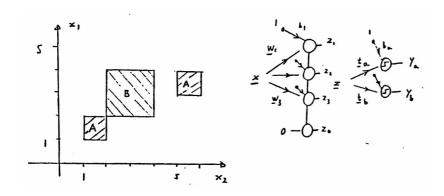

CPE 722 2012/3 - 3ª série de exercícios - Treinamento

1 – Para a camada de Kohonen abaixo, em treinamento não supervisionado simples com passo $\alpha = 0,1$ e

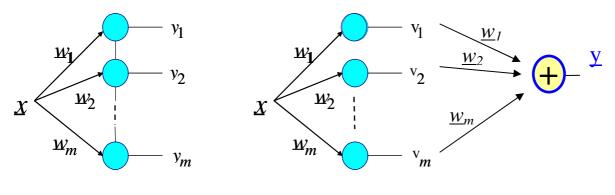
$$\underline{\mathbf{w}}_{1} = [0,50 \ 0,50 \ 0,71]^{t} \\
\underline{\mathbf{w}}_{2} = [0,30 \ 0,60 \ 0,74]^{t} \\
\underline{\mathbf{w}}_{3} = [0,30 \ 0,30 \ 0,91]^{t} \\
\underline{\mathbf{y}}_{2} \\
\underline{\mathbf{w}}_{3} = [0,30 \ 0,30 \ 0,91]^{t}$$

é apresentada a entrada $\underline{\mathbf{x}} = [0,40 \ 0,50 \ 0,77]^t$ Quais os novos valores das sinapses após a atualização ?

2 – A rede ART abaixo recebe um treinamento com α = 0,1, iniciado com a seguinte sequência de entradas:



- a Apresente os valores das sinapses ao longo dos cinco passos de treinamento.
- b Se a ordem de apresentação das entradas for alterada os vetores sinapse após os quatro passos de treinamento podem ser diferentes? Se sim, isto ocorre sempre?
 Se não, isto nunca ocorre?


3 - Um neurônio tipo $\tilde{y} = \text{sign}(u)$, $u = \underline{w}^t \underline{x} + b$, recebe uma entrada $\underline{x} = [x_1 \ x_2 \ ... \ x_n]^t$ onde $x_i \in \{-1, 1\}$. Este neurônio deve separar o vértice do hipercubo "lógico" $[-1 + 1 - 1 + 1 \ ... \ (-1)^n]$ **e seus adjacentes** (isto é, que só tem uma componente diferente) dos demais vértices. Calcule o vetor sinapse \underline{w} e a polarização b. Obs.: Este neurônio realiza um separador esférico (ver exercício 6).

Obs:
$$sign(u) = \begin{cases} 1 & se & u \ge 0 \\ -1 & se & u < 0 \end{cases}$$

4 - As duas classes A e B na figura abaixo devem ser separadas pela rede counterpropagation abaixo da forma mais eficiente possível. Os neurônios da segunda camada são do tipo $\tilde{y} = \text{sign}(u)$, $u = \underline{w}^t \underline{x} + b$. Projete a rede.

5 - Considere uma rede counterpropagation usada como um aproximador.

Rede em treinamento

Rede em operação

Inicialmente a camada de Kohonen é treinada e são determinados os vetores sinapse \underline{w}_i . Em seguida, para operação, são feitas as seguintes alterações:

(a) cada neurônio passa a operar de forma independente dos demais, com função de excitação u e função de ativação v definidas abaixo e (b) um somador vetorial é adicionado para produzir a saída y também definida abaixo

$$u_{i} = -|\vec{x} - \vec{w}_{i}|^{2} \quad e \quad v_{i} = \begin{cases} 0 & se \quad \sqrt{-u_{i}} \ge d_{0} \\ 1 - \frac{\sqrt{-u_{i}}}{d_{0}} & se \quad \sqrt{-u_{i}} \le d_{0} \end{cases} \qquad \qquad \vec{y} = \frac{\sum_{i=1}^{m} v_{i} \vec{w}_{i}}{\sum_{i=1}^{m} v_{i}}$$

Descreva e interprete \underline{y} em função da distância d_i da entrada \underline{x} a cada padrão \underline{w}_i , $d_i = \left| \underline{x} - \underline{w}_i \right|$.