Vn. The integral is easily
evaluated by making use of the result (2.115), from which it follows that∫

N (zn|Azn−1,Γ)N (zn−1|µn−1,Vn−1) dzn−1

= N (zn|Aµn−1,Pn−1) (13.87)
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where we have defined
Pn−1 = AVn−1AT + Γ. (13.88)

We can now combine this result with the first factor on the right-hand side of (13.86)
by making use of (2.115) and (2.116) to give

µn = Aµn−1 + Kn(xn − CAµn−1) (13.89)

Vn = (I − KnC)Pn−1 (13.90)

cn = N (xn|CAµn−1,CPn−1CT + Σ). (13.91)

Here we have made use of the matrix inverse identities (C.5) and (C.7) and also
defined the Kalman gain matrix

Kn = Pn−1CT
(
CPn−1CT + Σ

)−1
. (13.92)

Thus, given the values of µn−1 and Vn−1, together with the new observation xn,
we can evaluate the Gaussian marginal for zn having mean µn and covariance Vn,
as well as the normalization coefficient cn.

The initial conditions for these recursion equations are obtained from

c1α̂(z1) = p(z1)p(x1|z1). (13.93)

Because p(z1) is given by (13.77), and p(x1|z1) is given by (13.76), we can again
make use of (2.115) to calculate c1 and (2.116) to calculate µ1 and V1 giving

µ1 = µ0 + K1(x1 − Cµ0) (13.94)

V1 = (I − K1C)V0 (13.95)

c1 = N (x1|Cµ0,CV0CT + Σ) (13.96)

where
K1 = V0CT

(
CV0CT + Σ

)−1
. (13.97)

Similarly, the likelihood function for the linear dynamical system is given by (13.63)
in which the factors cn are found using the Kalman filtering equations.

We can interpret the steps involved in going from the posterior marginal over
zn−1 to the posterior marginal over zn as follows. In (13.89), we can view the
quantity Aµn−1 as the prediction of the mean over zn obtained by simply taking the
mean over zn−1 and projecting it forward one step using the transition probability
matrix A. This predicted mean would give a predicted observation for xn given by
CAzn−1 obtained by applying the emission probability matrix C to the predicted
hidden state mean. We can view the update equation (13.89) for the mean of the
hidden variable distribution as taking the predicted mean Aµn−1 and then adding
a correction that is proportional to the error xn − CAzn−1 between the predicted
observation and the actual observation. The coefficient of this correction is given by
the Kalman gain matrix. Thus we can view the Kalman filter as a process of making
successive predictions and then correcting these predictions in the light of the new
observations. This is illustrated graphically in Figure 13.21.
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zn−1 zn zn

Figure 13.21 The linear dynamical system can be viewed as a sequence of steps in which increasing un-
certainty in the state variable due to diffusion is compensated by the arrival of new data. In the left-hand plot,
the blue curve shows the distribution p(zn−1|x1, . . . ,xn−1), which incorporates all the data up to step n − 1.
The diffusion arising from the nonzero variance of the transition probability p(zn|zn−1) gives the distribution
p(zn|x1, . . . ,xn−1), shown in red in the centre plot. Note that this is broader and shifted relative to the blue curve
(which is shown dashed in the centre plot for comparison). The next data observation xn contributes through the
emission density p(xn|zn), which is shown as a function of zn in green on the right-hand plot. Note that this is not
a density with respect to zn and so is not normalized to one. Inclusion of this new data point leads to a revised
distribution p(zn|x1, . . . ,xn) for the state density shown in blue. We see that observation of the data has shifted
and narrowed the distribution compared to p(zn|x1, . . . ,xn−1) (which is shown in dashed in the right-hand plot
for comparison).

If we consider a situation in which the measurement noise is small compared
to the rate at which the latent variable is evolving, then we find that the posterior
distribution for zn depends only on the current measurement xn, in accordance withExercise 13.27
the intuition from our simple example at the start of the section. Similarly, if the
latent variable is evolving slowly relative to the observation noise level, we find that
the posterior mean for zn is obtained by averaging all of the measurements obtained
up to that time.Exercise 13.28

One of the most important applications of the Kalman filter is to tracking, and
this is illustrated using a simple example of an object moving in two dimensions in
Figure 13.22.

So far, we have solved the inference problem of finding the posterior marginal
for a node zn given observations from x1 up to xn. Next we turn to the problem of
finding the marginal for a node zn given all observations x1 to xN . For temporal
data, this corresponds to the inclusion of future as well as past observations. Al-
though this cannot be used for real-time prediction, it plays a key role in learning the
parameters of the model. By analogy with the hidden Markov model, this problem
can be solved by propagating messages from node xN back to node x1 and com-
bining this information with that obtained during the forward message passing stage
used to compute the α̂(zn).

In the LDS literature, it is usual to formulate this backward recursion in terms
of γ(zn) = α̂(zn)β̂(zn) rather than in terms of β̂(zn). Because γ(zn) must also be
Gaussian, we write it in the form

γ(zn) = α̂(zn)β̂(zn) = N (zn|µ̂n, V̂n). (13.98)

To derive the required recursion, we start from the backward recursion (13.62) for
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Figure 13.22 An illustration of a linear dy-
namical system being used to
track a moving object. The blue
points indicate the true positions
of the object in a two-dimensional
space at successive time steps,
the green points denote noisy
measurements of the positions,
and the red crosses indicate the
means of the inferred posterior
distributions of the positions ob-
tained by running the Kalman fil-
tering equations. The covari-
ances of the inferred positions
are indicated by the red ellipses,
which correspond to contours
having one standard deviation.

β̂(zn), which, for continuous latent variables, can be written in the form

cn+1β̂(zn) =
∫

β̂(zn+1)p(xn+1|zn+1)p(zn+1|zn) dzn+1. (13.99)

We now multiply both sides of (13.99) by α̂(zn) and substitute for p(xn+1|zn+1)
and p(zn+1|zn) using (13.75) and (13.76). Then we make use of (13.89), (13.90)
and (13.91), together with (13.98), and after some manipulation we obtainExercise 13.29

µ̂n = µn + Jn

(
µ̂n+1 − AµN

)
(13.100)

V̂n = Vn + Jn

(
V̂n+1 − Pn

)
JT

n (13.101)

where we have defined
Jn = VnAT (Pn)−1 (13.102)

and we have made use of AVn = PnJT
n . Note that these recursions require that the

forward pass be completed first so that the quantities µn and Vn will be available
for the backward pass.

For the EM algorithm, we also require the pairwise posterior marginals, which
can be obtained from (13.65) in the form

ξ(zn−1, zn) = (cn)−1
α̂(zn−1)p(xn|zn)p(zn|z−1)β̂(zn)

=
N (zn−1|µn−1,Vn−1)N (zn|Azn−1,Γ)N (xn|Czn,Σ)N (zn|µ̂n, V̂n)

cnα̂(zn)
.

(13.103)

Substituting for α̂(zn) using (13.84) and rearranging, we see that ξ(zn−1, zn) is a
Gaussian with mean given with components γ(zn−1) and γ(zn), and a covariance
between zn and zn−1 given byExercise 13.31

cov[zn, zn−1] = Jn−1V̂n. (13.104)
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13.3.2 Learning in LDS
So far, we have considered the inference problem for linear dynamical systems,

assuming that the model parameters θ = {A,Γ,C,Σ, µ0,V0} are known. Next, we
consider the determination of these parameters using maximum likelihood (Ghahra-
mani and Hinton, 1996b). Because the model has latent variables, this can be ad-
dressed using the EM algorithm, which was discussed in general terms in Chapter 9.

We can derive the EM algorithm for the linear dynamical system as follows. Let
us denote the estimated parameter values at some particular cycle of the algorithm
by θold. For these parameter values, we can run the inference algorithm to determine
the posterior distribution of the latent variables p(Z|X, θold), or more precisely those
local posterior marginals that are required in the M step. In particular, we shall
require the following expectations

E [zn] = µ̂n (13.105)

E
[
znzT

n−1

]
= Jn−1V̂n + µ̂nµ̂

T
n−1 (13.106)

E
[
znzT

n

]
= V̂n + µ̂nµ̂

T
n (13.107)

where we have used (13.104).
Now we consider the complete-data log likelihood function, which is obtained

by taking the logarithm of (13.6) and is therefore given by

ln p(X,Z|θ) = ln p(z1|µ0,V0) +
N∑

n=2

ln p(zn|zn−1,A,Γ)

+
N∑

n=1

ln p(xn|zn,C,Σ) (13.108)

in which we have made the dependence on the parameters explicit. We now take the
expectation of the complete-data log likelihood with respect to the posterior distri-
bution p(Z|X, θold) which defines the function

Q(θ, θold) = EZ|θold [ln p(X,Z|θ)] . (13.109)

In the M step, this function is maximized with respect to the components of θ.
Consider first the parameters µ0 and V0. If we substitute for p(z1|µ0,V0) in

(13.108) using (13.77), and then take the expectation with respect to Z, we obtain

Q(θ, θold) = −1
2

ln |V0| − EZ|θold

[
1
2
(z1 − µ0)

TV−1
0 (z1 − µ0)

]
+ const

where all terms not dependent on µ0 or V0 have been absorbed into the additive
constant. Maximization with respect to µ0 and V0 is easily performed by making
use of the maximum likelihood solution for a Gaussian distribution discussed in
Section 2.3.4, givingExercise 13.32
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µnew
0 = E[z1] (13.110)

Vnew
0 = E[z1zT

1 ] − E[z1]E[zT
1 ]. (13.111)

Similarly, to optimize A and Γ, we substitute for p(zn|zn−1,A,Γ) in (13.108)
using (13.75) giving

Q(θ, θold) = −N − 1
2

ln |Γ|

−EZ|θold

[
1
2

N∑
n=2

(zn − Azn−1)TΓ−1(zn − Azn−1)

]
+ const (13.112)

in which the constant comprises terms that are independent of A and Γ. Maximizing
with respect to these parameters then givesExercise 13.33

Anew =

(
N∑

n=2

E
[
znzT

n−1

])(
N∑

n=2

E
[
zn−1zT

n−1

])−1

(13.113)

Γnew =
1

N − 1

N∑
n=2

{
E
[
znzT

n

]− Anew
E
[
zn−1zT

n

]
−E

[
znzT

n−1

]
Anew + Anew

E
[
zn−1zT

n−1

]
(Anew)T

}
. (13.114)

Note that Anew must be evaluated first, and the result can then be used to determine
Γnew.

Finally, in order to determine the new values of C and Σ, we substitute for
p(xn|zn,C,Σ) in (13.108) using (13.76) giving

Q(θ, θold) = −N

2
ln |Σ|

−EZ|θold

[
1
2

N∑
n=1

(xn − Czn)TΣ−1(xn − Czn)

]
+ const.

Maximizing with respect to C and Σ then givesExercise 13.34

Cnew =

(
N∑

n=1

xnE
[
zT

n

])(
N∑

n=1

E
[
znzT

n

])−1

(13.115)

Σnew =
1
N

N∑
n=1

{
xnxT

n − Cnew
E [zn]xT

n

−xnE
[
zT

n

]
Cnew + Cnew

E
[
znzT

n

]
Cnew

}
. (13.116)
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We have approached parameter learning in the linear dynamical system using
maximum likelihood. Inclusion of priors to give a MAP estimate is straightforward,
and a fully Bayesian treatment can be found by applying the analytical approxima-
tion techniques discussed in Chapter 10, though a detailed treatment is precluded
here due to lack of space.

13.3.3 Extensions of LDS
As with the hidden Markov model, there is considerable interest in extending

the basic linear dynamical system in order to increase its capabilities. Although the
assumption of a linear-Gaussian model leads to efficient algorithms for inference
and learning, it also implies that the marginal distribution of the observed variables
is simply a Gaussian, which represents a significant limitation. One simple extension
of the linear dynamical system is to use a Gaussian mixture as the initial distribution
for z1. If this mixture has K components, then the forward recursion equations
(13.85) will lead to a mixture of K Gaussians over each hidden variable zn, and so
the model is again tractable.

For many applications, the Gaussian emission density is a poor approximation.
If instead we try to use a mixture of K Gaussians as the emission density, then the
posterior α̂(z1) will also be a mixture of K Gaussians. However, from (13.85) the
posterior α̂(z2) will comprise a mixture of K2 Gaussians, and so on, with α̂(zn)
being given by a mixture of Kn Gaussians. Thus the number of components grows
exponentially with the length of the chain, and so this model is impractical.

More generally, introducing transition or emission models that depart from the
linear-Gaussian (or other exponential family) model leads to an intractable infer-
ence problem. We can make deterministic approximations such as assumed den-
sity filtering or expectation propagation, or we can make use of sampling methods,Chapter 10
as discussed in Section 13.3.4. One widely used approach is to make a Gaussian
approximation by linearizing around the mean of the predicted distribution, which
gives rise to the extended Kalman filter (Zarchan and Musoff, 2005).

As with hidden Markov models, we can develop interesting extensions of the ba-
sic linear dynamical system by expanding its graphical representation. For example,
the switching state space model (Ghahramani and Hinton, 1998) can be viewed as
a combination of the hidden Markov model with a set of linear dynamical systems.
The model has multiple Markov chains of continuous linear-Gaussian latent vari-
ables, each of which is analogous to the latent chain of the linear dynamical system
discussed earlier, together with a Markov chain of discrete variables of the form used
in a hidden Markov model. The output at each time step is determined by stochas-
tically choosing one of the continuous latent chains, using the state of the discrete
latent variable as a switch, and then emitting an observation from the corresponding
conditional output distribution. Exact inference in this model is intractable, but vari-
ational methods lead to an efficient inference scheme involving forward-backward
recursions along each of the continuous and discrete Markov chains independently.
Note that, if we consider multiple chains of discrete latent variables, and use one as
the switch to select from the remainder, we obtain an analogous model having only
discrete latent variables known as the switching hidden Markov model.
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13.3.4 Particle filters
For dynamical systems which do not have a linear-Gaussian, for example, if

they use a non-Gaussian emission density, we can turn to sampling methods in orderChapter 11
to find a tractable inference algorithm. In particular, we can apply the sampling-
importance-resampling formalism of Section 11.1.5 to obtain a sequential Monte
Carlo algorithm known as the particle filter.

Consider the class of distributions represented by the graphical model in Fig-
ure 13.5, and suppose we are given the observed values Xn = (x1, . . . ,xn) and
we wish to draw L samples from the posterior distribution p(zn|Xn). Using Bayes’
theorem, we have

E[f(zn)] =
∫

f(zn)p(zn|Xn) dzn

=
∫

f(zn)p(zn|xn,Xn−1) dzn

=

∫
f(zn)p(xn|zn)p(zn|Xn−1) dzn∫

p(xn|zn)p(zn|Xn−1) dzn

�
L∑

l=1

w(l)
n f(z(l)

n ) (13.117)

where {z(l)
n } is a set of samples drawn from p(zn|Xn−1) and we have made use of

the conditional independence property p(xn|zn,Xn−1) = p(xn|zn), which follows
from the graph in Figure 13.5. The sampling weights {w(l)

n } are defined by

w(l)
n =

p(xn|z(l)
n )∑L

m=1 p(xn|z(m)
n )

(13.118)

where the same samples are used in the numerator as in the denominator. Thus the
posterior distribution p(zn|xn) is represented by the set of samples {z(l)

n } together
with the corresponding weights {w(l)

n }. Note that these weights satisfy 0 � w
(l)
n 1

and
∑

l w
(l)
n = 1.

Because we wish to find a sequential sampling scheme, we shall suppose that
a set of samples and weights have been obtained at time step n, and that we have
subsequently observed the value of xn+1, and we wish to find the weights and sam-
ples at time step n + 1. We first sample from the distribution p(zn+1|Xn). This is
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straightforward since, again using Bayes’ theorem

p(zn+1|Xn) =
∫

p(zn+1|zn,Xn)p(zn|Xn) dzn

=
∫

p(zn+1|zn)p(zn|Xn) dzn

=
∫

p(zn+1|zn)p(zn|xn,Xn−1) dzn

=

∫
p(zn+1|zn)p(xn|zn)p(zn|Xn−1) dzn∫

p(xn|zn)p(zn|Xn−1) dzn

=
∑

l

w(l)
n p(zn+1|z(l)

n ) (13.119)

where we have made use of the conditional independence properties

p(zn+1|zn,Xn) = p(zn+1|zn) (13.120)

p(xn|zn,Xn−1) = p(xn|zn) (13.121)

which follow from the application of the d-separation criterion to the graph in Fig-
ure 13.5. The distribution given by (13.119) is a mixture distribution, and samples
can be drawn by choosing a component l with probability given by the mixing coef-
ficients w(l) and then drawing a sample from the corresponding component.

In summary, we can view each step of the particle filter algorithm as comprising
two stages. At time step n, we have a sample representation of the posterior dis-
tribution p(zn|Xn) expressed as samples {z(l)

n } with corresponding weights {w(l)
n }.

This can be viewed as a mixture representation of the form (13.119). To obtain the
corresponding representation for the next time step, we first draw L samples from
the mixture distribution (13.119), and then for each sample we use the new obser-
vation xn+1 to evaluate the corresponding weights w

(l)
n+1 ∝ p(xn+1|z(l)

n+1). This is
illustrated, for the case of a single variable z, in Figure 13.23.

The particle filtering, or sequential Monte Carlo, approach has appeared in the
literature under various names including the bootstrap filter (Gordon et al., 1993),
survival of the fittest (Kanazawa et al., 1995), and the condensation algorithm (Isard
and Blake, 1998).

Exercises
13.1 (�) www Use the technique of d-separation, discussed in Section 8.2, to verify

that the Markov model shown in Figure 13.3 having N nodes in total satisfies the
conditional independence properties (13.3) for n = 2, . . . , N . Similarly, show that
a model described by the graph in Figure 13.4 in which there are N nodes in total
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p(zn|Xn)

p(zn+1|Xn)

p(xn+1|zn+1)

p(zn+1|Xn+1) z

Figure 13.23 Schematic illustration of the operation of the particle filter for a one-dimensional latent
space. At time step n, the posterior p(zn|xn) is represented as a mixture distribution,
shown schematically as circles whose sizes are proportional to the weights w

(l)
n . A set of

L samples is then drawn from this distribution and the new weights w
(l)
n+1 evaluated using

p(xn+1|z(l)
n+1).

satisfies the conditional independence properties

p(xn|x1, . . . ,xn−1) = p(xn|xn−1,xn−2) (13.122)

for n = 3, . . . , N .

13.2 (� �) Consider the joint probability distribution (13.2) corresponding to the directed
graph of Figure 13.3. Using the sum and product rules of probability, verify that
this joint distribution satisfies the conditional independence property (13.3) for n =
2, . . . , N . Similarly, show that the second-order Markov model described by the
joint distribution (13.4) satisfies the conditional independence property

p(xn|x1, . . . ,xn−1) = p(xn|xn−1,xn−2) (13.123)

for n = 3, . . . , N .

13.3 (�) By using d-separation, show that the distribution p(x1, . . . ,xN ) of the observed
data for the state space model represented by the directed graph in Figure 13.5 does
not satisfy any conditional independence properties and hence does not exhibit the
Markov property at any finite order.

13.4 (� �) www Consider a hidden Markov model in which the emission densities are
represented by a parametric model p(x|z,w), such as a linear regression model or
a neural network, in which w is a vector of adaptive parameters. Describe how the
parameters w can be learned from data using maximum likelihood.
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13.5 (� �) Verify the M-step equations (13.18) and (13.19) for the initial state probabili-
ties and transition probability parameters of the hidden Markov model by maximiza-
tion of the expected complete-data log likelihood function (13.17), using appropriate
Lagrange multipliers to enforce the summation constraints on the components of π
and A.

13.6 (�) Show that if any elements of the parameters π or A for a hidden Markov
model are initially set to zero, then those elements will remain zero in all subsequent
updates of the EM algorithm.

13.7 (�) Consider a hidden Markov model with Gaussian emission densities. Show that
maximization of the function Q(θ, θold) with respect to the mean and covariance
parameters of the Gaussians gives rise to the M-step equations (13.20) and (13.21).

13.8 (� �) www For a hidden Markov model having discrete observations governed by
a multinomial distribution, show that the conditional distribution of the observations
given the hidden variables is given by (13.22) and the corresponding M step equa-
tions are given by (13.23). Write down the analogous equations for the conditional
distribution and the M step equations for the case of a hidden Markov with multiple
binary output variables each of which is governed by a Bernoulli conditional dis-
tribution. Hint: refer to Sections 2.1 and 2.2 for a discussion of the corresponding
maximum likelihood solutions for i.i.d. data if required.

13.9 (� �) www Use the d-separation criterion to verify that the conditional indepen-
dence properties (13.24)–(13.31) are satisfied by the joint distribution for the hidden
Markov model defined by (13.6).

13.10 (� � �) By applying the sum and product rules of probability, verify that the condi-
tional independence properties (13.24)–(13.31) are satisfied by the joint distribution
for the hidden Markov model defined by (13.6).

13.11 (� �) Starting from the expression (8.72) for the marginal distribution over the vari-
ables of a factor in a factor graph, together with the results for the messages in the
sum-product algorithm obtained in Section 13.2.3, derive the result (13.43) for the
joint posterior distribution over two successive latent variables in a hidden Markov
model.

13.12 (� �) Suppose we wish to train a hidden Markov model by maximum likelihood
using data that comprises R independent sequences of observations, which we de-
note by X(r) where r = 1, . . . , R. Show that in the E step of the EM algorithm,
we simply evaluate posterior probabilities for the latent variables by running the α
and β recursions independently for each of the sequences. Also show that in the
M step, the initial probability and transition probability parameters are re-estimated
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using modified forms of (13.18 ) and (13.19) given by

πk =

R∑
r=1

γ(z(r)
1k )

R∑
r=1

K∑
j=1

γ(z(r)
1j )

(13.124)

Ajk =

R∑
r=1

N∑
n=2

ξ(z(r)
n−1,j , z

(r)
n,k)

R∑
r=1

K∑
l=1

N∑
n=2

ξ(z(r)
n−1,j , z

(r)
n,l)

(13.125)

where, for notational convenience, we have assumed that the sequences are of the
same length (the generalization to sequences of different lengths is straightforward).
Similarly, show that the M-step equation for re-estimation of the means of Gaussian
emission models is given by

µk =

R∑
r=1

N∑
n=1

γ(z(r)
nk )x(r)

n

R∑
r=1

N∑
n=1

γ(z(r)
nk )

. (13.126)

Note that the M-step equations for other emission model parameters and distributions
take an analogous form.

13.13 (� �) www Use the definition (8.64) of the messages passed from a factor node
to a variable node in a factor graph, together with the expression (13.6) for the joint
distribution in a hidden Markov model, to show that the definition (13.50) of the
alpha message is the same as the definition (13.34).

13.14 (� �) Use the definition (8.67) of the messages passed from a factor node to a
variable node in a factor graph, together with the expression (13.6) for the joint
distribution in a hidden Markov model, to show that the definition (13.52) of the
beta message is the same as the definition (13.35).

13.15 (� �) Use the expressions (13.33) and (13.43) for the marginals in a hidden Markov
model to derive the corresponding results (13.64) and (13.65) expressed in terms of
re-scaled variables.

13.16 (� � �) In this exercise, we derive the forward message passing equation for the
Viterbi algorithm directly from the expression (13.6) for the joint distribution. This
involves maximizing over all of the hidden variables z1, . . . , zN . By taking the log-
arithm and then exchanging maximizations and summations, derive the recursion



650 13. SEQUENTIAL DATA

(13.68) where the quantities ω(zn) are defined by (13.70). Show that the initial
condition for this recursion is given by (13.69).

13.17 (�) www Show that the directed graph for the input-output hidden Markov model,
given in Figure 13.18, can be expressed as a tree-structured factor graph of the form
shown in Figure 13.15 and write down expressions for the initial factor h(z1) and
for the general factor fn(zn−1, zn) where 2 � n � N .

13.18 (� � �) Using the result of Exercise 13.17, derive the recursion equations, includ-
ing the initial conditions, for the forward-backward algorithm for the input-output
hidden Markov model shown in Figure 13.18.

13.19 (�) www The Kalman filter and smoother equations allow the posterior distribu-
tions over individual latent variables, conditioned on all of the observed variables,
to be found efficiently for linear dynamical systems. Show that the sequence of
latent variable values obtained by maximizing each of these posterior distributions
individually is the same as the most probable sequence of latent values. To do this,
simply note that the joint distribution of all latent and observed variables in a linear
dynamical system is Gaussian, and hence all conditionals and marginals will also be
Gaussian, and then make use of the result (2.98).

13.20 (� �) www Use the result (2.115) to prove (13.87).

13.21 (� �) Use the results (2.115) and (2.116), together with the matrix identities (C.5)
and (C.7), to derive the results (13.89), (13.90), and (13.91), where the Kalman gain
matrix Kn is defined by (13.92).

13.22 (� �) www Using (13.93), together with the definitions (13.76) and (13.77) and
the result (2.115), derive (13.96).

13.23 (� �) Using (13.93), together with the definitions (13.76) and (13.77) and the result
(2.116), derive (13.94), (13.95) and (13.97).

13.24 (� �) www Consider a generalization of (13.75) and (13.76) in which we include
constant terms a and c in the Gaussian means, so that

p(zn|zn−1) = N (zn|Azn−1 + a,Γ) (13.127)

p(xn|zn) = N (xn|Czn + c,Σ). (13.128)

Show that this extension can be re-case in the framework discussed in this chapter by
defining a state vector z with an additional component fixed at unity, and then aug-
menting the matrices A and C using extra columns corresponding to the parameters
a and c.

13.25 (� �) In this exercise, we show that when the Kalman filter equations are applied
to independent observations, they reduce to the results given in Section 2.3 for the
maximum likelihood solution for a single Gaussian distribution. Consider the prob-
lem of finding the mean µ of a single Gaussian random variable x, in which we are
given a set of independent observations {x1, . . . , xN}. To model this we can use
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a linear dynamical system governed by (13.75) and (13.76), with latent variables
{z1, . . . , zN} in which C becomes the identity matrix and where the transition prob-
ability A = 0 because the observations are independent. Let the parameters m0

and V0 of the initial state be denoted by µ0 and σ2
0 , respectively, and suppose that

Σ becomes σ2. Write down the corresponding Kalman filter equations starting from
the general results (13.89) and (13.90), together with (13.94) and (13.95). Show that
these are equivalent to the results (2.141) and (2.142) obtained directly by consider-
ing independent data.

13.26 (� � �) Consider a special case of the linear dynamical system of Section 13.3 that is
equivalent to probabilistic PCA, so that the transition matrix A = 0, the covariance
Γ = I, and the noise covariance Σ = σ2I. By making use of the matrix inversion
identity (C.7) show that, if the emission density matrix C is denoted W, then the
posterior distribution over the hidden states defined by (13.89) and (13.90) reduces
to the result (12.42) for probabilistic PCA.

13.27 (�) www Consider a linear dynamical system of the form discussed in Sec-
tion 13.3 in which the amplitude of the observation noise goes to zero, so that Σ = 0.
Show that the posterior distribution for zn has mean xn and zero variance. This
accords with our intuition that if there is no noise, we should just use the current
observation xn to estimate the state variable zn and ignore all previous observations.

13.28 (� � �) Consider a special case of the linear dynamical system of Section 13.3 in
which the state variable zn is constrained to be equal to the previous state variable,
which corresponds to A = I and Γ = 0. For simplicity, assume also that V0 → ∞
so that the initial conditions for z are unimportant, and the predictions are determined
purely by the data. Use proof by induction to show that the posterior mean for state
zn is determined by the average of x1, . . . ,xn. This corresponds to the intuitive
result that if the state variable is constant, our best estimate is obtained by averaging
the observations.

13.29 (� � �) Starting from the backwards recursion equation (13.99), derive the RTS
smoothing equations (13.100) and (13.101) for the Gaussian linear dynamical sys-
tem.

13.30 (� �) Starting from the result (13.65) for the pairwise posterior marginal in a state
space model, derive the specific form (13.103) for the case of the Gaussian linear
dynamical system.

13.31 (� �) Starting from the result (13.103) and by substituting for α̂(zn) using (13.84),
verify the result (13.104) for the covariance between zn and zn−1.

13.32 (� �) www Verify the results (13.110) and (13.111) for the M-step equations for
µ0 and V0 in the linear dynamical system.

13.33 (� �) Verify the results (13.113) and (13.114) for the M-step equations for A and Γ
in the linear dynamical system.
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13.34 (� �) Verify the results (13.115) and (13.116) for the M-step equations for C and Σ
in the linear dynamical system.



14
Combining

Models

In earlier chapters, we have explored a range of different models for solving classifi-
cation and regression problems. It is often found that improved performance can be
obtained by combining multiple models together in some way, instead of just using
a single model in isolation. For instance, we might train L different models and then
make predictions using the average of the predictions made by each model. Such
combinations of models are sometimes called committees. In Section 14.2, we dis-
cuss ways to apply the committee concept in practice, and we also give some insight
into why it can sometimes be an effective procedure.

One important variant of the committee method, known as boosting, involves
training multiple models in sequence in which the error function used to train a par-
ticular model depends on the performance of the previous models. This can produce
substantial improvements in performance compared to the use of a single model and
is discussed in Section 14.3.

Instead of averaging the predictions of a set of models, an alternative form of

653
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model combination is to select one of the models to make the prediction, in which
the choice of model is a function of the input variables. Thus different models be-
come responsible for making predictions in different regions of input space. One
widely used framework of this kind is known as a decision tree in which the selec-
tion process can be described as a sequence of binary selections corresponding to
the traversal of a tree structure and is discussed in Section 14.4. In this case, the
individual models are generally chosen to be very simple, and the overall flexibility
of the model arises from the input-dependent selection process. Decision trees can
be applied to both classification and regression problems.

One limitation of decision trees is that the division of input space is based on
hard splits in which only one model is responsible for making predictions for any
given value of the input variables. The decision process can be softened by moving
to a probabilistic framework for combining models, as discussed in Section 14.5. For
example, if we have a set of K models for a conditional distribution p(t|x, k) where
x is the input variable, t is the target variable, and k = 1, . . . , K indexes the model,
then we can form a probabilistic mixture of the form

p(t|x) =
K∑

k=1

πk(x)p(t|x, k) (14.1)

in which πk(x) = p(k|x) represent the input-dependent mixing coefficients. Such
models can be viewed as mixture distributions in which the component densities, as
well as the mixing coefficients, are conditioned on the input variables and are known
as mixtures of experts. They are closely related to the mixture density network model
discussed in Section 5.6.

14.1. Bayesian Model Averaging

It is important to distinguish between model combination methods and Bayesian
model averaging, as the two are often confused. To understand the difference, con-
sider the example of density estimation using a mixture of Gaussians in which severalSection 9.2
Gaussian components are combined probabilistically. The model contains a binary
latent variable z that indicates which component of the mixture is responsible for
generating the corresponding data point. Thus the model is specified in terms of a
joint distribution

p(x, z) (14.2)

and the corresponding density over the observed variable x is obtained by marginal-
izing over the latent variable

p(x) =
∑
z

p(x, z). (14.3)
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In the case of our Gaussian mixture example, this leads to a distribution of the form

p(x) =
K∑

k=1

πkN (x|µk,Σk) (14.4)

with the usual interpretation of the symbols. This is an example of model combi-
nation. For independent, identically distributed data, we can use (14.3) to write the
marginal probability of a data set X = {x1, . . . ,xN} in the form

p(X) =
N∏

n=1

p(xn) =
N∏

n=1

[∑
zn

p(xn, zn)

]
. (14.5)

Thus we see that each observed data point xn has a corresponding latent variable zn.
Now suppose we have several different models indexed by h = 1, . . . , H with

prior probabilities p(h). For instance one model might be a mixture of Gaussians and
another model might be a mixture of Cauchy distributions. The marginal distribution
over the data set is given by

p(X) =
H∑

h=1

p(X|h)p(h). (14.6)

This is an example of Bayesian model averaging. The interpretation of this summa-
tion over h is that just one model is responsible for generating the whole data set,
and the probability distribution over h simply reflects our uncertainty as to which
model that is. As the size of the data set increases, this uncertainty reduces, and
the posterior probabilities p(h|X) become increasingly focussed on just one of the
models.

This highlights the key difference between Bayesian model averaging and model
combination, because in Bayesian model averaging the whole data set is generated
by a single model. By contrast, when we combine multiple models, as in (14.5), we
see that different data points within the data set can potentially be generated from
different values of the latent variable z and hence by different components.

Although we have considered the marginal probability p(X), the same consid-
erations apply for the predictive density p(x|X) or for conditional distributions such
as p(t|x,X,T).Exercise 14.1

14.2. Committees

The simplest way to construct a committee is to average the predictions of a set of
individual models. Such a procedure can be motivated from a frequentist perspective
by considering the trade-off between bias and variance, which decomposes the er-Section 3.2
ror due to a model into the bias component that arises from differences between the
model and the true function to be predicted, and the variance component that repre-
sents the sensitivity of the model to the individual data points. Recall from Figure 3.5
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that when we trained multiple polynomials using the sinusoidal data, and then aver-
aged the resulting functions, the contribution arising from the variance term tended to
cancel, leading to improved predictions. When we averaged a set of low-bias mod-
els (corresponding to higher order polynomials), we obtained accurate predictions
for the underlying sinusoidal function from which the data were generated.

In practice, of course, we have only a single data set, and so we have to find
a way to introduce variability between the different models within the committee.
One approach is to use bootstrap data sets, discussed in Section 1.2.3. Consider a
regression problem in which we are trying to predict the value of a single continuous
variable, and suppose we generate M bootstrap data sets and then use each to train
a separate copy ym(x) of a predictive model where m = 1, . . . , M . The committee
prediction is given by

yCOM(x) =
1
M

M∑
m=1

ym(x). (14.7)

This procedure is known as bootstrap aggregation or bagging (Breiman, 1996).
Suppose the true regression function that we are trying to predict is given by

h(x), so that the output of each of the models can be written as the true value plus
an error in the form

ym(x) = h(x) + εm(x). (14.8)

The average sum-of-squares error then takes the form

Ex

[{ym(x) − h(x)}2] = Ex

[
εm(x)2

]
(14.9)

where Ex[·] denotes a frequentist expectation with respect to the distribution of the
input vector x. The average error made by the models acting individually is therefore

EAV =
1
M

M∑
m=1

Ex

[
εm(x)2

]
. (14.10)

Similarly, the expected error from the committee (14.7) is given by

ECOM = Ex

⎡⎣{ 1
M

M∑
m=1

ym(x) − h(x)

}2
⎤⎦

= Ex

⎡⎣{ 1
M

M∑
m=1

εm(x)

}2
⎤⎦ (14.11)

If we assume that the errors have zero mean and are uncorrelated, so that

Ex [εm(x)] = 0 (14.12)

Ex [εm(x)εl(x)] = 0, m 	= l (14.13)
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then we obtainExercise 14.2

ECOM =
1
M

EAV. (14.14)

This apparently dramatic result suggests that the average error of a model can be
reduced by a factor of M simply by averaging M versions of the model. Unfortu-
nately, it depends on the key assumption that the errors due to the individual models
are uncorrelated. In practice, the errors are typically highly correlated, and the reduc-
tion in overall error is generally small. It can, however, be shown that the expected
committee error will not exceed the expected error of the constituent models, so that
ECOM � EAV. In order to achieve more significant improvements, we turn to a moreExercise 14.3
sophisticated technique for building committees, known as boosting.

14.3. Boosting

Boosting is a powerful technique for combining multiple ‘base’ classifiers to produce
a form of committee whose performance can be significantly better than that of any
of the base classifiers. Here we describe the most widely used form of boosting
algorithm called AdaBoost, short for ‘adaptive boosting’, developed by Freund and
Schapire (1996). Boosting can give good results even if the base classifiers have a
performance that is only slightly better than random, and hence sometimes the base
classifiers are known as weak learners. Originally designed for solving classification
problems, boosting can also be extended to regression (Friedman, 2001).

The principal difference between boosting and the committee methods such as
bagging discussed above, is that the base classifiers are trained in sequence, and
each base classifier is trained using a weighted form of the data set in which the
weighting coefficient associated with each data point depends on the performance
of the previous classifiers. In particular, points that are misclassified by one of the
base classifiers are given greater weight when used to train the next classifier in
the sequence. Once all the classifiers have been trained, their predictions are then
combined through a weighted majority voting scheme, as illustrated schematically
in Figure 14.1.

Consider a two-class classification problem, in which the training data comprises
input vectors x1, . . . ,xN along with corresponding binary target variables t1, . . . , tN
where tn ∈ {−1, 1}. Each data point is given an associated weighting parameter
wn, which is initially set 1/N for all data points. We shall suppose that we have
a procedure available for training a base classifier using weighted data to give a
function y(x) ∈ {−1, 1}. At each stage of the algorithm, AdaBoost trains a new
classifier using a data set in which the weighting coefficients are adjusted according
to the performance of the previously trained classifier so as to give greater weight
to the misclassified data points. Finally, when the desired number of base classifiers
have been trained, they are combined to form a committee using coefficients that
give different weight to different base classifiers. The precise form of the AdaBoost
algorithm is given below.
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Figure 14.1 Schematic illustration of the
boosting framework. Each
base classifier ym(x) is trained
on a weighted form of the train-
ing set (blue arrows) in which
the weights w

(m)
n depend on

the performance of the pre-
vious base classifier ym−1(x)
(green arrows). Once all base
classifiers have been trained,
they are combined to give
the final classifier YM (x) (red
arrows).

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑
m

αmym(x)

)

AdaBoost

1. Initialize the data weighting coefficients {wn} by setting w
(1)
n = 1/N for

n = 1, . . . , N .

2. For m = 1, . . . , M :

(a) Fit a classifier ym(x) to the training data by minimizing the weighted
error function

Jm =
N∑

n=1

w(m)
n I(ym(xn) 	= tn) (14.15)

where I(ym(xn) 	= tn) is the indicator function and equals 1 when
ym(xn) 	= tn and 0 otherwise.

(b) Evaluate the quantities

εm =

N∑
n=1

w(m)
n I(ym(xn) 	= tn)

N∑
n=1

w(m)
n

(14.16)

and then use these to evaluate

αm = ln
{

1 − εm

εm

}
. (14.17)

(c) Update the data weighting coefficients

w(m+1)
n = w(m)

n exp {αmI(ym(xn) 	= tn)} (14.18)
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3. Make predictions using the final model, which is given by

YM (x) = sign

(
M∑

m=1

αmym(x)

)
. (14.19)

We see that the first base classifier y1(x) is trained using weighting coeffi-
cients w

(1)
n that are all equal, which therefore corresponds to the usual procedure

for training a single classifier. From (14.18), we see that in subsequent iterations
the weighting coefficients w

(m)
n are increased for data points that are misclassified

and decreased for data points that are correctly classified. Successive classifiers are
therefore forced to place greater emphasis on points that have been misclassified by
previous classifiers, and data points that continue to be misclassified by successive
classifiers receive ever greater weight. The quantities εm represent weighted mea-
sures of the error rates of each of the base classifiers on the data set. We therefore
see that the weighting coefficients αm defined by (14.17) give greater weight to the
more accurate classifiers when computing the overall output given by (14.19).

The AdaBoost algorithm is illustrated in Figure 14.2, using a subset of 30 data
points taken from the toy classification data set shown in Figure A.7. Here each base
learners consists of a threshold on one of the input variables. This simple classifier
corresponds to a form of decision tree known as a ‘decision stumps’, i.e., a deci-Section 14.4
sion tree with a single node. Thus each base learner classifies an input according to
whether one of the input features exceeds some threshold and therefore simply parti-
tions the space into two regions separated by a linear decision surface that is parallel
to one of the axes.

14.3.1 Minimizing exponential error
Boosting was originally motivated using statistical learning theory, leading to

upper bounds on the generalization error. However, these bounds turn out to be too
loose to have practical value, and the actual performance of boosting is much better
than the bounds alone would suggest. Friedman et al. (2000) gave a different and
very simple interpretation of boosting in terms of the sequential minimization of an
exponential error function.

Consider the exponential error function defined by

E =
N∑

n=1

exp {−tnfm(xn)} (14.20)

where fm(x) is a classifier defined in terms of a linear combination of base classifiers
yl(x) of the form

fm(x) =
1
2

m∑
l=1

αlyl(x) (14.21)

and tn ∈ {−1, 1} are the training set target values. Our goal is to minimize E with
respect to both the weighting coefficients αl and the parameters of the base classifiers
yl(x).



660 14. COMBINING MODELS

m = 1

−1 0 1 2

−2

0

2 m = 2

−1 0 1 2

−2

0

2 m = 3

−1 0 1 2

−2

0

2

m = 6

−1 0 1 2

−2

0

2 m = 10

−1 0 1 2

−2

0

2 m = 150

−1 0 1 2

−2

0

2

Figure 14.2 Illustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

Instead of doing a global error function minimization, however, we shall sup-
pose that the base classifiers y1(x), . . . , ym−1(x) are fixed, as are their coefficients
α1, . . . , αm−1, and so we are minimizing only with respect to αm and ym(x). Sep-
arating off the contribution from base classifier ym(x), we can then write the error
function in the form

E =
N∑

n=1

exp
{
−tnfm−1(xn) − 1

2
tnαmym(xn)

}

=
N∑

n=1

w(m)
n exp

{
−1

2
tnαmym(xn)

}
(14.22)

where the coefficients w
(m)
n = exp{−tnfm−1(xn)} can be viewed as constants

because we are optimizing only αm and ym(x). If we denote by Tm the set of
data points that are correctly classified by ym(x), and if we denote the remaining
misclassified points by Mm, then we can in turn rewrite the error function in the
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form

E = e−αm/2
∑

n∈Tm

w(m)
n + eαm/2

∑
n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
N∑

n=1

w(m)
n I(ym(xn) 	= tn) + e−αm/2

N∑
n=1

w(m)
n .

(14.23)

When we minimize this with respect to ym(x), we see that the second term is con-
stant, and so this is equivalent to minimizing (14.15) because the overall multiplica-
tive factor in front of the summation does not affect the location of the minimum.
Similarly, minimizing with respect to αm, we obtain (14.17) in which εm is defined
by (14.16).Exercise 14.6

From (14.22) we see that, having found αm and ym(x), the weights on the data
points are updated using

w(m+1)
n = w(m)

n exp
{
−1

2
tnαmym(xn)

}
. (14.24)

Making use of the fact that

tnym(xn) = 1 − 2I(ym(xn) 	= tn) (14.25)

we see that the weights w
(m)
n are updated at the next iteration using

w(m+1)
n = w(m)

n exp(−αm/2) exp {αmI(ym(xn) 	= tn)} . (14.26)

Because the term exp(−αm/2) is independent of n, we see that it weights all data
points by the same factor and so can be discarded. Thus we obtain (14.18).

Finally, once all the base classifiers are trained, new data points are classified by
evaluating the sign of the combined function defined according to (14.21). Because
the factor of 1/2 does not affect the sign it can be omitted, giving (14.19).

14.3.2 Error functions for boosting
The exponential error function that is minimized by the AdaBoost algorithm

differs from those considered in previous chapters. To gain some insight into the
nature of the exponential error function, we first consider the expected error given
by

Ex,t [exp{−ty(x)}] =
∑

t

∫
exp{−ty(x)}p(t|x)p(x) dx. (14.27)

If we perform a variational minimization with respect to all possible functions y(x),
we obtainExercise 14.7

y(x) =
1
2

ln
{

p(t = 1|x)
p(t = −1|x)

}
(14.28)
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Figure 14.3 Plot of the exponential (green) and
rescaled cross-entropy (red) error
functions along with the hinge er-
ror (blue) used in support vector
machines, and the misclassification
error (black). Note that for large
negative values of z = ty(x), the
cross-entropy gives a linearly in-
creasing penalty, whereas the expo-
nential loss gives an exponentially in-
creasing penalty.

−2 −1 0 1 2
z

E(z)

which is half the log-odds. Thus the AdaBoost algorithm is seeking the best approx-
imation to the log odds ratio, within the space of functions represented by the linear
combination of base classifiers, subject to the constrained minimization resulting
from the sequential optimization strategy. This result motivates the use of the sign
function in (14.19) to arrive at the final classification decision.

We have already seen that the minimizer y(x) of the cross-entropy error (4.90)
for two-class classification is given by the posterior class probability. In the case
of a target variable t ∈ {−1, 1}, we have seen that the error function is given bySection 7.1.2
ln(1 + exp(−yt)). This is compared with the exponential error function in Fig-
ure 14.3, where we have divided the cross-entropy error by a constant factor ln(2)
so that it passes through the point (0, 1) for ease of comparison. We see that both
can be seen as continuous approximations to the ideal misclassification error func-
tion. An advantage of the exponential error is that its sequential minimization leads
to the simple AdaBoost scheme. One drawback, however, is that it penalizes large
negative values of ty(x) much more strongly than cross-entropy. In particular, we
see that for large negative values of ty, the cross-entropy grows linearly with |ty|,
whereas the exponential error function grows exponentially with |ty|. Thus the ex-
ponential error function will be much less robust to outliers or misclassified data
points. Another important difference between cross-entropy and the exponential er-
ror function is that the latter cannot be interpreted as the log likelihood function of
any well-defined probabilistic model. Furthermore, the exponential error does notExercise 14.8
generalize to classification problems having K > 2 classes, again in contrast to the
cross-entropy for a probabilistic model, which is easily generalized to give (4.108).Section 4.3.4

The interpretation of boosting as the sequential optimization of an additive model
under an exponential error (Friedman et al., 2000) opens the door to a wide range
of boosting-like algorithms, including multiclass extensions, by altering the choice
of error function. It also motivates the extension to regression problems (Friedman,
2001). If we consider a sum-of-squares error function for regression, then sequential
minimization of an additive model of the form (14.21) simply involves fitting each
new base classifier to the residual errors tn−fm−1(xn) from the previous model. AsExercise 14.9
we have noted, however, the sum-of-squares error is not robust to outliers, and this
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Figure 14.4 Comparison of the squared error
(green) with the absolute error (red)
showing how the latter places much
less emphasis on large errors and
hence is more robust to outliers and
mislabelled data points.

0 z

E(z)

−1 1

can be addressed by basing the boosting algorithm on the absolute deviation |y − t|
instead. These two error functions are compared in Figure 14.4.

14.4. Tree-based Models

There are various simple, but widely used, models that work by partitioning the
input space into cuboid regions, whose edges are aligned with the axes, and then
assigning a simple model (for example, a constant) to each region. They can be
viewed as a model combination method in which only one model is responsible
for making predictions at any given point in input space. The process of selecting
a specific model, given a new input x, can be described by a sequential decision
making process corresponding to the traversal of a binary tree (one that splits into
two branches at each node). Here we focus on a particular tree-based framework
called classification and regression trees, or CART (Breiman et al., 1984), although
there are many other variants going by such names as ID3 and C4.5 (Quinlan, 1986;
Quinlan, 1993).

Figure 14.5 shows an illustration of a recursive binary partitioning of the input
space, along with the corresponding tree structure. In this example, the first step

Figure 14.5 Illustration of a two-dimensional in-
put space that has been partitioned
into five regions using axis-aligned
boundaries.
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Figure 14.6 Binary tree corresponding to the par-
titioning of input space shown in Fig-
ure 14.5.

x1 > θ1

x2 > θ3

x1 � θ4

x2 � θ2

A B C D E

divides the whole of the input space into two regions according to whether x1 � θ1

or x1 > θ1 where θ1 is a parameter of the model. This creates two subregions, each
of which can then be subdivided independently. For instance, the region x1 � θ1

is further subdivided according to whether x2 � θ2 or x2 > θ2, giving rise to the
regions denoted A and B. The recursive subdivision can be described by the traversal
of the binary tree shown in Figure 14.6. For any new input x, we determine which
region it falls into by starting at the top of the tree at the root node and following
a path down to a specific leaf node according to the decision criteria at each node.
Note that such decision trees are not probabilistic graphical models.

Within each region, there is a separate model to predict the target variable. For
instance, in regression we might simply predict a constant over each region, or in
classification we might assign each region to a specific class. A key property of tree-
based models, which makes them popular in fields such as medical diagnosis, for
example, is that they are readily interpretable by humans because they correspond
to a sequence of binary decisions applied to the individual input variables. For in-
stance, to predict a patient’s disease, we might first ask “is their temperature greater
than some threshold?”. If the answer is yes, then we might next ask “is their blood
pressure less than some threshold?”. Each leaf of the tree is then associated with a
specific diagnosis.

In order to learn such a model from a training set, we have to determine the
structure of the tree, including which input variable is chosen at each node to form
the split criterion as well as the value of the threshold parameter θi for the split. We
also have to determine the values of the predictive variable within each region.

Consider first a regression problem in which the goal is to predict a single target
variable t from a D-dimensional vector x = (x1, . . . , xD)T of input variables. The
training data consists of input vectors {x1, . . . ,xN} along with the corresponding
continuous labels {t1, . . . , tN}. If the partitioning of the input space is given, and we
minimize the sum-of-squares error function, then the optimal value of the predictive
variable within any given region is just given by the average of the values of tn for
those data points that fall in that region.Exercise 14.10

Now consider how to determine the structure of the decision tree. Even for a
fixed number of nodes in the tree, the problem of determining the optimal structure
(including choice of input variable for each split as well as the corresponding thresh-
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olds) to minimize the sum-of-squares error is usually computationally infeasible due
to the combinatorially large number of possible solutions. Instead, a greedy opti-
mization is generally done by starting with a single root node, corresponding to the
whole input space, and then growing the tree by adding nodes one at a time. At each
step there will be some number of candidate regions in input space that can be split,
corresponding to the addition of a pair of leaf nodes to the existing tree. For each
of these, there is a choice of which of the D input variables to split, as well as the
value of the threshold. The joint optimization of the choice of region to split, and the
choice of input variable and threshold, can be done efficiently by exhaustive search
noting that, for a given choice of split variable and threshold, the optimal choice of
predictive variable is given by the local average of the data, as noted earlier. This
is repeated for all possible choices of variable to be split, and the one that gives the
smallest residual sum-of-squares error is retained.

Given a greedy strategy for growing the tree, there remains the issue of when
to stop adding nodes. A simple approach would be to stop when the reduction in
residual error falls below some threshold. However, it is found empirically that often
none of the available splits produces a significant reduction in error, and yet after
several more splits a substantial error reduction is found. For this reason, it is com-
mon practice to grow a large tree, using a stopping criterion based on the number
of data points associated with the leaf nodes, and then prune back the resulting tree.
The pruning is based on a criterion that balances residual error against a measure of
model complexity. If we denote the starting tree for pruning by T0, then we define
T ⊂ T0 to be a subtree of T0 if it can be obtained by pruning nodes from T0 (in
other words, by collapsing internal nodes by combining the corresponding regions).
Suppose the leaf nodes are indexed by τ = 1, . . . , |T |, with leaf node τ representing
a region Rτ of input space having Nτ data points, and |T | denoting the total number
of leaf nodes. The optimal prediction for region Rτ is then given by

yτ =
1

Nτ

∑
xn∈Rτ

tn (14.29)

and the corresponding contribution to the residual sum-of-squares is then

Qτ (T ) =
∑

xn∈Rτ

{tn − yτ}2
. (14.30)

The pruning criterion is then given by

C(T ) =
|T |∑
τ=1

Qτ (T ) + λ|T | (14.31)

The regularization parameter λ determines the trade-off between the overall residual
sum-of-squares error and the complexity of the model as measured by the number
|T | of leaf nodes, and its value is chosen by cross-validation.

For classification problems, the process of growing and pruning the tree is sim-
ilar, except that the sum-of-squares error is replaced by a more appropriate measure
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of performance. If we define pτk to be the proportion of data points in region Rτ

assigned to class k, where k = 1, . . . , K, then two commonly used choices are the
cross-entropy

Qτ (T ) =
K∑

k=1

pτk ln pτk (14.32)

and the Gini index

Qτ (T ) =
K∑

k=1

pτk (1 − pτk) . (14.33)

These both vanish for pτk = 0 and pτk = 1 and have a maximum at pτk = 0.5. They
encourage the formation of regions in which a high proportion of the data points are
assigned to one class. The cross entropy and the Gini index are better measures than
the misclassification rate for growing the tree because they are more sensitive to the
node probabilities. Also, unlike misclassification rate, they are differentiable andExercise 14.11
hence better suited to gradient based optimization methods. For subsequent pruning
of the tree, the misclassification rate is generally used.

The human interpretability of a tree model such as CART is often seen as its
major strength. However, in practice it is found that the particular tree structure that
is learned is very sensitive to the details of the data set, so that a small change to the
training data can result in a very different set of splits (Hastie et al., 2001).

There are other problems with tree-based methods of the kind considered in
this section. One is that the splits are aligned with the axes of the feature space,
which may be very suboptimal. For instance, to separate two classes whose optimal
decision boundary runs at 45 degrees to the axes would need a large number of
axis-parallel splits of the input space as compared to a single non-axis-aligned split.
Furthermore, the splits in a decision tree are hard, so that each region of input space
is associated with one, and only one, leaf node model. The last issue is particularly
problematic in regression where we are typically aiming to model smooth functions,
and yet the tree model produces piecewise-constant predictions with discontinuities
at the split boundaries.

14.5. Conditional Mixture Models

We have seen that standard decision trees are restricted by hard, axis-aligned splits of
the input space. These constraints can be relaxed, at the expense of interpretability,
by allowing soft, probabilistic splits that can be functions of all of the input variables,
not just one of them at a time. If we also give the leaf models a probabilistic inter-
pretation, we arrive at a fully probabilistic tree-based model called the hierarchical
mixture of experts, which we consider in Section 14.5.3.

An alternative way to motivate the hierarchical mixture of experts model is to
start with a standard probabilistic mixtures of unconditional density models such as
Gaussians and replace the component densities with conditional distributions. HereChapter 9
we consider mixtures of linear regression models (Section 14.5.1) and mixtures of
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logistic regression models (Section 14.5.2). In the simplest case, the mixing coeffi-
cients are independent of the input variables. If we make a further generalization to
allow the mixing coefficients also to depend on the inputs then we obtain a mixture
of experts model. Finally, if we allow each component in the mixture model to be
itself a mixture of experts model, then we obtain a hierarchical mixture of experts.

14.5.1 Mixtures of linear regression models
One of the many advantages of giving a probabilistic interpretation to the lin-

ear regression model is that it can then be used as a component in more complex
probabilistic models. This can be done, for instance, by viewing the conditional
distribution representing the linear regression model as a node in a directed prob-
abilistic graph. Here we consider a simple example corresponding to a mixture of
linear regression models, which represents a straightforward extension of the Gaus-
sian mixture model discussed in Section 9.2 to the case of conditional Gaussian
distributions.

We therefore consider K linear regression models, each governed by its own
weight parameter wk. In many applications, it will be appropriate to use a common
noise variance, governed by a precision parameter β, for all K components, and this
is the case we consider here. We will once again restrict attention to a single target
variable t, though the extension to multiple outputs is straightforward. If we denoteExercise 14.12
the mixing coefficients by πk, then the mixture distribution can be written

p(t|θ) =
K∑

k=1

πkN (t|wT
k φ, β−1) (14.34)

where θ denotes the set of all adaptive parameters in the model, namely W = {wk},
π = {πk}, and β. The log likelihood function for this model, given a data set of
observations {φn, tn}, then takes the form

ln p(t|θ) =
N∑

n=1

ln

(
K∑

k=1

πkN (tn|wT
k φn, β−1)

)
(14.35)

where t = (t1, . . . , tN )T denotes the vector of target variables.
In order to maximize this likelihood function, we can once again appeal to the

EM algorithm, which will turn out to be a simple extension of the EM algorithm for
unconditional Gaussian mixtures of Section 9.2. We can therefore build on our expe-
rience with the unconditional mixture and introduce a set Z = {zn} of binary latent
variables where znk ∈ {0, 1} in which, for each data point n, all of the elements
k = 1, . . . , K are zero except for a single value of 1 indicating which component
of the mixture was responsible for generating that data point. The joint distribution
over latent and observed variables can be represented by the graphical model shown
in Figure 14.7.

The complete-data log likelihood function then takes the formExercise 14.13

ln p(t,Z|θ) =
N∑

n=1

K∑
k=1

znk ln
{
πkN (tn|wT

k φn, β−1)
}

. (14.36)
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Figure 14.7 Probabilistic directed graph representing a mixture of
linear regression models, defined by (14.35).

zn

tn

φn

NW

β

π

The EM algorithm begins by first choosing an initial value θold for the model param-
eters. In the E step, these parameter values are then used to evaluate the posterior
probabilities, or responsibilities, of each component k for every data point n given
by

γnk = E[znk] = p(k|φn, θold) =
πkN (tn|wT

k φn, β−1)∑
j πjN (tn|wT

j φn, β−1)
. (14.37)

The responsibilities are then used to determine the expectation, with respect to the
posterior distribution p(Z|t, θold), of the complete-data log likelihood, which takes
the form

Q(θ, θold) = EZ [ln p(t,Z|θ)] =
N∑

n=1

K∑
k=1

γnk

{
ln πk + lnN (tn|wT

k φn, β−1)
}

.

In the M step, we maximize the function Q(θ, θold) with respect to θ, keeping the
γnk fixed. For the optimization with respect to the mixing coefficients πk we need
to take account of the constraint

∑
k πk = 1, which can be done with the aid of a

Lagrange multiplier, leading to an M-step re-estimation equation for πk in the formExercise 14.14

πk =
1
N

N∑
n=1

γnk. (14.38)

Note that this has exactly the same form as the corresponding result for a simple
mixture of unconditional Gaussians given by (9.22).

Next consider the maximization with respect to the parameter vector wk of the
kth linear regression model. Substituting for the Gaussian distribution, we see that
the function Q(θ, θold), as a function of the parameter vector wk, takes the form

Q(θ, θold) =
N∑

n=1

γnk

{
−β

2
(
tn − wT

k φn

)2
}

+ const (14.39)

where the constant term includes the contributions from other weight vectors wj for
j 	= k. Note that the quantity we are maximizing is similar to the (negative of the)
standard sum-of-squares error (3.12) for a single linear regression model, but with
the inclusion of the responsibilities γnk. This represents a weighted least squares
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problem, in which the term corresponding to the nth data point carries a weighting
coefficient given by βγnk, which could be interpreted as an effective precision for
each data point. We see that each component linear regression model in the mixture,
governed by its own parameter vector wk, is fitted separately to the whole data set in
the M step, but with each data point n weighted by the responsibility γnk that model
k takes for that data point. Setting the derivative of (14.39) with respect to wk equal
to zero gives

0 =
N∑

n=1

γnk

(
tn − wT

k φn

)
φn (14.40)

which we can write in matrix notation as

0 = ΦTRk(t − Φwk) (14.41)

where Rk = diag(γnk) is a diagonal matrix of size N × N . Solving for wk, we
obtain

wk =
(
ΦTRkΦ

)−1
ΦTRkt. (14.42)

This represents a set of modified normal equations corresponding to the weighted
least squares problem, of the same form as (4.99) found in the context of logistic
regression. Note that after each E step, the matrix Rk will change and so we will
have to solve the normal equations afresh in the subsequent M step.

Finally, we maximize Q(θ, θold) with respect to β. Keeping only terms that
depend on β, the function Q(θ, θold) can be written

Q(θ, θold) =
N∑

n=1

K∑
k=1

γnk

{
1
2

lnβ − β

2
(
tn − wT

k φn

)2
}

. (14.43)

Setting the derivative with respect to β equal to zero, and rearranging, we obtain the
M-step equation for β in the form

1
β

=
1
N

N∑
n=1

K∑
k=1

γnk

(
tn − wT

k φn

)2
. (14.44)

In Figure 14.8, we illustrate this EM algorithm using the simple example of
fitting a mixture of two straight lines to a data set having one input variable x and
one target variable t. The predictive density (14.34) is plotted in Figure 14.9 using
the converged parameter values obtained from the EM algorithm, corresponding to
the right-hand plot in Figure 14.8. Also shown in this figure is the result of fitting
a single linear regression model, which gives a unimodal predictive density. We see
that the mixture model gives a much better representation of the data distribution,
and this is reflected in the higher likelihood value. However, the mixture model
also assigns significant probability mass to regions where there is no data because its
predictive distribution is bimodal for all values of x. This problem can be resolved by
extending the model to allow the mixture coefficients themselves to be functions of
x, leading to models such as the mixture density networks discussed in Section 5.6,
and hierarchical mixture of experts discussed in Section 14.5.3.
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Figure 14.8 Example of a synthetic data set, shown by the green points, having one input variable x and one
target variable t, together with a mixture of two linear regression models whose mean functions y(x,wk), where
k ∈ {1, 2}, are shown by the blue and red lines. The upper three plots show the initial configuration (left), the
result of running 30 iterations of EM (centre), and the result after 50 iterations of EM (right). Here β was initialized
to the reciprocal of the true variance of the set of target values. The lower three plots show the corresponding
responsibilities plotted as a vertical line for each data point in which the length of the blue segment gives the
posterior probability of the blue line for that data point (and similarly for the red segment).

14.5.2 Mixtures of logistic models
Because the logistic regression model defines a conditional distribution for the

target variable, given the input vector, it is straightforward to use it as the component
distribution in a mixture model, thereby giving rise to a richer family of conditional
distributions compared to a single logistic regression model. This example involves
a straightforward combination of ideas encountered in earlier sections of the book
and will help consolidate these for the reader.

The conditional distribution of the target variable, for a probabilistic mixture of
K logistic regression models, is given by

p(t|φ, θ) =
K∑

k=1

πkyt
k [1 − yk]1−t (14.45)

where φ is the feature vector, yk = σ
(
wT

k φ
)

is the output of component k, and θ
denotes the adjustable parameters namely {πk} and {wk}.

Now suppose we are given a data set {φn, tn}. The corresponding likelihood
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Figure 14.9 The left plot shows the predictive conditional density corresponding to the converged solution in
Figure 14.8. This gives a log likelihood value of −3.0. A vertical slice through one of these plots at a particular
value of x represents the corresponding conditional distribution p(t|x), which we see is bimodal. The plot on the
right shows the predictive density for a single linear regression model fitted to the same data set using maximum
likelihood. This model has a smaller log likelihood of −27.6.

function is then given by

p(t|θ) =
N∏

n=1

(
K∑

k=1

πkytn

nk [1 − ynk]1−tn

)
(14.46)

where ynk = σ(wT
k φn) and t = (t1, . . . , tN )T. We can maximize this likelihood

function iteratively by making use of the EM algorithm. This involves introducing
latent variables znk that correspond to a 1-of-K coded binary indicator variable for
each data point n. The complete-data likelihood function is then given by

p(t,Z|θ) =
N∏

n=1

K∏
k=1

{
πkytn

nk [1 − ynk]1−tn
}znk

(14.47)

where Z is the matrix of latent variables with elements znk. We initialize the EM
algorithm by choosing an initial value θold for the model parameters. In the E step,
we then use these parameter values to evaluate the posterior probabilities of the com-
ponents k for each data point n, which are given by

γnk = E[znk] = p(k|φn, θold) =
πkytn

nk [1 − ynk]1−tn∑
j πjy

tn

nj [1 − ynj ]
1−tn

. (14.48)

These responsibilities are then used to find the expected complete-data log likelihood
as a function of θ, given by

Q(θ, θold) = EZ [ln p(t,Z|θ)]

=
N∑

n=1

K∑
k=1

γnk {lnπk + tn ln ynk + (1 − tn) ln (1 − ynk)} . (14.49)
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The M step involves maximization of this function with respect to θ, keeping θold,
and hence γnk, fixed. Maximization with respect to πk can be done in the usual way,
with a Lagrange multiplier to enforce the summation constraint

∑
k πk = 1, giving

the familiar result

πk =
1
N

N∑
n=1

γnk. (14.50)

To determine the {wk}, we note that the Q(θ, θold) function comprises a sum
over terms indexed by k each of which depends only on one of the vectors wk, so
that the different vectors are decoupled in the M step of the EM algorithm. In other
words, the different components interact only via the responsibilities, which are fixed
during the M step. Note that the M step does not have a closed-form solution and
must be solved iteratively using, for instance, the iterative reweighted least squares
(IRLS) algorithm. The gradient and the Hessian for the vector wk are given bySection 4.3.3

∇kQ =
N∑

n=1

γnk(tn − ynk)φn (14.51)

Hk = −∇k∇kQ =
N∑

n=1

γnkynk(1 − ynk)φnφT
n (14.52)

where ∇k denotes the gradient with respect to wk. For fixed γnk, these are indepen-
dent of {wj} for j 	= k and so we can solve for each wk separately using the IRLS
algorithm. Thus the M-step equations for component k correspond simply to fittingSection 4.3.3
a single logistic regression model to a weighted data set in which data point n carries
a weight γnk. Figure 14.10 shows an example of the mixture of logistic regression
models applied to a simple classification problem. The extension of this model to a
mixture of softmax models for more than two classes is straightforward.Exercise 14.16

14.5.3 Mixtures of experts
In Section 14.5.1, we considered a mixture of linear regression models, and in

Section 14.5.2 we discussed the analogous mixture of linear classifiers. Although
these simple mixtures extend the flexibility of linear models to include more com-
plex (e.g., multimodal) predictive distributions, they are still very limited. We can
further increase the capability of such models by allowing the mixing coefficients
themselves to be functions of the input variable, so that

p(t|x) =
K∑

k=1

πk(x)pk(t|x). (14.53)

This is known as a mixture of experts model (Jacobs et al., 1991) in which the mix-
ing coefficients πk(x) are known as gating functions and the individual component
densities pk(t|x) are called experts. The notion behind the terminology is that differ-
ent components can model the distribution in different regions of input space (they
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Figure 14.10 Illustration of a mixture of logistic regression models. The left plot shows data points drawn
from two classes denoted red and blue, in which the background colour (which varies from pure red to pure blue)
denotes the true probability of the class label. The centre plot shows the result of fitting a single logistic regression
model using maximum likelihood, in which the background colour denotes the corresponding probability of the
class label. Because the colour is a near-uniform purple, we see that the model assigns a probability of around
0.5 to each of the classes over most of input space. The right plot shows the result of fitting a mixture of two
logistic regression models, which now gives much higher probability to the correct labels for many of the points
in the blue class.

are ‘experts’ at making predictions in their own regions), and the gating functions
determine which components are dominant in which region.

The gating functions πk(x) must satisfy the usual constraints for mixing co-
efficients, namely 0 � πk(x) � 1 and

∑
k πk(x) = 1. They can therefore be

represented, for example, by linear softmax models of the form (4.104) and (4.105).
If the experts are also linear (regression or classification) models, then the whole
model can be fitted efficiently using the EM algorithm, with iterative reweighted
least squares being employed in the M step (Jordan and Jacobs, 1994).

Such a model still has significant limitations due to the use of linear models
for the gating and expert functions. A much more flexible model is obtained by
using a multilevel gating function to give the hierarchical mixture of experts, or
HME model (Jordan and Jacobs, 1994). To understand the structure of this model,
imagine a mixture distribution in which each component in the mixture is itself a
mixture distribution. For simple unconditional mixtures, this hierarchical mixture is
trivially equivalent to a single flat mixture distribution. However, when the mixingExercise 14.17
coefficients are input dependent, this hierarchical model becomes nontrivial. The
HME model can also be viewed as a probabilistic version of decision trees discussed
in Section 14.4 and can again be trained efficiently by maximum likelihood using an
EM algorithm with IRLS in the M step. A Bayesian treatment of the HME has beenSection 4.3.3
given by Bishop and Svensén (2003) based on variational inference.

We shall not discuss the HME in detail here. However, it is worth pointing out
the close connection with the mixture density network discussed in Section 5.6. The
principal advantage of the mixtures of experts model is that it can be optimized by
EM in which the M step for each mixture component and gating model involves
a convex optimization (although the overall optimization is nonconvex). By con-
trast, the advantage of the mixture density network approach is that the component
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densities and the mixing coefficients share the hidden units of the neural network.
Furthermore, in the mixture density network, the splits of the input space are further
relaxed compared to the hierarchical mixture of experts in that they are not only soft,
and not constrained to be axis aligned, but they can also be nonlinear.

Exercises
14.1 (� �) www Consider a set models of the form p(t|x, zh, θh, h) in which x is the

input vector, t is the target vector, h indexes the different models, zh is a latent vari-
able for model h, and θh is the set of parameters for model h. Suppose the models
have prior probabilities p(h) and that we are given a training set X = {x1, . . . ,xN}
and T = {t1, . . . , tN}. Write down the formulae needed to evaluate the predic-
tive distribution p(t|x,X,T) in which the latent variables and the model index are
marginalized out. Use these formulae to highlight the difference between Bayesian
averaging of different models and the use of latent variables within a single model.

14.2 (�) The expected sum-of-squares error EAV for a simple committee model can
be defined by (14.10), and the expected error of the committee itself is given by
(14.11). Assuming that the individual errors satisfy (14.12) and (14.13), derive the
result (14.14).

14.3 (�) www By making use of Jensen’s inequality (1.115), for the special case of
the convex function f(x) = x2, show that the average expected sum-of-squares
error EAV of the members of a simple committee model, given by (14.10), and the
expected error ECOM of the committee itself, given by (14.11), satisfy

ECOM � EAV. (14.54)

14.4 (� �) By making use of Jensen’s in equality (1.115), show that the result (14.54)
derived in the previous exercise hods for any error function E(y), not just sum-of-
squares, provided it is a convex function of y.

14.5 (� �) www Consider a committee in which we allow unequal weighting of the
constituent models, so that

yCOM(x) =
M∑

m=1

αmym(x). (14.55)

In order to ensure that the predictions yCOM(x) remain within sensible limits, sup-
pose that we require that they be bounded at each value of x by the minimum and
maximum values given by any of the members of the committee, so that

ymin(x) � yCOM(x) � ymax(x). (14.56)

Show that a necessary and sufficient condition for this constraint is that the coeffi-
cients αm satisfy

αm � 0,

M∑
m=1

αm = 1. (14.57)
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14.6 (�) www By differentiating the error function (14.23) with respect to αm, show
that the parameters αm in the AdaBoost algorithm are updated using (14.17) in
which εm is defined by (14.16).

14.7 (�) By making a variational minimization of the expected exponential error function
given by (14.27) with respect to all possible functions y(x), show that the minimizing
function is given by (14.28).

14.8 (�) Show that the exponential error function (14.20), which is minimized by the
AdaBoost algorithm, does not correspond to the log likelihood of any well-behaved
probabilistic model. This can be done by showing that the corresponding conditional
distribution p(t|x) cannot be correctly normalized.

14.9 (�) www Show that the sequential minimization of the sum-of-squares error func-
tion for an additive model of the form (14.21) in the style of boosting simply involves
fitting each new base classifier to the residual errors tn−fm−1(xn) from the previous
model.

14.10 (�) Verify that if we minimize the sum-of-squares error between a set of training
values {tn} and a single predictive value t, then the optimal solution for t is given
by the mean of the {tn}.

14.11 (� �) Consider a data set comprising 400 data points from class C1 and 400 data
points from class C2. Suppose that a tree model A splits these into (300, 100) at
the first leaf node and (100, 300) at the second leaf node, where (n, m) denotes that
n points are assigned to C1 and m points are assigned to C2. Similarly, suppose
that a second tree model B splits them into (200, 400) and (200, 0). Evaluate the
misclassification rates for the two trees and hence show that they are equal. Similarly,
evaluate the cross-entropy (14.32) and Gini index (14.33) for the two trees and show
that they are both lower for tree B than for tree A.

14.12 (� �) Extend the results of Section 14.5.1 for a mixture of linear regression models
to the case of multiple target values described by a vector t. To do this, make use of
the results of Section 3.1.5.

14.13 (�) www Verify that the complete-data log likelihood function for the mixture of
linear regression models is given by (14.36).

14.14 (�) Use the technique of Lagrange multipliers (Appendix E) to show that the M-step
re-estimation equation for the mixing coefficients in the mixture of linear regression
models trained by maximum likelihood EM is given by (14.38).

14.15 (�) www We have already noted that if we use a squared loss function in a regres-
sion problem, the corresponding optimal prediction of the target variable for a new
input vector is given by the conditional mean of the predictive distribution. Show
that the conditional mean for the mixture of linear regression models discussed in
Section 14.5.1 is given by a linear combination of the means of each component dis-
tribution. Note that if the conditional distribution of the target data is multimodal,
the conditional mean can give poor predictions.
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14.16 (� � �) Extend the logistic regression mixture model of Section 14.5.2 to a mixture
of softmax classifiers representing C � 2 classes. Write down the EM algorithm for
determining the parameters of this model through maximum likelihood.

14.17 (� �) www Consider a mixture model for a conditional distribution p(t|x) of the
form

p(t|x) =
K∑

k=1

πkψk(t|x) (14.58)

in which each mixture component ψk(t|x) is itself a mixture model. Show that this
two-level hierarchical mixture is equivalent to a conventional single-level mixture
model. Now suppose that the mixing coefficients in both levels of such a hierar-
chical model are arbitrary functions of x. Again, show that this hierarchical model
is again equivalent to a single-level model with x-dependent mixing coefficients.
Finally, consider the case in which the mixing coefficients at both levels of the hi-
erarchical mixture are constrained to be linear classification (logistic or softmax)
models. Show that the hierarchical mixture cannot in general be represented by a
single-level mixture having linear classification models for the mixing coefficients.
Hint: to do this it is sufficient to construct a single counter-example, so consider a
mixture of two components in which one of those components is itself a mixture of
two components, with mixing coefficients given by linear-logistic models. Show that
this cannot be represented by a single-level mixture of 3 components having mixing
coefficients determined by a linear-softmax model.



Appendix A. Data Sets

In this appendix, we give a brief introduction to the data sets used to illustrate some
of the algorithms described in this book. Detailed information on file formats for
these data sets, as well as the data files themselves, can be obtained from the book
web site:

http://research.microsoft.com/∼cmbishop/PRML

Handwritten Digits

The digits data used in this book is taken from the MNIST data set (LeCun et al.,
1998), which itself was constructed by modifying a subset of the much larger data
set produced by NIST (the National Institute of Standards and Technology). It com-
prises a training set of 60, 000 examples and a test set of 10, 000 examples. Some
of the data was collected from Census Bureau employees and the rest was collected
from high-school children, and care was taken to ensure that the test examples were
written by different individuals to the training examples.

The original NIST data had binary (black or white) pixels. To create MNIST,
these images were size normalized to fit in a 20×20 pixel box while preserving their
aspect ratio. As a consequence of the anti-aliasing used to change the resolution of
the images, the resulting MNIST digits are grey scale. These images were then
centred in a 28 × 28 box. Examples of the MNIST digits are shown in Figure A.1.

Error rates for classifying the digits range from 12% for a simple linear classi-
fier, through 0.56% for a carefully designed support vector machine, to 0.4% for a
convolutional neural network (LeCun et al., 1998).
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Figure A.1 One hundred examples of the
MNIST digits chosen at ran-
dom from the training set.

Oil Flow

This is a synthetic data set that arose out of a project aimed at measuring nonin-
vasively the proportions of oil, water, and gas in North Sea oil transfer pipelines
(Bishop and James, 1993). It is based on the principle of dual-energy gamma densit-
ometry. The ideas is that if a narrow beam of gamma rays is passed through the pipe,
the attenuation in the intensity of the beam provides information about the density of
material along its path. Thus, for instance, the beam will be attenuated more strongly
by oil than by gas.

A single attenuation measurement alone is not sufficient because there are two
degrees of freedom corresponding to the fraction of oil and the fraction of water (the
fraction of gas is redundant because the three fractions must add to one). To address
this, two gamma beams of different energies (in other words different frequencies or
wavelengths) are passed through the pipe along the same path, and the attenuation of
each is measured. Because the absorbtion properties of different materials vary dif-
ferently as a function of energy, measurement of the attenuations at the two energies
provides two independent pieces of information. Given the known absorbtion prop-
erties of oil, water, and gas at the two energies, it is then a simple matter to calculate
the average fractions of oil and water (and hence of gas) measured along the path of
the gamma beams.

There is a further complication, however, associated with the motion of the ma-
terials along the pipe. If the flow velocity is small, then the oil floats on top of the
water with the gas sitting above the oil. This is known as a laminar or stratified
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Figure A.2 The three geometrical configurations of the oil,
water, and gas phases used to generate the oil-
flow data set. For each configuration, the pro-
portions of the three phases can vary.

Mix

Gas

Water

Oil

Homogeneous

Stratified Annular

flow configuration and is illustrated in Figure A.2. As the flow velocity is increased,
more complex geometrical configurations of the oil, water, and gas can arise. For the
purposes of this data set, two specific idealizations are considered. In the annular
configuration the oil, water, and gas form concentric cylinders with the water around
the outside and the gas in the centre, whereas in the homogeneous configuration the
oil, water and gas are assumed to be intimately mixed as might occur at high flow
velocities under turbulent conditions. These configurations are also illustrated in
Figure A.2.

We have seen that a single dual-energy beam gives the oil and water fractions
measured along the path length, whereas we are interested in the volume fractions of
oil and water. This can be addressed by using multiple dual-energy gamma densit-
ometers whose beams pass through different regions of the pipe. For this particular
data set, there are six such beams, and their spatial arrangement is shown in Fig-
ure A.3. A single observation is therefore represented by a 12-dimensional vector
comprising the fractions of oil and water measured along the paths of each of the
beams. We are, however, interested in obtaining the overall volume fractions of the
three phases in the pipe. This is much like the classical problem of tomographic re-
construction, used in medical imaging for example, in which a two-dimensional dis-

Figure A.3 Cross section of the pipe showing the arrangement of the
six beam lines, each of which comprises a single dual-
energy gamma densitometer. Note that the vertical beams
are asymmetrically arranged relative to the central axis
(shown by the dotted line).
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tribution is to be reconstructed from an number of one-dimensional averages. Here
there are far fewer line measurements than in a typical tomography application. On
the other hand the range of geometrical configurations is much more limited, and so
the configuration, as well as the phase fractions, can be predicted with reasonable
accuracy from the densitometer data.

For safety reasons, the intensity of the gamma beams is kept relatively weak and
so to obtain an accurate measurement of the attenuation, the measured beam intensity
is integrated over a specific time interval. For a finite integration time, there are
random fluctuations in the measured intensity due to the fact that the gamma beams
comprise discrete packets of energy called photons. In practice, the integration time
is chosen as a compromise between reducing the noise level (which requires a long
integration time) and detecting temporal variations in the flow (which requires a short
integration time). The oil flow data set is generated using realistic known values for
the absorption properties of oil, water, and gas at the two gamma energies used, and
with a specific choice of integration time (10 seconds) chosen as characteristic of a
typical practical setup.

Each point in the data set is generated independently using the following steps:

1. Choose one of the three phase configurations at random with equal probability.

2. Choose three random numbers f1, f2 and f3 from the uniform distribution over
(0, 1) and define

foil =
f1

f1 + f2 + f3

, fwater =
f2

f1 + f2 + f3

. (A.1)

This treats the three phases on an equal footing and ensures that the volume
fractions add to one.

3. For each of the six beam lines, calculate the effective path lengths through oil
and water for the given phase configuration.

4. Perturb the path lengths using the Poisson distribution based on the known
beam intensities and integration time to allow for the effect of photon statistics.

Each point in the data set comprises the 12 path length measurements, together
with the fractions of oil and water and a binary label describing the phase configu-
ration. The data set is divided into training, validation, and test sets, each of which
comprises 1, 000 independent data points. Details of the data format are available
from the book web site.

In Bishop and James (1993), statistical machine learning techniques were used
to predict the volume fractions and also the geometrical configuration of the phases
shown in Figure A.2, from the 12-dimensional vector of measurements. The 12-
dimensional observation vectors can also be used to test data visualization algo-
rithms.

This data set has a rich and interesting structure, as follows. For any given
configuration there are two degrees of freedom corresponding to the fractions of
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oil and water, and so for infinite integration time the data will locally live on a two-
dimensional manifold. For a finite integration time, the individual data points will be
perturbed away from the manifold by the photon noise. In the homogeneous phase
configuration, the path lengths in oil and water are linearly related to the fractions of
oil and water, and so the data points lie close to a linear manifold. For the annular
configuration, the relationship between phase fraction and path length is nonlinear
and so the manifold will be nonlinear. In the case of the laminar configuration the
situation is even more complex because small variations in the phase fractions can
cause one of the horizontal phase boundaries to move across one of the horizontal
beam lines leading to a discontinuous jump in the 12-dimensional observation space.
In this way, the two-dimensional nonlinear manifold for the laminar configuration is
broken into six distinct segments. Note also that some of the manifolds for different
phase configurations meet at specific points, for example if the pipe is filled entirely
with oil, it corresponds to specific instances of the laminar, annular, and homoge-
neous configurations.

Old Faithful

Old Faithful, shown in Figure A.4, is a hydrothermal geyser in Yellowstone National
Park in the state of Wyoming, U.S.A., and is a popular tourist attraction. Its name
stems from the supposed regularity of its eruptions.

The data set comprises 272 observations, each of which represents a single erup-
tion and contains two variables corresponding to the duration in minutes of the erup-
tion, and the time until the next eruption, also in minutes. Figure A.5 shows a plot of
the time to the next eruption versus the duration of the eruptions. It can be seen that
the time to the next eruption varies considerably, although knowledge of the duration
of the current eruption allows it to be predicted more accurately. Note that there exist
several other data sets relating to the eruptions of Old Faithful.

Figure A.4 The Old Faithful geyser
in Yellowstone National
Park. c©Bruce T. Gourley
www.brucegourley.com.
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Figure A.5 Plot of the time to the next eruption
in minutes (vertical axis) versus the
duration of the eruption in minutes
(horizontal axis) for the Old Faithful
data set.
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Synthetic Data

Throughout the book, we use two simple synthetic data sets to illustrate many of the
algorithms. The first of these is a regression problem, based on the sinusoidal func-
tion, shown in Figure A.6. The input values {xn} are generated uniformly in range
(0, 1), and the corresponding target values {tn} are obtained by first computing the
corresponding values of the function sin(2πx), and then adding random noise with
a Gaussian distribution having standard deviation 0.3. Various forms of this data set,
having different numbers of data points, are used in the book.

The second data set is a classification problem having two classes, with equal
prior probabilities, and is shown in Figure A.7. The blue class is generated from a
single Gaussian while the red class comes from a mixture of two Gaussians. Be-
cause we know the class priors and the class-conditional densities, it is straightfor-
ward to evaluate and plot the true posterior probabilities as well as the minimum
misclassification-rate decision boundary, as shown in Figure A.7.
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Figure A.6 The left-hand plot shows the synthetic regression data set along with the underlying sinusoidal
function from which the data points were generated. The right-hand plot shows the true conditional distribution
p(t|x) from which the labels are generated, in which the green curve denotes the mean, and the shaded region
spans one standard deviation on each side of the mean.
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Figure A.7 The left plot shows the synthetic classification data set with data from the two classes shown in
red and blue. On the right is a plot of the true posterior probabilities, shown on a colour scale going from pure
red denoting probability of the red class is 1 to pure blue denoting probability of the red class is 0. Because
these probabilities are known, the optimal decision boundary for minimizing the misclassification rate (which
corresponds to the contour along which the posterior probabilities for each class equal 0.5) can be evaluated
and is shown by the green curve. This decision boundary is also plotted on the left-hand figure.



Appendix B. Probability Distributions

In this appendix, we summarize the main properties of some of the most widely used
probability distributions, and for each distribution we list some key statistics such as
the expectation E[x], the variance (or covariance), the mode, and the entropy H[x].
All of these distributions are members of the exponential family and are widely used
as building blocks for more sophisticated probabilistic models.

Bernoulli

This is the distribution for a single binary variable x ∈ {0, 1} representing, for
example, the result of flipping a coin. It is governed by a single continuous parameter
µ ∈ [0, 1] that represents the probability of x = 1.

Bern(x|µ) = µx(1 − µ)1−x (B.1)

E[x] = µ (B.2)

var[x] = µ(1 − µ) (B.3)

mode[x] =
{

1 if µ � 0.5,
0 otherwise (B.4)

H[x] = −µ lnµ − (1 − µ) ln(1 − µ). (B.5)

The Bernoulli is a special case of the binomial distribution for the case of a single
observation. Its conjugate prior for µ is the beta distribution.
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Beta

This is a distribution over a continuous variable µ ∈ [0, 1], which is often used to
represent the probability for some binary event. It is governed by two parameters a
and b that are constrained by a > 0 and b > 0 to ensure that the distribution can be
normalized.

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (B.6)

E[µ] =
a

a + b
(B.7)

var[µ] =
ab

(a + b)2(a + b + 1)
(B.8)

mode[µ] =
a − 1

a + b − 2
. (B.9)

The beta is the conjugate prior for the Bernoulli distribution, for which a and b can
be interpreted as the effective prior number of observations of x = 1 and x = 0,
respectively. Its density is finite if a � 1 and b � 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The beta
distribution is a special case of the K-state Dirichlet distribution for K = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of x = 1
in a set of N samples from a Bernoulli distribution, where the probability of observ-
ing x = 1 is µ ∈ [0, 1].

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (B.10)

E[m] = Nµ (B.11)

var[m] = Nµ(1 − µ) (B.12)

mode[m] = �(N + 1)µ� (B.13)

where �(N + 1)µ� denotes the largest integer that is less than or equal to (N + 1)µ,
and the quantity (

N

m

)
=

N !
m!(N − m)!

(B.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. Here m!, pronounced ‘factorial m’, denotes the product m × (m − 1) ×
. . . ,×2 × 1. The particular case of the binomial distribution for N = 1 is known as
the Bernoulli distribution, and for large N the binomial distribution is approximately
Gaussian. The conjugate prior for µ is the beta distribution.
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Dirichlet

The Dirichlet is a multivariate distribution over K random variables 0 � µk � 1,
where k = 1, . . . , K, subject to the constraints

0 � µk � 1,

K∑
k=1

µk = 1. (B.15)

Denoting µ = (µ1, . . . , µK)T and α = (α1, . . . , αK)T, we have

Dir(µ|α) = C(α)
K∏

k=1

µαk−1
k (B.16)

E[µk] =
αk

α̂
(B.17)

var[µk] =
αk(α̂ − αk)
α̂2(α̂ + 1)

(B.18)

cov[µjµk] = − αjαk

α̂2(α̂ + 1)
(B.19)

mode[µk] =
αk − 1
α̂ − K

(B.20)

E[ln µk] = ψ(αk) − ψ(α̂) (B.21)

H[µ] = −
K∑

k=1

(αk − 1) {ψ(αk) − ψ(α̂)} − lnC(α) (B.22)

where

C(α) =
Γ(α̂)

Γ(α1) · · ·Γ(αK)
(B.23)

and

α̂ =
K∑

k=1

αk. (B.24)

Here

ψ(a) ≡ d

da
ln Γ(a) (B.25)

is known as the digamma function (Abramowitz and Stegun, 1965). The parameters
αk are subject to the constraint αk > 0 in order to ensure that the distribution can be
normalized.

The Dirichlet forms the conjugate prior for the multinomial distribution and rep-
resents a generalization of the beta distribution. In this case, the parameters αk can
be interpreted as effective numbers of observations of the corresponding values of
the K-dimensional binary observation vector x. As with the beta distribution, the
Dirichlet has finite density everywhere provided αk � 1 for all k.
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Gamma

The Gamma is a probability distribution over a positive random variable τ > 0
governed by parameters a and b that are subject to the constraints a > 0 and b > 0
to ensure that the distribution can be normalized.

Gam(τ |a, b) =
1

Γ(a)
baτa−1e−bτ (B.26)

E[τ ] =
a

b
(B.27)

var[τ ] =
a

b2
(B.28)

mode[τ ] =
a − 1

b
for α � 1 (B.29)

E[ln τ ] = ψ(a) − ln b (B.30)

H[τ ] = ln Γ(a) − (a − 1)ψ(a) − ln b + a (B.31)

where ψ(·) is the digamma function defined by (B.25). The gamma distribution is
the conjugate prior for the precision (inverse variance) of a univariate Gaussian. For
a � 1 the density is everywhere finite, and the special case of a = 1 is known as the
exponential distribution.

Gaussian

The Gaussian is the most widely used distribution for continuous variables. It is also
known as the normal distribution. In the case of a single variable x ∈ (−∞,∞) it is
governed by two parameters, the mean µ ∈ (−∞,∞) and the variance σ2 > 0.

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(B.32)

E[x] = µ (B.33)

var[x] = σ2 (B.34)

mode[x] = µ (B.35)

H[x] =
1
2

ln σ2 +
1
2

(1 + ln(2π)) . (B.36)

The inverse of the variance τ = 1/σ2 is called the precision, and the square root
of the variance σ is called the standard deviation. The conjugate prior for µ is the
Gaussian, and the conjugate prior for τ is the gamma distribution. If both µ and τ
are unknown, their joint conjugate prior is the Gaussian-gamma distribution.

For a D-dimensional vector x, the Gaussian is governed by a D-dimensional
mean vector µ and a D × D covariance matrix Σ that must be symmetric and
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positive-definite.

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(B.37)

E[x] = µ (B.38)

cov[x] = Σ (B.39)

mode[x] = µ (B.40)

H[x] =
1
2

ln |Σ| + D

2
(1 + ln(2π)) . (B.41)

The inverse of the covariance matrix Λ = Σ−1 is the precision matrix, which is also
symmetric and positive definite. Averages of random variables tend to a Gaussian, by
the central limit theorem, and the sum of two Gaussian variables is again Gaussian.
The Gaussian is the distribution that maximizes the entropy for a given variance
(or covariance). Any linear transformation of a Gaussian random variable is again
Gaussian. The marginal distribution of a multivariate Gaussian with respect to a
subset of the variables is itself Gaussian, and similarly the conditional distribution is
also Gaussian. The conjugate prior for µ is the Gaussian, the conjugate prior for Λ
is the Wishart, and the conjugate prior for (µ,Λ) is the Gaussian-Wishart.

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N (x|µ,Λ−1) (B.42)

p(y|x) = N (y|Ax + b,L−1) (B.43)

then the marginal distribution of y, and the conditional distribution of x given y, are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (B.44)

p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (B.45)

where
Σ = (Λ + ATLA)−1. (B.46)

If we have a joint Gaussian distribution N (x|µ,Σ) with Λ ≡ Σ−1 and we
define the following partitions

x =
(

xa

xb

)
, µ =

(
µa

µb

)
(B.47)

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
(B.48)

then the conditional distribution p(xa|xb) is given by

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (B.49)

µa|b = µa − Λ−1
aa Λab(xb − µb) (B.50)
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and the marginal distribution p(xa) is given by

p(xa) = N (xa|µa,Σaa). (B.51)

Gaussian-Gamma

This is the conjugate prior distribution for a univariate Gaussian N (x|µ, λ−1) in
which the mean µ and the precision λ are both unknown and is also called the
normal-gamma distribution. It comprises the product of a Gaussian distribution for
µ, whose precision is proportional to λ, and a gamma distribution over λ.

p(µ, λ|µ0, β, a, b) = N (
µ|µo, (βλ)−1

)
Gam(λ|a, b). (B.52)

Gaussian-Wishart

This is the conjugate prior distribution for a multivariate Gaussian N (x|µ,Λ) in
which both the mean µ and the precision Λ are unknown, and is also called the
normal-Wishart distribution. It comprises the product of a Gaussian distribution for
µ, whose precision is proportional to Λ, and a Wishart distribution over Λ.

p(µ,Λ|µ0, β,W, ν) = N (
µ|µ0, (βΛ)−1

) W(Λ|W, ν). (B.53)

For the particular case of a scalar x, this is equivalent to the Gaussian-gamma distri-
bution.

Multinomial

If we generalize the Bernoulli distribution to an K-dimensional binary variable x
with components xk ∈ {0, 1} such that

∑
k xk = 1, then we obtain the following

discrete distribution

p(x) =
K∏

k=1

µxk

k (B.54)

E[xk] = µk (B.55)

var[xk] = µk(1 − µk) (B.56)

cov[xjxk] = Ijkµk (B.57)

H[x] = −
M∑

k=1

µk ln µk (B.58)
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where Ijk is the j, k element of the identity matrix. Because p(xk = 1) = µk, the
parameters must satisfy 0 � µk � 1 and

∑
k µk = 1.

The multinomial distribution is a multivariate generalization of the binomial and
gives the distribution over counts mk for a K-state discrete variable to be in state k
given a total number of observations N .

Mult(m1, m2, . . . , mK |µ, N) =
(

N

m1m2 . . . mM

) M∏
k=1

µmk

k (B.59)

E[mk] = Nµk (B.60)

var[mk] = Nµk(1 − µk) (B.61)

cov[mjmk] = −Nµjµk (B.62)

where µ = (µ1, . . . , µK)T, and the quantity(
N

m1m2 . . . mK

)
=

N !
m1! . . . mK !

(B.63)

gives the number of ways of taking N identical objects and assigning mk of them to
bin k for k = 1, . . . , K. The value of µk gives the probability of the random variable
taking state k, and so these parameters are subject to the constraints 0 � µk � 1
and

∑
k µk = 1. The conjugate prior distribution for the parameters {µk} is the

Dirichlet.

Normal

The normal distribution is simply another name for the Gaussian. In this book, we
use the term Gaussian throughout, although we retain the conventional use of the
symbol N to denote this distribution. For consistency, we shall refer to the normal-
gamma distribution as the Gaussian-gamma distribution, and similarly the normal-
Wishart is called the Gaussian-Wishart.

Student’s t

This distribution was published by William Gosset in 1908, but his employer, Gui-
ness Breweries, required him to publish under a pseudonym, so he chose ‘Student’.
In the univariate form, Student’s t-distribution is obtained by placing a conjugate
gamma prior over the precision of a univariate Gaussian distribution and then inte-
grating out the precision variable. It can therefore be viewed as an infinite mixture
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of Gaussians having the same mean but different variances.

St(x|µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(x − µ)2

ν

]−ν/2−1/2

(B.64)

E[x] = µ for ν > 1 (B.65)

var[x] =
1
λ

ν

ν − 2
for ν > 2 (B.66)

mode[x] = µ. (B.67)

Here ν > 0 is called the number of degrees of freedom of the distribution. The
particular case of ν = 1 is called the Cauchy distribution.

For a D-dimensional variable x, Student’s t-distribution corresponds to marginal-
izing the precision matrix of a multivariate Gaussian with respect to a conjugate
Wishart prior and takes the form

St(x|µ,Λ, ν) =
Γ(ν/2 + D/2)

Γ(ν/2)
|Λ|1/2

(νπ)D/2

[
1 +

∆2

ν

]−ν/2−D/2

(B.68)

E[x] = µ for ν > 1 (B.69)

cov[x] =
ν

ν − 2
Λ−1 for ν > 2 (B.70)

mode[x] = µ (B.71)

where ∆2 is the squared Mahalanobis distance defined by

∆2 = (x − µ)TΛ(x − µ). (B.72)

In the limit ν → ∞, the t-distribution reduces to a Gaussian with mean µ and pre-
cision Λ. Student’s t-distribution provides a generalization of the Gaussian whose
maximum likelihood parameter values are robust to outliers.

Uniform

This is a simple distribution for a continuous variable x defined over a finite interval
x ∈ [a, b] where b > a.

U(x|a, b) =
1

b − a
(B.73)

E[x] =
(b + a)

2
(B.74)

var[x] =
(b − a)2

12
(B.75)

H[x] = ln(b − a). (B.76)

If x has distribution U(x|0, 1), then a + (b − a)x will have distribution U(x|a, b).
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Von Mises

The von Mises distribution, also known as the circular normal or the circular Gaus-
sian, is a univariate Gaussian-like periodic distribution for a variable θ ∈ [0, 2π).

p(θ|θ0, m) =
1

2πI0(m)
exp {m cos(θ − θ0)} (B.77)

where I0(m) is the zeroth-order Bessel function of the first kind. The distribution
has period 2π so that p(θ + 2π) = p(θ) for all θ. Care must be taken in interpret-
ing this distribution because simple expectations will be dependent on the (arbitrary)
choice of origin for the variable θ. The parameter θ0 is analogous to the mean of a
univariate Gaussian, and the parameter m > 0, known as the concentration param-
eter, is analogous to the precision (inverse variance). For large m, the von Mises
distribution is approximately a Gaussian centred on θ0.

Wishart

The Wishart distribution is the conjugate prior for the precision matrix of a multi-
variate Gaussian.

W(Λ|W, ν) = B(W, ν)|Λ|(ν−D−1)/2 exp
(
−1

2
Tr(W−1Λ)

)
(B.78)

where

B(W, ν) ≡ |W|−ν/2

(
2νD/2 πD(D−1)/4

D∏
i=1

Γ
(

ν + 1 − i

2

))−1

(B.79)

E[Λ] = νW (B.80)

E [ln |Λ|] =
D∑

i=1

ψ

(
ν + 1 − i

2

)
+ D ln 2 + ln |W| (B.81)

H[Λ] = − lnB(W, ν) − (ν − D − 1)
2

E [ln |Λ|] +
νD

2
(B.82)

where W is a D × D symmetric, positive definite matrix, and ψ(·) is the digamma
function defined by (B.25). The parameter ν is called the number of degrees of
freedom of the distribution and is restricted to ν > D − 1 to ensure that the Gamma
function in the normalization factor is well-defined. In one dimension, the Wishart
reduces to the gamma distribution Gam(λ|a, b) given by (B.26) with parameters
a = ν/2 and b = 1/2W .



Appendix C. Properties of Matrices

In this appendix, we gather together some useful properties and identities involving
matrices and determinants. This is not intended to be an introductory tutorial, and
it is assumed that the reader is already familiar with basic linear algebra. For some
results, we indicate how to prove them, whereas in more complex cases we leave
the interested reader to refer to standard textbooks on the subject. In all cases, we
assume that inverses exist and that matrix dimensions are such that the formulae
are correctly defined. A comprehensive discussion of linear algebra can be found in
Golub and Van Loan (1996), and an extensive collection of matrix properties is given
by Lütkepohl (1996). Matrix derivatives are discussed in Magnus and Neudecker
(1999).

Basic Matrix Identities

A matrix A has elements Aij where i indexes the rows, and j indexes the columns.
We use IN to denote the N × N identity matrix (also called the unit matrix), and
where there is no ambiguity over dimensionality we simply use I. The transpose
matrix AT has elements (AT)ij = Aji. From the definition of transpose, we have

(AB)T = BTAT (C.1)

which can be verified by writing out the indices. The inverse of A, denoted A−1,
satisfies

AA−1 = A−1A = I. (C.2)

Because ABB−1A−1 = I, we have

(AB)−1 = B−1A−1. (C.3)

Also we have (
AT

)−1
=
(
A−1

)T
(C.4)
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which is easily proven by taking the transpose of (C.2) and applying (C.1).
A useful identity involving matrix inverses is the following

(P−1 + BTR−1B)−1BTR−1 = PBT(BPBT + R)−1. (C.5)

which is easily verified by right multiplying both sides by (BPBT + R). Suppose
that P has dimensionality N ×N while R has dimensionality M ×M , so that B is
M ×N . Then if M � N , it will be much cheaper to evaluate the right-hand side of
(C.5) than the left-hand side. A special case that sometimes arises is

(I + AB)−1A = A(I + BA)−1. (C.6)

Another useful identity involving inverses is the following:

(A + BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1 (C.7)

which is known as the Woodbury identity and which can be verified by multiplying
both sides by (A + BD−1C). This is useful, for instance, when A is large and
diagonal, and hence easy to invert, while B has many rows but few columns (and
conversely for C) so that the right-hand side is much cheaper to evaluate than the
left-hand side.

A set of vectors {a1, . . . ,aN} is said to be linearly independent if the relation∑
n αnan = 0 holds only if all αn = 0. This implies that none of the vectors

can be expressed as a linear combination of the remainder. The rank of a matrix is
the maximum number of linearly independent rows (or equivalently the maximum
number of linearly independent columns).

Traces and Determinants

Trace and determinant apply to square matrices. The trace Tr(A) of a matrix A
is defined as the sum of the elements on the leading diagonal. By writing out the
indices, we see that

Tr(AB) = Tr(BA). (C.8)

By applying this formula multiple times to the product of three matrices, we see that

Tr(ABC) = Tr(CAB) = Tr(BCA) (C.9)

which is known as the cyclic property of the trace operator and which clearly extends
to the product of any number of matrices. The determinant |A| of an N × N matrix
A is defined by

|A| =
∑

(±1)A1i1A2i2 · · ·ANiN
(C.10)

in which the sum is taken over all products consisting of precisely one element from
each row and one element from each column, with a coefficient +1 or −1 according
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to whether the permutation i1i2 . . . iN is even or odd, respectively. Note that |I| = 1.
Thus, for a 2 × 2 matrix, the determinant takes the form

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21. (C.11)

The determinant of a product of two matrices is given by

|AB| = |A||B| (C.12)

as can be shown from (C.10). Also, the determinant of an inverse matrix is given by∣∣A−1
∣∣ =

1
|A| (C.13)

which can be shown by taking the determinant of (C.2) and applying (C.12).
If A and B are matrices of size N × M , then∣∣IN + ABT

∣∣ =
∣∣IM + ATB

∣∣ . (C.14)

A useful special case is ∣∣IN + abT
∣∣ = 1 + aTb (C.15)

where a and b are N -dimensional column vectors.

Matrix Derivatives

Sometimes we need to consider derivatives of vectors and matrices with respect to
scalars. The derivative of a vector a with respect to a scalar x is itself a vector whose
components are given by (

∂a
∂x

)
i

=
∂ai

∂x
(C.16)

with an analogous definition for the derivative of a matrix. Derivatives with respect
to vectors and matrices can also be defined, for instance(

∂x

∂a

)
i

=
∂x

∂ai
(C.17)

and similarly (
∂a
∂b

)
ij

=
∂ai

∂bj
. (C.18)

The following is easily proven by writing out the components

∂

∂x

(
xTa

)
=

∂

∂x

(
aTx

)
= a. (C.19)
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Similarly
∂

∂x
(AB) =

∂A
∂x

B + A
∂B
∂x

. (C.20)

The derivative of the inverse of a matrix can be expressed as

∂

∂x

(
A−1

)
= −A−1 ∂A

∂x
A−1 (C.21)

as can be shown by differentiating the equation A−1A = I using (C.20) and then
right multiplying by A−1. Also

∂

∂x
ln |A| = Tr

(
A−1 ∂A

∂x

)
(C.22)

which we shall prove later. If we choose x to be one of the elements of A, we have

∂

∂Aij
Tr (AB) = Bji (C.23)

as can be seen by writing out the matrices using index notation. We can write this
result more compactly in the form

∂

∂A
Tr (AB) = BT. (C.24)

With this notation, we have the following properties

∂

∂A
Tr
(
ATB

)
= B (C.25)

∂

∂A
Tr(A) = I (C.26)

∂

∂A
Tr(ABAT) = A(B + BT) (C.27)

which can again be proven by writing out the matrix indices. We also have

∂

∂A
ln |A| =

(
A−1

)T
(C.28)

which follows from (C.22) and (C.26).

Eigenvector Equation

For a square matrix A of size M × M , the eigenvector equation is defined by

Aui = λiui (C.29)
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for i = 1, . . . , M , where ui is an eigenvector and λi is the corresponding eigenvalue.
This can be viewed as a set of M simultaneous homogeneous linear equations, and
the condition for a solution is that

|A − λiI| = 0 (C.30)

which is known as the characteristic equation. Because this is a polynomial of order
M in λi, it must have M solutions (though these need not all be distinct). The rank
of A is equal to the number of nonzero eigenvalues.

Of particular interest are symmetric matrices, which arise as covariance ma-
trices, kernel matrices, and Hessians. Symmetric matrices have the property that
Aij = Aji, or equivalently AT = A. The inverse of a symmetric matrix is also sym-
metric, as can be seen by taking the transpose of A−1A = I and using AA−1 = I
together with the symmetry of I.

In general, the eigenvalues of a matrix are complex numbers, but for symmetric
matrices the eigenvalues λi are real. This can be seen by first left multiplying (C.29)
by (u�

i )
T, where � denotes the complex conjugate, to give

(u�
i )

T Aui = λi (u�
i )

T ui. (C.31)

Next we take the complex conjugate of (C.29) and left multiply by uT
i to give

uT
i Au�

i = λ�
i u

T
i u�

i . (C.32)

where we have used A� = A because we consider only real matrices A. Taking
the transpose of the second of these equations, and using AT = A, we see that the
left-hand sides of the two equations are equal, and hence that λ�

i = λi and so λi

must be real.
The eigenvectors ui of a real symmetric matrix can be chosen to be orthonormal

(i.e., orthogonal and of unit length) so that

uT
i uj = Iij (C.33)

where Iij are the elements of the identity matrix I. To show this, we first left multiply
(C.29) by uT

j to give
uT

j Aui = λiuT
j ui (C.34)

and hence, by exchange of indices, we have

uT
i Auj = λjuT

i uj . (C.35)

We now take the transpose of the second equation and make use of the symmetry
property AT = A, and then subtract the two equations to give

(λi − λj)uT
i uj = 0. (C.36)

Hence, for λi �= λj , we have uT
i uj = 0, and hence ui and uj are orthogonal. If the

two eigenvalues are equal, then any linear combination αui + βuj is also an eigen-
vector with the same eigenvalue, so we can select one linear combination arbitrarily,
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and then choose the second to be orthogonal to the first (it can be shown that the de-
generate eigenvectors are never linearly dependent). Hence the eigenvectors can be
chosen to be orthogonal, and by normalizing can be set to unit length. Because there
are M eigenvalues, the corresponding M orthogonal eigenvectors form a complete
set and so any M -dimensional vector can be expressed as a linear combination of
the eigenvectors.

We can take the eigenvectors ui to be the columns of an M × M matrix U,
which from orthonormality satisfies

UTU = I. (C.37)

Such a matrix is said to be orthogonal. Interestingly, the rows of this matrix are also
orthogonal, so that UUT = I. To show this, note that (C.37) implies UTUU−1 =
U−1 = UT and so UU−1 = UUT = I. Using (C.12), it also follows that |U| = 1.

The eigenvector equation (C.29) can be expressed in terms of U in the form

AU = UΛ (C.38)

where Λ is an M × M diagonal matrix whose diagonal elements are given by the
eigenvalues λi.

If we consider a column vector x that is transformed by an orthogonal matrix U
to give a new vector

x̃ = Ux (C.39)

then the length of the vector is preserved because

x̃Tx̃ = xTUTUx = xTx (C.40)

and similarly the angle between any two such vectors is preserved because

x̃Tỹ = xTUTUy = xTy. (C.41)

Thus, multiplication by U can be interpreted as a rigid rotation of the coordinate
system.

From (C.38), it follows that

UTAU = Λ (C.42)

and because Λ is a diagonal matrix, we say that the matrix A is diagonalized by the
matrix U. If we left multiply by U and right multiply by UT, we obtain

A = UΛUT (C.43)

Taking the inverse of this equation, and using (C.3) together with U−1 = UT, we
have

A−1 = UΛ−1UT. (C.44)
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These last two equations can also be written in the form

A =
M∑
i=1

λiuiuT
i (C.45)

A−1 =
M∑
i=1

1
λi

uiuT
i . (C.46)

If we take the determinant of (C.43), and use (C.12), we obtain

|A| =
M∏
i=1

λi. (C.47)

Similarly, taking the trace of (C.43), and using the cyclic property (C.8) of the trace
operator together with UTU = I, we have

Tr(A) =
M∑
i=1

λi. (C.48)

We leave it as an exercise for the reader to verify (C.22) by making use of the results
(C.33), (C.45), (C.46), and (C.47).

A matrix A is said to be positive definite, denoted by A � 0, if wTAw > 0 for
all values of the vector w. Equivalently, a positive definite matrix has λi > 0 for all
of its eigenvalues (as can be seen by setting w to each of the eigenvectors in turn,
and by noting that an arbitrary vector can be expanded as a linear combination of the
eigenvectors). Note that positive definite is not the same as all the elements being
positive. For example, the matrix (

1 2
3 4

)
(C.49)

has eigenvalues λ1 � 5.37 and λ2 � −0.37. A matrix is said to be positive semidef-
inite if wTAw � 0 holds for all values of w, which is denoted A 	 0, and is
equivalent to λi � 0.



Appendix D. Calculus of Variations

We can think of a function y(x) as being an operator that, for any input value x,
returns an output value y. In the same way, we can define a functional F [y] to be
an operator that takes a function y(x) and returns an output value F . An example of
a functional is the length of a curve drawn in a two-dimensional plane in which the
path of the curve is defined in terms of a function. In the context of machine learning,
a widely used functional is the entropy H[x] for a continuous variable x because, for
any choice of probability density function p(x), it returns a scalar value representing
the entropy of x under that density. Thus the entropy of p(x) could equally well have
been written as H[p].

A common problem in conventional calculus is to find a value of x that max-
imizes (or minimizes) a function y(x). Similarly, in the calculus of variations we
seek a function y(x) that maximizes (or minimizes) a functional F [y]. That is, of all
possible functions y(x), we wish to find the particular function for which the func-
tional F [y] is a maximum (or minimum). The calculus of variations can be used, for
instance, to show that the shortest path between two points is a straight line or that
the maximum entropy distribution is a Gaussian.

If we weren’t familiar with the rules of ordinary calculus, we could evaluate a
conventional derivative dy/ dx by making a small change ε to the variable x and
then expanding in powers of ε, so that

y(x + ε) = y(x) +
dy

dx
ε + O(ε2) (D.1)

and finally taking the limit ε → 0. Similarly, for a function of several variables
y(x1, . . . , xD), the corresponding partial derivatives are defined by

y(x1 + ε1, . . . , xD + εD) = y(x1, . . . , xD) +
D∑

i=1

∂y

∂xi
εi + O(ε2). (D.2)

The analogous definition of a functional derivative arises when we consider how
much a functional F [y] changes when we make a small change εη(x) to the function
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Figure D.1 A functional derivative can be defined by
considering how the value of a functional
F [y] changes when the function y(x) is
changed to y(x) + εη(x) where η(x) is an
arbitrary function of x.

y(x)

y(x) + εη(x)

x

y(x), where η(x) is an arbitrary function of x, as illustrated in Figure D.1. We denote
the functional derivative of E[f ] with respect to f(x) by δF/δf(x), and define it by
the following relation:

F [y(x) + εη(x)] = F [y(x)] + ε

∫
δF

δy(x)
η(x) dx + O(ε2). (D.3)

This can be seen as a natural extension of (D.2) in which F [y] now depends on a
continuous set of variables, namely the values of y at all points x. Requiring that the
functional be stationary with respect to small variations in the function y(x) gives∫

δE

δy(x)
η(x) dx = 0. (D.4)

Because this must hold for an arbitrary choice of η(x), it follows that the functional
derivative must vanish. To see this, imagine choosing a perturbation η(x) that is zero
everywhere except in the neighbourhood of a point x̂, in which case the functional
derivative must be zero at x = x̂. However, because this must be true for every
choice of x̂, the functional derivative must vanish for all values of x.

Consider a functional that is defined by an integral over a function G(y, y′, x)
that depends on both y(x) and its derivative y′(x) as well as having a direct depen-
dence on x

F [y] =
∫

G (y(x), y′(x), x) dx (D.5)

where the value of y(x) is assumed to be fixed at the boundary of the region of
integration (which might be at infinity). If we now consider variations in the function
y(x), we obtain

F [y(x) + εη(x)] = F [y(x)] + ε

∫ {
∂G

∂y
η(x) +

∂G

∂y′ η
′(x)

}
dx + O(ε2). (D.6)

We now have to cast this in the form (D.3). To do so, we integrate the second term by
parts and make use of the fact that η(x) must vanish at the boundary of the integral
(because y(x) is fixed at the boundary). This gives

F [y(x) + εη(x)] = F [y(x)] + ε

∫ {
∂G

∂y
− d

dx

(
∂G

∂y′

)}
η(x) dx + O(ε2) (D.7)



D. CALCULUS OF VARIATIONS 705

from which we can read off the functional derivative by comparison with (D.3).
Requiring that the functional derivative vanishes then gives

∂G

∂y
− d

dx

(
∂G

∂y′

)
= 0 (D.8)

which are known as the Euler-Lagrange equations. For example, if

G = y(x)2 + (y′(x))2 (D.9)

then the Euler-Lagrange equations take the form

y(x) − d2y

dx2
= 0. (D.10)

This second order differential equation can be solved for y(x) by making use of the
boundary conditions on y(x).

Often, we consider functionals defined by integrals whose integrands take the
form G(y, x) and that do not depend on the derivatives of y(x). In this case, station-
arity simply requires that ∂G/∂y(x) = 0 for all values of x.

If we are optimizing a functional with respect to a probability distribution, then
we need to maintain the normalization constraint on the probabilities. This is often
most conveniently done using a Lagrange multiplier, which then allows an uncon-Appendix E
strained optimization to be performed.

The extension of the above results to a multidimensional variable x is straight-
forward. For a more comprehensive discussion of the calculus of variations, see
Sagan (1969).



Appendix E. Lagrange Multipliers

Lagrange multipliers, also sometimes called undetermined multipliers, are used to
find the stationary points of a function of several variables subject to one or more
constraints.

Consider the problem of finding the maximum of a function f(x1, x2) subject to
a constraint relating x1 and x2, which we write in the form

g(x1, x2) = 0. (E.1)

One approach would be to solve the constraint equation (E.1) and thus express x2 as
a function of x1 in the form x2 = h(x1). This can then be substituted into f(x1, x2)
to give a function of x1 alone of the form f(x1, h(x1)). The maximum with respect
to x1 could then be found by differentiation in the usual way, to give the stationary
value x�

1 , with the corresponding value of x2 given by x�
2 = h(x�

1).
One problem with this approach is that it may be difficult to find an analytic

solution of the constraint equation that allows x2 to be expressed as an explicit func-
tion of x1. Also, this approach treats x1 and x2 differently and so spoils the natural
symmetry between these variables.

A more elegant, and often simpler, approach is based on the introduction of a
parameter λ called a Lagrange multiplier. We shall motivate this technique from
a geometrical perspective. Consider a D-dimensional variable x with components
x1, . . . , xD. The constraint equation g(x) = 0 then represents a (D−1)-dimensional
surface in x-space as indicated in Figure E.1.

We first note that at any point on the constraint surface the gradient ∇g(x) of
the constraint function will be orthogonal to the surface. To see this, consider a point
x that lies on the constraint surface, and consider a nearby point x + ε that also lies
on the surface. If we make a Taylor expansion around x, we have

g(x + ε) � g(x) + εT∇g(x). (E.2)

Because both x and x+ε lie on the constraint surface, we have g(x) = g(x+ε) and
hence εT∇g(x) � 0. In the limit ‖ε‖ → 0 we have εT∇g(x) = 0, and because ε is
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Figure E.1 A geometrical picture of the technique of La-
grange multipliers in which we seek to maximize a
function f(x), subject to the constraint g(x) = 0.
If x is D dimensional, the constraint g(x) = 0 cor-
responds to a subspace of dimensionality D − 1,
indicated by the red curve. The problem can
be solved by optimizing the Lagrangian function
L(x, λ) = f(x) + λg(x).

∇f(x)

∇g(x)

xA

g(x) = 0

then parallel to the constraint surface g(x) = 0, we see that the vector ∇g is normal
to the surface.

Next we seek a point x� on the constraint surface such that f(x) is maximized.
Such a point must have the property that the vector ∇f(x) is also orthogonal to the
constraint surface, as illustrated in Figure E.1, because otherwise we could increase
the value of f(x) by moving a short distance along the constraint surface. Thus ∇f
and ∇g are parallel (or anti-parallel) vectors, and so there must exist a parameter λ
such that

∇f + λ∇g = 0 (E.3)

where λ �= 0 is known as a Lagrange multiplier. Note that λ can have either sign.
At this point, it is convenient to introduce the Lagrangian function defined by

L(x, λ) ≡ f(x) + λg(x). (E.4)

The constrained stationarity condition (E.3) is obtained by setting ∇xL = 0. Fur-
thermore, the condition ∂L/∂λ = 0 leads to the constraint equation g(x) = 0.

Thus to find the maximum of a function f(x) subject to the constraint g(x) = 0,
we define the Lagrangian function given by (E.4) and we then find the stationary
point of L(x, λ) with respect to both x and λ. For a D-dimensional vector x, this
gives D +1 equations that determine both the stationary point x� and the value of λ.
If we are only interested in x�, then we can eliminate λ from the stationarity equa-
tions without needing to find its value (hence the term ‘undetermined multiplier’).

As a simple example, suppose we wish to find the stationary point of the function
f(x1, x2) = 1 − x2

1 − x2
2 subject to the constraint g(x1, x2) = x1 + x2 − 1 = 0, as

illustrated in Figure E.2. The corresponding Lagrangian function is given by

L(x, λ) = 1 − x2
1 − x2

2 + λ(x1 + x2 − 1). (E.5)

The conditions for this Lagrangian to be stationary with respect to x1, x2, and λ give
the following coupled equations:

−2x1 + λ = 0 (E.6)

−2x2 + λ = 0 (E.7)

x1 + x2 − 1 = 0. (E.8)
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Figure E.2 A simple example of the use of Lagrange multipli-
ers in which the aim is to maximize f(x1, x2) =
1 − x2

1 − x2
2 subject to the constraint g(x1, x2) = 0

where g(x1, x2) = x1 + x2 − 1. The circles show
contours of the function f(x1, x2), and the diagonal
line shows the constraint surface g(x1, x2) = 0.

g(x1, x2) = 0

x1

x2

(x�
1, x

�
2)

Solution of these equations then gives the stationary point as (x�
1, x

�
2) = (1

2
, 1

2
), and

the corresponding value for the Lagrange multiplier is λ = 1.
So far, we have considered the problem of maximizing a function subject to an

equality constraint of the form g(x) = 0. We now consider the problem of maxi-
mizing f(x) subject to an inequality constraint of the form g(x) � 0, as illustrated
in Figure E.3.

There are now two kinds of solution possible, according to whether the con-
strained stationary point lies in the region where g(x) > 0, in which case the con-
straint is inactive, or whether it lies on the boundary g(x) = 0, in which case the
constraint is said to be active. In the former case, the function g(x) plays no role
and so the stationary condition is simply ∇f(x) = 0. This again corresponds to
a stationary point of the Lagrange function (E.4) but this time with λ = 0. The
latter case, where the solution lies on the boundary, is analogous to the equality con-
straint discussed previously and corresponds to a stationary point of the Lagrange
function (E.4) with λ �= 0. Now, however, the sign of the Lagrange multiplier is
crucial, because the function f(x) will only be at a maximum if its gradient is ori-
ented away from the region g(x) > 0, as illustrated in Figure E.3. We therefore have
∇f(x) = −λ∇g(x) for some value of λ > 0.

For either of these two cases, the product λg(x) = 0. Thus the solution to the

Figure E.3 Illustration of the problem of maximizing
f(x) subject to the inequality constraint
g(x) � 0.

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0
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problem of maximizing f(x) subject to g(x) � 0 is obtained by optimizing the
Lagrange function (E.4) with respect to x and λ subject to the conditions

g(x) � 0 (E.9)

λ � 0 (E.10)

λg(x) = 0 (E.11)

These are known as the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn
and Tucker, 1951).

Note that if we wish to minimize (rather than maximize) the function f(x) sub-
ject to an inequality constraint g(x) � 0, then we minimize the Lagrangian function
L(x, λ) = f(x) − λg(x) with respect to x, again subject to λ � 0.

Finally, it is straightforward to extend the technique of Lagrange multipliers to
the case of multiple equality and inequality constraints. Suppose we wish to maxi-
mize f(x) subject to gj(x) = 0 for j = 1, . . . , J , and hk(x) � 0 for k = 1, . . . , K.
We then introduce Lagrange multipliers {λj} and {µk}, and then optimize the La-
grangian function given by

L(x, {λj}, {µk}) = f(x) +
J∑

j=1

λjgj(x) +
K∑

k=1

µkhk(x) (E.12)

subject to µk � 0 and µkhk(x) = 0 for k = 1, . . . , K. Extensions to constrained
functional derivatives are similarly straightforward. For a more detailed discussionAppendix D
of the technique of Lagrange multipliers, see Nocedal and Wright (1999).
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Mika, S., G. Rätsch, J. Weston, and B. Schölkopf
(1999). Fisher discriminant analysis with ker-
nels. In Y. H. Hu, J. Larsen, E. Wilson, and
S. Douglas (Eds.), Neural Networks for Signal
Processing IX, pp. 41–48. IEEE.

Minka, T. (2001a). Expectation propagation for ap-
proximate Bayesian inference. In J. Breese and
D. Koller (Eds.), Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelli-
gence, pp. 362–369. Morgan Kaufmann.

Minka, T. (2001b). A family of approximate al-
gorithms for Bayesian inference. Ph. D. thesis,
MIT.

Minka, T. (2004). Power EP. Technical Report
MSR-TR-2004-149, Microsoft Research Cam-
bridge.

Minka, T. (2005). Divergence measures and mes-
sage passing. Technical Report MSR-TR-2005-
173, Microsoft Research Cambridge.

Minka, T. P. (2001c). Automatic choice of dimen-
sionality for PCA. In T. K. Leen, T. G. Diet-
terich, and V. Tresp (Eds.), Advances in Neural
Information Processing Systems, Volume 13, pp.
598–604. MIT Press.

Minsky, M. L. and S. A. Papert (1969). Perceptrons.
MIT Press. Expanded edition 1990.

Miskin, J. W. and D. J. C. MacKay (2001). Ensem-
ble learning for blind source separation. In S. J.
Roberts and R. M. Everson (Eds.), Independent
Component Analysis: Principles and Practice.
Cambridge University Press.

Møller, M. (1993). Efficient Training of Feed-
Forward Neural Networks. Ph. D. thesis, Aarhus
University, Denmark.

Moody, J. and C. J. Darken (1989). Fast learning in
networks of locally-tuned processing units. Neu-
ral Computation 1(2), 281–294.

Moore, A. W. (2000). The anchors hierarch: us-
ing the triangle inequality to survive high dimen-
sional data. In Proceedings of the Twelfth Con-
ference on Uncertainty in Artificial Intelligence,
pp. 397–405.

Müller, K. R., S. Mika, G. Rätsch, K. Tsuda, and
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Opper, M. and O. Winther (1999). A Bayesian ap-
proach to on-line learning. In D. Saad (Ed.), On-
Line Learning in Neural Networks, pp. 363–378.
Cambridge University Press.

Opper, M. and O. Winther (2000a). Gaussian
processes and SVM: mean field theory and
leave-one-out. In A. J. Smola, P. L. Bartlett,
B. Schölkopf, and D. Shuurmans (Eds.), Ad-
vances in Large Margin Classifiers, pp. 311–326.
MIT Press.

Opper, M. and O. Winther (2000b). Gaussian
processes for classification. Neural Computa-
tion 12(11), 2655–2684.

Osuna, E., R. Freund, and F. Girosi (1996). Support
vector machines: training and applications. A.I.
Memo AIM-1602, MIT.

Papoulis, A. (1984). Probability, Random Variables,
and Stochastic Processes (Second ed.). McGraw-
Hill.

Parisi, G. (1988). Statistical Field Theory. Addison-
Wesley.

Pearl, J. (1988). Probabilistic Reasoning in Intelli-
gent Systems. Morgan Kaufmann.

Pearlmutter, B. A. (1994). Fast exact multiplication
by the Hessian. Neural Computation 6(1), 147–
160.

Pearlmutter, B. A. and L. C. Parra (1997). Maximum
likelihood source separation: a context-sensitive
generalization of ICA. In M. C. Mozer, M. I. Jor-
dan, and T. Petsche (Eds.), Advances in Neural
Information Processing Systems, Volume 9, pp.
613–619. MIT Press.

Pearson, K. (1901). On lines and planes of closest fit
to systems of points in space. The London, Edin-
burgh and Dublin Philosophical Magazine and
Journal of Science, Sixth Series 2, 559–572.

Platt, J. C. (1999). Fast training of support vector
machines using sequential minimal optimization.
In B. Schölkopf, C. J. C. Burges, and A. J. Smola
(Eds.), Advances in Kernel Methods – Support
Vector Learning, pp. 185–208. MIT Press.



724 REFERENCES

Platt, J. C. (2000). Probabilities for SV machines.
In A. J. Smola, P. L. Bartlett, B. Schölkopf, and
D. Shuurmans (Eds.), Advances in Large Margin
Classifiers, pp. 61–73. MIT Press.

Platt, J. C., N. Cristianini, and J. Shawe-Taylor
(2000). Large margin DAGs for multiclass clas-
sification. In S. A. Solla, T. K. Leen, and K. R.
Müller (Eds.), Advances in Neural Information
Processing Systems, Volume 12, pp. 547–553.
MIT Press.

Poggio, T. and F. Girosi (1990). Networks for ap-
proximation and learning. Proceedings of the
IEEE 78(9), 1481–1497.

Powell, M. J. D. (1987). Radial basis functions for
multivariable interpolation: a review. In J. C.
Mason and M. G. Cox (Eds.), Algorithms for
Approximation, pp. 143–167. Oxford University
Press.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery (1992). Numerical Recipes in C:
The Art of Scientific Computing (Second ed.).
Cambridge University Press.

Qazaz, C. S., C. K. I. Williams, and C. M. Bishop
(1997). An upper bound on the Bayesian error
bars for generalized linear regression. In S. W.
Ellacott, J. C. Mason, and I. J. Anderson (Eds.),
Mathematics of Neural Networks: Models, Algo-
rithms and Applications, pp. 295–299. Kluwer.

Quinlan, J. R. (1986). Induction of decision trees.
Machine Learning 1(1), 81–106.

Quinlan, J. R. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann.

Rabiner, L. and B. H. Juang (1993). Fundamentals
of Speech Recognition. Prentice Hall.

Rabiner, L. R. (1989). A tutorial on hidden Markov
models and selected applications in speech
recognition. Proceedings of the IEEE 77(2),
257–285.

Ramasubramanian, V. and K. K. Paliwal (1990). A
generalized optimization of the k-d tree for fast
nearest-neighbour search. In Proceedings Fourth
IEEE Region 10 International Conference (TEN-
CON’89), pp. 565–568.

Ramsey, F. (1931). Truth and probability. In
R. Braithwaite (Ed.), The Foundations of Math-
ematics and other Logical Essays. Humanities
Press.

Rao, C. R. and S. K. Mitra (1971). Generalized In-
verse of Matrices and Its Applications. Wiley.

Rasmussen, C. E. (1996). Evaluation of Gaussian
Processes and Other Methods for Non-Linear
Regression. Ph. D. thesis, University of Toronto.

Rasmussen, C. E. and J. Quiñonero-Candela (2005).
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1-of-K coding scheme, 424

acceptance criterion, 538, 541, 544
activation function, 180, 213, 227
active constraint, 328, 709
AdaBoost, 657, 658
adaline, 196
adaptive rejection sampling, 530
ADF, see assumed density filtering
AIC, see Akaike information criterion
Akaike information criterion, 33, 217
α family of divergences, 469
α recursion, 620
ancestral sampling, 365, 525, 613
annular flow, 679
AR model, see autoregressive model
arc, 360
ARD, see automatic relevance determination
ARMA, see autoregressive moving average
assumed density filtering, 510
autoassociative networks, 592
automatic relevance determination, 259, 312, 349,

485, 582
autoregressive hidden Markov model, 632
autoregressive model, 609
autoregressive moving average, 304

back-tracking, 415, 630

backgammon, 3
backpropagation, 241
bagging, 656
basis function, 138, 172, 204, 227
batch training, 240
Baum-Welch algorithm, 618
Bayes’ theorem, 15
Bayes, Thomas, 21
Bayesian analysis, vii, 9, 21

hierarchical, 372
model averaging, 654

Bayesian information criterion, 33, 216
Bayesian model comparison, 161, 473, 483
Bayesian network, 360
Bayesian probability, 21
belief propagation, 403
Bernoulli distribution, 69, 113, 685

mixture model, 444
Bernoulli, Jacob, 69
beta distribution, 71, 686
beta recursion, 621
between-class covariance, 189
bias, 27, 149
bias parameter, 138, 181, 227, 346
bias-variance trade-off, 147
BIC, see Bayesian information criterion
binary entropy, 495
binomial distribution, 70, 686
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biological sequence, 610
bipartite graph, 401
bits, 49
blind source separation, 591
blocked path, 374, 378, 384
Boltzmann distribution, 387
Boltzmann, Ludwig Eduard, 53
Boolean logic, 21
boosting, 657
bootstrap, 23, 656
bootstrap filter, 646
box constraints, 333, 342
Box-Muller method, 527

C4.5, 663
calculus of variations, 462
canonical correlation analysis, 565
canonical link function, 212
CART, see classification and regression trees
Cauchy distribution, 527, 529, 692
causality, 366
CCA, see canonical correlation analysis
central differences, 246
central limit theorem, 78
chain graph, 393
chaining, 555
Chapman-Kolmogorov equations, 397
child node, 361
Cholesky decomposition, 528
chunking, 335
circular normal, see von Mises distribution
classical probability, 21
classification, 3
classification and regression trees, 663
clique, 385
clustering, 3
clutter problem, 511
co-parents, 383, 492
code-book vectors, 429
combining models, 45, 653
committee, 655
complete data set, 440
completing the square, 86
computational learning theory, 326, 344
concave function, 56

concentration parameter, 108, 693
condensation algorithm, 646
conditional entropy, 55
conditional expectation, 20
conditional independence, 46, 372, 383
conditional mixture model, see mixture model
conditional probability, 14
conjugate prior, 68, 98, 117, 490
convex duality, 494
convex function, 55, 493
convolutional neural network, 267
correlation matrix, 567
cost function, 41
covariance, 20

between-class, 189
within-class, 189

covariance matrix
diagonal, 84
isotropic, 84
partitioned, 85, 307
positive definite, 308

Cox’s axioms, 21
credit assignment, 3
cross-entropy error function, 206, 209, 235, 631,

666
cross-validation, 32, 161
cumulative distribution function, 18
curse of dimensionality, 33, 36
curve fitting, 4

D map, see dependency map
d-separation, 373, 378, 443
DAG, see directed acyclic graph
DAGSVM, 339
data augmentation, 537
data compression, 429
decision boundary, 39, 179
decision region, 39, 179
decision surface, see decision boundary
decision theory, 38
decision tree, 654, 663, 673
decomposition methods, 335
degrees of freedom, 559
degrees-of-freedom parameter, 102, 693
density estimation, 3, 67
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density network, 597
dependency map, 392
descendant node, 376
design matrix, 142, 347
differential entropy, 53
digamma function, 687
directed acyclic graph, 362
directed cycle, 362
directed factorization, 381
Dirichlet distribution, 76, 687
Dirichlet, Lejeune, 77
discriminant function, 43, 180, 181
discriminative model, 43, 203
distortion measure, 424
distributive law of multiplication, 396
DNA, 610
document retrieval, 299
dual representation, 293, 329
dual-energy gamma densitometry, 678
dynamic programming, 411
dynamical system, 548

E step, see expectation step
early stopping, 259
ECM, see expectation conditional maximization
edge, 360
effective number of observations, 72, 101
effective number of parameters, 9, 170, 281
elliptical K-means, 444
EM, see expectation maximization
emission probability, 611
empirical Bayes, see evidence approximation
energy function, 387
entropy, 49

conditional, 55
differential, 53
relative, 55

EP, see expectation propagation
ε-tube, 341
ε-insensitive error function, 340
equality constraint, 709
equivalent kernel, 159, 301
erf function, 211
error backpropagation, see backpropagation
error function, 5, 23

error-correcting output codes, 339
Euler, Leonhard, 465
Euler-Lagrange equations, 705
evidence approximation, 165, 347, 581
evidence function, 161
expectation, 19
expectation conditional maximization, 454
expectation maximization, 113, 423, 440

Gaussian mixture, 435
generalized, 454
sampling methods, 536

expectation propagation, 315, 468, 505
expectation step, 437
explaining away, 378
exploitation, 3
exploration, 3
exponential distribution, 526, 688
exponential family, 68, 113, 202, 490
extensive variables, 490

face detection, 2
face tracking, 355
factor analysis, 583

mixture model, 595
factor graph, 360, 399, 625
factor loading, 584
factorial hidden Markov model, 633
factorized distribution, 464, 476
feature extraction, 2
feature map, 268
feature space, 292, 586
Fisher information matrix, 298
Fisher kernel, 298
Fisher’s linear discriminant, 186
flooding schedule, 417
forward kinematics, 272
forward problem, 272
forward propagation, 228, 243
forward-backward algorithm, 618
fractional belief propagation, 517
frequentist probability, 21
fuel system, 376
function interpolation, 299
functional, 462, 703

derivative, 463
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gamma densitometry, 678
gamma distribution, 529, 688
gamma function, 71
gating function, 672
Gauss, Carl Friedrich, 79
Gaussian, 24, 78, 688

conditional, 85, 93
marginal, 88, 93
maximum likelihood, 93
mixture, 110, 270, 273, 430
sequential estimation, 94
sufficient statistics, 93
wrapped, 110

Gaussian kernel, 296
Gaussian process, 160, 303
Gaussian random field, 305
Gaussian-gamma distribution, 101, 690
Gaussian-Wishart distribution, 102, 475, 478, 690
GEM, see expectation maximization, generalized
generalization, 2
generalized linear model, 180, 213
generalized maximum likelihood, see evidence ap-

proximation
generative model, 43, 196, 297, 365, 572, 631
generative topographic mapping, 597

directional curvature, 599
magnification factor, 599

geodesic distance, 596
Gibbs sampling, 542

blocking, 546
Gibbs, Josiah Willard, 543
Gini index, 666
global minimum, 237
gradient descent, 240
Gram matrix, 293
graph-cut algorithm, 390
graphical model, 359

bipartite, 401
directed, 360
factorization, 362, 384
fully connected, 361
inference, 393
tree, 398
treewidth, 417
triangulated, 416

undirected, 360
Green’s function, 299
GTM, see generative topographic mapping

Hamilton, William Rowan, 549
Hamiltonian dynamics, 548
Hamiltonian function, 549
Hammersley-Clifford theorem, 387
handwriting recognition, 1, 610, 614
handwritten digit, 565, 614, 677
head-to-head path, 376
head-to-tail path, 375
Heaviside step function, 206
Hellinger distance, 470
Hessian matrix, 167, 215, 217, 238, 249

diagonal approximation, 250
exact evaluation, 253
fast multiplication, 254
finite differences, 252
inverse, 252
outer product approximation, 251

heteroscedastic, 273, 311
hidden Markov model, 297, 610

autoregressive, 632
factorial, 633
forward-backward algorithm, 618
input-output, 633
left-to-right, 613
maximum likelihood, 615
scaling factor, 627
sum-product algorithm, 625
switching, 644
variational inference, 625

hidden unit, 227
hidden variable, 84, 364, 430, 559
hierarchical Bayesian model, 372
hierarchical mixture of experts, 673
hinge error function, 337
Hinton diagram, 584
histogram density estimation, 120
HME, see hierarchical mixture of experts
hold-out set, 11
homogeneous flow, 679
homogeneous kernel, 292
homogeneous Markov chain, 540, 608
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Hooke’s law, 580
hybrid Monte Carlo, 548
hyperparameter, 71, 280, 311, 346, 372, 502
hyperprior, 372

I map, see independence map
i.i.d., see independent identically distributed
ICA, see independent component analysis
ICM, see iterated conditional modes
ID3, 663
identifiability, 435
image de-noising, 387
importance sampling, 525, 532
importance weights, 533
improper prior, 118, 259, 472
imputation step, 537
imputation-posterior algorithm, 537
inactive constraint, 328, 709
incomplete data set, 440
independence map, 392
independent component analysis, 591
independent factor analysis, 592
independent identically distributed, 26, 379
independent variables, 17
independent, identically distributed, 605
induced factorization, 485
inequality constraint, 709
inference, 38, 42
information criterion, 33
information geometry, 298
information theory, 48
input-output hidden Markov model, 633
intensive variables, 490
intrinsic dimensionality, 559
invariance, 261
inverse gamma distribution, 101
inverse kinematics, 272
inverse problem, 272
inverse Wishart distribution, 102
IP algorithm, see imputation-posterior algorithm
IRLS, see iterative reweighted least squares
Ising model, 389
isomap, 596
isometric feature map, 596
iterated conditional modes, 389, 415

iterative reweighted least squares, 207, 210, 316,
354, 672

Jacobian matrix, 247, 264
Jensen’s inequality, 56
join tree, 416
junction tree algorithm, 392, 416

K nearest neighbours, 125
K-means clustering algorithm, 424, 443
K-medoids algorithm, 428
Kalman filter, 304, 637

extended, 644
Kalman gain matrix, 639
Kalman smoother, 637
Karhunen-Loève transform, 561
Karush-Kuhn-Tucker conditions, 330, 333, 342,

710
kernel density estimator, 122, 326
kernel function, 123, 292, 294

Fisher, 298
Gaussian, 296
homogeneous, 292
nonvectorial inputs, 297
stationary, 292

kernel PCA, 586
kernel regression, 300, 302
kernel substitution, 292
kernel trick, 292
kinetic energy, 549
KKT, see Karush-Kuhn-Tucker conditions
KL divergence, see Kullback-Leibler divergence
kriging, see Gaussian process
Kullback-Leibler divergence, 55, 451, 468, 505

Lagrange multiplier, 707
Lagrange, Joseph-Louis, 329
Lagrangian, 328, 332, 341, 708
laminar flow, 678
Laplace approximation, 213, 217, 278, 315, 354
Laplace, Pierre-Simon, 24
large margin, see margin
lasso, 145
latent class analysis, 444
latent trait model, 597
latent variable, 84, 364, 430, 559
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lattice diagram, 414, 611, 621, 629
LDS, see linear dynamical system
leapfrog discretization, 551
learning, 2
learning rate parameter, 240
least-mean-squares algorithm, 144
leave-one-out, 33
likelihood function, 22
likelihood weighted sampling, 534
linear discriminant, 181

Fisher, 186
linear dynamical system, 84, 635

inference, 638
linear independence, 696
linear regression, 138

EM, 448
mixture model, 667
variational, 486

linear smoother, 159
linear-Gaussian model, 87, 370
linearly separable, 179
link, 360
link function, 180, 213
Liouville’s Theorem, 550
LLE, see locally linear embedding
LMS algorithm, see least-mean-squares algorithm
local minimum, 237
local receptive field, 268
locally linear embedding, 596
location parameter, 118
log odds, 197
logic sampling, 525
logistic regression, 205, 336

Bayesian, 217, 498
mixture model, 670
multiclass, 209

logistic sigmoid, 114, 139, 197, 205, 220, 227, 495
logit function, 197
loopy belief propagation, 417
loss function, 41
loss matrix, 41
lossless data compression, 429
lossy data compression, 429
lower bound, 484

M step, see maximization step

machine learning, vii
macrostate, 51
Mahalanobis distance, 80
manifold, 38, 590, 595, 681
MAP, see maximum posterior
margin, 326, 327, 502

error, 334
soft, 332

marginal likelihood, 162, 165
marginal probability, 14
Markov blanket, 382, 384, 545
Markov boundary, see Markov blanket
Markov chain, 397, 539

first order, 607
homogeneous, 540, 608
second order, 608

Markov chain Monte Carlo, 537
Markov model, 607

homogeneous, 612
Markov network, see Markov random field
Markov random field, 84, 360, 383
max-sum algorithm, 411, 629
maximal clique, 385
maximal spanning tree, 416
maximization step, 437
maximum likelihood, 9, 23, 26, 116

Gaussian mixture, 432
singularities, 480
type 2, see evidence approximation

maximum margin, see margin
maximum posterior, 30, 441
MCMC, see Markov chain Monte Carlo
MDN, see mixture density network
MDS, see multidimensional scaling
mean, 24
mean field theory, 465
mean value theorem, 52
measure theory, 19
memory-based methods, 292
message passing, 396

pending message, 417
schedule, 417
variational, 491

Metropolis algorithm, 538
Metropolis-Hastings algorithm, 541
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microstate, 51
minimum risk, 44
Minkowski loss, 48
missing at random, 441, 579
missing data, 579
mixing coefficient, 111
mixture component, 111
mixture density network, 272, 673
mixture distribution, see mixture model
mixture model, 162, 423

conditional, 273, 666
linear regression, 667
logistic regression, 670
symmetries, 483

mixture of experts, 672
mixture of Gaussians, 110, 270, 273, 430
MLP, see multilayer perceptron
MNIST data, 677
model comparison, 6, 32, 161, 473, 483
model evidence, 161
model selection, 162
moment matching, 506, 510
momentum variable, 548
Monte Carlo EM algorithm, 536
Monte Carlo sampling, 24, 523
Moore-Penrose pseudo-inverse, see pseudo-inverse
moralization, 391, 401
MRF, see Markov random field
multidimensional scaling, 596
multilayer perceptron, 226, 229
multimodality, 272
multinomial distribution, 76, 114, 690
multiplicity, 51
mutual information, 55, 57

Nadaraya-Watson, see kernel regression
naive Bayes model, 46, 380
nats, 50
natural language modelling, 610
natural parameters, 113
nearest-neighbour methods, 124
neural network, 225

convolutional, 267
regularization, 256
relation to Gaussian process, 319

Newton-Raphson, 207, 317
node, 360
noiseless coding theorem, 50
nonidentifiability, 585
noninformative prior, 23, 117
nonparametric methods, 68, 120
normal distribution, see Gaussian
normal equations, 142
normal-gamma distribution, 101, 691
normal-Wishart distribution, 102, 475, 478, 691
normalized exponential, see softmax function
novelty detection, 44
ν-SVM, 334

object recognition, 366
observed variable, 364
Occam factor, 217
oil flow data, 34, 560, 568, 678
Old Faithful data, 110, 479, 484, 681
on-line learning, see sequential learning
one-versus-one classifier, 183, 339
one-versus-the-rest classifier, 182, 338
ordered over-relaxation, 545
Ornstein-Uhlenbeck process, 305
orthogonal least squares, 301
outlier, 44, 185, 212
outliers, 103
over-fitting, 6, 147, 434, 464
over-relaxation, 544

PAC learning, see probably approximately correct
PAC-Bayesian framework, 345
parameter shrinkage, 144
parent node, 361
particle filter, 645
partition function, 386, 554
Parzen estimator, see kernel density estimator
Parzen window, 123
pattern recognition, vii
PCA, see principal component analysis
pending message, 417
perceptron, 192

convergence theorem, 194
hardware, 196

perceptron criterion, 193
perfect map, 392
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periodic variable, 105
phase space, 549
photon noise, 680
plate, 363
polynomial curve fitting, 4, 362
polytree, 399
position variable, 548
positive definite covariance, 81
positive definite matrix, 701
positive semidefinite covariance, 81
positive semidefinite matrix, 701
posterior probability, 17
posterior step, 537
potential energy, 549
potential function, 386
power EP, 517
power method, 563
precision matrix, 85
precision parameter, 24
predictive distribution, 30, 156
preprocessing, 2
principal component analysis, 561, 572, 593

Bayesian, 580
EM algorithm, 577
Gibbs sampling, 583
mixture distribution, 595
physical analogy, 580

principal curve, 595
principal subspace, 561
principal surface, 596
prior, 17

conjugate, 68, 98, 117, 490
consistent, 257
improper, 118, 259, 472
noninformative, 23, 117

probabilistic graphical model, see graphical model
probabilistic PCA, 570
probability, 12

Bayesian, 21
classical, 21
density, 17
frequentist, 21
mass function, 19
prior, 45
product rule, 13, 14, 359

sum rule, 13, 14, 359
theory, 12

probably approximately correct, 344
probit function, 211, 219
probit regression, 210
product rule of probability, 13, 14, 359
proposal distribution, 528, 532, 538
protected conjugate gradients, 335
protein sequence, 610
pseudo-inverse, 142, 185
pseudo-random numbers, 526

quadratic discriminant, 199
quality parameter, 351

radial basis function, 292, 299
Rauch-Tung-Striebel equations, 637
regression, 3
regression function, 47, 95
regularization, 10

Tikhonov, 267
regularized least squares, 144
reinforcement learning, 3
reject option, 42, 45
rejection sampling, 528
relative entropy, 55
relevance vector, 348
relevance vector machine, 161, 345
responsibility, 112, 432, 477
ridge regression, 10
RMS error, see root-mean-square error
Robbins-Monro algorithm, 95
robot arm, 272
robustness, 103, 185
root node, 399
root-mean-square error, 6
Rosenblatt, Frank, 193
rotation invariance, 573, 585
RTS equations, see Rauch-Tung-Striebel equations
running intersection property, 416
RVM, see relevance vector machine

sample mean, 27
sample variance, 27
sampling-importance-resampling, 534
scale invariance, 119, 261
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scale parameter, 119
scaling factor, 627
Schwarz criterion, see Bayesian information crite-

rion
self-organizing map, 598
sequential data, 605
sequential estimation, 94
sequential gradient descent, 144, 240
sequential learning, 73, 143
sequential minimal optimization, 335
serial message passing schedule, 417
Shannon, Claude, 55
shared parameters, 368
shrinkage, 10
Shur complement, 87
sigmoid, see logistic sigmoid
simplex, 76
single-class support vector machine, 339
singular value decomposition, 143
sinusoidal data, 682
SIR, see sampling-importance-resampling
skip-layer connection, 229
slack variable, 331
slice sampling, 546
SMO, see sequential minimal optimization
smoother matrix, 159
smoothing parameter, 122
soft margin, 332
soft weight sharing, 269
softmax function, 115, 198, 236, 274, 356, 497
SOM, see self-organizing map
sparsity, 145, 347, 349, 582
sparsity parameter, 351
spectrogram, 606
speech recognition, 605, 610
sphereing, 568
spline functions, 139
standard deviation, 24
standardizing, 425, 567
state space model, 609

switching, 644
stationary kernel, 292
statistical bias, see bias
statistical independence, see independent variables

statistical learning theory, see computational learn-
ing theory, 326, 344

steepest descent, 240
Stirling’s approximation, 51
stochastic, 5
stochastic EM, 536
stochastic gradient descent, 144, 240
stochastic process, 305
stratified flow, 678
Student’s t-distribution, 102, 483, 691
subsampling, 268
sufficient statistics, 69, 75, 116
sum rule of probability, 13, 14, 359
sum-of-squares error, 5, 29, 184, 232, 662
sum-product algorithm, 399, 402

for hidden Markov model, 625
supervised learning, 3
support vector, 330
support vector machine, 225

for regression, 339
multiclass, 338

survival of the fittest, 646
SVD, see singular value decomposition
SVM, see support vector machine
switching hidden Markov model, 644
switching state space model, 644
synthetic data sets, 682

tail-to-tail path, 374
tangent distance, 265
tangent propagation, 262, 263
tapped delay line, 609
target vector, 2
test set, 2, 32
threshold parameter, 181
tied parameters, 368
Tikhonov regularization, 267
time warping, 615
tomography, 679
training, 2
training set, 2
transition probability, 540, 610
translation invariance, 118, 261
tree-reweighted message passing, 517
treewidth, 417
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trellis diagram, see lattice diagram
triangulated graph, 416
type 2 maximum likelihood, see evidence approxi-

mation

undetermined multiplier, see Lagrange multiplier
undirected graph, see Markov random field
uniform distribution, 692
uniform sampling, 534
uniquenesses, 584
unobserved variable, see latent variable
unsupervised learning, 3
utility function, 41

validation set, 11, 32
Vapnik-Chervonenkis dimension, 344
variance, 20, 24, 149
variational inference, 315, 462, 635

for Gaussian mixture, 474
for hidden Markov model, 625
local, 493

VC dimension, see Vapnik-Chervonenkis dimen-
sion

vector quantization, 429
vertex, see node
visualization, 3
Viterbi algorithm, 415, 629
von Mises distribution, 108, 693

wavelets, 139
weak learner, 657
weight decay, 10, 144, 257
weight parameter, 227
weight sharing, 268

soft, 269
weight vector, 181
weight-space symmetry, 231, 281
weighted least squares, 668
well-determined parameters, 170
whitening, 299, 568
Wishart distribution, 102, 693
within-class covariance, 189
Woodbury identity, 696
wrapped distribution, 110

Yellowstone National Park, 110, 681




