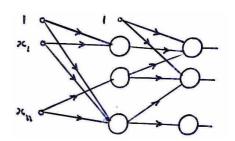
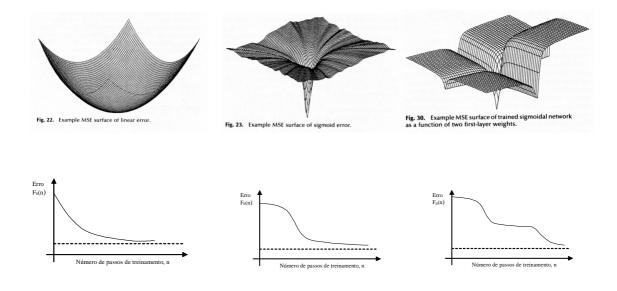
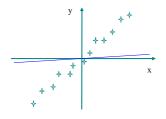

6 - Treinamento:

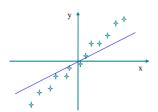

6.1 Superfícies de Erro

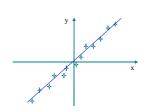

Mínimos locais possíveis? SIM!

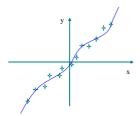
Vários mínimos globais

Comparação de soluções: somente via erro

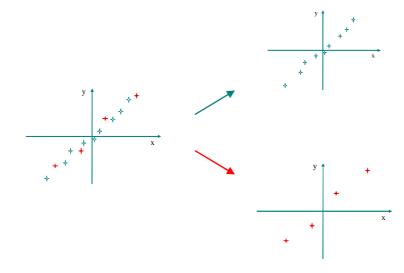


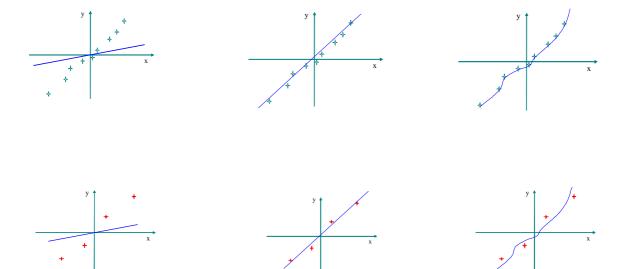

6.2 - Evolução do Erro durante o treinamento



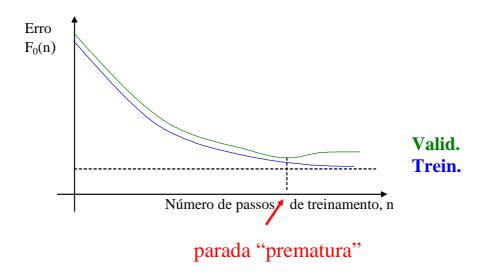

Crítica (acompanhamento) durante o treinamento!

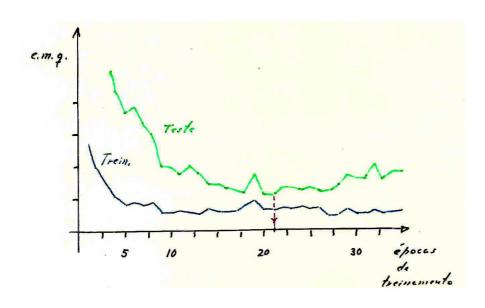
6.3 – Overtraining (overfitting, sobre-teinamento)





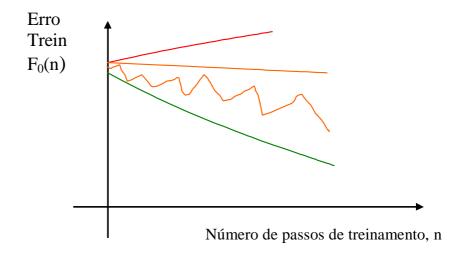
Conjunto dos pares entrada saída >>>


Conjuntos de **Treinamento 60%** Validação **20%** (Teste 20%)



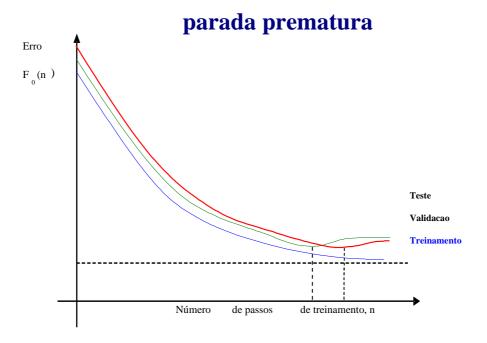
Evolução dos erros ao longo do treinamento nos conjuntos de treinamento e de teste

Controle do overtraining


"Save the Best"
$$\epsilon_{teste}$$
 " \underline{w} " se para $\underline{w} \neq \underline{w}$ " $\epsilon_{teste} < \epsilon_{teste}$ "

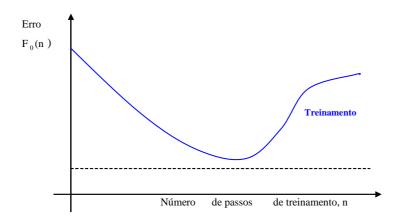
$$fa ca \quad \underline{w}^* = \underline{w} \quad e \quad \epsilon_{teste}^{\quad \ *} = \epsilon_{teste}$$

6.4 - Crítica durante o treinamento


Acompanhamento da evolução do erro nos conjuntos de treinamento, validação e teste durante o processo de treinamento

início do treinamento: avaliação de α

durante o treinamento:


controle do overtraining,

Parada "prematura": duas soluções

durante o treinamento:

controle de possíveis divergências

"Divergência tardia"

Que tipo(s) de erro(s) acompanhar?

Saídas contínuas - Erro eficaz (erms) ou erro médio quadrático (emq)

(erro na variável medida) versus (erro matemático)

$$erms = \sqrt{emq}$$

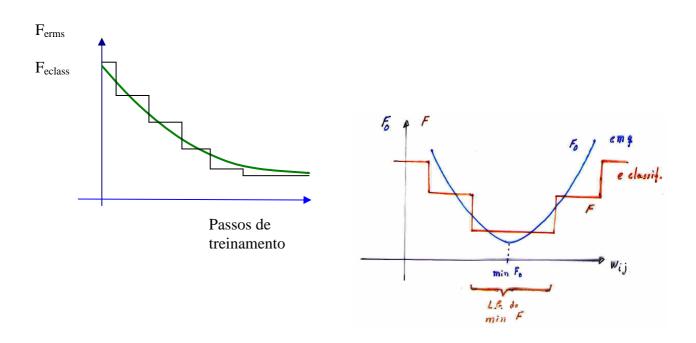
Obs: se na normalização $y_i = \frac{1}{\sigma_v} (Y_i - \mu_{Y_i})$

então o erro eficaz na saída real, não escalada, é:

$$erms_{Y_i} = \sigma_{Y_i} erms_{y_i}$$

Saídas Lógicas:

Erms versus Erro de Classificação


$$F_{classificação} = \frac{1}{4} \underbrace{E}_{P} [y_i - sign(\widetilde{y}_i)]^2$$
$$= \frac{1}{4P} \sum_{i=1}^{P} [y_i - sign(\widetilde{y}_i)]^2$$

- erro percentual eficaz na classificação

No acompanhamento do erro de saídas lógicas

Redes Neurais Feedforward

Plotar os dois erros, erms e erro de classificação!

6.5 - Validação Cruzada

baixa estatística

Caso extremo: leave one out

Conjunto dos Pares entrada saída >>>

Conjunto A 20%

Conjunto B 20%

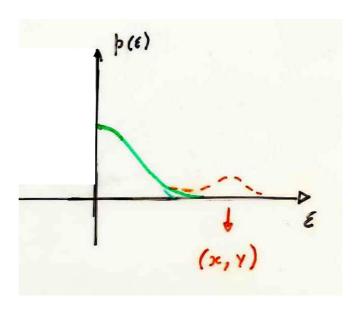
Conjunto C 20%

Conjunto D 20%

Conjunto E 20%

Composição dos Conjuntos:

Treinamento	Validação	Teste
60%	20%	20%
C+D+E *	В	A
B+D+E	C	A
B+C+E	D	A
B+C+D	E	A
C+D+E *	A	В
A+D+E	C	В
•••	•••	•••
A+B+D	С	E
A+B+C	D	E


Total: 20 casos (* 10 treinamentos a realizar)

Verificar média e dispersão do erro nos conjunto de teste.

6.6 Crítica pós-treinamento - histograma dos erros

$$(\underline{x},\underline{y}) \longrightarrow \underline{\widetilde{y}} \longrightarrow \varepsilon = |\underline{y} - \underline{\widetilde{y}}|$$

$$\varepsilon_k > 3\sigma_{\varepsilon}$$
 Provável anomalia

Examinar conjuntos de treinamento, teste e validação

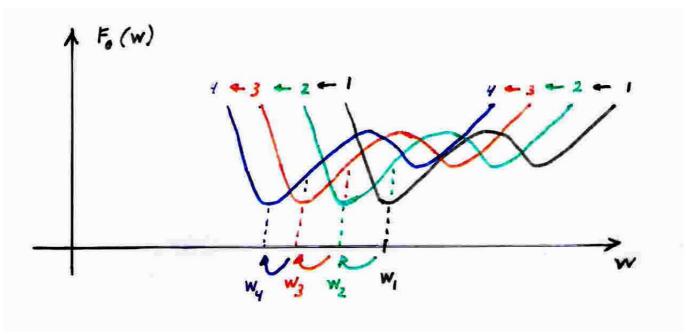
Anomalias possíveis:

Intrusos,

Regiões de baixa população

Mapeamento localmente complexos

Correção de anomalias: ver processos pós treinamento


Intrusos - eliminar

Regiões de baixa população - replicar pares da região

Mapeamento localmente complexos - acrescentar neurônios com atuação na região (neurônios RBF ou tgh com $\underline{\mathbf{w}} \sim \underline{\mathbf{x}}_{\text{crítico}}$

6.7 – Treinamento dinâmico, adaptativo

Sistemas variantes no tempo

Variações lentas vs. rápidas

Variações lentas nos pares entrada-saída (no mapeamento)

a rede acompanha, "aprende" o novo mapeamento e "esquece" os pares antigos (se $\alpha > 0$)

Variações bruscas nos pares entrada –saída (no mapeamento)

a rede pode não aprender o novo mapeamento, pode ficar presa em um mínimo local, etc. Mais seguro refazer o treinamento.