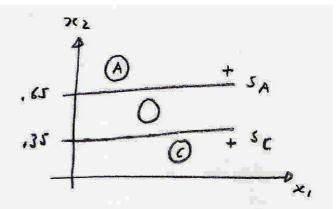
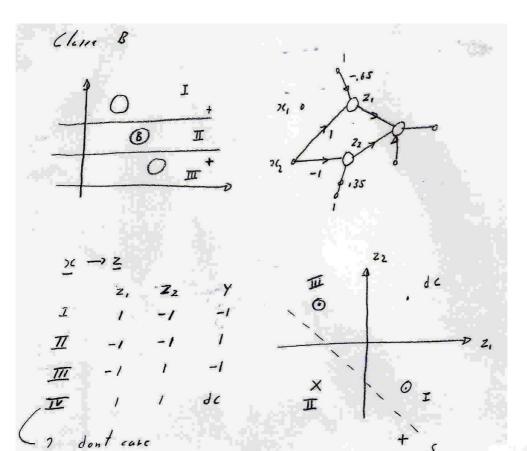
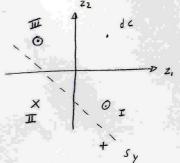

CPE 721 3ª Série de Exercícios - correção Classificadores

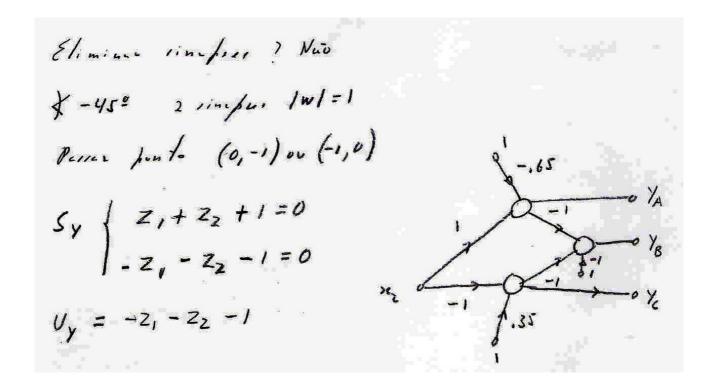
1 - Na rede da Fig 1-a abaixo os neurônios são do tipo perceptron, i.e., y = sign u.



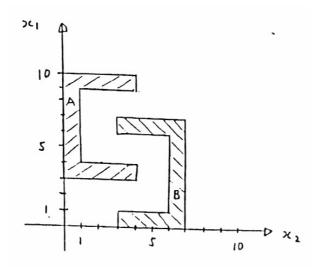
Programe as sinapses para separar as três classes cujos domínios estão apresentados na Fig. 1-b acima. Escolha os planos separadores visando minimizar o número de sinapses (a) maximizando o número de sinapses nulas e (b) dentre as sinapses que não puderam ser anuladas, maximizar o número das que tem valor +1 ou -1.

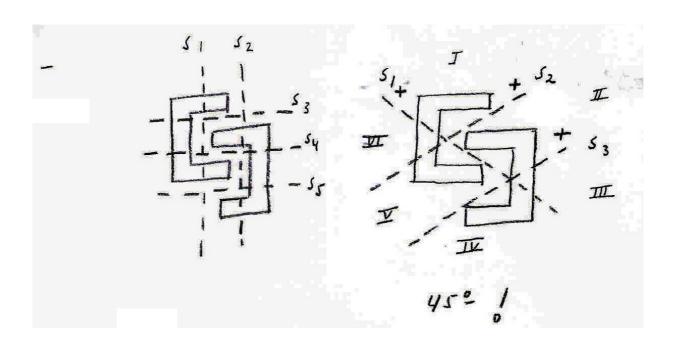

$$S_{A} \begin{cases} 5c_{2} - .65 = 0 \\ -x_{2} + .15 = 0 \end{cases}$$

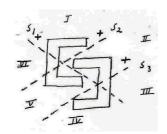

$$V_{A} = \begin{cases} 20, -3c \\ -3c + 3c - \end{cases}$$

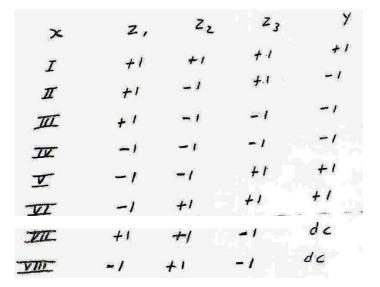


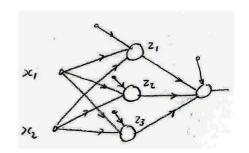
$$S_c = \begin{cases} x_2 - .35 \\ -x_2 + .35 \end{cases}$$

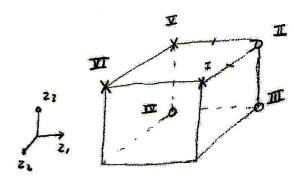

$$v_c = -x_2 + .35$$






2 - Apresente uma rede feedforward com neurônios tipo $\tilde{y} = \text{sign}(u)$ que separe as classes abaixo. Minimize o número de neurônios usados na camada intermediária.



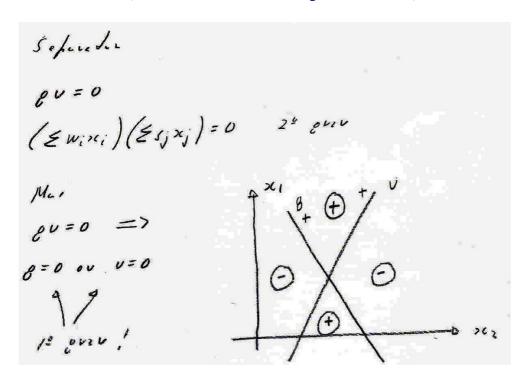

Obs: o projeto da segunda camada fica mais fácil de visualizar se voce escolher a polarização dos semiplanos separadores da primeira camada tal que eles mapeiem as regiões da classe em vértices em uma mesma face do hipercubo em <u>z</u>.

3 - Em um neurônio biológico, além das sinapses de sinal, w_i, existem também as sinapses de "shunting", s_i, que controlam o ganho do neurônio. Assim

$$v = tgh(gu) \text{ onde}$$

$$u = \sum_{i=0}^{n} w_i x_i e$$

$$g = \sum_{j=0}^{n} s_j x_j$$


Calcule Δw_i e Δs_j para uma rede de um nerônio usando backpropagation regra delta.

$$N = \frac{1}{2}h\left(\theta v\right) \qquad v = \frac{1}{2}w_{i}x_{i} \quad \theta = \frac{1}{2}s_{j}x_{j}$$

$$\frac{d^{2}}{d^{2}} = -2\frac{d^{2}}{d^{2}} = -2\frac{d^{2}}{d^{2}} = -2\frac{d^{2}}{d^{2}} = -2\frac{d^{2}}{d^{2}}$$

$$\frac{d^{2}}{d^{2}} = -2\frac{d^{2}}{d^{2}} = -2\frac{d^{2}}{d^{2}}$$

3a - Se este neurônio estiver sendo usado como classificador, qual a forma do separador? Um hiperplano, uma superfície polinomial, uma superfície transcendente, etc...? Determine o tipo e a ordem, se for o caso.

4 - Considere um neurônio tipo:

$$\widetilde{y} = tgh \ u \quad onde \quad u = \sum_{i=0}^{n} w_i \ x_i \quad e \ x_0 = 1$$

treinado como um classificador de uma camada, isto é, para $y \in \{-1, 1\}$.

4a - Mostre que

$$|\varepsilon| = |y - \widetilde{y}| = 1 - y \widetilde{y}$$

Sugestão: Prove separadamente para y = 1 e y = -1.

$$|\xi| = 1 - y\tilde{y} ?$$

$$y = 1 \quad \xi = y - \tilde{y} = 1 - \tilde{y} = 1 - y\tilde{y} > 0$$

$$|\xi| = \xi = 1 - y\tilde{y}$$

$$y = -1 \quad \xi = y - \tilde{y} = -1 - \tilde{y} = -1 + y\tilde{y} \leq 0$$

$$|\xi| = -\xi = 1 - y\tilde{y}$$

4b - Calcule Δw_i para minimizar a função objetivo valor esperado do módulo do erro $E\{\ |\mathcal{E}|\ \}_{usando\ backpropagation\ regra}$ delta.

$$\frac{d |\mathcal{E}|}{d w_k} = \frac{d |\mathcal{E}|}{d \tilde{y}} \frac{d \tilde{y}}{d u} \frac{d u}{d w_k}$$

$$|\mathcal{E}| = |I - \tilde{y}| \tilde{y}$$

$$\tilde{y} = |f_0 h| u$$

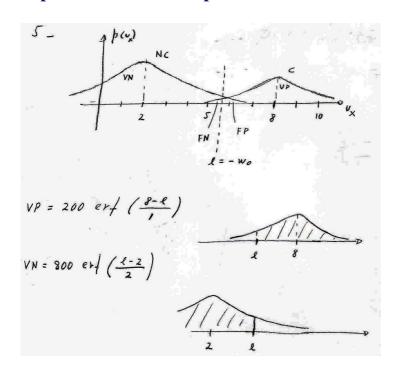
$$u = |\mathcal{E}| w_j \times_j$$

$$\frac{d |\mathcal{E}|}{d w_k} = |(-\tilde{y})| (|I - \tilde{y}|^2) \times_k$$

$$\Delta w_k = - \times \frac{d |\mathcal{E}|}{d w_k} = |y| (|I - \tilde{y}|^2) \times_k$$

5 – Considere uma rede neural feedforward com uma saída atuando como um classificador. A excitação interna do neurônio de saída da rede pode ser escrita $u = u_x + w_0$, onde w_0 é a polarização do neurônio e u_x corresponde a contribuição da entrada \underline{x} . Considere que:

a – A população da Classe é P_c = 200 e a população da Não Classe é P_n = 800.


b – as distribuições de u_x para o conjunto de entradas da Classe e da Não Classe podem ser aproximadas por Gaussianas com média e desvio padrão μ_c = 8, σ_c

= 1, μ_n = 2, σ_n = 2, respectivamente.

Obs: Use tabela para obter o valor da função erro:

$$erf(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt \quad \text{e lembre que} \quad \frac{d}{dx} erf(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

5.1 – Mostre como calcular w_0 para maximizar a Taxa de Acerto do classificador (w_0 é o maximante de VP+VN). Calcule a Sensibilidade e a Especificidade obtidas para a Taxa de Acerto ótima.

$$\frac{d}{d\ell} \left(v + v N \right) = 200 \frac{d}{d\ell} erf(\ell-\ell) + 800 \frac{d}{d\ell} erf(\frac{\ell-2}{2})$$

$$= 200 \frac{d(\ell-\ell)}{d\ell} \frac{derf(\ell-\ell)}{d(\ell-\ell)} + 800 \frac{d(\frac{\ell-2}{2})}{d\ell} \frac{\int erf(\frac{\ell-2}{2})}{derf(\frac{\ell-2}{2})}$$

$$= 200 (-1) \frac{1}{\sqrt{2\pi}} e^{\frac{-1}{2}(\ell-\ell)^2} + 800 \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{\ell-2}{2})^2}$$

$$\frac{d}{dt} (VP + VN) = 0$$

$$- \frac{1}{200} \frac{1}{\sqrt{200}} e^{-\frac{1}{2}(8-e)^2} \frac{1}{\sqrt{200}} e^{-\frac{1}{2}(\frac{(e-2)^2}{2})^2} = 0$$

$$- \frac{1}{2}(8-e)^2 = 2 e^{-\frac{1}{2}(\frac{(e-2)^2}{2})^2}$$

$$- \frac{1}{2}(8-e)^2 + \frac{1}{2}(\frac{(e-2)^2}{2})^2 = 2$$

$$- \frac{1}{2}(e^2 + 6y - 16e) + \frac{1}{2}\frac{1}{4}(e^2 + y - ye) = \ln 2$$

$$- ye^2 - 256 + 64e + e^2 + y - 4e = 8 \ln 2$$

$$3e^2 - 60e + 252 + 8 \ln 2 = 0$$

$$257,55$$

$$e = \frac{60 \pm \sqrt{66^2 - 4x^3 \times 257.55}}{6} = \frac{6.24}{13.76}$$

NC 5=2 6.24 8

No=-6,24 Taxa de acorto étima

$$= 200.361 = 192.2$$

$$VN = 800 \text{ exf} \left(\frac{6.24-2}{2}\right) = 800 \text{ exf} \left(2.12\right)$$

$$= 800.383 = 786.4$$

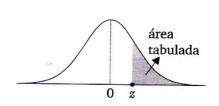
$$T = \frac{192.2 + 786.4}{200 + 800} = .979 = 97.9\%$$

$$E = \frac{VN}{VN+FP} = e+/(2.12) = .983 = 98.3$$

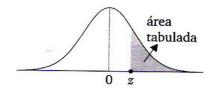
5.2 – Mostre como calcular w_0 para obter uma Sensibilidade de 99 %. Calcule as novas Taxa de Acerto e Especificidade obtidas e compare com o caso anterior.

$$S = \frac{VP}{VP + FN}$$

$$VP = 200 \text{ erf} \left(\frac{8-e}{r}\right)$$


$$exf(\frac{8-e}{r}) = .98$$

$$P - e = 2.33$$


$$Q = 8-2.39 = 5.67$$

5.3 – Repita para populações iguais $P_c = P_n = 400$ e compare e interprete os resultados.

Error Function

26 C	Segunda decimal de z									Tarin
KARE!	0	1	2	3	4	5	6	7	8	9
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
					Ý					
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2842	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985

	Segunda decimal de z									
25										
	0	1	2	3	4	5	6	0 (7 0)	8	9
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0722	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0352	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
									**************************************	37
2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064

		Segunda dečimal de s									
2	0	1	2	3	4	5	6	7	8	9	
2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048	
2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036	
2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026	
2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019	
2,9	0,0019	0,0018	0,0017	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014	
3,0	0,00135										
3,5	0,000 233										
4,0	0,000 031 7										
4,5	0,000 003 40										
5,0	0,000 000 287										