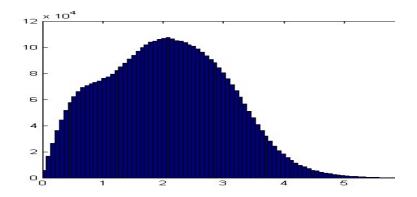
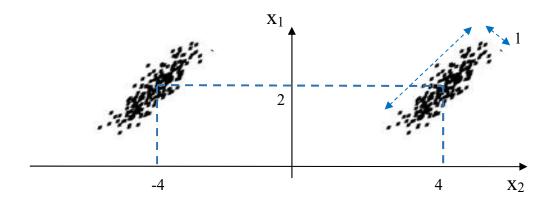

CPE 722 - 3^a série de exercícios - Ruído


Prazo para entrega: quarta feira, 29/07

A resolução desta série será apresentada na aula de quinta feira, 30/07


1 – As figuras abaixo apresentam o histograma das projeções de um conjunto de pontos no espaço tridimensional em cada uma das suas três dimensões. Estime o número de classes, o baricentro m_i e o desvio padrão do ruído σ_i das mesmas em cada dimensão i,

2 - Duas classes estão representadas na figura abaixo.

Usando análise visual na figura acima verifica-se que os centros das classes estão em [2, 4] e [2, -4], que os diametros maior e menor das elipses que contém os elementos das classes valem 3 e 1 unidades, respectivamente, e que o diametro maior faz um ângulo de 45° com o eixo horizontal. Pelo número e distribuição de pontos é possível considerar que os diâmetros das elipses correspondem a $\sim 6\,\sigma$ e que a distribuição do ruído é Gaussiana.

Usando estes dados apresente (a) os valores aproximados para matrizes **B** e **P** que branqueiam o ruído, (b) as posições dos novos centros de classe após o branqueamento do ruído e (c) determine o raio de similaridade à usar para que cada classe classifique corretamente (capture) 95 % de seus elementos.

Obs: A matriz B que produz uma rotação θ no sentido trigonométrico (anti-horário) em um vetor em coordenadas cartesianas é $B = \begin{bmatrix} \cos \theta & sen \theta \\ -sen \theta & \cos \theta \end{bmatrix}$

3 - Os dados para uma classificação são gerados a partir de padrões adicionados de ruído branco. Considere as tabelas abaixo. Na Tabela 1 os elementos d_{ij} indicam a distância entre o centro da classe C_i , \underline{m}_i ao centro da classe C_j , \underline{m}_j . Na tabela 2 é indicado o número de elementos n_i da classe C_i e sua dispersão interna F_{in} , F_i . Indique quais classes devem ser unidas e quais dissociadas.

Obs: Considere a relação S entre os desvios padrão $\sigma_i = \sqrt{F_i/n_i}$ e as distâncias entre centros d_{ii} das classes

Tabela 1:

Classes	1	2	3	4	5
1	0	6.0	6.1	8.5	6
2		0	<mark>1.0</mark>	6.0	8.5
3			0	5.0	7.8
4				0	6.0
5					0

Tabela 2

Classe	ni	F_i
1	30	30
2	50	32
3	30	19
4	50	50
5	10	40