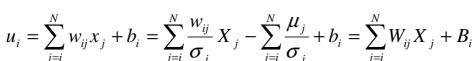
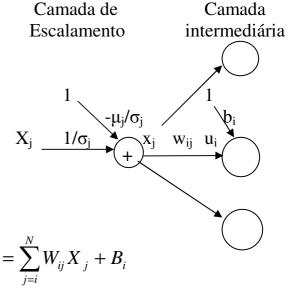

Pós treinamento - Absorção do escalamento pelas sinapses Rede em Operação

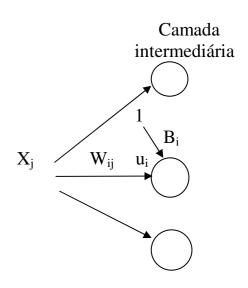

O escalamento/desescalamento podem ser vistos como a ação de uma camada linear entre as variáveis reais e as escaladas. Assim, na fase de operação da rede o escalamento/desescalamento podem ser absorvido pela primeira/última camada da rede.

Entrada X_i


Critério: manter os ui's inalterados

Para X_i contínuo

$$x_{j} = \frac{1}{\sigma_{j}} \left(X_{j} - \mu_{j} \right)$$


onde
$$W_{ij} = \frac{w_{ij}}{\sigma_j}$$
 e $B_i = -\sum_{j=i}^N \frac{\mu_j}{\sigma_j} + b_i$

Na nova rede,

$$u_i = \sum_{j=i}^N W_{ij} X_j + B_i$$

onde
$$W_{ij} = \frac{w_{ij}}{\sigma_j}$$
 e $B_i = -\sum_{j=i}^N \frac{\mu_j}{\sigma_j} + b_i$

se
$$X_j$$
 discreto, $X_j \in \{0,1\}$

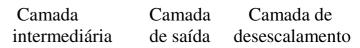
para que os ui não se alterem aplique a mesma transformação considerando

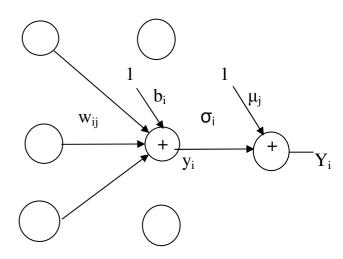
$$\sigma_i = \mu_i = 0.5$$

Saída Y_i

Critério: manter os zi's inalterados

Para Y_j contínuo

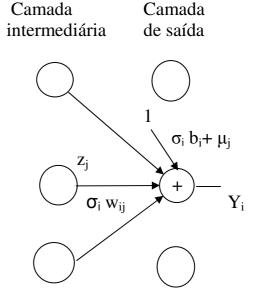

$$y_i = \frac{1}{\sigma_i} (Y_i - \mu_i)$$
 $Y_i = y_i \sigma_i + \mu_i$


$$y_i = \sum_{j=i}^{N} w_{ij} z_j + b_i$$

$$Y_i = \sigma_i y_i + \mu_i = \sum_{j=i}^{N} \sigma_i w_{ij} z_j + \sigma_i b_i + \mu_i$$

$$= \sum_{j=i}^{N} W_{ij} z_j + B_i$$

onde
$$W_{ij} = w_{ij}\sigma_i$$
 e $B_i = \sigma_i b_i + \mu_i$



Na nova rede:

$$Y_i = \sum_{j=i}^N W_{ij} z_j + B_i$$

onde

$$W_{ij} = w_{ij}\sigma_i$$
 e $B_i = \sigma_i b_i + \mu_i$

se Y_i discreto, $Y_i \in \{0,1\}$, apenas substitua na camada de saída o neurônio tipo tgh(u) por um neurônio tipo degrau(u), mantendo as sinapses do neurônio de saída inalteradas

Resumo:

Variáveis contínuas:

Camada de entrada

Rede escalada, original	Rede modificada
$x_{j} = \frac{1}{\sigma_{j}} (X_{j} - \mu_{j})$	X _j
\mathbf{w}_{ij}	$W_{ij} = \frac{w_{ij}}{\sigma_j}$
b _i	$B_i = -\sum_{j=i}^N \frac{\mu_j}{\sigma_j} + b_i$

Camada de Saída

Rede escalada, original	Rede modificada
$\widetilde{y}_i = \frac{1}{\sigma_i} \left(\widetilde{Y}_i - \mu_i \right)$	$ig \widetilde{Y_i}$
W _{ij}	$W_{ij} = W_{ij} \sigma_i$
b _i	$B_i = \sigma_i b_i + \mu_i$

Variáveis discretas

se
$$X_j$$
 discreto, $x_j \in \{-1,1\}$ e $X_j \in \{0,1\}$ considere $\sigma_j = \mu_j = 0.5$

se Y_i discreto, $Y_i \in \{0,1\}$, neurônio $tgh(u) \Longrightarrow degrau(u)$, sinapses inalteradas