CPE 721 - Redes Neurais Feedforward

Luiz Calôba

<u>lcaloba@gmail.com</u> <u>caloba@ufrj.br</u>

www.lps.ufrj.br/~caloba/CPE721/

1 - Introdução

Redes Neurais Artificiais Feedforward

O que é isto?

Para que serve?

De onde veio?

O que é isto?

Inteligência Artificial / Computacional

Cognitiva, Simbólica

IA "tradicional"

Evolucionista

AG, Vida Artificial

Conexionista

Redes Neurais Artificiais

Redes Neurais Artificiais

Redes Feedforward (CPE 721)

Aproximadores e classificadores,

Redes "backpropagation"

Redes Não Supervisionadas (CPE 722)

Classificadores

Redes Realimentadas

Otimizadores

Redes Neurais Naturais

Cursos em RNs no PEE da COPPE:

CPE 721

CPE 721 – Redes Neurais Feedforward

2º período 2016

Pré requisitos: apenas noções de álgebra linear

CPE 722 – Redes Neurais Não Supervisionadas e Agrupamento

3º período 2016 ou 1º período 2017

Pré requisitos: apenas noções de álgebra linear

CPE 724 – Redes Neurais Feedforward - Aplicações

3º período 2016 ou 1º período 2017

Pré requisito: CPE 721 - Redes Neurais Feedforward

CPE 721 - Redes Neurais Feedforward

Programa:

- Introdução, motivação ao uso.
- Neurônios e redes neurais biológicas e artificiais. Estrutura feedforward.
- O treinamento backpropagation.
- Métodos mais eficientes; resilient BP e métodos de segunda ordem.
- Pré-processamento: escolha das entradas, detecção de intrusos, escalamento, etc.

- Dimensionamento da rede, escolha dos parâmetros iniciais.
- Acompanhamento do treinamento: evolução do erro
- Pós-processamento: análise e correção do erro, absorção do escalamento
- Aproximadores e Classificadores, capacidade de mapeamento. Operação.
- Outras redes. Redes de Base Radial.
- Demonstrativos e exemplos de aplicações.

Referências bibliográficas:

Para iniciar:

*1 – Ivan Silva, I.; Spatti, D. e Flauzini, R. - "Redes Neurais Artificiais para Engenharia e Ciências Aplicadas", Artliber, 2010, cap 1-6.

Para aprofundar:

- *1 Haykin, S., "Neural Networks and Learning Machines" Pearson Prentice Hall, 2009, Cap 1-7. versão antiga: "Neural Networks, A Comprehensive Foundation", Prentice Hall, 1999. Ver também: Haykin, S., "Redes Neurais, Teoria e Prática", Bookman, 2001.
- 2 Bishop, C. M. "Pattern Recognition and Machine Learning", Springer, 2006, Cap 1, 3, 4 e 5.
- 3 Cichocki, A.; Unbeehauen, R.- "Neural Networks for Optimization and Signal Processing", Wiley, 1993, Cap 1 e 3.

Software:

Neuralworks, Neuroshell

* Toolboxes: Matlab, Statistica

Neunet www.cormactech.com/neunet

Freeware:

* WEKA www.cs.waikato.ac.nz/ml/weka/

SNNS (Stuttgart Neural Network Simulator) ftp.informatik.uni-stuttgart.de

NeuroLab, SIRENE (UFRJ e CEPEL) www.lps.ufrj.br/~caloba

Base de dados

http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/datasets.html

Avaliação:

Listas de exercícios (apenas aprendizado)

1 Teste (avaliação principal)

1 Aplicação (avaliação secundária)

Para que serve?

Emular sistemas neuronais biológicos visando obter as propriedades destes sistemas:

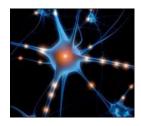
Redes Neurais Artificiais

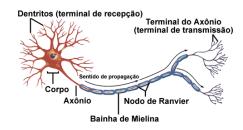
Aprendizado? Generalização? Robustez?

Aplicações:

Cálculo? Não!!!

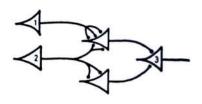
Simulação de Sistemas não Lineares Reconhecimento de Padrões Otimização

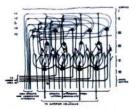

De onde veio?


Breve Histórico

400 A.C. - Aristóteles "De memoria et reminiscentia"

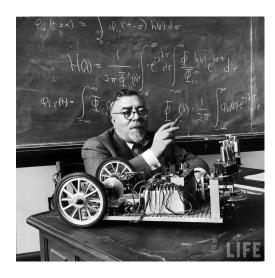
1900 - Biologia & Psicologia: Cajal, Skinner, etc.





1943 - McCulloch e Pitts

primeiro modelo matemático de neurônio



1947 – Norbert Wiener

"Cibernetics"

Palomilla

1947 - 1951 - John Von Newman

EDVAC -Electronic Discrete Variable Automatic Computer

6000 válvulas, 12.000 diodos,

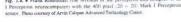
56 kW, 45 m², 8 ton

1949 - Donald Hebb

primeiro modelo de aprendizado não supervisionado

1951 - Minsky e Edmonds

Snark - primeiro computador auto-adaptativo


1957 - Frank Rosenblatt

Perceptrons aprendizado em sistemas não lineares

Mark I Perceptron Neurocomputer

imagens 20x20 pixels

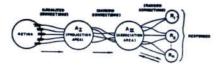
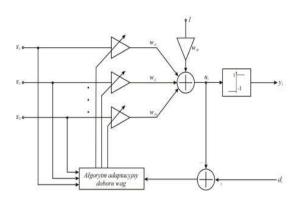
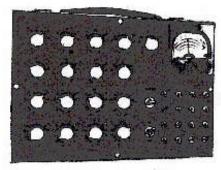
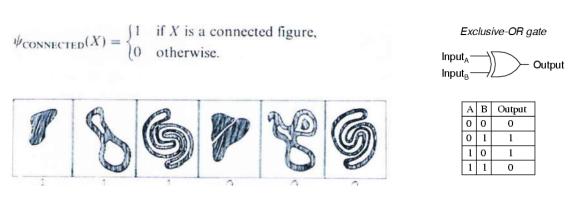


Fig. 1. Organization of a perceptron.

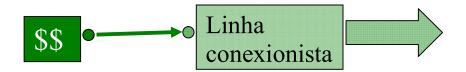

1960 - Widrow e Hoff


Adaline - adaptive linear neuron

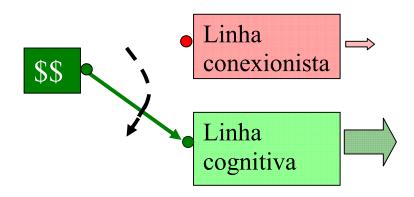
LMS- aprendizado em sistemas lineares



Flaure 2 Adeline

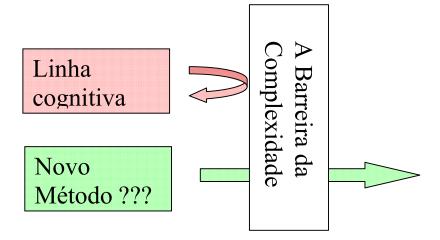

1969 - Minsky e Papert

"Perceptrons"



ANTES do "Perceptrons":

DEPOIS do "Perceptrons":


"no ching, no ming"

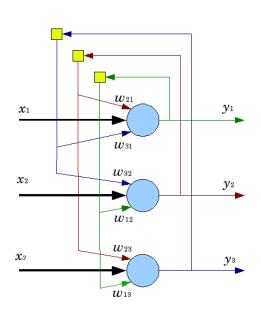
1969 - 1982 A época das trevas

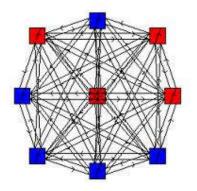
Aprendizado não supervisionado, auto-organização

Amari, Anderson, Fukushima, Grossberg, Kohonen

E a linha cognitiva?

1974 - Paul Werbos

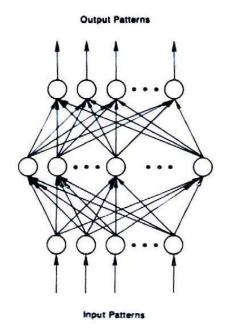

"Beyound Regression"


CBRN / SBAI Florianópolis, 2007

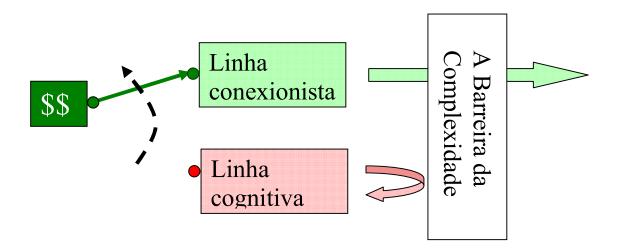
1982 John Hopfield

Redes conexionistas em otimização

1986 - Rumelhart, Williams e Hinton


"PDP (Parallel Distributed Processing) I e II"

a re-descoberta da Backpropagation.


1987 - 1° Congresso em Redes Neurais (IEEE Int. Conf. on Neural Networks - 1700 participantes) Fundação da International Neural Networks Society

1988 - Broomhead e Low Redes de Base Radial

1988 - Revista "Neural Networks"

1989 - IEEE Transactions on Neural Networks

1992 - 98 – Vapnik Máquinas de Vetor Suporte

A situação atual:

Sociedades científicas:

International Neural Networks Society, INNS,

IEEE Computational Intelligence Society (antiga IEEE Neural Networks Society)

Sociedade Brasileira de Inteligência Computacional, SBIC, (antiga Sociedade Brasileira de Redes Neurais, SBRN), www.sbrn.org.br

Revistas

Neural Networks, INNS

IEEE Trans. on Neural networks, IEEE

Learning and non-linear models, SBRN, www.sbrn.org.br

Congressos:

International Joint Conference on Neural Networks. anual, da INNS e IEEE-NNS.

Congresso Brasileiro de Redes Neurais, bi-anual, da SBRN.

Simpósio Brasileiro de Redes Neurais, bi-anual, da SBC.

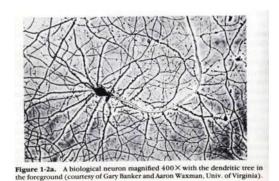
Quando usar redes neurais?

Existe um algoritmo (modelo fenomenológico) satisfatório?

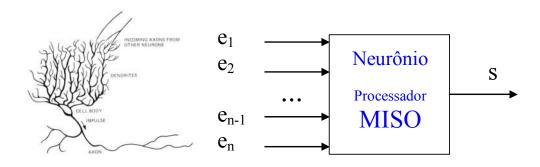
SIM - então use o algoritmo

NÃO - então pense em usar redes neurais

Redes Neurais

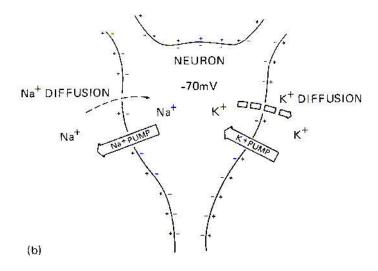

não são a panacéia universal!!

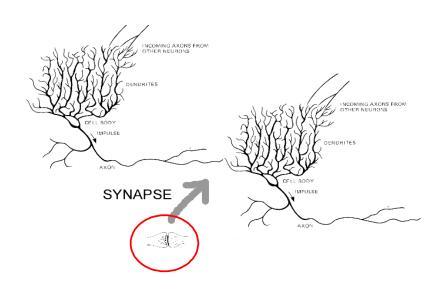
Como implementar as Redes Neurais Artificiais?


Emulando os sistemas biológicos!

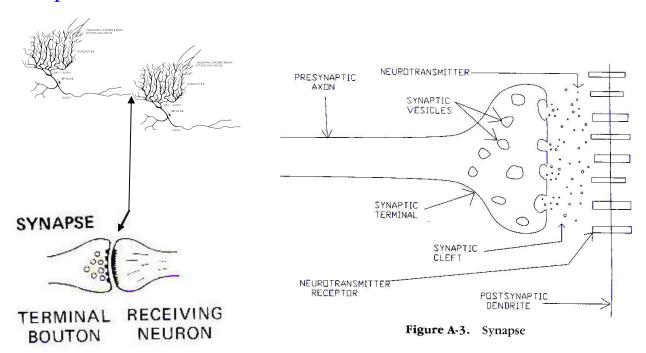
Neurônio biológico

CPE 721


Neurônio biológico


-70 mV < saida < +50 mV

estado
$$\begin{cases} \text{ativo, excitado} & \text{saída} > s_0 \\ \text{inativo, inativo} & \text{saída} < s_0 \end{cases}$$

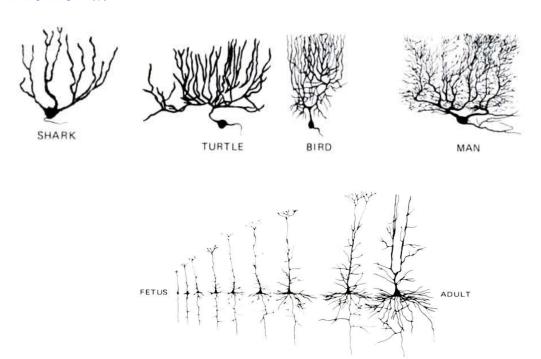
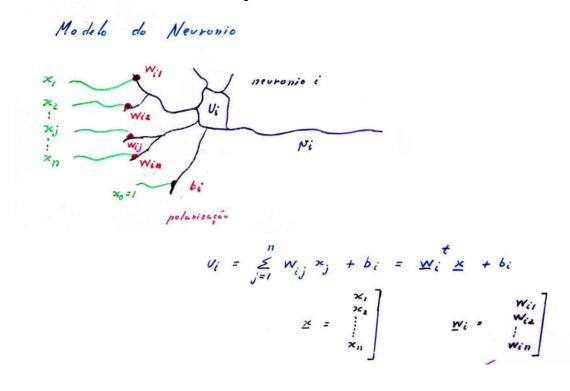

Polarização dos Neurônios - Bombas de Íons

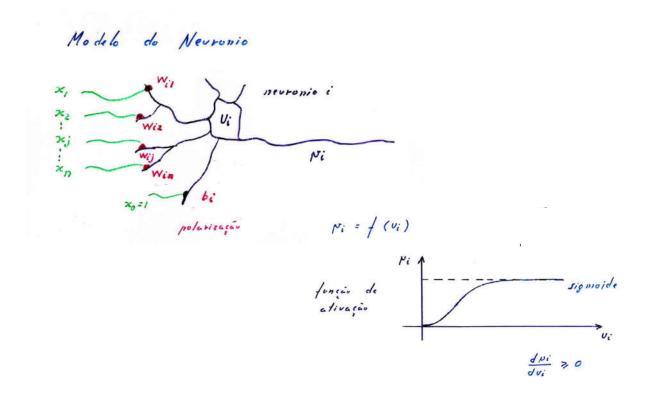
Comunicação entre neurônios:

Sinapse

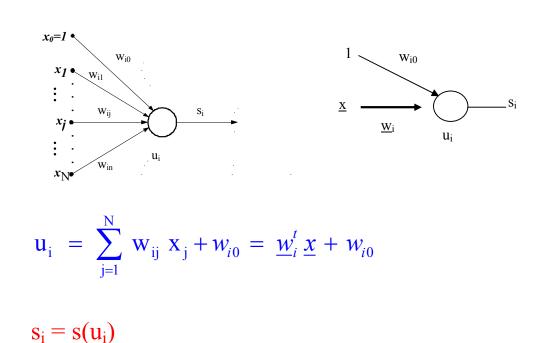
sinapses são ponderadores

Memória:

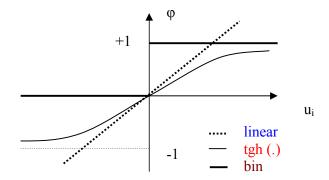




Figure 7-13. Growth of the dendritic trees and axon branches of cortical pyramidal cells in the human, from fetus to adult. (Courtesy of Sidman and Rakic 1982, and Poliakov in Sarkisov and Preobrazenskaya 1959.)

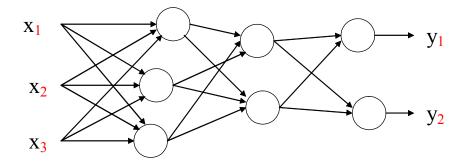
Neurônio - elemento de processamento

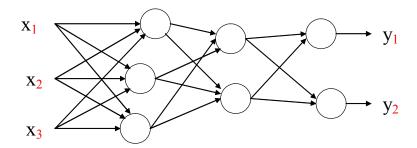


Neurônio - elemento de processamento


Redes Neurais Feedforward

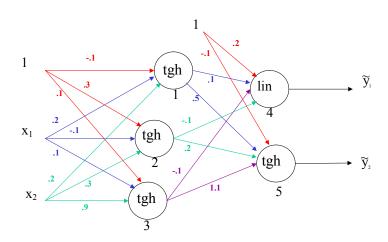
Neurônio - elemento de processamento


Função de Ativação s(u)

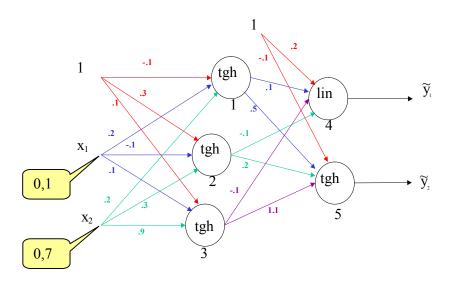

Neurônio	Função de ativação s _i (u _i)	Ganho linearizado $g_i(s_i) = ds_i / du_i$
linear	\mathbf{u}_{i}	1
Não linear, tipo tgh	$tgh(u_{i}) = \frac{1 - e^{-2u_{i}}}{1 + e^{-2u_{i}}}$	$1-s_i^2$
Não linear, tipo binário	$deg(u_i) = \begin{cases} 0 & se \ u_i < 0 \\ 1 & se \ u_i \ge 0 \end{cases}$	-

Arquitetura da Rede

Arquitetura da Rede

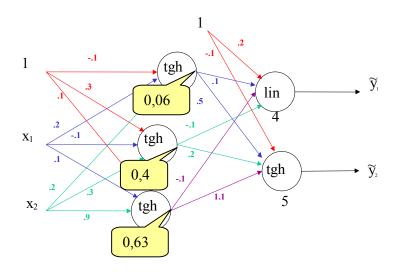


Rede feedforward

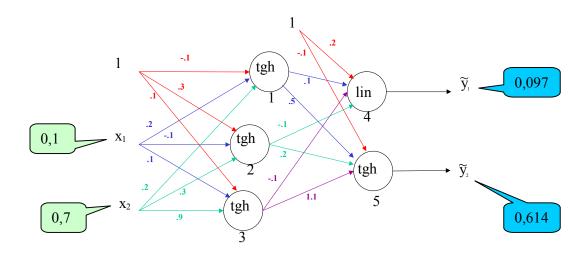

(sem realimentação)

- Estática
- Estruturalmente estável

Exemplo de operação da rede:



$$\underline{\mathbf{x}} = \begin{bmatrix} 0,1\\0,7 \end{bmatrix} \qquad \qquad \tilde{\mathbf{y}} = ?$$

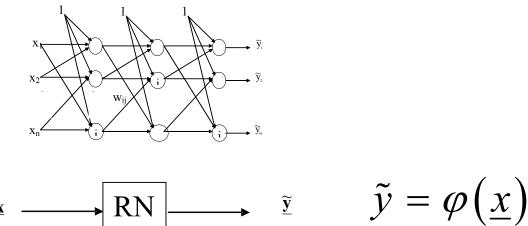

$$u_1 = -0.1 + (0.2)(0.1) + (0.2)(0.7) = 0.06$$

 $v_1 = \text{tgh}(0.06) = 0.06$

$$v_2 = 0.46$$
 $v_3 = 0.63$

$$u_4 = 0.2 + (0.1)(0.06) + (-0.1)(0.46) + (-0.1)(0.63) = 0.097$$

 $v_4 = 0.097$ (linear!)


$$u_5 = -0.1 + (0.5)(0.06) + (0.2)(0.46) + (1.1)(0.63) = 0.715$$

 $v_5 = \text{tgh}(0.715) = 0.614$

$$\underline{\mathbf{x}} = \begin{bmatrix} 0,1 \\ 0,7 \end{bmatrix} \qquad \qquad \widetilde{\mathbf{y}} = \begin{bmatrix} 0,097 \\ 0,614 \end{bmatrix}$$

Redes Neurais FeedForward

Mapeador Não Linear

Aproximador Universal!