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is assumed to be uniform from 1 to 3, corresponding to more certain initial
knowledge about 0. The results of this change are most pronounced when 7
‘s small. It is here also that the differences between the Bayesian and the
maximum likelihood solutions are most significant. As n increases, the im-
portance of prior knowledge diminishes, and in this particular case the curves
for 11 = 25 are virtually identical. In general, one would expect the difference
to be small when the number of unlabelled samples is several times the
effective number of labelled samples used to determine .

6.5.4 Decision-Directed Approximations

Although the problem of unsupervised learning can be stated as merely the
problem of estimating parameters of a mixture density, neither the maximum
likelihood nor the Bayesian approach yields analytically simple results.
Exact solutions for even the simplest nontrivial examples lead to computa-
tional requirements that grow exponentially with the number of samples.
The problem of unsupervised learning is too important to abandon just
because exact solutions are hard to find, however. and numerous procedures
for obtaining approximate solutions have been suggested.

Since the basic difference between supervised and unsupervised learning
is the presence or absence of labels for the samples, an obvious approach to
unsupervised learning is to use the a priori information to design a classifier
and to use the decisions of this classifier to label the samples. This is called
the decision-directed approach to unsupervised learning, and it is subject to
many variations. It can be applied sequentially by updating the classifier
each time an unlabelled sample is classified. Alternatively, it can be applied
in parallel by waiting until all » samples are classified before updating the
classifier, If desired, this process can be repeated until no changes occur in
the way the samples are labelled.* Various heuristics can be introduced to
make the extent of any corrections depend upon the confidence of the
classification decision.

There are some obvious dangers associated with the decision-directed
approach. If the initial classifier is not reasonably good, or if an unfortunate
sequence of samples is encountered, the errors in classifying the unlabelled
samples can drive the classifier the wrong way, resulting in a solution corre-
sponding roughly to onc of the lesser peaks of the likelihood function. Even
if the initial classifier is optimal, the resulting labelling will not in general
be the same as the true class membership; the act of classification will
exclude samples from the tails of the desired distribution, and will include
samples from the tails of the other distributions. Thus, if there is significant

* The Basic Isodata procedure described in Section 6.4.4 is essentially a decision-directed
procedure of this type.
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hastml conclusio.ns are that most of these procedures work well if thémpara~
gm ric assumptions are Yalld, if there is little overlap between the component
ensities, and if the initial classifier design is at least roughly correct

6.6 DATA DESCRIPTION AND CLUSTERING
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FIGURE 6.7. Data sets having identical second-order statistics.
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If the goal is to find subclasses, a more direct alternative is to use a
clustering procedure. Roughly speaking, clustering procedures yield a data
description in terms of clusters or groups of data points that possess strong
internal similarities. The more formal procedures use a criterion function,
such as the sum of the squared distances from the cluster centers, and seek
the grouping that extremizes the criterion function. Because even this can
lead to unmanageable computational problems, other procedures have been
proposed that are intuitively appealing but that lead to solutions having no
established properties. Their use is usually justified on the ground that they
are easy to apply and often yield interesting results that may guide the
application of more rigorous procedures.

6.7 SIMILARITY MEASURES

Once we describe the clustering problem as one of finding natural groupings
in a sct of data, we are obliged to define what we mean by a natural grouping.
In what sense are we to say that the samples in one cluster are more like one
another than like samples in other clusters? This question actually involves
two separate issues—how should one measure the similarity between samples,
and how should one evaluate a partitioning of a set of samples into clusters ?
In this section we address the first of these issues.

The most obvious measure of the similarity (or dissimilarity) between two
samples is the distance between them. One way to begin a clustering investi-
gation is to define a suitable distance function and compute the matrix of
distances between all pairs of samples. If distance is a good measure of
dissimilarity, then one would expect the distance between samples in the
same cluster to be significantly less than the distance between samples in
different clusters.

Suppose for the moment that we say that two samples belong to the same
cluster if the Euclidean distance between them is less than some threshold
distance d,. It is immediately obvious that the choice of dy is very important.
If dy is very large, all of the samples will be assigned to one cluster. If d, is
very small, each sample will form an isolated cluster. To obtain “natural”
clusters, d, will have to be greater than typical within-cluster distances and
less than typical between-cluster distances (see Figure 6.8).

Less obvious perhaps is the fact that the results of clustering depend on
the choice of Euclidean distance as a measure of dissimilarity. This choice
implies that the feature space is isotropic. Consequently, clusters defined by
Euclidean distance will be invariant to translations or rotations—rigid-body
motions of the data points. However. they will not be invariant to linear
transformations in general, or to other transformations that distort the
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FIGURE 6.8. The effect of a distance threshold on clustering (Lines are drawn
between points closer than a distance d, apart). ’

distance relationships. Thus, as Figure 6.9 illustrates, a simple scaling of the
coordinate axes can result in a different grouping of the data into clusters.
Of course, this is of no concern for problems in which arbitrary rescaling is
an unnatural or meaningless transformation. However, if clusters are to
mean anything, they should be invariant to transformations natural to the
problem.

One way to achieve invariance is to normalize the data prior to clustering.
For example, to obtain invariance to displacement and scale changes, one
might translate and scale the axes so that all of the features have zero mean
and unit variance. To obtain invariance to rotation, one might rotate the
axes so that they coincide with the eigenvectors of the sample covariance
matrix. This transformation to principal components can be preceded andfor
followed by normalization for scale.

However, the reader should not conclude that this kind of normalization
is necessarily desirable. Consider, for example, the matter of translating and
scaling the axes so that each feature has zero mean and unit variance. The
rationale usually given for this normalization is that it prevents certain
features from dominating distance calculations merely because they have
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FIGURE 6.10. Undesirable effects of normalization.

meaningful measure of their similarity, then the normalized inner product
x'x’
BN
may be an appropriate similarity function. This measure, which is the cosine
of the angle between x and x', is invariant to rotation and dilation, though
it is not invariant to translation and general linear transformations.
When the features are binary valued (0 or 1), this similarity function has
a simple nongeometrical jnterpretation in terms of measuring shared features

or shared attributes. Let us say that a sample X possesses the ith attribute if
ix’ is merely the number of attributes possessed by x and x’,
geometric mean of the number of
ber possessed by x'. Thus, s(x, x') is
f common attributes. Some simple

s(x, x') =

z; = 1. Then x
and x| x|l = (x'xx"*x")/* is the
attributes possessed by x and the num
a measure of the relative possession 0

variations are

Er
X
S(K, X,) = s
d
the fraction of attributes shared, and
o)
XX

A= xx + x'x' — x'x’

the ratio of the number of shared attributes to the number possessed by X
or x'. This latter measure (sometimes known as the Tanimoto coefficient)
is frequently encountered in the fields of information retrieval and biological
taxonomy. Other measures of similarity arise in other applications, the
variety of measures testifying to the diversity of problem domains.

We feel obliged to mention that fundamental issues in measurement theory
are involved in the use of any distance or similarity function. The calculation
of the similarity between two vectors always involves combining the values
of their components. Yet, in many pattern recognition applications the
components of the feature vector measure seemingly noncomparable
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6.8 CRITERION FUNCTIONS FOR CLUSTERING

Sup;.)c.)se l.hat we have a set 2 of n samples x,, ..., x, that we want to
partition into exactly ¢ disjoint subsets Z,, . Z ;Each subset is t
: : ey 0
;—;Ir)lgle:rxla clusteli, with samples in the same cluster being somehow more
an samples in different clusters. On is i
i ke i  clu - Une way to make this into a well-
efine a criterion function that
! to measures the clusterin
qual.lt.y of any partition of the data. Then the problem is one of findin th§
tplfmf:on ttha? extremizes the criterion function. In this section we exa%nine
e characteristics of several basically simi iteri
. ' y similar criterion functions, po i
until later the question of how to find an optimal partition S

6.8.1 The Sum-of-Squared-Error Criterion

The si ’ b
Su:i 51ft‘np]est and most 'wuf.nely used criterion function for clustering is the
-of-squared-error criterion. Let n, be the number of samples in &
let m; be the mean of those samples, i s

1

m, — —
S )
Then the sum of squared errors is defined by
Jo=2 3 Ix —m* (26)

i=1 xeZ’;
This criteri i : i i
el c]:‘:eterlon {unctlon has a simple interpretation. For a given cluster
oL an vector m, is the best representati
an v ive of the samples in &7, i
kb cto samples in Z'; in the
e n:hd'tnl]t minimizes the sum of the squared lengths of the “‘ercor” zvectors
-l S;m lus, J, measures the total squared error incurred in representing
ples x;, ..., x,, by the ¢ cluster centers m, m,. The value of
. e
Thes i i
e cxaf,;nfulr;n:iamhentaI considerations are by no means unique to clustering. They appea
ple, whenever one chooses a parametric form for an unknown proé:abi[i)t(y drf):rr)lsftry'

I- . . - - .
unctior . a4 melric T €17 4 i

i‘ ) ; fO nonpa .am tric dcnSIl esllmati()ll, ofr SCBIC faC'.OIS fo! Il“ea[
d seriminant IU 1Ichions. CIUS(C mg pr Oblefns me ely EXpose lhE” more Clea “‘



218

J, depends
partitioning is d
often calle
What kind of clustering problems are we
criterion? Basically, J, is an appropriate cri
essentially compact clo
It should work well for t
not expect reasonable results
problem arises when there are

UNSUPERVISED LEARNING AND CLUSTERING

are grouped into clusters, and an optimal

on how the samples
izes J,. Clusterings of this type are

efined as one that minim

d minimum variance partitions.
11 suited to a sum-of-squared-error

terion when the clusters form
11 separated from one another.
he two or three clusters in Figure 6.11, but one would
for the data in Figure 6.12.* A less obvious
great differences in the number of samples in

uds that are rather we

2 T I 1 | l l
25 b— A lris virginica A AN _
0 Iris versicolor S a
MNA DA A A
O |ris setosa A A A
BAND 5 Py
20— N AVaN A b -
o A 2A
§ MA ,a b
| a0
b B2a jm] fa¥
6 15— o BB o
= a 8 dio Pl
-é O
I mmaR o
o (] mn!
10 |— CBo m —
O
05 |— o —
o B o
o0 O
o s}
0 1° | | | | 1
0 1 2 3 4 5 6 7
PETAL LENGTH — cm
FIGURE 6.11. A two-dimensional section of the Anderson iris data.

reasons. Figure 6.11 shows two

* These two data sets are

of four measurements made by E. Anderson on 150 samples of three species of iris. These
data were listed and used by R. A. Fisher in his classic paper on discriminant analysis
(Fisher 1936), and have since become a favorite example for illustrating clustering pro-
cedures. Figure 6.12 is well known in astronomy as the Hertzsprung and Russell (or
spectrum-luminosity) diagram, which led to the subdivision of stars into such categories
supergiants, main sequence stars, and dwarfs. It was used by E. W. Forgey and
D. Wishart (1969) to illustrate the fimitations of simple clustering procedures.
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similarity function s(x, x") and replace 5, by functions such as

i} 1
5 == > D s(x,x')
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(29)

(30)

As before, we define an optimal partitioning as one that extremizes the
criterion function. This creates a well-defined problem, and the hope is that

its solution discloses the intrinsic structure of the data,

6.8.3 Scattering Criteria

6.8.3.1 THE SCATTER MATRICES

Another interesting class of criterion functions can be derived from the scatter
matrices used in multiple discriminant analysis. The following definitions

directly parallel the definitions given in Section 4.11.

Mean vector for ith cluster;

1
m; =— > X
f]?~ XEI;‘
Total mean vector:
1 1 &
m==3x==2nm,
nTr N i=1

Scatter matrix for ith cluster:

;=Y (x —m)(x —m).

Xe.f,‘

Within-cluster scatter matrix:

C
S”' —_ z Sf'
=1
Between-cluster scatter matrix:

[

Sp = Z ndm; — m)(im, — m)".

1=

Total scatter matrix;

Sp =3 (x — m)(x — m).
xeZ

(31)

(32)

(33)

(34)

(35)

(36)

As before, it follows from these definitions that the total scatter matrix
is the sum of the within-cluster scatter matrix and the between-cluster scatter

matrix ;
Sy =Sy + S

(37)
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Note that the total scatter matrix does not depend on how the set of samples
is partitioned into clusters. It depends only on the total set of samples. The
within-cluster and between-cluster scatter matrices do depend on the par-
titioning, however. Roughly speaking, there is an exchange between these
two matrices, the between-cluster scatter going up as the within-cluster
scatter goes down. This is fortunate, since by trying to minimize the within-
cluster scatter we will also tend to maximize the between-cluster scatter.
To be more precise in talking about the amount of within-cluster or
between-cluster scatter, we need a scalar measure of the ‘“‘size’” of a scatter
matrix. The two measures that we shall consider are the frace and the
determinant. In the univariate case, these two measures are equivalent, and
we can define an optimal partition as one that minimizes S,;;- or maximizes
Sp. In the multivariate case things are somewhat more complicated, and a
number of related but distinct optimality criteria have been suggested.

6.8.3.2 THE TRACE CRITERION

Perhaps the simplest scalar measure of a scatter matrix is its trace, the sum
of its diagonal elements. Roughly speaking, the trace measures the square
of the scattering radius, since it is proportional to the sum of the variances
in the coordinate directions. Thus, an obvious criterion function to minimize
is the trace of Sy-. In fact, this criterion is nothing more or less than the
sum-of-squared-error criterion, since Egs. (33) and (34) yield

[

tr S = D tES=3 3 lx~ m,|® = J.. (38)
=]

i=1xeX’;

Since tr Sp = tr Sy- + tr Sp and tr Sp is independent of how the samples
are partitioned, we see that no new results are obtained by trying to maximize
tr Sp. However, it is comforting to know that in trying to minimize the
within-cluster criterion J, = tr S;- we are also maximizing the between-

cluster criterion

tr S = X n; lm; — mi*. (39

i=1

6.8.3.3 THE DETERMINANT CRITERION

In Section 4.11 we used the determinant of the scatter matrix to obtain a
scalar measure of scatter. Roughly speaking, this measures the square of the
scattering volume, since it is proportional to the product of the variances
in the directions of the principal axes. Since Sy will be singular if the number
of clusters is less than or equal to the dimensionality, | S| is obviously a poor
choice for a criterion function. Sy can also become singular, and will
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certainly be so if n — c is less than the dimensionality d.* However, if we
assume that Sy;- is nonsingular, we are led to consider the criterion function

1_221 S: |- (40)

The partition that minimizes J, is often similar to the one that minimizes
J,, but the two need not be the same. We observed before that the minimum-
squared—eFror partition might change if the axes are scaled. This does not
happen with J;. To see why, let 7 be a nonsingular matrix and consider the
change of variables x" = Tx. Keeping the partitioning fixed, we obtain new

mean vectors m; = Tm; and new scatter matrices S; = T.5,7". Thus, J
changes to ! P

J, = |Sn" =

. Jo =Syl =TSy T'| =|TI*J,.
S:nce the scale factor |T|? is the same for all partitions, it follows that J; and
J4 rank the partitions in the same way, and hence that the optimal clustj:rin
based on J; is invariant to nonsingular linear transformations of the data%

6.8.3.4 INVARIANT CRITERIA

It is not hard to show that the eigenvalues 2, . .., 4; of S!Sy are invariant
under nonsingular linear transformations of the data. Indeed, these eigen-
values are the basic linear invariants of the scatter matrices. Th,eir numex"gical
vglues_ measure the ratio of between-cluster to within-cluster scatter in the
dll’t?CthI‘l of the eigenvectors, and partitions that yield large values are usuall
desirable. Of course, as we pointed out in Section 411 the fact that thz
rfmk of Sg can not exceed ¢ — | means that no more t};an ¢ — | of these
eigenvalues can be nonzero. Nevertheless, good partitions are ones for which
the nonzero eigenvalues are large.

One can invent a great variety of invariant clustering criteria by composing
appropriate functions of these eigenvalues. Some of these follow naturall
from standard matrix operations. For example, since the trace of a matriz

is thz°T sum of its eigenvalues, one might elect to maximize the criterion
functiont

d
tr Sl_i}:SB’ == Z }\.,-. (41)

i=1
* This follows from the fact that the rank of ; can not exceed #; — 1, and thus the rank
;:)f Sty can not exceed E(Hi‘—‘ )= "—c Of course, if the samples ,arc confined to a
ower dimensional subspace it is possible to have Sj;- be singular even though n — ¢ > d
In such_ cases, §0me kind of dimensionality-reduction procedure must be u§ed befo _th‘
determinant criterion can be applied (see Section 6.14). =
t Another invariant criterion is

d
Iswspl =T 4
& o ‘ i=1
owever, since its value is usually zero it is not very useful,
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By using the relation S, = Sy + Sy, one can derive the following invariant
relatives of tr Sy and |Syp|:

d
i
te SISy, =Y —— 42
o7y A1+ 7 (42)
[Spe] 2]
o = 43
50 T (e

Since all of these criterion functions are invariant to linear transformations,
the same is true of the partitions that extremize them. In the special case of
two clusters, only one eigenvalue is nonzero, and all of these criteria yield
the same clustering. However, when the samples are partitioned into more
than two clusters, the optimal partitions, though often similar, need not be
the same.

With regard to the criterion functions involving Sz, note that S, does not
depend on how the samples are partitioned into clusters. Thus, the clusterings
that minimize | Sy |/|Sy| are exactly the same as the ones that minimize 1SHi.
If we rotate and scale the axes so that S, becomes the identity matrix, we
see that minimizing tr S7'Sy;- is equivalent to minimizing the sum-of-squared-
error criterion tr Sy, after performing this normalization. Figure 6.14
illustrates the effects of this transformation graphically. Clearly, this criterion
suffers from the very defects that we warned about in Section 6.7, and it is
probably the least desirable of these criteria.

One final warning about invariant criteria is in order. If different apparent
groupings can be obtained by scaling the axes or by applying any other linear
transformation, then all of these groupings will be exposed by invariant
procedures. Thus, invariant criterion functions are more likely to possess
multiple local extrema, and are correspondingly more difficult to extremize.

The variety of the criterion functions we have discussed and the somewhat
subtle differences between them should not be allowed to obscure their
essential similarity. In every case the underlying model is that the samples
form ¢ fairly well separated clouds of points. The within-cluster scatter
matrix Sy- is used to measure the compactness of these clouds, and the basic
goal is to find the most compact grouping. While this approach has proved
useful for many problems, it is not universally applicable. For example, it
will not extract a very dense cluster embedded in the center of a diffuse
cluster, or separate intertwined line-like clusters. For such cases one must
devise other criterion functions that are better matched to the structure
present or being sought.

6.9 ITERATIVE OPTIMIZATION

Once a criterion function has been selected, clustering becomes a well-defined
problem in discrete optimization: find those partitions of the set of samples
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that extremize the criterion function. Since the sample set is finite, there are
only a finite number of possible partitions. Thus, in theory the clustering
problem can always be solved by exhaustive enumeration. However, in
practice such an approach is unthinkable for all but the simplest problems.
There are approximately ¢*/c! ways of partitioning a set of n elements into
¢ subsets,t and this exponential growth with nis overwhelming. For example,
an exhaustive search for the best set of 5 clusters in 100 samples would
require considering more than 10%7 partitionings. Thus, in most applications
an exhaustive search is completely infeasible.

The approach most frequently used in seeking optimal parlitions is
iterative optimization, The basic idea is to find some reasonable initial
partition and to “move” samples from one group to another if such a move
will improve the value of the criterion function. Like hill-climbing procedures
in general, these approaches guarantee local but not global optimization.
Different starting points can lead to different solutions, and one never knows
whether or not the best solution has been found. Despite these limitations,
the fact that the computational requirements are bearable makes this
approach significant.

Let us consider the use of iterative improvement to minimize the sum-of-
squared-error criterion J,, written as

where
2
J, =2 |x —m
xed;
and
1
l'n1 e E X
n; xed,

Suppose that a sample & currently in cluster &, is tentatively moved to 2.
Then m; changes to

e 1

*
m; = m; +

+ The reader who likes combinatorial problems will enjoy showing that there are exactly

1 £ c {1
a gl (I) (_l)c—ll

partitions of # items inta ¢ nonempty subsets. (see W. Feller, An Introduction to Probability
Theory and Its Applications, Vol. 1, p. 58 (John Wiley, New York, Second Edition, 1959)).
If 7 > ¢, the last term is the most significant.
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and J; increases to

Ji=2 Ix—

my||* + & — m}|®

xed;
<> x_m_)"c-—mj2 n; F
xeX; omp 41 n,.+1(x_m’)
n
Fi ”j+]” mi“

Un'dc‘r the assumplion thatn, 5 | (singleton clusters should not be destroyed)
a similar calculation shows that m, changes to ’

* X —m,

m; =m; —

n,— 1
and J; decreases to !

* n, .
Ji =J;,— — % — m,-||2,
n, — 1

1

:Thn?se equations greatly simplify the computation of the change in the
criterion ‘funct':on. The transfer of & from &, to &, is advantageous if the
decrease in J; is greater than the increase in J,. This is the case if

nf(n, — 1) JI& — m,[2 > mf(n; + 1) |} — m, %,

.which typically happens whenever % is closer to m; than m,. If reassignment
is prqﬁtable, the greatest decrease in sum of squared error is obtained by
selecting the cluster for which n,/(n; + 1) | — m,||? is minimum. This leads

to the following clustering procedure:
Procedure:  Basic Minimum Squared Error

1. Select an initial partition of the n samples into clusters and
compute J, and the means m,, ..., m,.

_Se?t the next candidate sample %. Suppose that % is currently
g, /

~tlve 1w
3. Ifn, = 1 go to Next; otherwise compute

Loop: 2.

P

n; 4+ 1

I8 —m,)* i
By =
iy
1, — 1
4. Transfer X to 2 if p, < p, for all J.
Update J,, m;, and m,.

If J, has not changed in n attempts, stop; otherwise go to Loop.

I

1% —m*

Ln

Next:

&
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If this procedure is compared to the Basic Isodata procedure described in
Section 6.4.4, it is clear that the former is essentially a sequential version of
the latter. Where the Basic Isodata procedure waits until all n samples have
been reclassified before updating, the Basic Minimum Squared Error pro-
cedure updates after each sample is reclassified. It has been experimentally
observed that this procedure is more susceptible to being trapped at a local
minimum, and it has the further disadvantage of making the results depend
on the order in which the candidates are selected. However, it is at least a
stepwise optimal procedure, and it can be easily modified to apply to problems
in which samples are acquired sequentially and clustering must be done in
real time.

One question that plagues all hill-climbing procedures is the choice of the
starting point. Unfortunately, there is no simple, universally good solution
to this problem. One approach is to select ¢ samples randomly for the initial
cluster centers, using them to partition the data on a minimum-distance
basis. Repetition with different random selections can give some indication
of the sensitivity of the solution to the starting point. Another approach is
to find the c-cluster starting point from the solution to the (¢ — 1)-cluster
problem. The solution for the one-cluster problem is the total sample mean;
the starting point for the c-cluster problem can be the final means for the

(¢ — 1)-cluster problem plus the sample that is furthest from the nearest
cluster center. This approach leads us directly to the so-called hierarchical
clustering procedures, which are simple methods that can provide very good

starting points for iterative optimization.

6.10 HIERARCHICAL CLUSTERING

6.10.1 Definitions

Let us consider a sequence of partitions of the n samples into ¢ clusters. The
first of these is a partition into n clusters, each cluster containing exactly one
sample. The next is a partition into n — 1 clusters, the next a partition into
n — 2, and so on until the nth, in which all the samples form one cluster.
We shall say that we are at level k in the sequence when c=n — k + L.
Thus, level one corresponds to n clusters and level # to one. Given any two
samples x and x’, at some level they will be grouped together in the same
cluster. If the sequence has the property that whenever two samples are in
the same cluster at level k they remain together at all higher levels, then the
sequence is said to be a hierarchical clustering. The classical examples of
hierarchical clustering appear in biological taxonomy, where individuals are
grouped into species, species into genera, genera into families, and so on.
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In fac is ki i '
s:iencets,. this kind of clustering permeates classificatory activities in the
For every hierarchical clustering there is a corresponding tree, called
dendrogram, that shows how the samples are grouped. Figure 6 1:5 shozvs a
dend.rogram for a hypothetical problem involving six samples Le‘vel 1 sh .
the six samples as singleton clusters. At level 2, samples z, an'd x5 have bzws
grpuped to form a cluster, and they stay together at all subsequesnt levels cIrtl‘
iLis possible to measure the similarity between clusters, then the dendro ré
is usually dra\?m to scale to show the similarity between the clusters thagt a;n
grouped. In Figure 6.15, for example, the similarity between the two grou :
of samples that are merged at level 6 has a value of 30. The similarit gval o
are often used to _help determine whether the groupings are natural ogforcufls
For our hypothetical example, one would be inclined to say that the grou o
at levels 4 or 5 are natural, but that the large reduction in similari% nert):lc;]eg;
to go to level 6 makes that grouping forced. We shall see shortl hy
similarity values can be obtained. .
Because of their conceptual simplicity, hierarchical clustering procedur
ZFB' among the bc.st-'known methods. The procedures themselv};s can bc:
tl)wded into two dl:SUﬂCt classes, agglomerative and divisive. Agglomerative
(bottom-up, clumping) procedures start with n singleton clusters and form
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FIGURE 6.15. A dendrogram for hierarchical clustering.
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the sequence by successively merging clusters. Divisive (top-down, splitting)
procedures start with all of the samples in one cluster and form the sequence
by successively splitting clusters. The computation needed to go from one
level to another is usually simpler for the agglomerative procedures. However,
when there are many samples and one is interested in only a small number
of clusters, this computation will have to be repeated many times. For
simplicity, we shall limit our attention to the agglomerative procedures,
referring the reader to the literature for divisive methods.

6.10.2 Agglomerative Hierarchical Clustering

The major steps in agglomerative clustering arc contained in the following
procedure:

Procedure: Basic Agglomerative Clustering

leté=nand &; = {x;},i=1,...,n

If é < ¢, stop.

Find the nearest pair of distinct clusters, say Z'; and ;.
Merge Z',; and Z;, delete Z';, and decrement ¢ by one.

5. Go to Loop.

As described, this procedure terminates when the specified number of
clusters has been obtained. However, if we continue until ¢ = 1 we can
produce a dendrogram like that shown in Figure 6.15. At any level the
distance between nearest clusters can provide the dissimilarity value for that
level. The reader will note that we have not said how to measure the distance
between two clusters. The considerations here are much like those involved
in selecting a criterion function. For simplicity, we shall restrict our attention
to the following distance measures, leaving extensions to other similarity
measures to the reader’s imagination:

dmin(‘!‘%ﬂi’ g:‘) = min “X s ”

xeZ  xX'eX;

Al 2y Ey) = max Ix — x|

X2 X€X;

Qo T T)=—— 3 3 Ix—x|

nN; xed; x’ed;
dmean( s 'gg‘j) = [m; — m,]|.

All of these measures have a minimum-variance flavor, and they usually
yield the same results if the clusters are compact and well separated. However,
‘f the clusters are close to one another, or if their shapes are not basically
hyperspherical, quite different results can be obtained. We shall use the
two-dimensional point sets shown in Figure 6.16 to illustrate some of the
differences.

Loop:

FIGURE 6.16. Three illustrative examples.



FIGURE 6.17. Results of the nearest-neighbor algorithm.
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6.10.2.1 THE NEAREST-NEIGHBOR ALGORITHM

Consider first the behavior when d,;, is used.* Suppose that we think of the
data points as being nodes of a graph, with edges forming a path between
nodes in the same subset .. When d,;, is used to measure the distance
between subsets, the nearest neighbors determine the nearest subsets, The
merging of 2, and Z; corresponds to adding an edge between the nearest
pair of nodes in %', and Z;. Since edges linking clusters always go between
distinct clusters, the resulting graph never has any closed loops or circuits;
in the terminology of graph theory, this procedure generates a tree. If it is
allowed to continue until all of the subsets are linked, the result is a spanning
tree, a tree with a path from any node to any other node. Moreover, it can
be shown that the sum of the edge lengths of the resulting tree will not exceed
the sum of the edge lengths for any other spanning tree for that set of samples.
Thus, with the use of dy;, as the distance measure, the agglomerative
clustering procedure becomes an algorithm for generating a minimal spanning
tree.

Figure 6.17 shows the results of applying this procedure to the data of
Figure 6.16. In all cases the procedure was stopped at ¢ = 2; a minimal
spanning tree can be obtained by adding the shortest possible edge between
the two clusters. In the first case where the clusters are compact and well
separated, the obvious clusters are found. In the second case, the presence
of a few points located so as to produce a bridge between the clusters results
in a rather unexpected grouping into one large, elongated cluster, and one
small, compact cluster. This behavior is often called the “chaining effect,”
and is sometimes considered to be a defect of this distance measure. To the
extent that the results are very sensitive to noise or to slight changes in
position of the data points, this is certainly a valid criticism. However, as
the third case illustrates, this very tendency to form chains can be advan-
tageous if the clusters are elongated or possess elongated limbs.

6.10.2.2 THE FURTHEST-NEIGHBOR ALGORITHM
When d,,,, is used to measure the distance between subsets, the growth of

elongated clusters is discouraged.] Application of the procedure can be
thought of as producing a graph in which edges connect all of the nodes in

*In the literature, the resulting procedure is often called the nearest-neighbor or the
minimum algorithm. If it is terminated when the distance between nearest clusters exceeds
an arbitrary threshold, it is called the single-linkage algorithm.

t Although we will not make deep use of graph theory, we assume that the reader has a
general familiarity with the subject. A clear, rigorous treatment is given by O. Ore, Theory
of Graphs (American Math. Soc, Colloquium Publ., Vol. 38, 1962).

1 In the literature, the resulting procedure is often called the furthest neighbor or the maxi-
mum algorithm. If it is terminated when the distance between nearest clusters exceeds an
arbitrary threshold, it is called the complete-linkage algorithm,



FIGURE 6.18. Results of the furthest-neighbor algorithm.

HIERARCHICAL CLUSTERING 235

a cluster. In the terminology of graph theory, every cluster constitutes a
complete subgraph. The distance between two clusters is determined by the
most distant nodes in the two clusters. When the nearest clusters are merged,
the graph is changed by adding edges between every pair of nodes in the two
clusters. If we define the diamerer of a cluster as the largest distance between
points in the cluster, then the distance between two clusters is merely the
diameter of their union. If we define the diameter of a partition as the
largest diameter for clusters in the partition, then each iteration increases
the diameter of the partition as little as possible. As Figure 6.18 illustrates,
this is advantageous when the true clusters are compact and roughly equal
in size. However, when tliis is not the case, as happens with the two elongated
clusters, the resulting groupings can be meaningless. This is another example
of imposing structure on data rather than finding structure in it.

6.10.2.3 COMPROMISES

The minimum and maximum measures represent two extremes in measuring
the distance between clusters. Like all procedures that involve minima or
maxima, they tend to be overly sensitive to “mavericks” or “sports” or
“outliers™ or “wildshots.”” The use of averaging is an obvious way to
ameliorate these problems, and dyve and dy,,. are natural compromises
betweend;, andd_,.. Computationally, d,,.,, is the simplest of all of these
measures, since the others require computing all ngn; pairs of distances
[lx — x’|. However, a measure such as d,vg can be used when the distances
Ix — x| are replaced by similarity measures, where the similarity between
mean vectors may be difficult or impossible to define. We leave it to the
reader to decide how the use of I A (111411 change the way that the
points in Figure 6.16 are grouped.

6.10.3 Stepwise-Optimal Hierarchical Clustering

We observed earlier that if clusters are grown by merging the nearest pair of
clusters, then the results have a minimum variance flavor. However, when
the measure of distance between clusters is chosen arbitrarily. one can rarely
assert that the resulting partition extremizes any particular criterion function.
In effect, hierarchical clustering defines a cluster as whatever results from
applying the clustering procedure. However, with a simple modification it is
possible to obtain a stepwise-optimal procedure for extremizing a criterion
function. This is done merely by replacing Step 3 of the Basic Agglomerative
Clustering Procedure (Section 6.10.2) by

3. Find the pair of distinct clusters 2, and Z’; whose merger would
increase (or decrease) the criterion function as little as possible.
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This assures us that at each iteration we have done the best possible thing,
even if it does not guarantee that the final partition is optimal.

We saw earlier that the use of dy,, causes the smallest possible stepwise
increase in the diameter of the partition. Another simple example is provided
squared-error criterion function J,. By an analysis very
Section 6.9, we find that the pair of clusters whose
possible is the pair for which the ‘‘distance”

by the sum-of-
similar to that used in
merger increases J, as little as

nghy
n; + n,

lm; — m,]

d(Z, X)) = \/
is minimum. Thus, in selecting clusters to be merged, this criterion takes
into account the number of samples in each cluster as well as the distance
between clusters. In general, the use of d, tends to favor growth by adding
singletons or small clusters to large clusters over merging medium-sized

clusters. While the final partition may not minimize J, it usually provides
a very good starting point for further iterative optimization.

6.10.4 Hierarchical Clustering and Induced Metrics

Suppose that we are unable to supply a metric for our data, but that we can
measure a dissimilarity value d(x, x') for every pair of samples, where
8(x, x') > 0, equality holding if and only if x = x’. Then agglomerative
clustering can still be used, with the understanding that the nearest pair of
clusters is the least dissimilar pair. Interestingly enough, if we define the

dissimilarity between two clusters by

O Ty ;) = min _ O(x,X')
xeZ; xeldy
or
amax(gfa '%";} = max 6(x, x’),

xed  X'eXy

then the hierarchical clustering procedure will induce a distance function
for the given set of n samples. Furthermore, the ranking of the distances
between samples will be invariant to any monotonic transformation of the
dissimilarity values.

To see how this comes about, we begin by defining the valve v, for the
clustering at level k. For level 1, v; = 0. For all higher levels, v, is the
minimum dissimilarity between pairs of distinct clusters at level £ — 1.
A moment’s reflection will make it clear that with both 6,,;; and da, the
value v, either stays the same or increases as k increases. Moreover, we shall
assume that no two of the n samples are identical, so that v, > 0. Thus,

Gy €V ST S0
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We can now define t%lc distance d(x, x') between x and x’ as the value of
tl}]le lo»;f]est lflevel clustering for which x and x’ are in the same cluster. To
show that this is a legiti i . . :
s things: gitimate distance functlon, or metric, we need to show
(1) d(x,x") = 0<>x = x’

(2) d(x,x") =d(x’, x)
(3) d(x, x") < d(x, x") + d(x', x").

l.t Is easy to see that the first requirement is satisfied. The lowest level fi
which x and. x are in the same cluster is level 1, so that dx,x) =v e— C(’)f
Cox'wersely, if d(x, x") = 0, the fact that v, > 0 implies that ;( an; x’1 s
be in the same cluster at level 1, and hence that x = x’. The truth Ifm;ft
second requirement follows immediately from the deﬁnitic;n of d(x x’)o Tth s
Ica\:es }he third requirement, the triangle inequality. Let d(x, x’) - v. anlc;
df(’x , x-) = vy, so that x and x" are in the same cluster at ]eve,! { and xi’ and
x" are in the same cluster at level /. Because of the hierarchical nesti f
clusters, one of these clusters includes the other. If £ = max (4, /) 'ts'mgl :
that at level k x, x’, and x" are all in the same cluster, and her;ie,tlhafts o

d(xs xﬂ) S .

But since the values v, ar i
x a&re monotonically nondecreasing, it
v, = max(v,, v;) and hence that g 1t follows that

d(x, x") < max(d(x, x"}, d(x’, x")).

'Th:s is 'known_as tlle. ultrametric inequality. It is even stronger than the
triangle mequal:t.y, since  max(d(x, x), d(x', x")) < d(x, x') + d(x’ x")
Thus, all th'e conditions are satisfied, and we have created a ,bona fid it
for comparing the n samples. et

6.11 GRAPH THEORETIC METHODS

LI;ttwo 011: three. instance§ we have used linear graphs to add insight into the

I L[u'e of certain ‘clustermg procedures. Where the mathematics of normal
. J; ures and minimum-variance partitions seems to keep returning us to the

g:z;;etf:f cluslterz as isolated clumps of points, the language and concepts of

eory lead us to consider much more intri

cons ricate structures. Unfortu-

il:)a;zl{], fc;w of these posm‘bmtles have been systematically explored, and there
b S]leorf]fn vtv_ay of po:;mg clustering problems as problems in graph theory
: ciicctive use of these ideas is still lar .

these gely an art, and the reader

wa&ts :Jo e'xplore thc? possibilities should be prepared to be creative e
e s;:m clgm our brief look into graph-theoretic methods by reconsidering
ple procedure that produced the graphs shown in Figure 6.8, Here a



