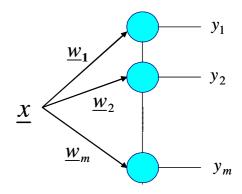
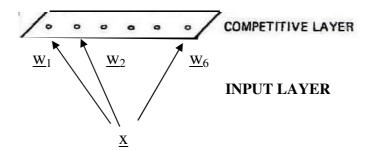
SOM - Mapas Auto-Organizáveis de Kohonen

1 – Estrutura da Rede

Camada de Kohonen

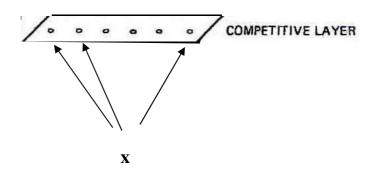
Unidimensional





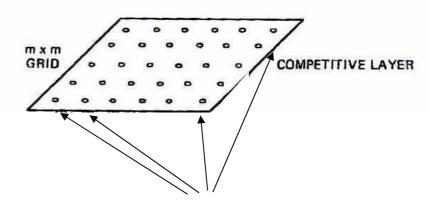
Unidimensional

P neurônios em linha

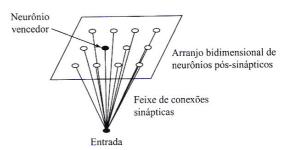


Bidimensional

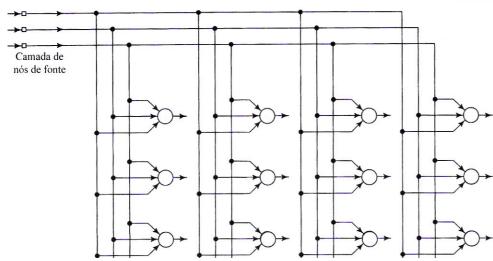
Arranjo de P x Q neurônios



Bidimensional



(b) Modelo de Kohonen



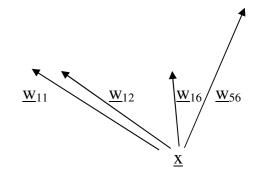
Fundamental: No treinamento de Kohonem existem dois espaços à considerar:

O espaço das entradas X

as entradas x e as sinapses w são

definidas neste espaço

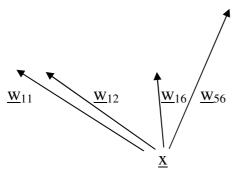
as distâncias d neste espaço serão $d = |\underline{x} - \underline{w}|$

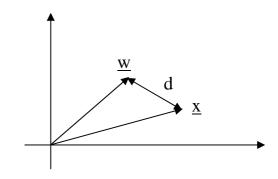


O espaço de competição M, o mapa auto organizável de Kohonen As distâncias m entre os neurônios são definidas neste espaço Neurônios N_i e N_i m=|i-j|

1.1 - Distâncias

Distância entre entradas e/ou sinapses no espaço de entrada





$$\underline{\mathbf{w}} = [2, 2]$$

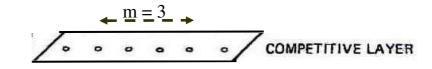
$$\underline{\mathbf{x}} = [3, 1]$$

$$d(\vec{x}, \vec{w}) = \sqrt{(3-2)^2 + (1-2)^2} = \sqrt{2}$$

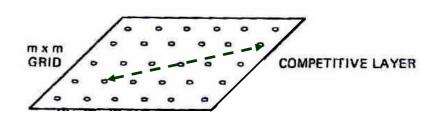
Distância entre neurônios no espaço competitivo

Mapa unidimensional

$$m(N_2,N_5) = |2-5| = 3$$



Mapa bi-dimensional

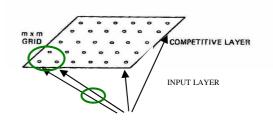


$$m(N_{22} N_{64}) = \sqrt{(2-6)^2 + (2-4)^2} = \sqrt{20}$$

2 – Treinamento

2.1 Treinamento de Kohonen - Objetivo

Objetivo:



Sinapses \underline{w}_i e \underline{w}_j próximas entre si (proximidade medida no espaço de entrada, $d(|\underline{w}_i|, \underline{w}_j) = |\underline{w}_i - \underline{w}_j|$ pequeno) alimentam neurônios N_i e N_j próximos entre si (proximidade medida no mapa de Kohonen, $m(N_i|, N_j) = |i-j|$ pequeno)

isto é:

Similaridade nas sinapses (os padrões levantados) corresponde à Similaridade na posição dos respectivos neurônios no mapa, e vice-versa.

2.2 - Treinamento de Kohonen - Fases

O treinamento de Kohonen passa por duas fases:

Fase de auto-organização ou ordenação

- nesta fase inicial ocorre a <u>ordenação topológica</u> dos vetores sinapse
- é a fase mais crítica
- os neurônios treinam em conjunto com seus vizinhos imediatos
- leva usualmente cerca de 1000 passos de treinamento
- nesta fase manter .01 ≤ α ≤ .1 para permitir uma movimentação
 (alteração) eficiente das sinapses.

Fase de Convergência

- nesta fase é feita a "sintonia fina" dos neurônios do mapa, os neurônios adquirem os detalhes das estruturas das entradas
- pode ser longa, leva tipicamente 500 vezes o número de neurônios,
 P passos para mapas unidimensionais ou 500 PQ passos para mapas bidimensionais
- -cada neurônio opera de nodo praticamente independente ou com uma vizinhança muito pequena. $\sigma_R^2(n) \le 1$ nesta fase

2.3 - Treinamento de Kohonen - Ações

O Treinamento de Kohonen envolve três tipos de ações:

2.3.1 - Ação 1 - Competição:

 $\acute{\mathbf{E}}$ apresentada uma entrada $\underline{\mathbf{x}}$ e os neurônios competem entre si. $\acute{\mathbf{E}}$ declarado

Neurônio vencedor

o neurônio N_i cujo vetor sinapse \underline{w}_i é o mais próximo de \underline{x} , isto é

$$i = \arg Min \left| \vec{x} - \vec{w}_j \right|$$

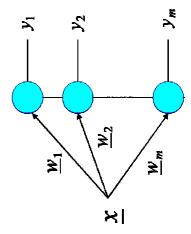
Ex: Camada unidimensional com 8 neurônios entrada (e sinapses) unidimensionais

							ML	
N _i ,	1	2	3	4	5	6		8
$\mathbf{W_i}$.2	.5	.8	.9	.1	.5	.6	.2

é apresentada a entrada x=.65.

N₇ é o vencedor porque

$$\left| \vec{x} - \vec{w}_7 \right| < \left| \vec{x} - \vec{w}_j \right| \quad \forall \ j \neq 7$$



note que a competição ocorre na camada de entrada

(e não na chamada camada competitiva!)

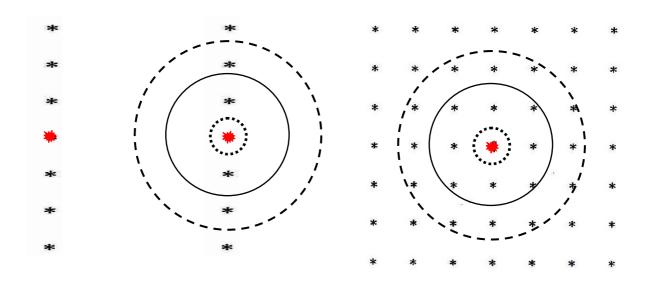
2.3.2 - Ação 2- Cooperação

Durante a fase de auto-organização cada neurônio vencedor treina também seus vizinhos próximos. Este processo é que garante a "continuidade" do mapa, o agrupamento de entradas similares alimentando neurônios vizinhos no mapa e a transição suave entre classes no mapa.

Para a aplicação deste conceito é necessário definir uma "vizinhança" para os neurônios, e uma forma de varia-la no tempo.

Vizinhança - Distância na Camada Competitiva Uni e Bidimensional Raio de Vizinhança R (distância entre neurônios, no mapa)

* Neurônio vencedor



Função de Vizinhança h(m_i)

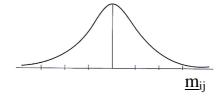
Um neurônio ativado afeta mais intensamente seus vizinhos mais próximos na camada competitiva

m_i = distância do neurônio N_i ao neurônio vencedor

Função de Vizinhança Gaussiana

 $m_2 = 3$

$$h(m_i) = \exp(-\frac{m_i^2}{2\sigma^2})$$



Exemplos de h(m_i) Gaussiana:

Mapa unidimensional, P = 100

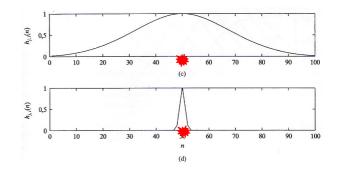
Vencedor: N₅₀ ₩

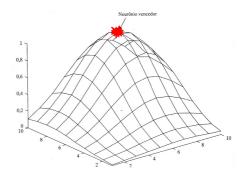
- c) $\sigma \approx 20$
- d) $\sigma \approx 1$

Mapa bidimensional, P = Q = 10

Vencedor: N_{5,5} **☀**

 $\sigma \approx 3$





Valor inicial e taxa de decaimento da largura da vizinhança

No início do treinamento a vizinhança deve cobrir praticamente toda a camada competitiva, e a medida que o treinamento decorre deve ir diminuindo até que ao fim da fase de auto-organização deve estar reduzida a praticamente um neurônio. Podemos então utilizar:

$$h_j(n) = \exp\left(-\frac{m_j^2}{2\sigma^2(n)}\right)$$
 $m_j^2 = \left|N_j - N_{vencedor}\right|^2$ $\sigma = \sigma(n) = \sigma_0 \exp\left(-\frac{n}{\tau_h}\right)$

$$\sigma_0 \approx \frac{\max_\dim_grade}{5} = \begin{cases} 0.2 \, P & para_mapa_uni \, \text{dim} \, ensional \\ \\ 0.2 \sqrt{P^2 + Q^2} & para_mapa_bi \, \text{dim} \, ensional \end{cases} \qquad \tau_h = \frac{1000}{\ln \sigma_0}$$

Formas típicas de h para n pequenos estão apresentados nos exemplos de função de vizinhança gaussiana acima.

Ou, de forma recursiva

$$\sigma_{0} \approx \frac{\text{max_dim_} grade}{5} = \begin{cases} 0.2 \, P & para_mapa_uni \, \text{dim } ensional \\ 0.2 \sqrt{P^{2} + Q^{2}} & para_mapa_bi \, \text{dim } ensional \end{cases} \qquad \tau_{h} = \frac{1}{2} \left(\frac{1}$$

$$\sigma(0) = \sigma_0 \qquad e \qquad \sigma(n+1) \cong \left(1 - \frac{1}{\tau_L}\right) \sigma(n)$$

$$z(0) = \exp(-\frac{1}{2\sigma_0^2}) \qquad e \qquad z(n+1) \cong z(n) \left(1 - \frac{1}{\tau_h \sigma^2(n)}\right)$$

$$m_j^2 = \left| N_j - N_{vencedor} \right|^2 \quad e \quad h_j(n) = \left[z(n) \right]^{m_{ji}^2}$$

2.3.3 - Ação 3 - Aprendizado, alteração do valor das sinapses.

Valores iniciais das sinapses

Como não sabemos como o mapa irá se organizar é necessário que os valores iniciais sejam pequenos e randômicos, para não polarizar o processo em um mínimo local. Se o escalamento das variáveis de entrada foi feito conforme será discutido na seção de pré-processamento, o valor rms do ruído em cada dimensão será unitário. Neste caso é razoável iniciar as sinapses com valores randômicos na faixa (-1, +1).

Treinamento

Ao longo de todo o treinamento a rede aprende, isto é, tem suas sinapses modificadas em direção a uma entrada. A velocidade do treinamento necessita variar, deve ser mais rápida na fase de auto-organização, que requer maiores mudanças, e mais lenta na de convergência, para permitir que uma boa "sintonia fina", i.e., o minimante da função objetivo, seja alcançado com precisão.

A atualização seletiva de uma sinapse é feita movendo-a na direção da entrada

$$\vec{w}_j(n+1) = \vec{w}_j(n) + \alpha \left\{ \vec{x} - \vec{w}_j(n) \right\}$$

Valor inicial e taxa de decaimento do passo

Durante o treinamento o passo α deve iniciar no entorno de 0,1 decair aproximadamente 10 vezes em 1000 passos de treinamento (na fase de auto-organização do mapa, os primeiros 1000 passos aproximadamente, $.1 \ge \alpha \ge .01$). Podemos então utilizar:

$$\alpha(n) = \alpha_0 \exp\left(-\frac{n}{\tau_{\alpha}}\right)$$
 $\alpha_0 = .1$ $\tau_{\alpha} = 1000$

ou de forma recursiva

$$\alpha(0) = .1$$
 e $\alpha(n+1) = .999 \alpha(n)$

onde n é o passo de treinamento atual.

Atualização completa das sinapses

$$\vec{w}_i(n+1) = \vec{w}_i(n) + \alpha(n) h_i(n) \{ \vec{x} - \vec{w}_i(n) \} \qquad \forall j$$

$$\alpha(n) = \alpha_0 \exp\left(-\frac{n}{\tau_\alpha}\right)$$
 $\alpha_0 = .1$ $\tau_\alpha = 1000$

$$h_j(n) = \exp\left(-\frac{m_j^2}{2\sigma^2(n)}\right)$$
 $m_j^2 = \left|N_j - N_{vencedor}\right|^2$ $\sigma(n) = \sigma_0 \exp\left(-\frac{n}{\tau_h}\right)$

$$\sigma_0 \approx \frac{\max \dim grade}{5} = \begin{cases} 0.2 \, P & para_mapa_uni \dim ensional \\ \\ 0.2 \sqrt{P^2 + Q^2} & para_mapa_bi \dim ensional \end{cases} \qquad \tau_h = \frac{1000}{\ln \sigma_0}$$

ou, de forma recursiva

$$\vec{w}_i(n+1) = \vec{w}_i(n) + \alpha(n) h_i(n) \{ \vec{x} - \vec{w}_i(n) \} \qquad \forall j$$

$$\alpha(0) = .1$$
 e $\alpha(n+1) = .999 \alpha(n)$

$$\sigma_{0} \approx \frac{\text{max_dim_grade}}{5} = \begin{cases} 0.2 \, P & para_mapa_uni \, \text{dim } ensional \\ 0.2 \, \sqrt{P^{2} + Q^{2}} & para_mapa_bi \, \text{dim } ensional \end{cases} \qquad \tau_{h} = \frac{1000}{\ln \sigma_{0}}$$

$$\sigma(0) = \sigma_0$$
 e $\sigma(n+1) = \left(1 - \frac{1}{\tau_h}\right) \sigma(n)$

$$z(0) = \exp(-\frac{1}{2\sigma_0^2})$$
 e $z(n+1) = z(n)\left(1 + \frac{1}{\tau_h \sigma^2(n)}\right)$

$$m_j^2 = \left| N_j - N_{vencedor} \right|^2 \quad e \quad h_j(n) = \left[z(n) \right]^{m_j^2}$$

2.4 - Treinamento de Kohonen - resumo

entrada x(n)

Passo (ação) 1 - verificar o neurônio N_i ganhador, $u_i > u_j \ \forall \ j \neq i$ a competição é feita no domínio de entrada

Passo(ação) 2 – verificar os vizinhos de N_i com função de vizinhança não nula

$$N_{i-R}$$
, N_{i-R+1} , ..., N_{i-1} N_{i+1} , ..., N_{i+R-1} , N_{i+R}

a similaridade é medida no mapa (não no domínio das entradas!)

Passo (ação) 3 – atualizar as sinapses dos neurônios vizinhos

$$\vec{w}_{i}(n+1) = \vec{w}_{i}(n) + \alpha(n) h_{i}(n) \left\{ \vec{x} - \vec{w}_{i}(n) \right\} \qquad \forall j$$

a atualização é feita no domínio da entrada

À medida que o treinamento progride as equações:

- vão reduzindo σ
- vão reduzindo α

2.5 - Exemplo de um passo de treinamento:

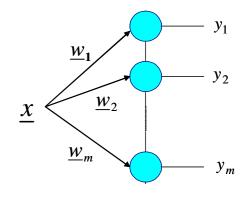
$\underline{\mathbf{x}}$ unidimensional

mapa unidimensional, P = 8 neurônios

havíamos iniciado com

$$\sigma_0 = 0.2 P = 1.6 \qquad \tau_h = \frac{1000}{\ln \sigma_0} \cong 2000$$

$$\alpha_0 = 0.1 \qquad \tau_\alpha = 1000$$



No passo n= 100 as sinapses tem os valores indicados abaixo

N _i , i =	1	2	3	4	5	6	7	8
w _i (100)=	.2	.5	.8	.9	.1	.5	.6	.2

e é apresentada a entrada x=.65

cálculos auxiliares:

$$\sigma(100) = \sigma_0 \exp\left(-\frac{n}{\tau_h}\right) = 1.6 \exp\left(-\frac{100}{2000}\right) = 1.59$$

$$h_{j}(100) = \exp\left(-\frac{m_{j}^{2}}{2\sigma^{2}(n)}\right) = \left(\exp\left(-\frac{1}{2(1.59)^{2}}\right)\right)^{m_{j}^{2}} = (.82)^{m_{j}^{2}} = \begin{cases} 1.0 & m_{j} = 0\\ .82 & m_{j} = 1\\ .45 & m_{j} = 2\\ .16 & m_{j} = 3\\ .04 & m_{j} = 4\\ \approx 0 & m_{j} \geq 5 \end{cases}$$

$$\alpha(100) = \alpha_0 \exp\left(-\frac{n}{\tau_{\alpha}}\right) = 0.1 \exp\left(-\frac{100}{1000}\right) = 0.09$$

Passo (ação) 1 - Competição no espaço de entrada: x = .65

							ML	-
N_i , $i =$	1	2	3	4	5	6	Z73	8
17							2m2	
$w_i (100) =$.2	.5	.8	.9	.1	.5	.6	.2
W1 (200)	, –		••		••		••	, _

$$u_i = -|x - w_i|^2$$
 $u_7 > u_j \ \forall \ j = 1,2,3,4,5,6,8$ N₇ vencedor

Passo (ação) 2 – Valores de m e h para os vizinhos de N₅ no mapa

							MM	-
N_i	1	2	3	4	5	6	₹7.3	8
							5~~	
$\mathbf{m_i}$	6	5	4	3	2	1	0	1
h _i	0	0	.04	.16	.45	.82	1	.82

Passo (ação) 3 - Atualização das sinapses no espaço de entrada

$$\vec{w}_{j}(101) = \vec{w}_{j}(100) + \alpha(100) h_{j}(100) \{\vec{x} - \vec{w}_{j}(n)\}$$
 $\forall j$

N_i	1	2	3	4	5	6	7	8
Wi antigo	.2	.5	.8	.9	.1	.5	.6	.2
W _{i novo}	.2	.5	.795	.864	.323	.611	.645	.532

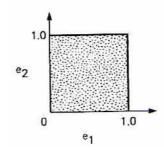
Note que:

- todas as sinapses alteradas se aproximaram da entrada x = .65 <u>e entre si.</u>
- sinapses próximas do neurônio vencedor são mais afetadas
- sinapses (e estruturas) distantes praticamente não se alteram

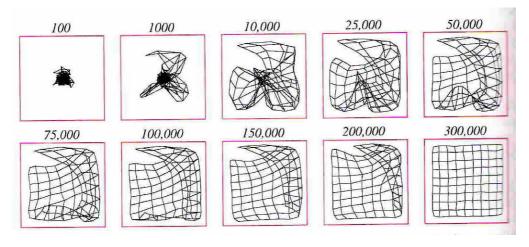
3 Exemplos / Aplicações

3.1 Evolução do mapa:

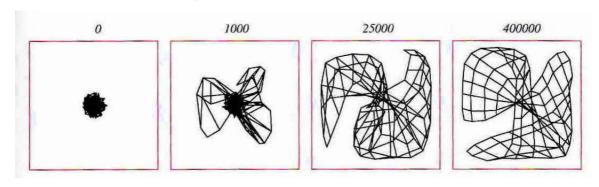
Entrada



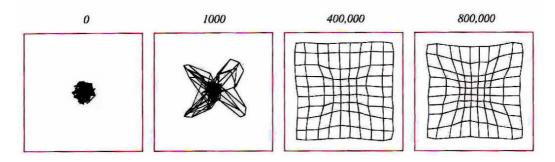
Mapa:



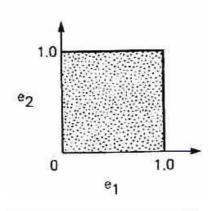
3.1.1 - Problemas na evolução do mapa:

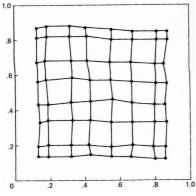


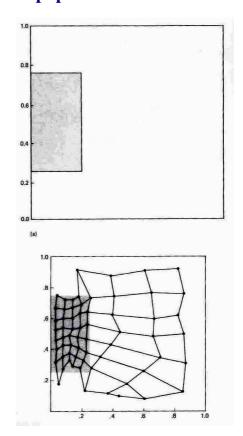
3.2 Regiões da entrada com densidades populacionais diferentes:



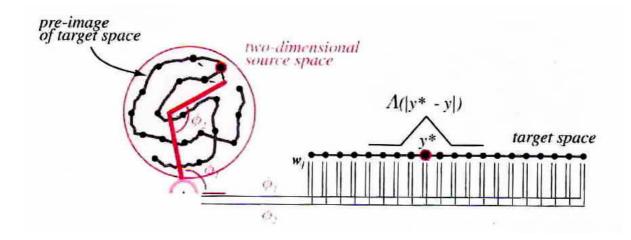
De novo, regiões da entrada com densidades populacionais diferentes:







3.3 Redução de dimensão de representação:



3.4 Aplicação: agrupamento (classificação) de animais por seus atributos Entradas

TABELA 9	9.3 Nomes	de Ani	mais	e se	us A	tribut	os										
Animal		Pombo	Galinha	Pato	Ganso	Coruja	Falcão	Águia	Raposa	Cão	Lobo	Gato	Tigre	Leão	Cavalo	Zebra	Vaca
é {	pequeno médio grande	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	0 1 0	0 1 0	0 1 0	0 1 0	1 0 0	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1
tem	2 patas 4 patas pêlos cascos crina/juba penas	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0 1	1 0 0 0 0	1 0 0 0 0	0 1 1 0 0	0 1 1 0 0	0 1 1 0 1	0 1 1 0 0	0 1 1 0 0	0 1 1 0 1	0 1 1 1 1 0	0 1 1 1 1 0	0 1 1 1 0 0
gosta de	caçar correr voar nadar	0 0 1 0	0 0 0 0	0 0 0 1	0 0 1 1	1 0 1 0	1 0 1 0	1 0 1 .0	1 0 0 0	0 1 0 0	1 1 0 0	1 0 0 0	1 1 0 0	1 1 0 0	0 1 0 0	0 1 0	0 0 0 0

Mapa de Kohonen

mamíferos x aves predadores x não pequenos x grandes

cão	9.00	raposa		 gato	1.		águia	
					er .• .= 16			
					i se julo		coruja	
		 esch :		tigre			Spinstone	
lobo		 barran			delorgen	•	falcão	
		leão			•		Španabu	
							pombo	
cavalo					galinha		The table	
			vaca		r III		ganso	
zehra					pato			

•••

cão	cão	raposa	raposa =	raposa	gato	gato	gato	águia	águia
cão	cão	raposa	raposa	raposa	gato	gato	gato	águia	águia
lobo	lobo	lobo	raposa	gato	tigre	tigre	tigre	coruja	coruja
lobo	lobo	leão	leão	leão	tigre	tigre	tigre	falcão	falcão
lobo	lobo	leão	leão	leão	tigre	tigre	tigre	falcão	falcão
lobo	lobo	leão	leão	leão (coruja	pombo	falcão	pombo	pombo
cavalo	cavalo	leão	leão	leão	pombo	galinha	galinha	pombo	pombo
cavalo	cavalo	zebra	vaca	vaca	vaca	galinha	galinha	pombo	pombo
zebra	zebra	zebra	vaca	vaca	vaca	galinha	galinha	pato	ganso
zebra	zebra	zebra	vaca	vaca	vaca	pato	pato	pato	ganso

4 - Dimensionando o Mapa

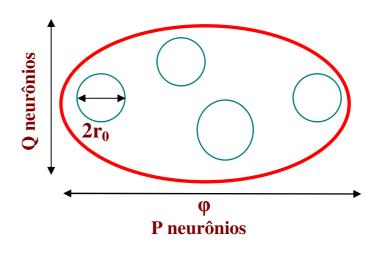
P x **Q** neurônios $(P \ge Q)$

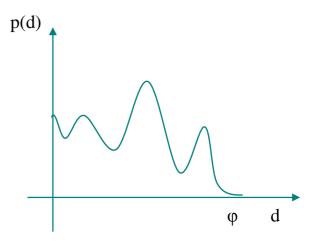
Definição da Granularidade (no mapa)

No espaço de entrada:

Do histograma p(d) das distâncias entre as entradas

$$d = \left| \vec{x}_i - \vec{x}_j \right|$$





Obtemos o diâmetro da classe única

$$\varphi = Max \left| \vec{x}_i - \vec{x}_i \right|$$

e a direção em que este diâmetro ocorre

$$\vec{d}_{\varphi} = \frac{\vec{x}_i - \vec{x}_i}{|\vec{x}_i - \vec{x}_i|} \quad onde \quad \vec{x}_i, \ \vec{x}_i = \arg Max \ |\vec{x}_i - \vec{x}_i|$$

Por outro lado, se o escalamento foi feito de modo a tornar o valor rms (desvio padrão) do ruído em cada direção unitário o valor de r_0 será escolhido entre 1 e 3, conforme o percentual de elementos da classe que queremos englobar (ver escolha de r_0 para ART). O diâmetro das clases é dado por 2 r_0 .

O número de classes (e de neurônios) na direção do maior diâmetro será então:

$$P \approx \frac{\varphi}{2r_0}$$

Para obter o número de neurônios na direção Q do mapa repetir com a direção da entrada que gera o segundo maior diâmetro

Como obter este segundo maior diâmetro φ' ? A direção d_{φ} do maior diâmetro φ é conhecida, da confecção do histograma. Eliminar as componentes das entradas nesta direção usando como novas entradas:

$$\vec{x}' = \vec{x} - \vec{d}_{\varphi}^{\ t} \vec{x} \, \vec{d}_{\varphi}$$

Calcular o maior diâmetro arphi' para as entradas $ec{\chi}'$. Então:

$$Q \approx \frac{\varphi'}{2r_0}$$

uma alternativa é calcular a relação P/Q através das componentes PCA.

SOM e PCA são representações com dimensionalidade reduzida

PCA - Compactação linear

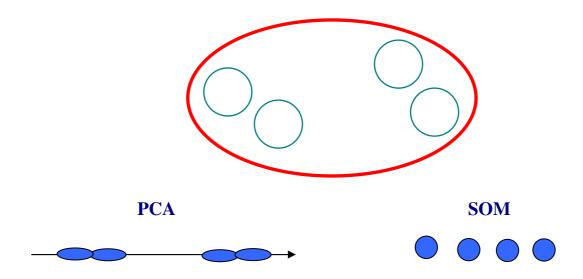
SOM – Compactação não linear

$$\frac{P}{Q} \approx \left[\frac{Variância1^a PCA}{Variância2^a PCA} \right]^{\frac{1}{2}}$$

SOM vs PCA

PCA - Compactação linear

SOM – Compactação não linear, elimina espaços vazios



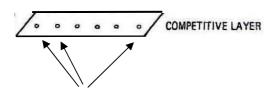
5 - Comentários:

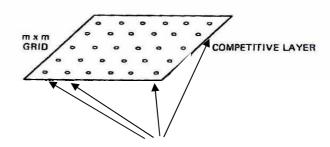
5.1 Diferença do processo anterior (Kohonen simplificada, h=0)

Kohonen simplificada: padrões similares não ficam juntos

Kohonen: Padrões similares ficam juntos,

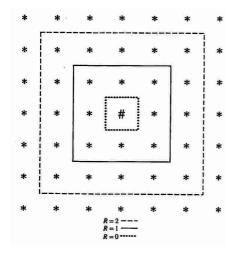
há uma transição "suave" entre classes



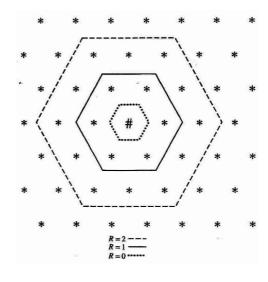


5.2 - Outras formas de definir vizinhança na camada competitiva:

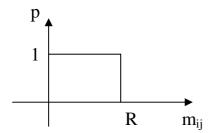
Estrutura quadrada

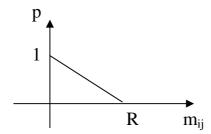


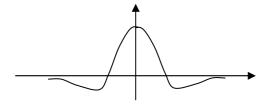
Estrutura hexagonal

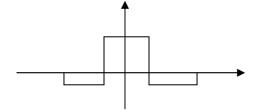


5.3 - Outras funções de vizinhança h









5.4 - SOM como pré-processamento de LVQ

