CPE 722 - 1ª série de exercícios - Agrupamentos, Classificadores, Ruído

Obs: A resolução pode ser em grupo. Mas como série visa operar e consolidar os conceitos, é importante que cada um tente entender o problema e encontrar a sua solução.

1 - Os oito elementos à classificar apresentados a seguir são unidimensionais:

- 1.1 Calcule a média m_0 e a dissimilaridade total F_0 do conjunto de elementos.
- 1.2 Classifique os elementos usando um classificador k-means cujos três padrões iniciais são -3.0 -0.7 e 2.0. Calcule o F_{in} e F_{out} obtidos á partir de suas fórmulas de definição, comprovando que sua soma é igual ao F_0 calculado anteriormente.
- 1.3 Para a classificação obtida em 1.2 calcule a dispersão inter-classes das duas classes mais afastadas pelo critério a) do vizinho mais próximo; b) do vizinho mais distante; c) da distância entre os baricentros.
- 1.4 A partir do classificador obtido em 1.2 reduza o número de classes de uma unidade usando um algorítmo associativo. Que classes você escolhe para associar, e qual os F_{in} e F_{out} após a associação ?
- 1.5 A partir do classificador obtido em 1.2 aumente o número de classes de uma unidade usando um algorítmo dissociativo. Que classe você escolhe para dissociar, e qual os F_{in} e F_{out} após a dissociação ?
- 1.6 A partir dos resultados acima é possível concluir algo a respeito do nível do "agrupamento natural ótimo" ?
- ${\bf 2}\,$ Considere um conjunto de classes C_i , $i=1,\,2,\,...$ com baricentros \underline{w}_i e raio de similaridade $r_0.$
- 2.1 Mostre que a equação do plano separador entre duas classes cujos centros são \underline{w}_j e \underline{w}_k pelo critério do padrão mais próximo (critério 1) é

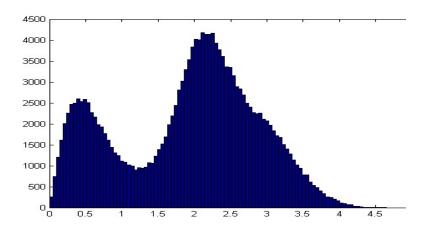
$$2 \underline{\mathbf{x}}^{\mathsf{t}} (\underline{\mathbf{w}}_{\mathsf{i}} - \underline{\mathbf{w}}_{\mathsf{k}}) + |\underline{\mathbf{w}}_{\mathsf{k}}|^2 - |\underline{\mathbf{w}}_{\mathsf{i}}|^2 = 0$$

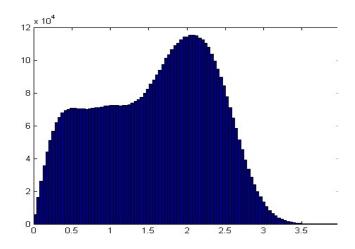
2.2 - Mostre que a equação da esfera separadora pelo critério de similaridade mínima r₀ (critério 2) é

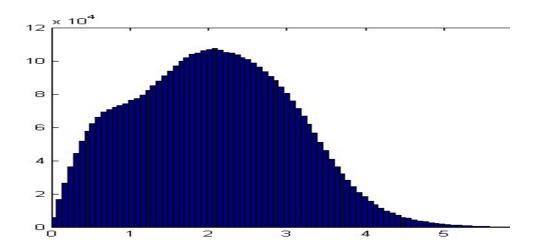
$$\underline{x}^{t}(\underline{x}-2\underline{w}_{k})+\left|\underline{w}_{k}\right|^{2}-r_{0}^{2}=0$$

2.3 - Mostre que o domínio da classe C_k com baricentro \underline{w}_k e raio de similaridade r_0 pelos critérios de centro mais próximo (critério 1) e de similaridade mínima (critério 2) é definido por todo \underline{x} que satisfaz simultaneamente as inequações

$$\underline{x}^{t}(\underline{x} - 2\underline{w}_{k}) \leq r_{0}^{2} - \left|\underline{w}_{k}\right|^{2}$$


$$2\underline{x}^{t}(\underline{w}_{i} - \underline{w}_{k}) \leq \left|\underline{w}_{i}\right|^{2} - \left|\underline{w}_{k}\right|^{2} \quad \forall i \neq k$$


3 - Considere um classificador em que todas as entradas \underline{x} e todos os padrões de classe \underline{w}_i tem módulo unitário. Para este caso mostre que:


 $a-u_i=\underline{x}^t\ \underline{w}_i$ (como nos neurônios das redes feedforward) é uma medida de similaridade entre \underline{x} e \underline{w}_i

b - a condição para que uma entrada \underline{x} pertença à uma classe com centro em \underline{w} e raio de similaridade r_0 é que $u_i = \underline{x}^t \ \underline{w}_i > 1 - (r_0^2/2)$.

– As f iguras abaixo apresentam as projeções das entradas em cada uma das suas 3 dimensões. Estime o número de classes e o desvio padrão do ruído das mesmas em cada dimensão,

